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Abstract

The statistics of range images from natural envi-

ronments is a largely unexplored �eld of research. It

closely relates to the statistical modeling of the scene

geometry in natural environments, and the modeling

of optical natural images. We have use d a 3D laser

range-�nder to collect range images from mixed forest

scenes. The images are here analyzed with respect to

di�erent statistics.

1 Introduction
More and more people realize the importance of the

statistics of optical images. Good statistical models of
optical images are important to applications, such as
image compression, noise remo val and segmentation.
The models may also further our understanding of the
encoding of visual information in biological visual sys-
tems. Not much research has, however, been done on
the statistics of range images. There are two main
reasons why range images are interesting. First, they
lead to a direct understanding of the stochastic nature
of the geometry of the world, and give priors for stereo
algorithms ([1],[2]). Secondly, they make it possible to
construct more realistic models of optical images. For
example, authors in [11], [3] and [8] have modeled op-
tical images as a perspective view of the 3D world,
with objects of random geometry (size, shape, posi-
tion) and intensity. The object geometries in these
models are usually based on assumptions, which have
not been directly veri�ed in real scenes. There is no
doubt, that with a fairly large data base of range im-
ages, we will better understand the scene geometry
of the 3D world, and thus be able to develop more
realistic models for optical images.

We have collected 205 panoramic range images
from varying environments (both outdoor and indoor
scenes) | 54 of these images were taken in di�er-
ent forests in Rhode Island and Massachusetts dur-
ing August-September. In this paper, we will focus
on the forest scenes, because the statistics of these

Figure 1: A sample image from our range image data
base

images appear more stable than those of other cat-
egories (for example, residential and interior scenes).
Figure 1 shows a sample.

W e used a laser range-�nder with a rotating mir-
ror 1 to collect the range images. Each image contains
444� 1440 measurements with an angular separation
of 0.18 deg. The �eld of view is thus 800 vertically
and 2590 horizontally. Each measurement is calcu-
lated from the time of 
ight of the laser beam. The op-
erational range of the sensor is typically 2-200m. The
laser wavelength of the range-�nder is 0:9�m, which
is in the near infra-red region.

Throughout this paper, we will work with
log(range) instead of range directly, because the for-
mer statistics is closer to being shape invariant. Figure
2 shows a top view of a laser range-�nder (see circle)
centered at O, and two homothetic triangles 4ABC
and 4A0B0C0 (PA, PB and PC correspond to three
pixels in the range image). Assume that the distances
between O and the vertices of 4ABC are rA, rB and
rC, respectively, and the distances between O and the
vertices of4A0B0C0 are RA, RB and RC , respectively.
Let

D = range(PA)� range(PB)

be the di�erence in range for pixels PA and PB, and

13D imaging sensor LMS-Z210 by Riegl
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Figure 2: A laser range �nder centered at O and two
homothetic triangles, 4ABC and 4A0B0C 0.
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Figure 3: Semi-log (left) and log-log (right) plots of
the single pixel statistics (i.e. range statistics). Solid:
distribution for the whole image. Dotted: distribution
for the bottom half of a range image. Dashed: distri-
bution for the top half of a range image.

let

bD = log(range(PA))� log(range(PB))

= log

�
range(PA)

range(PB)

�

be the di�erence in log range for the same two pixels.
Then, a scene with 4ABC and a scene with triangle
4A0B0C0 will lead to di�erent values for D (rA � rB
vs. RA � RB) but the same value for bD (log( rA

rB
) =

log(RA
RB

)). Hence, log(range) is appropriate if we want
the di�erence statistics (or any mean-0-�lter reaction)
to be \shape invariant".

2 Single-Pixel Statistics

The solid line in Figure 3 shows the single-pixel
statistics of log(range) images. W e observe a sud-
den change in slope at a range of about 20 meters
(or log(range) � 3; see vertical line in �gure) | this
may be related to the accumulation of occlusion ef-
fects. In Figure 3, we have also plotted the log(range)
histograms for the top half (dashed line) and bottom
half (dotted line) of a range image separately. The
two halves correspond to di�erent distributions of ob-
jects | mainly ground for the top half and mainly
trees for the bottom half | and displa y quite di�er-
ent statistics. The distribution from the top half has
an approximately linear tail in a semi-log plot (in-
dicating an exponential decay � e�0:12r), while the
bottom half shows an approximately linear tail in a
log-log plot (indicating a power law � r�2:6). We can
qualitatively explain the two di�erent behaviors with
the following simpli�ed models:

For the top half, we assume tree trunks (cylinders)
uniformly distributed on a plane, according to a Pois-
son process with density �. Figure 4 shows a top view
of a randomly generated \forest" scene. Each disk
represents a cross section of the trunk of a tree. If we
assume all disks are of diameter L, a simple calcula-
tion will show that the probability that a horizontal
beam from the laser range-�nder �rst hits a tree at
distance r is given by an exponential distribution

f(r) � �Le��Lr :

For the bottom half, we assume 
at ground only.
Let the height of the sensor from the ground be H,
as shown in Figure 5. Then at angle �, the distance
between the sensor and the ground is r = H

sin�
. The

laser range-�nder samples evenly with respect to the
polar coordinate(s) � (and �), i.e.

f(�) = constant

for �=2 < � < �. With respect to r, we then get a
power-law distribution

f(r) =
H

r2
p
(1� (H=r)2)

�
1

r2
:

3 Derivative Statistics
We now look at the marginal distribution of the

horizontal derivative D, which in the discrete case, is
simply the di�erence between two adjacent pixels in
the same row. The solid line in Figure 6 shows the log
probability density function of D. As in the studies
of optical images, this distribution has a high kurto-
sis with large tails, and a peak at 0. It is closest to
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Figure 4: Top view of a randomly generated forest
scene. See text.
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Figure 5: Ground model. See text.

the statistics for optical images of man-made environ-
ments [8], but has an even higher peak at 0. This
indicates that the structure of range images is simpler
than for optical images | an issue that w e will explore
further in the next section. The derivative statistic
has also been used to test the scale invariance prop-
erty (see Sinai [13], Field [5], Ruderman [12], and for
scale invariance) in natural images. Given an image I,
we de�ne a scaled-down image I(N) by computing the
average of N �N disjoint blocks. In [12], [14], [3] and
[8], it has been shown that, for optical natural images,
the distribution of D is the same for I and I(N). In
this paper, we scale down the images by taking the
minimum, instead of the average ofN � N blocks.
This is the appropriate renormalization for range im-
ages, because laser range �nders measure the distance
to the nearest object in each solid angle. Figure 6
shows the distribution of D at di�erent scales. The
results indicate that range images scale well.

4 Bivariate Statistics
Below, we study the co-occurrence statistics of two

pixels with di�erent separation distances. Let

K(a; bjx) = PrfI(x1) = a; I(x2) = b j kx1 � x2k = xg

where I(x1) and I(x2) represent the log(range) at pix-
els x1 and x2. The left column of Figure 7 shows
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Figure 6: Derivative statistics at di�erent scales.

the contour plots of K(a; bjx) for separation distances
x = 1; 16; 256.

The authors in [8] propose the following model for
the bivariate statistics of optical images:

K(a; bjx) = [1� �(x)]q(a)q(b) +

2�(x)hx(a+ b)gx(b� a)

where q is the marginal distribution for a single pixel,
hx are distributions similar to q, and gx are distribu-
tions highly concentrated at 0. The �rst term mod-
els the case where the two pixels belong to di�erent
objects (we assume that di�erent object are statis-
tically independent), the second term represents the
case where they are on the same object (assume that
the sum and the di�erence of the pixel values are in-
dependent), and �(x) is the probability of their being
on the same object.

The right column of Figure 7 shows a �t of the
model above to the empirical bivariate statistics (left
column) of range images; Figure 8 shows the functions
used in the �t. The mixture nature | \same" v ersus
\di�erent" objects | of both of data and the model,
is seen in the changing shape of the contour levels in
the center versus the tails. W e also �nd that the ran-
dom collage model �ts better to the bivariate statistics
of range images than to that for optical images (see
[8]). Again, this indicates that range images present
a simpler, cleaner problem than optical images. F or
example, the concept of objects is better de�ned for
range images where we do not need to take lighting,
color variations, texture etc. into account.
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5 Joint Statistics of Haar W avelet Co-
e�cien ts

It has been shown that, the statistics in the wavelet
domain can be very informative ([4], [7], [8]). We here
choose the Haar wavelet for its simplicity: Any struc-
ture in the statistics can be directly related to pixel
values. Note also that the central limit theorem can
easily make the statistics of larger support �lters ap-
pear misleadingly Gaussian.

Figure 9 shows the di�erent Haar �lters. To de-
scribe how the wavelet coe�cients in the subbands
are related to each other, we use the same de�nitions
as in [4]: Coe�cients at adjacent spatial locations in
the same subband are brothers, and coe�cients in the
same level and the same position, but di�erent orien-
tations are cousins.

Figure 10 shows contour plots of the joint density
functions for di�erent wavelet coe�cient pairs. W e
observe strong cusps in all contour level curves; most
of which lie on the lines x = 0, y = 0, x = �y and x =
�2y. As a comparison, look at Figure 11 where the
corresponding contour plots are calculated for optical
images in van Haterens's image database [6]. We see
that many cusps occur along the same lines, but are
not as peaked.

Furthermore, we did the following experiments on
the range images:

1. W e scaled the images down by taking the block
minimum and calculated the joint histograms.
Figure 12 shows the result.

2. W e scaled the images down by taking the block
average and calculated the joint histograms, Fig-
ure 13 shows the result.

When w e scale a range image down by block min-
imum, the resulting image is approximately the same
as the image taken in the same environment at half res-
olution (as mentioned before, range images are almost
scale invariant under block minimum). The second
method (block averaging) is, however, closer to how a
digital camera for optical images works: The intensity
at each pixel is the average (or some weighted mean)
of the intensity at points covered by that pixel. This
explains why the statistics shown in Figure 12 is sim-
ilar to that in Figure 10, and the statistics in Figure
13 is similar to that in Figure 11.

Note that the observed cusps in Figure 10 are not
caused by noise, but correspond to real structures in
the images. It is important to see what these struc-
tures are:

For the cousin pairs (horizontal and vertical; hori-
zontal and diagonal) this is relatively straight-forward
| because the join t distribution of horizontal, vertical
and diagonal wavelet coe�cients is a su�cient statis-
tics for 2�2 blocks modulo mean (3 variables). Figure
14 shows an equiprobable surface of the 3D joint distri-
bution (horizontal, vertical, diagonal). W e see vertices
along the lines y = z = 0, x = z = 0, x = y = 0 and
x = �y = �z. Simple calculations show that these
vertices correspond to the following 2 � 2 blocks and
their rotations:

�
a a
b b

�
;

�
a b
b a

�
;

�
a b
b b

�

For the horizontal �lter and left brother pair, we see
cusps along y = 0, x = 0, y = x, y = 2x and y = 1

2x.
To �nd the 2 � 4 patches that correspond to these
vertices, we sample randomly from our database for
patches with strong �lter reactions along y = 0, y = x
and y = 1

2x. The 8 range values in the typical patches
fall clearly into 2 and occasionally 3 tight clusters.
Calling the clusters a,b, and c, we get for example:

direction typical patches

y = 0

�
a b b c
b b b c

�
;

�
a a b c
b b b c

�
;�

a b a a
a a a a

�

y = x

�
a b b b
a a a b

�
;

�
a b b a
a a a a

�
;�

a a a a
b b b b

�
;

�
a a a a
b b b b

�
;

y = 1
2
x

�
a a a b
b b b b

�

For the horizontal �lter and upper brother pair, we
see cusps along y = 0, x = 0, y = �x, y = �2x and
y = �1

2x. The typical patches in the database, that
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lead to high �lter reactions along these lines are:

direction typical patches

y = 0

0
BB@

a a
b b
b b
b b

1
CCA

y = �x

0
BB@

a a
b a
b a
a a

1
CCA ;

0
BB@

a a
b a
b a
a a

1
CCA ;

0
BB@

a a
b b
b b
a a

1
CCA ;

0
BB@

a b
b b
b b
b a

1
CCA

y = �2x

0
BB@

a b
b b
b b
a a

1
CCA ;

0
BB@

a a
b a
b b
a a

1
CCA

y = x

0
BB@

a a
b b
a a
b b

1
CCA ;

0
BB@

a a
a b
a b
b b

1
CCA ;

0
BB@

a b
b b
a a
a b

1
CCA

We see that all the striking cusps in the contour plots
in the Haar wavelet domain relate to the piecewise
constant geometric structure in range images.

6 Conclusions

We have investigated several simple statistics of
range images of forest scenes. The bivariate statis-
tics of two pixels verify the basic assumption of the
random collage model | that the w orld can be bro-
ken down into piecewise smooth regions (in, for ex-
ample, range or intensity) that depend little on each
other. The 2D and 3D joint distributions of Haar �l-
ter reactions show some striking features, which also
indicate the presence of piecewise constant geometric
structures and sharp discontinuities in range images.
The above results all point to the fact that range im-
ages are much simpler to analyze than optical images:
The concept of \objects" is often better de�ned in
terms of changes in range, than in terms of changes in
intensity, color, texture, lighting etc. W e believe that
segmenting range images from natural scenes and a
thorough analysis of the results | for example, the
structure within objects, and the sizes, positions, and
dependencies between di�erent objects | will lead to
a better understanding of the scene geometry of the

3D world, as well as more realistic statistical models
for optical images.
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Figure 7: Contour plots of the log histograms of pixel
pairs for range images (left column) and the best bi-
variate �t to the random collage model (righ t column).
x: distance between the two pixels, u: sum of the pixel
values, v: di�erence of the two pixel values.
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distances x = 2 (solid), 16 (dashed), and 256 (dotted).
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Figure 10: Contour plots of the log histograms of
wavelet coe�cient pairs for range images.
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Figure 11: Contour plot of the log histogram of
wavelet coe�cient pairs for natural optical images.
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Figure 12: Contour plots of the log histogram of
wavelet coe�cient pairs, calculated from range images
scaled down by taking the minimum of 2X2 blocks.
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Figure 13: Contour plots of the log histogram of
wavelet coe�cient pairs, calculated from range images
scaled down by taking the average of 2� 2 blocks.
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in range images, viewed from three di�erent angles.
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