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1. Introduction 

In the last few decades, there has been an explosion of research on models of the 
cortex and how intelligent behavior might be achieved on the basis of these models. 
But to even start modeling in this way, one must make fundamental assumptions 
about the biological realities, about thought and about how the two are linked. It 
seems to me that many of these assumptions are neither self-evident nor definitively 
established. Therefore, committing yourself to a theory in this type of research, you 
run the clear risk that if your assumptions are wrong, subsequent understanding of 
the problem may make your theories not merely wrong but irrelevant. The purpose 
of this article is to make explicit some of these underlying assumptions and to 
discuss some of the different choices modelers have made. Unfortunately much 
research in this area, which goes under the name of 'neural nets' (and related areas 
of artificial intelligence, computer vision, robotics, etc.), has tended to fragment 
into distinct schools and this has not afforded the opportunity to step back and say 
— what really is the range of choices we may have? 

To set up a mood of skepticism about our current ideas, I want to start by briefly 
reviewing some of the history of theorizing about these problems. Theories from 
previous centuries may seem bizarre and utterly misguided, so one must make an 
effort to realize that these old theories were nonetheless the product of serious study 
and deep efforts to integrate each generation's knowledge of biology, psychology and 
philosophy. 

It has, of course, always been clear that the senses were concentrated in the 
head, but in Greek science, for example, whether the brain or the heart was the 
most significant factor in thinking was disputed. Thus Hippocrates said 

"From the brain and from the brain only arise our pleasures, joys, 
laughter and jests as well as our sorrows, pains, griefs and tears. 
Through it, in particular, we think, see, hear and distinguish the 
ugly from the beautiful, the bad from the good, ... the brain is the 
interpreter of consciousness." 
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FIGURE 1. Diagram of the three "cerebral ventricles" from Reisch 
Margarita Philosophica, 1513. 

But others, including Aristotle, felt that the blood was the essential carrier of 
thought and that different sense modalities were unified in the heart where you find 
"the unitary I who perceives the trumpet". Galen, in the 2nd century AD, codified 
a view which was to be dominant for over a millennium: that the cerebral ventricles 
were the key structures in the brain correlated to thought and that the nerves were 
ducts conveying fluids secreted by the brain to the periphery (see figure 1). 

In modern times, mind-body duality became one of the dominant paradigms 
in philosophy and this led to the search for a key organ linking the brain and mind. 
Descartes believed the pineal gland served this function. 

Much more recently, further theories have been proposed which we now believe 
to contain the germs of truth but which seem in other ways bizarre. One example 
is Gall's localization theory, in which specific areas of the cortex were believed re-
sponsible for many things including generosity, love of parents and secretiveness for 
example (not to mention resulting in bumps on the cranium when over-developed). 
Another example was the theory of the Gestalt school of psychology (Wertheimer, 
Koffka, Kohler etc.) that perception of global form was mediated by a colloidal 
bio-electric medium supporting 'fields' which interacted thus integrating local and 
global visual information. 

The modern approach to modeling the brain only began with the discovery 
of the neuron and of the processes linking one neuron to another. An amazing 
structure was revealed, especially through the work of the brilliant microscopist 
Ramon y Cajal whose meticulous and detailed renderings of the diverse types of 
neurons and their dendritic arborizations made it immediately clear that here was 
a structure whose breathtaking complexity might support something as subtle as 
thought (see figure 2). Cajal himself was not blind to these implications of his 
discoveries and said 
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FIGURE 2. Drawing of a Golgi stain of the cerebral cortex of a one 
month old human infant, from Cajal, 1900. 

"Like the entomologist in pursuit of brightly colored butterflies, my 
attention hunted, in the garden of the gray matter, cells with del-
icate and elegant forms, the mysterious butterflies of the soul, the 
beatings of whose wings may someday - who knows - clarify the 
secret of mental life". 

Mathematically, Cajal's work led immediately to the basic proposition that at least 
on a coarse level, the brain can be modeled by a vast directed graph whose vertices 
were the neurons and whose edges were the synapses from one neuron onto another. 
Graphs are highly non-trivial mathematical structures and so, on the basis of this 
observation alone, much theorizing is possible. In the 40's, this led to the first wave 
of enthusiasm that significant modeling might be possible. This wave was started 
by the brilliant work of Warren McCulloch [27] [28], in which Norbert Wiener 
participated with the complex of ideas he named 'cybernetics'. But roughly at the 
same time, however, Sherrington in a dour vein stated his skeptical view that 

"The relation of mind to brain [is] not merely unsolved by still 
devoid of a basis for its very beginning." 

Who are we to believe? Will our present day theories of neural nets have 
someday the same quaint ring as the Gestalt school's or Galton's or even Galen's 
theories? If this is not to happen, I think we should keep clearly in mind the 
assumptions that are made by each school of neurobiological and computational 
theory. In this article, I will focus on three questions which I feel have not been 
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definitively answered, and on which people have taken strong and conflicting stands. 
The purpose of this article is to present the range of ideas on the basis of which 
different schools have created theories of the brain and mind. This is an expository 
article and I will try to avoid taking a stand on which approach seems to me to be 
correct. Hopefully by focussing on our choices, we can get a better perspective on 
how far the field has progressed and where to go next, in spite of the hyperbole in 
the popular press and in the government's grand challenge program announcements. 

The three questions I want to discuss are: 

1. What is the role of neuronal spikes in carrying information in the brain? 
2. What are the "objects" of thought and how are they related to the activity 

of individual neurons? 
3. What does thinking "do" and how do we break it into steps? 

2. What is the role of neuronal spikes in carrying information in the 
brain? 

The message conveyed from one neuron to another results from the generation 
in the first neuron of discrete action potentials or spikes which cause neurotrans-
mitters to cross the synapses and alter the electrochemistry of the second neuron. 
The pattern of these spikes thus appears to carry information or data in some way 
from one neuron to another. McCulloch [27] [28] formulated both the idea i) that 
a neuron might act as a Boolean device as a result of the arrival of individual spikes 
synchronously or asynchronously or that ii) some stochastic principles might be 
operating so that individual spikes might not be highly significant. In [28], p. 98 
he puts it like this: 

We can summarize our conclusions as follows: 
1. the actions of neurons and their mutual relations can be de-

scribed by the calculus of propositions subscripted for time, 
2. the nervous system as a whole is ordered and operated on 

statistical principles. Thereby it adjusts the all-or-none 
laws governing its elements to a physical world of continu-
ous variation 

One can separate recent theories on this question into three camps: 
A. The mean firing rate of a neuron carries information; their precise pattern 

doesn't. 
B. Some other aspects of a single neuron's spike train carry more detailed in-

formation. 
C. Synchrony of spikes or precise lags between spikes of multiple neurons carry 

information. 

(A) is the accepted basis of vast majority of neural net models, as well as 
the working hypothesis of the majority of neurophysiologists. This is true for a 
very simple reason: no one knows how to make a neuron produce the same spike 
train twice in a row'. Figure 3 shows 8 neurons each responding to the same 
experimental situation many times: time runs from left to right and the spike 
trains of the different runs are graphed as the different closely spaced lines of dots. 

'However, recently two groups have reported that when driven by complex or more natural 
stimuli, neurons tend to fire much more predictably than when driven by simplified experimental 
stimuli [5][15]. 
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FIGURE 3. The spike trains of 8 neurons to repetitions of the same 
experiment, showing highly variable responses. From [1]. 

Note that while some neurons predictably increased their overall firing rate at the 
corresponding times in the different repetitions of the experiment, there appear 
to be little or no repetition of individual spikes. For this reason firing rates are 
considered as the only information transmitted by a neuron. But firing rates may 
well take 100 milliseconds to measure and this leaves the brain with no time for any 
complicated calculations with these numbers. In fact, experimentalists, in order to 
get good comparative data on one cell's firing rate in response to varying stimuli 
must average the cells responses over many repetitions of the same stimulus. In 
real life, the brain has no opportunity to have the situation repeated. So along 
with (A) one must also accept that every signal is actually being conveyed by a 
population of neurons (say 100) all signalling essentially the same message: then by 
averaging their responses during a single presentation of a situation, the strength of 
their signal can be evaluated accurately in e.g. 10 milliseconds by the law of large 
numbers. Even so, people's ability to respond accurately to complex clues in less 
than 200-600 milliseconds (these as average reaction times in most psychological 
tests not requiring reflection) poses a very difficult challenge to a system that takes 
10 milliseconds to send each message. 

To employ only the mean firing rates of otherwise stochastic spike trains, with 
the individual spikes being samples from Poisson processes whose mean is set by the 
sending cell, seems a rather wasteful way for nature to use the exquisite mechanism 
of spiking and neurotransmitters. People have looked for other possible ways in 
which information may be encoded in the spike trains. I want to mention briefly 
some of these ideas which fall under hypothesis B: 

1. Richmond and Optican [29] have studied the time course of firing rates of V1 
neurons responding to black and white checkerboard patterns (called Walsh 
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patterns) for some 200 milliseconds after stimulus. They find predictable 
patterns (such as initially fast, then tapering off; or initially slow, then 
building up) which depend on the stimulus. But one can hardly call this a 
`signal' when it takes 1/5 of a second to transmit: rather they seem to be 
taking a snapshot of a whole image analysis calculation which is going on 
during the period of a normal eye fixation. 

2. Gray and Singer [19] discovered that in anesthetized cats, V1 neurons have 
a strong tendency to oscillate in what EEG specialists call the 'y range: in 
their case 40-50 Hz. Such oscillations are very widespread in field potentials, 
but this was the first report of their occurring in single cells. The suggestion 
was that various populations of cells would synchronize, others not and that 
in each such population there would now be a clock relative to which indi-
vidual spikes would have a phase lag, thus carrying more information. The 
various oscillating populations could be interlaced in time or could entrain 
each other: the possibilities for theorizing were tremendous. Unfortunately, 
these oscillations have proven elusive and hard to find in awake primates for 
example (but see [26]). 

3. W.Bialek [8] has made a close study of the spike trains of two motion detec-
tion neurons (responding to motions of opposite sign) in the visual system 
of a fly and sought to predict, from their spike trains, a complex motion se-
quence with which the fly was being stimulated. He found that spike timings 
over an approximately 30 millisecond window following the motion seemed 
to encode significant information about the perceived motion, though, un-
fortunately, in a rather untransparent way. 

4. Koch and Crick [23] have pointed to a specific population of deep pyramidal 
cells in layer 6 of cortex which burst. Although there is little hard data on 
the relation of these bursts to stimuli, they theorize that these bursts are 
highly significant events, possibly correlated to consciousness. 

I am sure this is merely a sampling of theories that fall in category (B). This 
category of hypothesis has the advantage that if something of this sort were correct, 
it ought to be possible to gather supporting data from single cell recordings. Cat-
egory (C) raises a much more far reaching challenge to the standard view (A) but 
is much harder to test. According to this view one must look at the whole spatio-
temporal neural activity pattern in order to find where information is coded. One 
should think of this pattern — like the white-noise-like 'snow' on a TV screen tuned 
to a channel without a signal — as possibly containing spike-level microstructure. 
A key idea here is that the spikes of an individual cell might be separable into two 
groups: a stochastic background firing which is bringing all cells up to near firing 
potentials; and on top of that a small set of volleys of tightly synchronized spikes 
which are carrying messages and creating equally closely timed responses. 

The most developed theory of this sort is the `synfire chain' theory which Moshe 
Abeles first proposed about 15 years ago. Like the mean firing rate theory, his 
theory also requires small populations of say 100 neurons to work together. But 
instead of simply firing at the same stochastic rate, they give off a single volley of 
synchronous spikes (synchronized perhaps to within roughly 1 millisecond). What 
such a volley can do, according to Abeles's calculations, is trigger reliably the firing 
in further cells to which at least half of the population are connected. If, in fact, 
the first population is so connected to a second such population, and this to a third, 



FIGURE 4. Twenty frames from a movie of a simulated synfire 
chain, where each vertical group represents nine neurons in an 
assembly, and each assembly is connected to its neighbor on the 
right. From [1]. 

etc. what he calls a `synfire chain' is set off. His proposal is these chains are the real 
carriers of information in cortex. A simulation of such a chain is shown in figure 4 
from [1]. 

Indirect evidence for this model comes from Koch and Sofftky [31]. They seek 
to model as accurately as possible the electrochemistry of a single pyramidal cell, 
including especially its distal synapses, and then to compare the firing patterns 
that their model would generate with purely Poisson input to actually observed 
spike trains. They use standard deviation of the interspike interval divided by 
the mean interspike interval as a statistic to measure spike trains on a scale from 
very regular to very bursty. The conclusion of their study is that the law of large 
numbers would make pyramidal cells fire much more regularly if they received 
purely Poisson input. An alternative possibility which would make the cell output 
spike trains closer to those actually observed is that these pyramidal cells receive 
volleys of tightly synchronized input. 

After a decade of theorizing, Abeles, partly with Gerstein [1] [2], has found 
quite striking data supporting the idea that temporally precise, multi-cellular spik-
ing patterns exist in cortex. Suppose, he says, synfire chains involving some 100 
sets of 100 neurons exist in a column with, say, 100,000 cells. Suppose too that 
hundreds of such chains exist (individual cells belonging to many chains, so the 
information in this column is multiplexed). Suppose you put a dozen electrodes 
in this column, picking up at random say 10 cells. He estimates you have a good 
chance at recording 3 or 4 spikes from some of these synfire chains. These are 
very small samples from the full activity of the synfire chain, but these triples or 
quadruples of spikes should recur with nearly identical timing whenever the synfire 
chain is activated. Using a statistical test of what recurring patterns were likely 
or unlikely to occur by chance, he has found in his experimental data many such 
excessively repeating coincidences, which he believes to be the traces of synfire 
chains. Even more striking, he finds these coincidences are concentrated at points 
where the monkey is making a significant choice or action in his experiment and 
that, for some cells, most of their activity at these times belongs to such patterns. 
This is shown in figure 5. These are recordings from an experiment in which the 
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FIGURE 5. Decomposition of the spikes of one neuron (4) into 
those in excessively repeating patterns (4') and those not (4"). 
Note that the patterned spikes cluster around the time marked 
`T3+R' when the monkey touched the target and got its reinforce-
ment. From [1]. 

monkey must observe a clue, then wait and finally, at a prompt, he must touch the 
right target to obtain juice: the figure shows many recordings from a particular 
cell, temporally aligned by the instant at which the target is touched: this cell's 
activity is broken up into the putatively stochastic activity and the spikes which 
belonged to excessively repeating patterns. Note that the stochastic background 
is continuous, with some diminution during the touching event, while the patterns 
give spikes concentrated at the touching event. 

Whether or not you accept his interpretation of his data, it is clear that neural 
net modeling in a brain with synfire chains would have to be totally different from 
modeling on the basis of spike train frequencies alone. For example, Bienenstock 
[9] has developed theories of how such chains can organize themselves and how they 
can be dynamically linked. 

3. What are the "objects" of thought and how are they related to the 
activity of individual neurons? 

The second topic I want to discuss is how, given this directed graph of neurons 
sending and receiving discrete spikes, one imagines computation being carried out 
by this activity. Specifically, I want to talk about the question of how particular 
components of thought such as objects being perceived, the identity of these objects, 
actions being taken and their place in plans, etc. are represented by neural activity. 
I think it is reasonable to divide the answers to this question again into 3 groups: 

4" 

4' 

4 
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A. Grandmother Cell Hypothesis: there is a 1:1 correspondence of concepts and 
neurons, each neuron with its optimal stimulus. 

B. Attractive neural net hypothesis: concepts are stable attractors for the dy-
namics of local neural populations. 

C. Template hypothesis: a concept is a property with slots, instantiated by a 
temporary assembly of co-firing neurons. 

I have stated (A) rather strongly on purpose. In its more usual form, it is 
phrased by saying that each cell has an optimal stimulus or situation in which it will 
fire most strongly, that it has a graded response to similar stimuli or situations and 
that for the major components of thought, one should expect to find somewhere 
in cortex cells which are dedicated to expressing when this is present. This is 
epitomized by the assertion that somewhere in cortex there should be a cell which 
fires if and only if you are looking at or thinking about your grandmother — an 
example which is widely attributed to Barlow, though he points out that it is 
actually an example due to Jerry Lettvin. 

This theory makes cells rather like the fuzzy sets of Zadeh: we can define fuzzy 
sets of situations, one for each cortical cell, by defining the degree of membership 
of a situation in each set to be equal to the firing rate of the cell in this situation. 
There is a dual perspective on this theory: in a specific situation, we expect to find 
a fuzzy pattern of activity in the neural population, a so-called population coding 
where one neuron is firing the most and nearby neurons are firing progressively 
less. In other words, we imagine the correspondence between neurons and objects 
of thought to be 1:1 but with a fuzzy surround of object—neuron pairs which are 
more or less similar (a fuzzy mapping between objects of thought and neurons). A 
major computational activity in this theory is to control the sharpness of the neural 
representation of a situation: i.e. whether a large distributed pool of neurons is 
responding in a lukewarm fashion or whether the neural response sharpens to a 
single neuron firing very strongly. Networks in which the response is sharpened in 
this way are called `winner-take-all' circuits. In some situations this is desirable and 
in others, where uncertainty is present or associations and analogies are desirable, 
the broader representation may be computationally more effective. 

Hypothesis (A) has dominated the neurophysiologist's approach to single cell 
recordings ever since the ground breaking work of Hubel and Weisel on V1 cells 
in monkeys and that of Lettvin and Maturana on retinal ganglion cells in frogs. 
Thus simple and complex cells in V1 typically have a preferred orientation and a 
graded response to nearby orientations. Georgopoulos [18] has found a population 
coding of the direction of an intended hand movement in area M1 in monkey. A 
striking example involving more complex percepts is the face and hand cells that 
Gross and Desimone found in area IT in monkey [10]. In figure 6, we reproduce 
recordings from an IT cell to a series of face and face-like and non-face-like stimuli 
which illustrates well the idea of a cell having a preferred stimulus and a graded 
response to similar ones. Other parts of IT have been explored by Tanaka [32] 
using a mechanism of gradually simplifying a complex stimulus to zero in on the 
essential features which are driving a cell: they find optimal stimuli which are 
strange combinations of shapes, texture and colors. It does not seem unreasonable 
to me that the grandmother cell itself might be found in areas such as TF (or TH 
or TG: medial temporal areas near entorhinal cortex, with connections to cingulate 
cortex) in the macaque monkey. 
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It seems to me that the most important consequence of (A) is that it makes 
the objects of thought — let's call them concepts — into a graph too. Is this a 
reasonable thing? In fact, the earliest attempt to actually do this, to write down the 
universal graph of concepts, is Roget's Thesaurus. Although not widely appreciated 
by philosophers, I think his creation of the Thesaurus was an inspiration, a truly 
deep step in describing thinking. Ron Hardin at Bell Labs put his thesaurus on-line 
and did some striking experiments with it. One such was to investigate the shortest 
paths in his graph from a concept to its antonym: an example is 'generous' — 'lofty' 
— 'superior' — 'exclusive' — 'selfish' — 'ungenerous'. 

Another linguistic theory which led to a graph of words was the work of Dixon 
on the Australian aboriginal language Djirbal. This language has 5 classes, like the 
2 or 3 genders in Indo-European languages. On first sight, these classes seem to 
be bizarre, each one containing many pairs of related concepts, but many totally 
unrelated pairs while other very similar pairs of concepts are separated and placed in 
distinct classes. Yet the speakers of the language seemed to find the system logical! 
A striking example was made famous by Lakoff's use of it as the title of his book 
[24]: women, fire and many dangerous things are all part of the class balan. Dixon's 
theory was that this categorization of words in Djirbal was an instance of 'nearest 
neighbor clustering'. In other words, the aboriginal Djirbal-speaking aborigines had 
a mental metric of similarity between all the concepts in their world and, as their 
language took shape, the most similar concepts were seen as having something in 
common, then related clusters were grouped until the whole universe of concepts 
was divided up into 5 classes (actually, one class is not like this — it is 'the rest', 

BRUSH 

FIGURE 6. Responses of an inferior temporal cell in a Macaque 
monkey to a variety of faces, jumbled faces, heads and other stim-
uli. Note the gradual shift from strong responses to optimal stimuli 
(1 and 3) to no response to a hand or the back of the head. From 
[10]. 
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what didn't fit in anywhere). Statistical runs of the nearest neighbor clustering 
algorithm on various data sets give very similar results: odd categories with long 
strung together arms, sometimes coming very close to each other when nearby data 
points got drawn in opposite directions. My point is that this interpretation of 
linguistic classes also presupposes a notion of distance between concepts and the 
idea of linking neighbors in a graph. 

Making concepts the vertices of a graph leads to a very beautiful mathematical 
model of thought and specifically of reasoning about the interpretation of a situation 
in which - as is always the case in the real world - not every fact is clearly true 
or false. Start with hypothesis (A) and suppose that the activity of a neuron in a 
situation corresponds to the probability that that concept applies in this situation 
that the mind is trying to understand. We imagine that the information present 
is not complete so the mind must make inferences based on past experience about 
aspects of the situation which are not known. What is needed in order to make such 
inferences in a mathematically sound way is to have a probability distribution on 
the space of all possible completely specified situations (where all facts are known 
to be true or false). Given such a probability distribution, well known statistical 
principles, such as Bayes's law, enable you to make optimal guesses about the 
unknown aspects of the present situation. Defining probability distributions on such 
huge spaces is, in general, totally impractical. But there is a class of probability 
models known as Markov random fields which are practical to define and at least 
sometimes also practical to reason with. This class requires to start with that its 
random variables - the concepts in our case - form the vertices of a graph. The 
definition goes back to Gibbs: given a graph G to whose vertices v we associate 
random variables Xv, we suppose that we have, for each clique C in G, an energy 
function Ec({Xv}„Ec) defined on the random variables in this clique. Then the 
probability distribution of the set of all random variables is given by: 

e-EcEc(fx,I,,Ec) 
Prob(Xv  = xv ) = 	  

where Z is a normalizing constant making the probabilities sum to 1. Modeling 
particular mental problems by Markov random fields has been a very successful 
approach, so we state: 

• Extended statistical form of hypothesis A: The probability model of 
the world that our brains learn is a Markov random field based on the graph 
of concepts, which is 'isomorphic' to the graph of neurons. 

To illustrate this approach to modeling reasoning and thinking, we reproduce 
figure 7 from a paper by Lauritzen and Spiegelhalter[25]. The figure shows a toy 
medical expert system which they used to illustrate the principles of a much more 
complex system they have designed and implemented. The figure shows random 
variables which correspond to a) possible facts about the prior life of the patient, 
b) medical facts about the patient's condition and c) symptoms and results of tests. 
The arrows indicate which variables directly influence which others. This is a slight 
modification of a Markov random field using a directed graph but the same basic 
comments apply: by specifying a small set of numbers (the conditional distribution 
of each variable given the values of its 'parents', the variables connected to it by 
an incoming arrow) the whole probability space is specified. This approach has 
also been applied very successfully to speech recognition and to low level vision 
problems. 
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FIGURE 7. The graph of random variables in a demonstration 
medical expert system based on Markov random fields. Based on 
[25]. 

The problem which plagues (A) however is how to represent and reason with 
unforeseen conjunctions of events for which concepts, or neurons, have not been 
dedicated. A famous example is the yellow volkswagen problem of Barlow: sup-
pose one morning you walk several blocks and pass 10 yellow volkswagens. You 
probably will begin to notice this odd coincidence and wonder whether it has some 
explanation! But what leads you to notice this since you never thought specifically 
about yellow volkswagens before? A similar problem is how to represent mentally a 
scene containing a red square and a green triangle and distinguish it from a second 
scene containing a green square and red triangle. Both problems suggest the need 
to dynamically bind two arbitrary concepts for which you have already dedicated 
neurons in order to represent a new situation. This problem was raised in a well 
known paper of Fodor and Pylyshin [14] challenging the applicability of neural net 
theory to any but the simplest types of thought and reasoning. Hypothesis (C) 
gives one possible answer to this. 

Another radical answer has been proposed by Valiant [34]: that is that every 
new observed conjunction of stimulus features does indeed find a new cell, which is 
then dedicated to recognize this conjunction whenever it reoccurs. His premise is 
that the brain is big and life is relatively short, so one can be profligate in storing 
many conjunctions. To make this plausible, he makes an elementary observation of 
the structure of the directed graph of neurons in the brain which, to my knowledge, 
had never been noticed before. That is, that the diameter of this neural graph is 
`nearly' 2. Here he is interested not in the maximum over all pairs of neurons of the 
minimum number of synapses needed to connect them, but in the typical number 
of synapses for most neuron pairs; and it is acknowledged that the distance in this 
sense between neurons will be increased by a) the fact that neurons in specific layers 
tend to synapse on neurons in other specific layers and b) that the brain is divided 
in to areas with restricted projections from one to another. But if you take neurons 
in appropriate layers and areas and count numbers, it strongly suggests that for 
most such pairs of neurons A and B, they can communicate i) by both A and B 
synapsing on a common third neuron C and ii) by A synapsing on a third C which 
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synapses on B. This high degree of connectivity seems to have great computational 
significance. 

I now turn to hypothesis (B). As opposed to the localized fuzzy concept ideas 
behind (A), (B) assumes that concepts are represented in a distributed fashion, 
implicitly through the graph of neurons and its synaptic weights, but explicitly 
they only manifest themselves in the dynamics of the system. I first heard this 
theory from E. C. Zeeman [36], who developed theories of this type in the 60's. 
It has been heavily developed in the last decade by Hopfield and Amit and others 
[3] [21]. We consider the phase space of all possible states of brain activity and look 
at the propagation of spikes and their generation of further spikes as setting up a 
dynamical system in this phase space. A concept will then be a stable attractor 
in this dynamical system. It will have a basin of attraction and we can imagine 
the whole phase space as being partitioned into various such basins. This makes 
concepts basically Boolean and discrete: the dynamical system cannot fall partly 
into two such basins of attraction, so the model is closer to classical logic than to 
fuzzy logic or to probability models. Moreover, while individual concepts in thought 
are related to the basins of attraction of the dynamical system, the operation of 
linking two concepts should correspond to altering suitable parameters to push the 
dynamical system across some kind of bifurcation. 

This approach gives rise to the hope that the deep results of dynamical systems 
theory and of statistical mechanics can be used to analyze the brain. A beautiful 
example is Amit et al's calculation [4] of the number of distinct 'memories', i.e. 
attractive fixed points, a large Hopfield model (in which the dynamical system is 
a gradient flow) is expected to have. Unfortunately, these results seem to apply 
chiefly in the biologically unrealistic case where for every synapse from A to B, 
there is another synapse from B to A with equal strength. Moreover the behavior 
of general dynamical systems in dimensions greater than 2 is only beginning to be 
understood, so bringing in concepts like chaos is considered by some more poetry 
than science. For example, the use of Grassberger-Procaccia time series analysis 
to identify strange attractors from EEG recordings has been critically analyzed 
with negative conclusions by P. Rabb [33]. What seems to me the biggest obstacle 
is how to carry out with fully distributed representations of concepts the kind 
of difficult inference problem that is addressed by Markov random fields. The 
great advantage of Markov random fields is that the probability distribution is 
generated automatically from a sparse set of local dependencies. Otherwise put, 
Markov random fields work well when there are a large number of pairs of concepts 
which are conditionally independent, when you fix the truth value of a small set of 
other concepts. It is not clear how to achieve this sort of independence in a fully 
distributed representation. 

Finally, what is meant by hypothesis (C)? Hypothesis (C) starts by rejecting 
the idea that concepts are atomic indivisible entities. Instead, it supposes that ev-
ery concept has a structure — a set of components which are linked in various ways 
in the ideal instance, and that in most actual instances, some of these relations are 
stretched or some may fail or some pieces may be missing. In other words, a con-
cept is a small graph of other concepts and an instance of the concept is a partial 
graph match of this ideal or prototype graph with other concepts previously identi-
fied. The philosopher's favorite example is the question "Is the Pope a bachelor?" 
Clearly, the Pope meets some of the requirements to be a bachelor — he is an adult 
unmarried male — but fails other expectations — he is not a potential husband, nor 
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FIGURE 8. To recognize a face, one must identify its parts but 
allow for individual differences in the geometry of their placement. 
This was first modeled by Fischler and Elschlager in 1973 [13] . 

does he date. In the neural instantiation of this hypothesis, it is supposed that a 
set of neurons can be temporarily linked (e.g. on a time scale of 100 milliseconds to 
several seconds) by synchronized firing or by modification of the effective strength 
of synapses from one to the other or some other mechanism. NMDA synapses are 
one possible route for the latter. These ideas have been extensively developed on 
a cognitive level by linguists such as Lakoff [24] and on a neural level by Van der 
Malsburg [35] and Singer [30]. 

For me, the most powerful argument for this hypothesis comes not from higher 
cognitive thinking but from very simple problems of perception such as the recog-
nition of faces. In figure 8, we reproduce an illustration from a early paper of 
Fischler and Elschlager on face recognition [13] . The idea is simply that a face is 
made up of several parts with their own individual shapes which must be connected 
in a certain way, but with individual variations of proportion. To identify a face in 
the raw visual input, they propose that the location of the various parts must be 
determined and that one must check that these locations do not distort too much 
the prototypical shape of faces. I have not seen any plausible alternative to this 
approach to face recognition, given the huge variation of viewpoint, illumination, 
expression and facial characteristics that must be allowed for. To put their algo- 
rithm in a mathematical form, let I : D 	R represent the raw visual input (D 
being the retina or some set of pixels sampling it, I being the intensity of light 
at each point), and let /0  : Do 	R represent a prototype face on some standard 
face-shaped domain Do. Then identifying a face in the input means finding a dif-
feomorphism : Do  y D which a) makes the presumed face-like part of the input 
I o (I) look similar to the prototype face h and b) 1 is a reasonable distortion to 
expect. (Note that this approach deals with spatial distortions but not variations 
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of lighting.) This can be made into a variational problem by saying that seeking 
faces in an image is seeking local minima for some functional of the type: 

E(4)) = Ei  (D4)) + E2(I0  — I o 4)). 

This has a Bayesian interpretation as a maximum a posteriori estimate of 4), 
if we take e—E1(D4') /Zi  as the prior probability of a distortion I and we take 
e — E [0-204>) /Z2  as the conditional probability of observing an image I, given the 
presence of a face with coordinates 	The key point here is that the random vari- 
ables that must be estimated are the coordinates 1 of various parts of the face, not 
the truth or falsity of facts or the strength of some stimulus like redness at a point. 
One may weaken this demand a bit and, as in the Fischler-Elschlager example, ask 
only to estimate the coordinates of key points such as the center of the pupils or 
the corners of the mouth: but 'seeing' a face seems inevitably to entail locating the 
structures which make up a face. The conclusion is that the concept 'face' does not 
stand by itself: it has slots — the locations of its key parts — and an instantiation of 
the concept, at least in the context of perception or mental imagery, requires that 
these be filled in. 

Mathematically, it is hard to fit this into the framework of Markov random fields 
as discussed in (A). Sometimes this can be done, for instance in time warping for 
speech recognition, but only because in speech there is a reasonably small number 
of phonetic events that can be happening at each instant and one can set up a buffer 
representing each event at each instant of some sample of speech data. In vision, 
the same approach would require setting up vast numbers of buffers, in registration 
with the raw input, in which all possible objects to be recognized and all possible 
parts of these objects were hard wired at each possible position. A different way, 
which I have been considering, is to set up a class of probability models which I 
call mixed Markov models: these models are distinguished by having two classes of 
random variables. The first class are the intensity variables whose values represent 
Boolean yes/no truth, or degrees of truth as in fuzzy logic or intensity of activation 
as in neural nets: these are the usual Markov random field variables. But I want 
to have a second type of variable, address variables, whose values are the labels 
of other variables. In other words, we have a graph U with two types of vertices, 
intensity vertices and address vertices, and the value of each address vertex is a 
second vertex in some subset of the vertices of U. For each assignment of values 
to the vertices, the address vertices define extra edges in the graph, creating a 
full graph with some permanent edges and some dynamic edges. The probability 
distribution is defined by a Gibbs's formula e—Ec /Z, but with subsets C formed 
by small sets of neighbors in the augmented graph. This is illustrated in figure 9. 

One problem with this hypothesis is what I call the 'shelf of templates' prob-
lem. What do you do when you have to recognize 10 faces in a crowd? Or what do 
you do when a sentence in a novel creates a scene with several families and several 
parent/child or sibling relationships simultaneously? How can you use a complex 
template, with slots and prior expectations on relations between the fillers, simul-
taneously for multiple instances? 

4. What does thinking "do" and how do we break it into steps? 

The last issue I want to discuss is the subtlest and may sound from the section 
heading as though it is only a philosophical gloss on more substantive issues. I'm 
not sure I have found the best way to phrase it, but I feel a major issue is the overall 
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FIGURE 9. On the left, Mixed Markov models extend Markov ran-
dom fields by allowing address variables which add dynamic links 
to the underlying graph. Address variable x can have any of the 
nodes B, as its value. On the right, neural version with 'effective' 
synapses. 

architecture of the system which supports thought and what it is doing second by 
second. This is so utterly basic to how we model and what we put in our model 
that it is easily ignored. But, as before, different choices of answers lead you to 
algorithms which are so unrelated and incomparable that they seem to belong to 
different fields of research, though they started out with the same goals. Here is 
my list of four popular answers to this question: 

A. Thinking is a process of problem solving, in which you search a tree of 
possible solutions. 

B. Thinking is building a database of facts and rules about the world and 
deducing their consequences with predicate calculus. 

C. Thinking is reacting fast to an evolving unpredictable world with appropri-
ately trained reflexes. 

D. Thinking is growing groups of propositions which give consistent, probable 
scenarios of the ongoing (past, present, future) situation. 

Hypothesis (A) I associate with the early days of artificial intelligence, especially 
with the work of Simon. A paradigmatic example is chess playing, though, of course, 
the whole point was to apply these ideas to all forms of thinking. Heuristics and 
what Simon called 'clumping' played major roles. I believe it fair to say that this 
approach was later recognized as limited and that AI moved towards hypothesis 
(B), but I include it because it shows one quite distinct answer to the question of 
what thinking does. 

Hypothesis (B) is, perhaps, the mainstream of artificial intelligence, especially 
in the work of McCarthy. A paradigmatic example for me is the theory of 'naive 
physics', in which the goal is to codify in predicate calculus our common sense un-
derstanding of the world and how it behaves. This turned out to be breathtakingly 
difficult, much harder than its advocates at first realized. I think the flavor of the 
approach and a sense of its potential difficulties is very clear from one of the earliest 
and most influential papers on naive physics, Hayes's paper of the naive theory of 
liquids [20]. We have reproduced in figure 10 one of his figures which summarizes 
5 distinct modes of behavior of liquids: you see how tricky it is to codify the many 
ways in which liquids can behave. I strongly recommend this paper for anyone 
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FIGURE 10. Steps in the systematic description by predicate cal-
culus of the many ways in which liquids behave. From [20]. 

wanting to get a bird's eye view of the strengths and weaknesses of mainstream ar-
tificial intelligence. Figure 11 shows the characteristic architecture of systems from 
this school: note that there are peripherals which accomplish 'A-to-D' (analog to 
digital) transduction of input and 'D-to-A' transduction of output, but within the 
guts of the system every variable is a clean sanitized Boolean variable. There is 
always a large database of permanent facts and a smaller one of temporary facts 
representing the ongoing perceptual and planning situation. One problem with this 
approach is its dogmatic inflexibility — everything in predicate calculus must be ei-
ther true or false in spite of the fact that every predicate in the real world seems 
to have borderline cases. Another is that the things we think about are typically 
uncertain and we are amazingly good at juggling alternatives and not falling on 
our faces by accepting blindly one possibility: it is not clear how to incorporate 
thinking about possibilities into predicate calculus. I will discuss attempts to do 
this in connection with hypothesis (D) below. 

Hypothesis (C) is perhaps closest to Wiener's ideas and Cybernetics: we find 
a merging of the areas of control theory with the school of artificial intelligence 
called reactive planning (associated especially with Rod Brooks). A paradigmatic 
example of this view of thinking is the ability to drive a car, and one of the most 
successful experiments in this direction that of Dickmanns [12], who drove a van 
without human intervention down a German autobahn at 100 km/hr! The emphasis 
in all this work is on speed: the need to react in real time to an unfolding situation 
whose unexpected events cannot possibly all be planned for in advance. That is 
not to say, however, that long term experience doesn't count. This approach places 
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FIGURE 11. The characteristic architecture of artifical intelligence systems. 

a premium on learning patterns of events from prior experiences, learning what to 
look for and what may be about to happen next. A fundamental mathematical tool 
is the Kalman filter which, for linear systems with Gaussian noise, gives an optimal 
way of merging noisy measurements with an evolving prediction of the state of the 
world. This filter has been widely applied by linearizing non-linear situations and 
lumping many other types of unpredictability into the noise term. In figure 12 
we show some aspects of Dickmann's work to illustrate this approach: on the top 
left is his van and next to it an example of the kind of difficult scene in which he 
must identify the road. The figure below this shows the kind of internal model the 
system maintains for the road — there is an ideal model for a straight road and 
a corrected model for what the scene actually looks like if the road curves or the 
vehicle is not centered and oriented correctly. The last part of the figure shows the 
overall architecture of his system. Note the arrow labelled 'prediction error' and 
the box 'Discrepancy interpretation': this is the basic Kalman-filter-like feedback. 
Also, note the box 'Generation of object-hypotheses' which is the higher level AI 
modeler. Note that the internal representation of the world is not purely Boolean, 
but has real-valued 4D spatio-temporal models as well as discrete things like goals. 

Another mathematical tool which has been heavily used in this school is non-
parametric regression. In the learning phase, it is essential to model accurately how 
a variable which is not directly observable depends on others which are observed. 
One seeks to learn algorithms to predict by open-loop (as the control-theorists 
say) these key variables, because open-loop feed forward algorithms are so much 
faster than closed-loop algorithms requiring feedback. The algorithms used vary 
widely: perhaps the most popular is projection pursuit and its neural net variant 
back-propagation. Others are regression trees and mixture models. Statistical 
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FIGURE 12. Driving by computer. Top left: The van used by 
E. Dickmanns. Top right: A scene in which the road is hard to 
locate. Middle: Fitting internal models to curved and sloping 
roads. Bottom: The overall Kalman-filter-like architecture of the 
system. © The MIT Press. E. D. Dickmanns, Expectation based 
dynamic scene understanding, in Active Vision, A. Blake and 
A. Yuille, editors, MIT Press, 1992. 
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MOTOR OUTPUT 
	 SENSORY INPUT 

FIGURE 13. A simplified diagram of the neuroanatomy of a mam-
malian brain, showing in bold the direct flow of data from the 
senses to motor output via the basal ganglia which avoids the com-
plex feedback circuitry of the cortex. 

techniques such as cross validation and use of Bayesian hyperpriors are used in 
controlling against overfitting the data. 

Biologically, it seems as though what this school is modelling is not the full cor-
tical thinking mode, but the much faster 'pre-compiled' mode of acting mediated by 
the basal ganglia. This biological path is illustrated in the schematic of the brain 
in figure 13. The idea is that sensory data arrives at posterior areas of cortex where 
pre-compiled feature extraction is carried out in primary and secondary sensory 
areas. The results are sent down to finite-state-automata-like basal ganglia, which, 
after synapses in the striatum and the globus pallidus and thalamic relaying gets to 
motor or pre-motor areas of frontal cortex. Here pre-compiled motor plans imme-
diately translate the result into motor neuron commands sent down the pyramidal 
tract: 'quick and dirty' as hackers say. 

Finally, I want to discuss (D), which is not as standard a way of modelling 
thinking as (A), (B) or (C). I consider hypothesis (D) as expressing a key element 
from the work of a disparate group of people including, among others, MacKay, 
Grenander and Geman, Minsky, Barwise and Parry. To illustrate it, I want to 
take as a paradigmatic example the use of the Ising model from statistical physics 
to accomplish figure/ground segmentation in vision. Recall that the Ising model 
concerns a two dimensional lattice of iron atoms magnetized either up or down 
whose energy has two terms: an internal term in which the energy is lowered 
whenever adjacent atoms are aligned and an external term in which each atom 
attempts to line up with an external magnetic field: 

E({X,,}) = Eadj 	(Xa — X,3)2  + Ec, (X„ — 17,02 
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where X, = +1 is the spin of the ath  atom and 17,, E R is the external field. 
Statistical mechanics is based on the idea that at a temperature T, all states of the 
iron are possible, but with probability 

Prob({X,}) = e-E({x- })/T /Z(T). 

	

For large T, all states become nearly equiprobable, while as T 	0, only one state 
remains at all probable, the minimum energy or ground state. The idea of adapting 
this to combinatorial problems is due to Kirkpatrick [22] and the idea of specifically 
using it for perceptual problems is due to S. and D. Geman [17]. 

Suppose we have an image in which there is a clear separation of foreground and 
background and the foreground object is more or less dark on a lighter background. 
Figure 14 is an example, with the dark cow and tree in the foreground and the sky 
and field to the left in the background. Their idea was to replace the iron atoms in 
the Ising model by the pixels of the image and to associate one spin, say X. = -1 
to pixels in the foreground figure, while associating the other spin X, = +1 to 
pixels in the background. Then the external magnetic field is replaced by the raw 
observed image, whose intensity is scaled so that the tones of the foreground are 
mostly less than 0 while those of the background are mostly greater than 0. The 
Gibbs model for the physical system now becomes a Bayesian model for any such 
foreground/background scene. We consider all possible black and white images, 
representing a black foreground and white background. Most such scenes would 
look like random black and white dots and would not be thought of reasonable 
scenes. Instead we suppose that the prior probability of such a scene goes up if 
there are islands of contiguous black dots and islands of contiguous white space, 
making a more coherent arrangement. This translates into a prior probability 
distribution: 

Prob({X,}) 	 /Zi (T) = e-Eadi ,,,o (xr.--x0)2 /T 

on the set of all possible scenes {X e, = ±1}. Secondly, we suppose that the observed 
scene is not so simple, but that the intensity of the raw image at pixels in the 
foreground tend to negative and vice versa in the background. This translates into 
a conditional probability: 

Prob({17,}1-Val) = eE'(x'-"2/T/Z2(T) 
The final result is that this very simple Bayesian probability model of dark and 
light foreground/background scenes is identical to the Gibbs probability space of 
states of the iron crystal. 

So far this has rather little to do with hypothesis (D). But now suppose we 
want to compute the most probable foreground/background segmentation, given 
the fact that some raw image {17,} has been observed. What we are looking for is 
the analog of the ground state of the iron crystal, the minimum energy state. The 
idea of Kirkpatrick and the Gemans is to use 'simulated annealing': we start the 
algorithm at a high temperature and we sample hypotheses for the values of the 
variables {X,} the way nature does with the iron. That is, we make random small 
changes in one variable at a time based on the probabilities of the states with this 
variable changed or not. After a while we lower the temperature a bit and let the 
system move randomly some more but following the new probability distribution 
in which lower energy has more effect. We continue to lower the temperature until 
we finally set it to 0. Then the system settles down to a local energy minimum, 
which, if we went slowly enough, is almost surely the true ground state. Figure 
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FIGURE 14. Top left: Input image. Top right: Energy as a func-
tion of temperature during the annealing process. Bottom left: 
An intermediate stage at a relatively high temperature in the con-
struction of foreground/background by annealing. Bottom right: 
A lower temperature stage. The temperatures of two samples are 
marked by the vertical lines in the graph: note that they delineate 
the steepest part of the curve — the 'phase transition' in this ex-
ample. 

14 is a result of following this algorithm. It shows an intermediate state, in which 
the temperature is roughly half way to 0: coherent structures are emerging in the 
sampled state {Xc,} which is shown. The graph on the bottom shows how the 
energy of the overall system decreased as the temperature was lowered. A kind 
of phase transition is occurring in which the energy is decreasing faster at this 
temperature because coherent shapes are located. The essence of this algorithm is 
to seek local coalitions of consistent data, gradually enforcing stronger and stronger 
long range ties until a maximally mutually consistent interpretation of the scene is 
arrived at. 

This extremely concrete elementary example may seem to have little to do with 
thinking in general. To see the relationship, imagine we have a very large number of 
possible objects, processes and relations in some situation in the world that we are 
trying to think through. The medical expert system example discussed above, see 
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figure 7, shows the kind of variables that might be involved, although it deals with 
a tiny number of variables. Usually we know the truth or the values of some of the 
variables well, others we have some guesses about. Usually each variable is directly 
connected to some set of 'neighbors' exactly as in the Markov random field model. 
In this case, what the Ising model example calls for is to explore possible values 
for the unknown variables, first on the basis of what values are most compatible 
with immediate neighbors, then seeking hypotheses on the values of larger groups 
of variables which are maximally consistent with the data, etc. I hope this makes 
clear the analogy with the simple Ising model. Simulated annealing is a rather 
extreme way of seeking the most probable set of values of the unknown variables, 
called the maximum a posteriori estimate of their values. Other algorithms may be 
more efficient but one must always expect that multiple possibilities must be looked 
at, that there is no simple way to zero in immediately on the one best guess. In 
statistical terms, what we must do is sample the posterior. In addition to simulated 
annealing, other techniques such as genetic algorithms, split and merge algorithms, 
deterministic annealing, auxiliary variable methods, etc. have been proposed [7]. 

It might seem that this type of approach to thinking is about as far as one could 
get from the logic based ideas in (B). In fact, there has been a steady development 
of more and more radical modifications of classical logic which have pushed it closer 
and closer to approach (D). The biggest problem of applying logic to the world is 
that in the real world there is never one absolute truth. Thus modal logic was 
developed to express possible truths, temporal logic was developed to express the 
truths of the past and future, epistemic logic was developed to express the view 
of the world in other people's thoughts and non-monotonic logic was developed to 
express tentative conclusions based on assumptions which hold in typical situations. 
In these logics, there was a parallel development of the syntax — the formal structure 
of assertions within the theory — and of the semantics — the metatheory within which 
truth values can be determined From Kripke's first work on modal logic, the key 
to their semantics was to consider not just one true and eternal world but a set of 
possible worlds: the worlds which different agents believe in, or the worlds of the 
past and future or possible worlds which just don't happen to be the same as ours. 
For example, Montague [16] analyzed the idea of possible worlds with the goal of 
expressing why the sentence 'John seeks a unicorn' does not mean the same thing 
as 'John seeks a member of the empty set'. 

But the most radical step in this direction is situation semantics, a theory 
invented by Barwise and Perry [6], [11]. Here possible worlds are elevated from 
lurking in the background in the semantics to a full-fledged syntactical role and 
renamed 'situations'. I believe the following is what is meant by a situation: 

• A situation is a set of compatible assertions, 
some listed explicitly, 
some implicitly by reference to actual sensory data or to potential 
experiences and queries (even ones you can't carry out, e.g. what 
Caesar and Cleopatra said to each other), 

which can be located 
anywhere in space-time, 

— in the minds of people (as beliefs, desires or plans), 
or may be purely hypothetical, mythical or even counter-factual ("If 
JFK had not been shot, then ..."). 
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FIGURE 15. Two modes of organizing a computation. Top: A 
strictly modular approach in which steps are separated in black 
boxes, exchanging limited well-specified data. Bottom: A public 
approach in which all data is shared and different modules itera-
tively seek compatible conclusions. The latter is charactersitic of 
the mammalian brain. 

Except for the absence of probabilities, a situation plays the same role in this logical 
theory as what you get by sampling the posterior in the statistical approach. In both 
cases, we are seeking to construct a hypothesis by growing larger and larger groups 
of assertions which are compatible and which support each other. In both cases, 
many hypotheses are considered in the process of thought which will ultimately be 
discarded. 

Hypothesis (D) has an interesting biological side too. It has been known for a 
long time that the cortex is subdivided into areas each of which is strongly connected 
to itself by the local collateral branches of the axons of its pyramidal neurons. 
Between these areas, there is a much more restricted pattern of pathways which 
travel down through the white matter along the principal branches of the axons of 
the pyramidal cells. This architecture is consistent with a modular decomposition 
of brain functioning, quite parallel to the modular programming style which has 
been developed in order to handle complex computer code. This modular computer 
style of algorithm is based on subdividing a problem into more or less independent 
steps and having more or less independent subroutines (with their own private 
local variables) do each step, only communicating their essential input and output. 
However, the cortex confounds this neat picture because of several facts: first, 
whenever one area, call it A, projects its axons to another area B, then it turns 
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out that B also projects back to A. And secondly, about two-thirds of neurons 
within every area project both locally and to an external area. This is illustrated 
in figure 15. In other words, the areas have no privacy — every aspect of their 
activity is being sent to some other area — and every message seems to generate a 
reply. Rather than thinking of modular computer code, a better analogy might be 
a relaxation algorithm, in which successive iterations of some set of update rules 
continue until equilibrium is reached. It suggests that the cortex is 'growing' a 
larger and larger set of mutually supportive propositions, individually expressed by 
a pattern of activity in a specific area of cortex where the messages from one area 
to another seek to strengthen the propositions in the second area compatible with 
those in the first. This is hypothesis (D). 
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