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Tonight’s paper introduces an intriguing algorithm which combines the small

stochastic steps of simulated annealing algorithms with large ‘jumps’ to pro-
duce a Markov chain sampling a complex Gibbs field of the type encountered

in vision problems. This paper is remarkable in coming to grips with the
necessity of making large jumps which change the topology of the sought-
for pattern, while also making small incremental improvements with a fixed

topology. Shah and I proposed something of this kind [Mumford & Shah,
1985], but had been defeated by its complexity.

One noteworthy antecedent is the work of Brandt, Ron & Amit [1986] on
a multi-grid algorithm for sampling the Ising model with external field. In

fact, their random variables, the spins xα = ±1, are equivalent to those of
the authors when there is only one type of organelle and only cyclic graphs.

Brandt et al employ a hierarchy of moves, in which larger and larger square
blocks of pixels are flipped. In the authors situation, this could introduce a

new organelle or radically reshape the partition, chopping a big block out
of an organelle, etc. Brandt’s method, however, doesn’t accept or reject a

move immediately, but works back down the hierarchy, improving the result

with smaller flips, before deciding.

This raises an issue in the present paper which is not stressed: it seems

to be computationally intractable to actually calculate the transition prob-
abilities Q(x, dy) because of the need to sum over all possible new curves

y(1) that might be introduced. These new curves can only be sampled,
and the illustrations suggest that even more drastically, only small circles

were considered. It is exactly the need to sample well the more probable
new curves that forced Brandt et al to a complex algorithm which delayed

acceptance/rejection.

A logical route is to mimic genetic algorithms, and rather than entertain
one or a series of global moves on one sample, consider a small population

of samples simultaneously. The moves are now the stochastic evolution of
the individual members of the population, and the splicing of parts of one

sample with parts of another. In the authors paper, this is especially simple:
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we may combine two patterns x(m1), x(m2) by taking k1 of the objects c(j)

in x(m1) together with k2 of the objects in x(m2) and forming a new pattern
x(k1 + k2) out of their union. I believe this will often be faster and more

effective.
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