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1 Problem Formulation.

Is it possible to build a science of natural scenes? A science that would make it possible
to analyze scenes in a systematic manner, enabling us to classify,understand and predict
their behavior. What we have in mind are methods that are sufficiently precise so that they
can be implemented successfully by computer code. At first glance it appears unlikely that
this would be possible; the variation in natural scenes is immense and it is difficult to see
what sort of laws could govern their appearence. To borrow from history of science, it is
hard to imagine laws like those of rational mechanics where deterministic, laws, differential
equations, exist that enable us to understand and predict the way material bodies move,
how they interact with each other. On the other hand, statistical mechanics offers a better
paradigm, sacrificing an exact, detailed description of the systems in favor of a statistical
representation that only makes probabilistic statement about their behavior. This is what
David Mumford has suggested repeatedly, to measure the visual world as it appears to us
macroscopically using statistical descriptions.

But how can we obtain such probabilities? Does it make sense to describe natural scenes
in statistical terms, do they have enough stabilities and invariances for a theory to be feasible?

There is a growing literature dealing with this or related questions, mainly of empirical
nature,and they have shown some remarkable regularities, see e.g. Huang, Mumford (1999).
We shall try to derive analytical, model-based, results.

2 Marginal Probabilities for Natural Scenes.

Let us first recall some recent analytical results. The Transported Generator Model, TGM,
introduced in Grenander, Miller, Tyagi (1999), defines configurations as

TGM :c={a;s;,9%;i=..—1,0,1,..} (1)
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with the i.i.d. amplitudes a; = N(0,0?), generator shapes ¢ € G from an « index class of
generator spaces G* transported by a similarity group S. The random values of the similarity
group elements are given by a homogeneous Poisson process (with respect to Haar measure)
on the group. If the shapes are defined as real valued functions in the plane, a single a-class,
and S is the translation group in the plane (1) reduces to

TGM :c={ag(x —2");i=...—1,0,1,..;0 = (v1,22), 2" = (2}, 23) € R*} (2)

With the identification rule "add” we get images

TGM : I(z) = > aglz—a');i=..—1,0,1, ;2= (v1,22), 2" = (},25) e R*  (3)

1=—00

REMARK 1: The TGM is related to the "dead leaves” and ”"random collage” models,
Chi (1998),Ruderman (1997)

REMARK 2: The assumption about Gaussian distributions in the TGM can be relaxed
as well as identifying images by the "add” rule. The latter can be replaced by the "min”
rule leading to

TGM : I(x) = mini[a;g(x — 2")];i = ... — 1,0, 1,...;2 = (z1,3), 2" = (2}, 25) € R*  (4)

slightly more realistic. For a discussion of the pattern theoretic concepts used here see
Grenander (1993).

We can make analytical statements about the images generated by the TGM (Grenan-
der,Miller, Tyagi (1999):

THEOREM. The 1D marginal distribution of I(x) is infinitely divisible with non-negative
kurtosis .

This implies that the distributions are not Gaussian, which agrees with the empirical
fact , often reported in the literature, that image ensembles of natural scenes usually appear
non-Gaussian, see e.g. Huang,Mumford (1999). The histograms typically have a cusp at
zero. This agrees with the analytical statement, Grenander (199a,b):

THEOREM. Linear functionals of I(-) that annihilate constants have approximately
marginal densities of the form

flap.c) = @xﬂ*ﬂfwwf/cmn (5)

where K is the modified Bessel function and the normalizing constant

Z(p,¢) = \/(m)T(p)(2c)P/2+1/1 (6)



The Bessel K distributions are symmetric and unimodal for the mode at zero. For p < 1
they have a cusp at zero. For p = 1, f(x; p; ¢) is the density of a double exponential. As
p — oo they tend to Gaussian limits. The tails are heavier then Gaussian ones. In order to

apply this to data we use the moments of the distributions of the given functional L.
THEOREM. Using the relations

E[(LI)"] = 3{E[(LI)’]}* = 3pc* E[(LI'] = pc (7)

and replacing the theoretical cumulants by their empirical analogs,i. e. method of moments
estimation of the Bessel K parameters, we get the estimates

. 3 sample variance(I)

P = = (8)

sample kurtosis(I)’ p*

Calculating these estimates for three images we get the theoretical Bessel densities (whole
lines) displayed together with the histograms (dotted lines) in Figure 1. The amazing agree-
ment of the Bessel K hypothesis with data that we see in this figure holds in most cases: a



universal law for natural scenes.
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Figure 1

2.1 Higher Order marginals.

This success makes it natural to try to extend the result to higher dimensional marginals
of filtered images, to find an approximation to the bivariate distribution of two stochastic
variables [y = L4I and [y = Lol, where L; and Ly are two linear operators in Z that
annihilate constants. We shall complete the treatment as sketched in Grenander-Srivastave



(2001) using the Cramer-Wold device. Consider the characteristic function of the random
variable | = z1l; + 25l

W(t) = Elexp(itl)] = Elexp(it < z,L >|;z = (21, 22); L = (I3, [2) (9)

But we know that the characteristic function is approximately

1
[1+ t2¢(2q, cp)]Ple1:22)

Dapprox(t) = (10)
Putting ¢t = 1 this gives us approximately the bivariate characterristic function of the random
vector L

1
[1 + C(Zl, 62)]p(z1,22)

(11)

¢approx (2) -

Now we use the relations for the Bessel K approximation

e=atip=0 (12
with the cumulants
ki = B[] ky = E[I'] - 3{ E[I"]}? (13)
This gives us
ki = 21 EB[l}] + 2212 E[lils] + 23 Elyly)] (14)
ks = Z{E[l{] + 42} E[5l] + 621 23 E[G13] + 421 25 E[l113) + 2, E[13)] (15)

Using polar coordinates z; = rcosf; zo = rsinf) we introduce the trigonometric polynomials

P1(0) = cos*0E[I2] + 2cos0sinfE[lly] + sin*0 E[lyl,) (16)

Py(0) = cos*0E[l1] + 4cos*0sind E[[315] 4 6cos*0sin*0 E[I313] + 4cosfsin®0E[1,13] 4 sin*0 E[15](17)
so that we can write
kl = ’I“QPl(Q); kg = T4P2(Q) (18)

Substituting this in equation (?) we get

1 1
¢approx(2> = P2(0) = (19)
10} 1+ r2a(0)]b®
142y Fm (el



To apply this to data we use the straigtforward estimates

B[] = 1/n Y (L D)% (2); Ellls] & 1/n ) (LiI)(2)(L2) () E[l3] = 1/n 3 (Lo1)*(x) - (20)

x T T

and

Elly] = 1/n ) (L 1) (w); E[lyl) & 1/ (Lid)*(2)(Lo1); B[] & 1/n Y (Lid)* () (LaD)*(x)(21)

T T T

Elll3) = 1/ny (L )(x)(LoD)*(2); Elly] & 1/n )y (La1)(x) (22)

T x

We can apply (?) to range images by performing the 2D Fourier transform, the FFT,



and get For L1 and L2 both being the discretized %, the latter translated horizontally
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The agreement is not as amazing as for the 1D marginals but still surprisingly good



considering the nature of the approximation. With L1 the same but L2 being 59—;2 we get
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and, not as good,
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This is better. However for a very heterogeneous image the approximation breaks down
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2.2 Coarse Structure of 2D densities.

The trigonometric polynomials (P, and P, have a geometric interpretation. But first a short
excursion in elementary probability theory. Say that a random 2-vector has the bivariate
density f(x) = f(x1,22);x = (x1,22) and the characteristic function written in polar coor-
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dinates (1, x2) < (p, @), (21, 22) < (r,v)

o0

9(2) = g(z1, ) = /IER2 expli < z,x >|f(x)dr = /Kaq/p cos[precos(v — )| f(p, @) pdpda(23)

=0

With some abuse of notation we let f(p, ) mean the same thing as f(x1,z2), g(r,v) the
same as ¢(z1, z9) Differentiate w.r.t. r twice and then put r =0

32
(W r=0 = —/Kaq/ a)cos* (v — a)p*dpda (24)
Introduce
F(a) = / _ (e a)pdp (25)
so that
32
(W r—0 = —/KO[<7r (a)cos*(v — a)da = —7 /ﬂ<0¢<7r F(a)w(v — a)da (26)

with the weight function

w(u) = 1/7?0032(u);/ w(u)du =1 (27)

—nr<<u<lm

so that the second derivative is equal to —7W[F (- + v)], the w average of the length
function F' translated v steps.
Applying this to the function ¢upprer, We get for the length function

WIF(- +v)] = 2/mb(v)a(v) = 2/7Ps(v) (28)

Hence maxima and minima of F'(-) will approximately correspond to those of the trigono-
metric polynomial Py(-). We illustrate this in Figure 1f where we see in the lower left panel
the oblong shape oriented more or less as the empirical density in the upper right; this agrees
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with the above theoretical treatment.
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In the next diagram with a large horizontal shift we are close to independence between
L1 and LsI, correlation coefficient .04, and the oval shape shows no particular direction, it
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is almost a circle
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Figure 1g has the main direction vertical
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It may be possible to extend this result to higher derivatives of GG, perhaps getting more
powerful results, but this has not been tried.

The success in 1D is remarkable considering the simple minded construction in the TGM,
as is the limited success in 2D. The shapes are placed according a Poisson process in the
plane and then observed with the addition identification rule ( or the minimum rule). The
significant feature of the model is that it considers the scene as made up of objects. The
shape of the objects does not seem to matter except that they should have clearly delimited
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boundaries (Grenander (1999 a,b). But for higher dimensional marginals more knowledge a
priori about the shapes is needed. The lack of this in the TGM is probably the reason why
it does not work well for the 2D marginals of the functionals.

2.3 A full 3D model.

There is a need for firmer support for deriving of algorithms for the recognition of Objects
Of Interest (OOI) hidden against a background of natural scene clutter, perhaps hiding part
of the OOI. This is offered by the B3M

scene = U, 5,4, (29)

with the objects represented by generator templates g, € G*; see GPT p.3, and, again, the
s’s form a stochastic point process over the group S. Here « is a generator index, see GPT
p. 19, that divides the generator space into index classes

G = U,G" (30)

The generators here mean the surface of the respective objects, and the index classes could
represent different types of objects, trees, buildings, vehicles...We shall call the largest dis-
tance recorded by the range camera range ;.

In the case of range pictures it is natural to introduce a 3D polar coordinate system
(r,¢,1) where r means the distance from the camera to a point in space and ¢ is the
azimuth angle and v the elevation angle so that we have the usual relation

T = TCospcos; xy = rsingconsy; xz = rsini (31)

A point x = (xy, z9, z3) is transformed into Cartesian coordinates u = (uy, us) in the focal
plane U of the camera by a perspective transformation that we shall call T'. Hence the range
image has the pixel values, in the absence of noise,

I(u) = min, {(Ts, g% )(u)} (32)

This version of the B3M will be used in Section 7. Denote by support[T'sg)(-)] the projected
set of the OOI in the image plane, in other words where (T'sg)(u) < rangema,.

It will be assumed that the (T'sg)(u) is a Cy function of (s,u) except of course at the
projected boundary of the OOI, dsupport[Tsg)(-)]. This regularity assumption will be used
in Section 7, but may be extended to allow for a larger set of discontinuities of Lebesge
measure zero.

We shall try to deepen our understanding of the structure of natural scenes by exploiting
more knowledge about the shapes, the generators, that make up the scenes. But first we
shall make precise what a priori information about the scenes is available to the observer,
and what means of acquiring the images are being used. We emphasize this for the same
reason that one emphasizes context in linguistic discourse.
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3 Knowledge Status.

It would be a serious mistake to think of scene understanding as a problem with the observer
equipped with objective and static knowledge about the world from which the scene is selected.
On the contrary, the knowledge, codified into a prior measure, evolves over time and may be
different for different observers. The well known visual illusions speak to this; the ambiguities
are resolved completely only when additional information about the scene is made available.

Think of a person looking for an OOI in a landscape never before see by him - he will
be capable of less powerful inference than some one familiar with the landscape. If we send
out a robot to search for vehicles in a forest it is clear that it will perform better if equipped
with an adequate map than it would otherwise. This is obvious, but with further reaching
implications than may be thought at first glance.

The Hungarian probabilist Alfred Renyi used to emphasize that all probabilities are
conditional. We believe in this, and conclude that any realistic approach to Bayesian scene
understanding must be based on prior probabilities that mirror the current information
status. The automatic search in a desert landscape for a vehicle using a photograph taken
a day ago will be based on a prior different from the situation with no such photograph,
just the knowledge that it is a desert. In the latter case the prior may be a 2D Gaussian
stochastic process with parameters characteristic for deserts in that part of the world. In the
first the prior may be given via a map computed from the photograph superimposed with
another Gaussian processing representing possible changes in the location of the sand dunes
during the last day; obviously a situation more favorable for the inference machine.

Other incidentals that could/should influence the choice of prior are, meteorological con-
ditions, observed or predicted, position of sun, type of vegetation, topographical features
known or given statistically, presence of artifacts like camouflage, ... For each likely infor-
mation status we should build knowledge informations of the resulting scenes. This is a tall
order, a task that will require mathematical skills and subject matter insight. It should be
attempted and it will be attempted!

Any adequate formulation of the problem requires a careful description of the prior knowl-
edge about the scenes and of the means available for observing it: the information status.
We have argued elsewhere that this deserves our attention; here we shall elaborate on this
view and organize the information in explicit terms. Since knowledge is structured informa-
tion we shall speak instead of the knowledge status of the problem. The following discussion
could be classified as mathematical epistemology.

We shall formalize the knowledge status as follows:

The knowledge status will be repreesented by a Knowledge Box:

K — {kl,kg,kg,...} (33)

with the knowledge elements ki, ko, k3, ....
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The k;’s can be deterministic or probabilistic descriptions of knowledge available to the
algorithm for understanding. The set of K’s used in a situation will be called the IC-lattice;
it allows the lattice operations K’V K” ( increase of knowledge, includes sensor fusion) , and
K' N K" ( decrease of knowledge, loss of sensor input) and then the sup and inf operations.
A partial order is naturally induced on KC; its operation will be denoted by the symbol <.

3.1 Examples.
Consider the following Knowledge Box

‘ knowledge element ‘ element descriptor ‘

k1 output from specified range camera

KV =]k, scene type forest; parameters=a,b,c...
ks tree type deciduous; parameters «, 3, ...
ky slowly rolling landscape;parameters=Kk,l...

With another technology we get another Knowledge Box

‘ knowledge element ‘ element descriptor

K® =k, output from specified FLIR camera

ko intelligence: a vehicle is likely in the scene, parameters d,e,...

Combining both, K = KM v K® we get the knowledge status that will be assumed in
the section 6. Still another:

‘ knowledge element ‘ element descriptor ‘

K® =k, intelligence: a vehicle in the scene can possibly be a tank
ko tank specification through a CAD representation

and the union KW = K A K®),

4  World Model= Generators+Connectors—+Priors .

The organization of algorithms for understanding natural scenes will be based on a theory
of the world being observed. Indeed, without any theory predicated it seems impossible to
organize and analyze the received images in a meaningful way. We shall express the theory
in pattern theoretic form, see GPT 2, PART 1.

2Refers to Grenander (1993)
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4.1 Generators.

These are the primitives in terms of which the understanding will be organized. They belong
to the knowledge lattice of the situation.. They often appear on different levels of specificity
as shown in the following examples, as ordered on the K lattice.

EXAMPLES :

trunk < trunk sides < curved trunk sur face

foliage profile < detailed foliage < detailed foliage with holes
horizontal ground < linear slope ground < curved ground

sky

all with range information.

4.2 Invariance via Similarity Groups.

Patterns are formed as equivalence classes of images w.r.t. a similarity group S; P =Z/S.
The most obvious similarities are in the space/time domain, say

(a) SE(3)= the special Euclidean group in R? for change in location and pose

(b) G(3)= the Galilean group in R?® x R also with motion

(c) A(3) = the affine group in R? for change in location, pose and includes skewing
(d) D(3) = the group of diffeomorphisms in space for topological transformations

4.3 Connectors.

They connect some generators together following the regularity rules. They can be proba-
bilistic in nature.

EXAMPLES :

trunk side 1 < trunk side 2
vehicle body < wheel

wheel < ground

4.4 Probabilities.

Any realistic inference theory for natural scenes, must be probabilistic to account for the
high variability in the observed images.
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To fix ideas let us discuss natural scenes of forest type. For generators such as trunks, it
makes sense to understand probability distributions of diameters in the standard frequentist
sense, and to estimate them by examining many forest scenes and, for example, to measure
the diameters at different heights. Or to describe their location on the ground level by some
point process in the way studied in depth in the pioneeering work of Matern (1960). The
probability that a tree in a given forest is pine or oak can also be obtained from measurements
specifying the knowledge status, e.g. by a statistical map.

5 Interpolation.

We shall now study interpolation inference for forest scenes and use the knowledge box in
Section 5. Having observed a range image I2,,, we use the FLIR knowledge in K® to select
a sub-image I of size [1 x [2 a a candidate for a region that may contain an OOI (Object
Of Interest). The rationale behind this is that the FLIR has fairly low resolution so that it
gives the position of the OOI with little accuracy, in contrast to the laser radar. Hence the
information from the FLIR only gives us a confidence region as rectangle, an attention field
AF. Within this rectangle we know the position with some probability distribution, uniform
or not. Put a frame of width (L1, L2) around the sub-image so that we have a somewhat
bigger image I, of size L1 x L2; see Figure 2 We shall use the information in the frame

ext

F =TI%,\ I to interpolate the inner image I”, treating it as unknown. The reason for this
is that we do not know if it contains an OOI, and if it does, where is it and what is its pose

? To answer such a question we must know something about the background and that is
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exactly the task of the interpolator.

Frame around sub-image

F 12 -
11 .
Observed sub-image L1
Frame
|
= L2
Figure 2

5.1 Non-specific method.

Let us attempt interpolation schemes based on minimizing the conditional energy derived
from Bessel K distributions. Assume that the joint density of the images has the form

l1,l2
f(I) = 1 IT  b([IP(i1 + 1,d2) — IP(in, i2); ¢, plb[IP (i1, i2 + 1) — I (i, i2);c,p]  (34)

i1=1,10=1
using the available boundary values. The implicit independence assumption in this formula
is of course not valid, but is introduced in the spirit of mean field theory. Hence
b

Eeona = Y > e[I”(i1,42)] (35)

i1=1142=1

to be minimized over all IP(-,-)) with boundary values BV obtained from the framed values
and with the Laplacian

e[IP(ir,i2)] = fIIP(iy + 1,d2)] + fUIP(in — 1,42)] + fIIP (ir, 02 4+ 1)] + fIIP (i1, i — 1)] — 4 f[I7 (i1, 12)](36)
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We used the Bessel K densities b and

f(z) = log[b(z, c, p)] (37)

referring to the expression (5). Note that this is approach is non-specific in that it does not
specify the detailed pattern theoretic structure of the images in terms of generators and so
on.

For the Gaussian case p — oo we get interpolation with the classical harmonic function
and their boundary value problem. For finite p-values it should be noticed that the minimum
is not unique for p < 1: the energy is not convex for p < 1 and not strictly convex for p = 1;
hence uniqueness of the minimum is not guaranteed,.

The results are disappointing. For classical harmonic function interpolation, in which
each iteration replaces a pixel value by the mean of its foiur neighbors, we get, as the best

result,
Mo A A 6 W0 A0 M
1 4 & T A il
Figure 3
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For p = 1, which means [1 norm and each iteration replaced a pixel value by the median
of its four neighors, the interpolation performs even worse:
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Figure 4

The reason for this poor inference performance is of course that the assumed prior prob-
abilities do not catch much of the real image structure. Indeed, it says only that all the
differences

IP(iy 4 1,d9) — IP(iy, ia), 1P (i1, d9 4+ 1) — IP (i1, iy) (38)

are i.i.d with Bessel K marginals conditioned by boundary values. This expresses the
fact that the images are made up of objects - almost constant values over individual objects
with jumps between them. But it does not say anything about the form of the objects. The
knowledge status is too weak! Only 2D marginal distributions of the I? are described . Of
course we have also derived 3D approximations, but while the 2D Bessel K approximations
provided highly accurate quantitative agreement with data, this was not the case for higher
dimensions; only qualitative similarities with data were observed.

To get better results we must strengthen the knowledge status to specify the pattern
structure of real forest pictures. But how much? Only as much as is necessary for reasonable
inference performance, otherwise we can expect too slow algorithms and possibly overfitting
the data. Although algorithmic speed is not our main concern at this stage, we shall aim at
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least for computational feasibility on current PC’s.

5.2 Specific Method.

We shall use the generators from section 2.1: G = {foliage, ground,trunk, sky}. This
generator space is a bare minimum and should be increased, but it will have to suffice for
the present. To recognize these four type of generators we shall introduce indicators as
follows.

First, compute the boundary value function BV (s),s € 1 <[ along the boundary of 917
with the arc length | = 2l; + 2l5 + 4. A typical example is shown in Figure 5 Note how
stretches of nearly constant range values or linearly increasing ones are separated by rapidly
changing values.

Figure 5
Now determine

M = mazs;BV (s);m = minsBV (s) (39)
and introduce the range levels

[Tk, ek =12, .N;rp=m+ (k—1)/N(M —m) (40)
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for some moderate natural number N and with the average range levels my = (1 + rpy1)/2.
This leads to intervals of the form {s : r, < BV(s) < rg4+1} . Then reject small intervals with
lengths less than some threshold value and filling in holes of length smaller than some other
threshold. This gives us a set INTERVALS = {inty, inty, ints, ...int,, , } of these intervals,
each interval int € INTERV ALS associated with some range level and will be denoted as
[p1(v), p2(v)] on the boundary of I”. We shall use modular addition n;,; + 1 = 1.

We shall need the following concept. Define a function

Q(s)=1,s € BELOW;Q(s) =2,s € RIGHT;Q(s) =3, UP;Q(s) =4,s € LEFT (41)

where BELOW, RIGHT,UP, LEFT mean the four sides of the domain X of I?. Now
introduce indicators. For each interval int, define the indicator

w) = LS(v) = line segment p1(v) — pa(v) (42)

in the rectangle X. The second class of indicators is more involved.

Consider a line segment LS(v) with associated average range ry and the corresponding
s-set S(v) along the boundary 0X. In the frame F' find all pixels (i1,72) € F' with range
values in the interval int,. Among those pixels we find the ones connected with points in S(v)
according to the closest neighbor topology. In other words, find the topological component
C(v) that includes the set S(v). Now find unit vectors Uy, Uy to p;(v) and pa(v) respectively
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enveloping most of C' as in Figure 6

upP

~+'p1
LEFT RIGHT

BELOW

Figure 6

The precise definition of these vectors is given in the MATLAB software. We do not
insist on that particular choice, others may be better and we leave this till later. Then we
get indicators of the second class

wy = (Uy,Uy) (43)

The rationale behind this choice of indicators is the following. To get a likely continuation of
the line segment, the chord that cuts the foliage object, we shall use the directions indicated
by the frame picture. In other words, we are estimating derivatives, gradients, which is a
notoriously sensitive task for complex pictures with much local variability. Anyway, this is
the purpose of the vectors Uy, Us.

With the set of these indicators, Q = {w!(v),w?(v);v = 1,2,...}, we are ready to organize
the inference. But first a detail caused by an artifact in the range data. The output of the
particular laser radar used in Huang-Lee (199) is 0 for very large distances. To compensate
for this we put

IP(iy,i9) = 0 redefined as 1P (i1,iy) = M (44)
but keep the unmodified I? as I?

save*
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5.3 Trunk.

For a line segment LS(v) with Q[p1(v)] = Q[p2(v)] = 3, that is the segment belongs to UP,
we calculate

Tparallel = R(HUl - UQH S 61) (45)
with R(z) = exp(—z) and
Tvertical = R(|[(Uy + Us) /2 — col(1,0)|| < epsilons) (46)

We shall interpret the value r; as the heuristic probability that the two unit vectors are
almost parallel. The value 7 is the heuristic probability that the average vector (U; + Us)/2
is almost vertical. We put

1 (I7) — "trunk element at (p(v) + pa2(v))/2" (47)

With probability r17y we introduce a partial interpolator image I;” with pixel values equal to
M everywhere except at pixels belonging to a vertical rectangle extending from the interval
int, downwards all the way to 0X where they will be equal to the average range value 7y of
int(v). With the complementary probability we do nothing.

The form of R has been selected somewhat but not wholly arbitrarily. The index t is
updated t — t + 1 for each decision to recognize a generator.

5.4 Foliage.

To infer foliage generators requires a new concept, set continuation. For an arbitrary interval
int(v) € INTERV ALS let us introduce another partial interpolator image I;, now with all
pixel values equal to M, except those in a set CONT[SL(v)] where the pixel values shall be
equal to the average range value ry associated with int(v). The set CONT[SL(v)], the set
continuation of the line segment LS(v) with directions Uy, Us, will be derived as follows.
To contine a set representing some object (here foliage of a tree), we should specify the
knowledge status. It will depend upon what, if anything, is known about the tree species
a priort - is it an oak or a pine... 7 Say that we only know that its profile is "rounded”
with piecewise continuous curvature. Real tree images have holes as modelled in Husby and
Grenander (2001) but this fact will not be includeded in the current knowledge status. We
shall think of the (discrete ) set as made up of line segments with slowly varying positions and
lengths, see Figure 7 and described below, forming a Markov process of order 2. The process
continues as long a the line segments have positive length. We shall use the observables
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p1, P2, U1, Us.

continuation of LS

Continuation of cut

Figure 7

Say the cut is along x; = constant with endpoints [z3(t),z3(¢)] on level z; = t. Let
us assume, in terms of discrete space, that the cuts form a Markov process satisfying the
coupled Langevin SDE’s

wy(t) = 2a5(t — 1) + wy(t — 2) — k* [a3(t — 1) — 25(t — 1)] + ey (2) (48)

w(t) = 2a3(t — 1) + 23(t — 2) + ko= [p(t — 1) — 23(t — )] + e (t) (49)

27



with e (), e2(t) meaning white noise N(0,0%) and k is a restoring force coefficient. The
mechanical analog of this means two mass points attracting each other with a force propor-
tional to their distance and subject to random impacts. Initial condition 23(0) = py, 23(0) =
P2, p2 < p1;as(1) = q1,73(1) = @, meaning that we specify boundary values of first order
discretized. The equation should terminate as soon as x3(t) < x3(¢). In the mechanical
analog [q1 — p1, g2 — po] is the initial velocity vector.

In Figure 8 we show some set continuations using this Markov cut model; primary cut
in red, continuations in blue. Note how the direction tendencies at the initial cut propagate
into the protuberance but gradually die out. The speed of this depends upon k that regulates
the (random) size of the protuberance, while 0% controls the smoothness of the boundary.
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Figure 8

We then introduce a partial interpolator image I;* covering the continued foliage set. This
concludes the discussion of the set continuation we shall use for foliage sets.

5.5 Ground.

Let us consider two intervals i; = int(vy),ia = int(ry) € INTERVALS with Q(i1) =
1 or 2,Q(iz) = 4 or 1 and associated with the same average range value V. This gives us
four points P, = py(11), Po = pa(11), Ps = p1(1a), Py = pa(v2). Find Uy (1), Us(vy) for the
interval ¢; and U;(v»), Us(12) for the interval i5. Also the heuristic probability

Tsame height — R(HPQ - PSH S ep3il0n3 and HP4 - PlH S 63) (50)

where R is some heuristic probability measure. With probability 7sume height We then intro-
duce a partial interpolator image I} for the ground generator; I} consisting of the quadilateral
P, — P; — P, — P; associated with the range V.

5.6 Sky.

For the intervals in INTERVALS find the ones associated with the range value 0, large
distance. Apply the above set continuation method to extend the lines segmens represented
by these intervals. In the union of these sets make the range equal to range,,.., the largest
distance that the laser radar outputs as a positive number.

Now we combine all the partial interpolator images to the interpolator

I = minger I} (51)

where T' is the set of t-values that have been introduced successively in the procedure de-
scribed in this section.
Let us look at some of the results.
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Figure 9 shows a simple task where the scene is simply a hill landscape with no other
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features. The upper left panel shows the selected sub-image and the middle left also the
frame; the first one indicates how the algorithm has identidfied and organized boundary
intervals into reasonable intervals. The boundary values are in the lower left panel as a
function of arc length along 0X. The upper right panels is the inference in the form of an
interpolation while the middle right one shows the true image to be interpolated.

Obviously the algorithm does a fine job here, but the task was not really difficult enough.
Now look at Figure 10
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Figure 10

This scene has a big tree and two smaller ones further away. The inference is fairly good.
And Figure 11
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Figure 11

Also with two trees, but at about the same distance. Fine result but of course no
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algorithm could infer the bush between the trees from the frame data.
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Figure 12

In Figure 12 we have big foliages to the right and to the left. The low boundary values
below and to the right fool the algorithm to believe that the ground extends higher than it
does. It makes a halfhearted attempt to continue the left foliage.
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In Figure 13 we have similar effect: the right foliage has been continued much too far,
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The algorithm is thoroughly confused in Figure 14. It just cannot understand such a
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complicated picture.
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Figure 15

The algorithm suspects, rightly, the presence of a massive foliage in the upper left in
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Figure 15.
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Almost perfect perception inference in Figure 16. For comparison the lower right panel
we have shown the harmonic function interpolator,much worse.
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5.7 How Did the Inference Algorithm Do?.

Not too badly. It could handle ground and trunk generators well, but the foliage presented
greater problems. This is not surprising considering the greater variability of the foliage, but
it could be handled better by improving the modules of the code for foliage recognition. Of
course it can be questioned if any algorithm could perform really well for foliage.

It seems that the most vulnerable part of this module is the estimation of the direction
tendencies. Often the inclinations are over estimated; perhaps this should be countered by
systematicallyy avoiding large inclination estimates.

This also applies to the recognition of trunk generators: they are often too inclined left
or right. Same remedy could be attempted.

A common error occurs when a trunk at the left or right boundary is partially visible
together with ground, The algorithm then tends to think of this as a common ground element.
It is not clear how this could be handled better.

When foliage appears it tends to interfere with the recognition of ground, trunk and sky
generators. Possibly the program module could be modified to pay less attention to such
foliage occurrences.

Although some of the inferences are poor, it seems that, considering the enormous vari-
ability of the scenery, that they are far superior to the non-specific ones; the exploitation of
trunk-foliage-sky-ground structure has helped a lot! This approach has shown its strength
and deserves further study and improvement, also for other types of inference.

6  Analysis.

To create a knowledge representation of forest scenes we first have to decide how detailed
it should be. Should it involve individual trees and bushes? Must branches be specified?
Should tree type be described in the representation, oak, maple, pine...? It all depends upon
the goal we are set for using the representation.

If the goal is to discover man made Objects Of Interest, OOI, say vehicles or buildings,
we may not need a very detailed descripton of the forest. On the other hand, if the purpose
is to automate the collection of tree type statistics we should include tree type information
in the knowledge representation. This is not just segmentation, it involves analysis and
understanding of the content in the image.

Let us deal with the second of the two alternatives. With some arbitrariness we have
chosen the following four generator indices:

A) a="ground” : ground surface in the foreground

B) o ="sky”: sky background

C) o= "trunk”: trunk element for individual trees

D) a= "foliage”: close foliage

38



Now we must make the a-definitions precise. Since the TGM is 2D and lives in the image
plane, the generators consist of areas in this plane. We therefore introduce index operators
O% mapping sub-images Iy = {I(z);x € X}, where X is a subset, say a rectangle, in the
image plane,

O*: Ix — {TRUE, FALSE} (52)

In other words, the index operators are decision functions taking the value TRUE if we
decide that the area X is (mainly) covered by a generator g € G®. It may happen that a
set X is classified as more than one a-value. We shall order the way we apply the index
operators, one after the other, with the convention that a TRUE value overwrites previous
truth values. We have used the order ground, foliage, trunk, sky.

In tabular form:

Generator Index Classes
Generator Index ‘ Informal Definition ‘ Formal Definition
a = ground Smooth Surface {X:09mund[[|=1}
a = foliage Irregular Surface {X:0/tiage [T]=1}
a = trunk Narrow Vertical Surface | {X: O k[[]=1}
a = sky Infinite Distance {X: O*M[[]=1}

6.1 Index operator for”ground”

A ground area is usually fairly flat and more or less horizontal except for the presence of
boulders and low vegetation like bushes. We shall formalize this by asking that the gradient
be small

O umd[[(X)] = TRUE « ||grad(I)(z)| < ci;z € X (53)

Of course the operator will fail in detecting sloping ground.

6.2 Index operator for”foliage”

For foliage on the other hand, the leaves give rise to considerable local variation but this
variation is moderate as long as the leaves belong to the same tree. Hence we introduce

Ofoliage[I(X)] =TRUE <~ cy < ngad([)(l‘)“ < C3, T € X (54)

6.3 Index operator for”trunk”

Trunk areas are narrow and vertical with small local variation compared to their immediate
environment. In Figure 17 the narrow rectangle Xcenter should correspond to a part of
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a trunk, it is surrounded by two somewhat larger rectangles Xleft and Xright with some
overlap. Compute the variances of the pixel values belonging to these three sub-images, call
them Varys, Vareenter, Varrign and define the index operator

Otrunk [I(X>] =TRUFE < Varleft > C4varcenter and

Varright > C4va7ﬂcente7‘; reX (55)
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6.4 Index operator for”sky”

This is the easiest generator class to detect. Indeed, sky means infinite distance, far away,
or rather the largest distance that the laser radar can register. For the camera used, this is
coded as I(z) = 0. Hence we can simply define

OM[I(X)]=TRUE < I(z) =0;z € X (56)
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6.5 Application to Range Images

. Applying this to laser radar images from Lee-Huang(2000): Brown Image Data Base, we
get the following analysis with the meanings displayed graphically.
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Figure 18

In Figure 18 one sees the occurrence of blue diamonds, ”sky” and two trunks, some smaller
trunk elements too, and a lot of foliage. At the bottom of the figure is the ground, separated
from the foliage by pixels that could not be understood by the algorithm. Note that the
tombstones in the observed scene have been interpreted as foliage: the present knowledge
representation does not "understand” tomb stones. We shall study the understanding of
such OOI’s in Section 7.
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In Figure 19 the dominating feature of the analysis is the occurrence of two big trunks.
The ground is detected only in parts.
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The analysis of Figure 20 also is dominated by a trunk. To much is interpreted as foliage.
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The analysis of Figure 21 has a sky element again.
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It seems that this automated image understanding performs fairly well considering the
primitive form of the index operators that we have used. But it interprets to much as
foliage and makes other mistakes as well .As we have argued repeatedly before, a major
task in the creation of tools for the automated understanding of image ensembles is to
build specific, tailor made knowledge representations in pattern theoretic form for the image
ensembles in question. This is a real challenge, one that has been reached only partially
here, and has successfully implemented only in some cases. In particular we would like to
mention computational anatomy [|, some microbiological image ensembles [], and certain
object recognition scenes with movable rigid bodies [|, but is a sine qua non for any serious
attempt to automate scene understanding.
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7 Recognition.

When we turn to the problem of automated recognition of OOI’s against a background of
clutter, say a forest scene, the role of the background changes. In the previous section
the background, the forest, was of primary interest, but now it plays the role of nuisance
parameter in statistical parlance. We are now not after an analysis into foliage, trunks...,
but cannot neglect the clutter as irrelevant. It has long been known that the randomness of
clutter is far from simple white noise. Further, it cannot be modelled as a stationary Gaussian
process in the plane. Indeed the validity of the Bessel K hypothesis contradicts such a model
from the very beginning. We shall use the TGM for representing the background clutter -
the secondary element of the images - and the more detailed B3M for desribing the OOI’s -
the primary element. For the OOI we choose tanks; we happen to have available a template
library in the form of CAD drawings with rotation angles equal to 0,5,10,15,20... degrees.
Since we position them on the ground we will have s3 = 0, so that this coordinate will be
left out in the computations.

We shall assume the knowledge status
K =

‘ knowledge element ‘ element descriptor

k1 one output from laser radar camera

ko one output from a FLIR

ks intelligence: tank of type T possibly present in scene
k4 the shape of T given in CAD form

The image representation will take the form
I(u) = min{Lyuuer(u), Tsg??!(u);u € image plane U} + e(u) (57)

for the time being with only a single a-value for the OOI, and e(-) standing for the camera
noise. For laser radars the noise level is low, perhaps white noise e = N(0,0?),0? << 1.
Further the clutter part of the image will be represented by the TGM as

Iclutter = Z Al/g(u - U,,) (58)

7.1 Detection.

A straightforward correlation detector will fail miserably, so that we have to modify it to
take into account the workings of the range camera. In particular we should observe the role
of the minimum operator in (777).
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Denote the observed range image by I7(u). If the noise level is low IP(u) & Ljuser ()
for u-points not obscured by the OOL.

P(SITP() o w(s)eap{ — |17 — min(I7, Tsg®")|? (59)

with a prior density 7(-) on the similarity group S expressing the current information status.

We shall choose the attention field AF as a rectangle in the (s1,s2)-plane with the

center at the pointer (s14F s2F") and with some width width = (w14F w24F). Tt should be

mentioned that we have used very different scaling for s, compared to s;; changes in the
former means much more than for the latter. Let us try a prior of the form

1 — pointer(1))? 2 — ponter(2))?
7(s) o exp[— (s pom; (D) _ (s por; er(2) ]: (s1,s2) € AF;0 else (60)
01 02

not depending on s4, so that the two first components are independent and Gausian when
restricted to AF', while the fourth one, the rotation angle, is uniform on T.

Now search for the MAP estimator. Starting at s = pointer and using the Nelder-Mead
algorithm, see Nelder,Mead (1965), for function minimization, we hope to get convergence
to a local mimimum, hopefully close to the true s-value, at least if width is small enough.
But the behavior is a bit puzzling. Sometimes it works well, sometimes not. Why is this so?

Of course, if most or all of the OOI is hidden by the clutter we cannot expect good
inference. On the other hand, if only part of the OOI is hidden, the inference algorithm
should work. This in contrast to methods that are not designed to take care of obscuration
effects, for example simple correlation detectors.

7.2 Estimation of Location and Pose

. We now apply the algorithm to the range images in Huang,Lee (1999) and display the
result by showing a subset of the image containing the OOI and also the same subset with
the result of the algorithm. In each case the AF was chosen so that it covered the OOI
but with a shift in the ”pointer” away from the center of the object; this to correspond to
mistakes in the knowledge status expressed through a prior on the AF due to limitations of
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the FLIR. We get Figure 22
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Figure 22
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The inference looks good. Also for Figure 23
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The same is true for the partly hidden OOI in Figure 24

10
20
30
40
50
60
70
80 80
50 90

100 100

110 110
50 100 150 200 2350 50 100 150 200 250

Figure 24
but the algorithm fails of course in the case of the wholly hidden OOI in Figure 25 and
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does not discover the OOI
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7.3 Trouble!

So far, so good. But sometimes the algorithm fails completely although the AF covers the
true position of the OOI, this happens fairly often. Why is this? We had better look at the
theoretical basis for this recognition algorithm.

The image matrix T'sg is of the same size as the observed image and with entries equal
to rangem,q. outside of the projection of the transformed generator sg. We shall assume that
for no values s; # sy is there a set E,m(E) > 0 in the visible part such that (T's'g)(z) =
(T's?g)(x),Vx € E. This is a condition of non-self similarity. Actually, this is much stronger
than needed for the following. For example, if the OOI is invariant with respect to some
symmetry group, the statement in the theorem can easily be modified so that the new version
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is still true. As a matter of fact the OOI used in this study, a tank, has bilateral symmetry
so that two rotation angles have the same visual effect.
Consider the estimate

I*(uy, ug; s) = T(s1, S2, 3, S4) Gtemp (U1, Usg) (61)

where we shall automatically set s; = 0 as mentioned above. Recall that this estimate
I*(uy,u9; s) takes values as functions of the matrix coordinates u,, vertical directed down-
wards, and us, horizontal directed to the right. Its values outside the transformed template
has been set to range,... Find the visible part of OOI against a background I, as the
support set

Vi(s) = {(ur, uz) : I"(u, u2; 8) < Leputter } (62)

In particular the visible part of the OOI at the true value s® is V(s%) and we must have
m[V(s%)] > 0, positive Lebesgue area.

Now consider an alternative value s' of the group element, later to be assumed to be in
a small neighborhood N of s°, the notion of neighborhood to be qualified later. Consider
the difference set

A(s') ={u: (Ts'g)(u) < (Ts"g)(u) C R*} (63)

meaning the part of the OOI for s = s that can be seen in the presence of the OOI for
s = s We shall assume that

m[A(s") NV ()] >0=s' =35 (64)

Or in words: inside the area of the OOI at the true position/orientation at least a bit of the
OOI at the alternative position/orientation can be seen.

THEOREM: If the observed image s the result of placing the transformed template
against the backgound

IP = min[l, Ts"g] (65)
then, under the given conditions, the function e(s),s € N

e(s) = [ 1P (w) = minl1®(u), (Tsuemy) ()] *du (66)

has a local minimum at s = s°.

PROOF: It is obvious that the non-negative function e(-) vanishes for s = s" since, with
I juper standing for the background image,

P — mm(ID, ngo) = min(Lutter, Tsog) — man(min({uster, ngo), ngo) =0 (67)
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If, for an alternative value s' € N(s°), the integral vanishes, we must have
IP(u) — min[I” (u)], (T's' gremp) (1) = 0, a.e.u € R? (68)
so that for u € V(s°) = {u: (T's°9)(u) < IP(u)}
(Ts°g)(u) = min|(Tsg)(u), (Ts'g)(u)] (69)
or
(Ts'g)(u) < (Ts"g)(u) (70)

Since visibility requires that M[V (s°)] > 0 it follows from (?7?) that s' = s” and s = s° is
indeed a local minimum in N(s°).

Now let us look more carefully at the local behavior of the e(-) function. Recall that with
the background I(-) and the OOI resulting in (7's%)() in the image plane, and

)= [ e [1P(0) = (Tt (0] M)

so that
els) = /u:ID(U)>(ng)(U);I(u)>(TsOg)(U)[(Tsog)(U) = (Tsgieny) ()] (72)
+ [I(u) — (T'sGtemp) (u)])*du+ (73)

w:IP (u)2(Tsg) ()il (u)<(T's°g)(u)

Let s = s + en where the 4-vector n has all its components equal to zero except for the
kth one, n, = 1 and € — 0; the subscript £ is one of the numbers 1,2,3,4. Consider the two
integrals, I, in (7), and Iy in(?7). We can write

I :/ Ts°g)(u) = (TSGiemp) (u)]*du 74
' u:(Tsog)(u)(u)z(ng)(u);I(u)>(Tsog)(u)[( ) () = (T'5Gremp) (1) (74)

Also

I:/ I(w) — (T'SGiemy) (w)]*du 75
? u:(TSQ)(U)<1(U)<(T8°9)(U);I(U)<(T8°9)(U)[ ( ) ( ' p)( )] ( )

Begin with ;. If u € interior{support[(T's’g)(-)]} we have for small ¢

(T'sg)(u) — (T gremp) (1) = € x constant + O(€?) (76)
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so that the contribution to the integral I; from the interior is asymptotically propotional to
e. But the asymptotic contribution from a thin band around 9[(T's%¢)(-)] of I; depends upon
the sign of e. Indeed, if we are in {u : (T'sg(u) > (Tsg)(u)} the contribution will again
be proportional to € asymtotitcally, generically with a positive proportionality constant. On
the other hand for the opposite sign of € the domain of integration reduces to the empty set.
Hence, generically, the partial derivative of Iy w.r.t. epsilon will not exist: the left and right
derivatives will be different. We can discuss I in the same way.

Because of this lack of differentiability we shall avoid search algorithms to get s” that
assume smoothness. Instead we shall use the following primitive algorithm. We shall search
cyclically over the coordinates k = 1,2,3,4. In the tth iteration say that we have reached
the value s(t). Then, for each k, we shall consider the three values

elsi(t) — dsi(t)], e[si(t)], e[sk(t) + dsi(t)] (77)

where we will choose

dsp(t) = fe(t) 1 0 (78)

To get convergence to any true s value we shall ask that
Yo Jult) = 400 (79)
t=1

In the software we used fi(t) =1/ \/Et) Then pick sk (t+ 1) as the one of the three s; values
with the smallest e[s(t)] value.
But this is not enough. It will be instructive to look at the behavior of the e function.
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Typically it looks like the one in Figure 26
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Figure 26

in which the left panel shows contour lines of the e-function with the minimum e = 0 at
the value s = (0,0). Note how close the contours are in the halfplane H in contrast to in
the other halplane, indicating rapid decrease toward the minimum. The middle panel show
a profile e(0, s2), non-differentiable at (s, = 0), which agrees with theory. The right panel
shows the profile e(sq,0), also with a jump in the derivative. Of course, for real data we can
not expect to get the minimum exactly equal to zero due to measurement and numerical
noise.

But Figure 26 also teaches us something else that we have hinted at earlier. The right
panle, showing the dependence upon sy, the side ways coordinate, increases fast as we move
away from the minimum e-value, both to the right and the left: the minimum is well defined.
In the middle panel, however, showing the dependence on sy, the depth in the image, the
left branch mincreases as we move away from the minimum. The right branch on the
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other hand, increases first, slowly, but then has a small local maximum and then decreases.
This explains why the straightforward appliction of the algorithm for minimizing e(-) in the
previous section did not always work: the occurrence of the min operation in (7777), typical
for range cameras. If we let s9, the distance away from the camera, be large, the OOI will
eventually be hidden behind the clutter, so that ID — min(ID,Tsg??!) = 0, and only the
7 factor in (777) will play a role in the minimization; the information in the observed image
will have been wasted, and we will get misleading inferences. It follows that if we use straight
minimization estimation constraints, the estimator is not consistent. Instead we should use
only a neighborhood

N C H;H ={s:5, <9} (80)

constraining the neighborhood to be in the halfplane H. In order to make the inference
algorithm work we should therefore, introduce a bias in the choice of the pointer favoring
smaller values of s2 in the AF. But we do not know where the minimum is located in the AF’
given by the FLIR. Let us therefore use a conservative search strategy, starting the search
in the midpoint of the lower boundary of the attention field. If we do this we will find that
the inferences are often quite good.

7.4 Recognition With Biased Starting Point.

Returning to the recognition algorithm but now constrained to a half plane, we shall illustrate
the convergence of the algorithm by showing the successive values as curves, saccadic (correct
spelling in figures) paths in the group. Another difference is that we shall use larger AF’s
than in Section 7. Of course we do not know where the halfplane H is actually situated in
AF, so we shall use a conservative strategy, starting the minimum search at the midpoint
ofthe AF’s lower side. We use a very crude minimization algorithm here; better behavior
can be expected with some industrial strength algorithm. In Figure 27 we see the siccadic
path settling down around s = (30,1.75,0,270), indicate by a small circle, while the true
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vlue is s = (30, 2,0, 65), where the angle 65 has the supplement 295. Good behavior
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Figure 27

On the other hand in Figure 28 the saccadic limit s = (32,3.7,0,90) is far away from the
true value s = (—20,4,0,60). The reason is that the distance of the OOI from the camera
is greater (recall that we have used very different scaling of s; and s3), so that it appears as
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only a small part of the observed image; little evidence for the inference.
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Figure 28

The performance is fairly poor in Figure 29 where the saccadic limit is about (5, —.3,0,90
to be compared with the true value of location/pose (0,0, 0, 0, 200), at least for the orientation
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estimate.
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Figure 29
In Figure 30 the agreement is very good. Estimated parameters (102, —1.3,0,90) com-
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pared with the true values (100, —1,0, 100)
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Figure 30

A good deal of the tank is hidden in Figure 31. Considering this the result of the detection
estimation is perhaps not too bad, (233, —.3,0,130) instead of the true (300,0,0,0,90) but
the location estimate is far too much to the left. The hiding trees to the left are fairly close
in distance from the tank which of course makes estimation of s; difficult. In principle this
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comment is valid in general.
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Figure 31

The observed ID is seen in Figure 32 with the tank to the right and further away from
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the trees, partly hidden up in the trees (sic!).

Figure 32
Here we have used biased selection of the initial poin in the half space H; starting in H®
often results in failure as predicted by the proof of the theorem.

8 Recognition

. Once the OOI has been found in terms of location and pose the way we have described,
it should be possible to implement a scheme of understanding by running the algorithm for
several different template libraries, to see which type of OOI we have in the observed image.
We should use several a-values, see equation (10). Here we can only touch on the question,
leaving a full treatment till later.

We shall use two template libraries, G™): small tanks, and G®:big tanks. Actually G(1)
is the library we have used in the previous section. Run the estimation algorithm for some
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clutter background I e and with templates from G and G® respectively, and note the
resulting minimum values of e(-). We got for the true a-value the minimum eggn = 3.55 x 10*
while the alternative value was eggn = 6.34 x 10°, a drastic difference in favor of the true
hyposthesis.

We do not know to what extent this difference holds in general. Nor have we studied
how to calculate the cutoff value analytically to separate two or several a-hypotheses.

9 What Have We Learnt ?

This study has taught us the following.

(i) To handle the joint prior measures for natural scenes needed for inference it is nec-
cessary to use clutter specifications tailored to the particular type of background that is
expected in the knowledge status.

(ii) Detection, estimation of location and pose for (partially hidden) OOI’s against a
cluttered background can be organized as a minimum e(-) problem.

(iii) It appears possible to achieve recognition using the technology of (ii).
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