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In 1948, when Norbert Wiener published his path breaking work Cybernetics: Communi-
cation and Control in the Animal and the Machine, computer technology was in its infancy.
Most computers that were needed to implement his ideas were of analog type, certainly in
animals but also in machines. They were barely enough for executing simple algorithms,
for example for extrapolating stationary time series or for control of servo mechanism. One
can only speculate what Wiener’s genius would have accomplished with todays computing
machinery with their speeds in the Giga and Tera Hz ranges.

Nonetheless, the book caused a paradigm shift in several sciences and technology, in
particular in biology/medicine. Not that his ideas were accepted uncritically by the scientific
establishment; on the contrary they were met with skepticism and lack of appreciation. It
was only with generational change that the cybernetic view was gradually accepted. Indeed,
there was a period in the 1960’s and 1979’s when it appeared that steam had gone out of the
movement, but later on it returned with renewed vigor, often with no explicit reference to
the term. Today much work in the cognitive and neural sciences is dominated by Wiener’s
communication/control scheme, albeit in forms changed due to changes in technology. It is
striking how similar are the thoughts that influence studies in animals as in machines.

Two great contemporaries of Wiener, Claude Shannon and S.O.Rice, created the fields of
information theory (19..) and statistical signal processing (19..), tools that play a major role
in bio/medical research, also in a cybernetic mode. Signals genmerated by sensory inputs are
studied by these methods, in particular single signals from an individual cell, but recently
multi-electrode techniques have made it possible to analyze several signals together. This
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points toward understanding of global mental functions but our present knowledge is scanty.

To understand understanding seems to require different concepts, more global ones, that
abstract from the detailed specification of neural signals. In the absense of hard empirical
knowledge about total brain function it is tempting to speculate about that which we know
little or nothing about. Following Oscar Wilde’s dictum, we shall fall for this temptation, and
follow innumerable philosophers, novelists and poets since time immemorial, but we shall
do this in a formal manner, expressing thoughts,doubts, love and hate and other feelings
in mathematical language, while keeeping in mind the complexities of the human mind, its
ambiguities with its illogical and inconsistent features.

Our starting point will be metric pattern theory 2 in which regular structures are con-
structed using generators and connectors, to build probabilistic knowledge representations of
the phenomenon being studied, in the present case mental processes. We shall attempt to do
this in the following PART I, where the subject is not information but knowledge = struc-
tured information, and heuristic processing of knowledge in terms of pattern theoretic prior
probabilities. In PART II this will be specialized to computer vision for images acquired by
range sensors. There we shall try to imitate processes in the animal mind by processes in
the machine, to wit, automated understanding of range inmages. If we can do this we have
shown, not that animal mind processes are governed by certain algorithms, but that those
algorithms are consistent with what we experience subjectively when we deal with qualia.
Hence we do not claim to have established any principles empirically, only to have shown
their plausibility. These principles will expressed through statistical heuristics.

This paper is a continuation of Grenander (2002b).

A reader who is not upset by the speculative nature of the following may want to take a
look at Grenander (2002a), even more adventurous!

PART I

General Statistical Heuristics for Perception

1 Specifying the Information Status of Perception.

Any adequate formulation of the problem requires a careful description of the prior knowledge
about the world scene in question and of the means available for observing it: the information

2Pattern theory is presented in Grenander (1993), referred to as GPT

2



status. We have argued elsewhere that this deserves our attention; here we shall elaborate
on this view and organize the information in explicit terms. Since knowledge is structured
information we shall speak instead of the knowledge status of the problem. The following
discussion could be classified as mathematical epistemology.

We shall formalize the knowledge status as follows:

The knowledge status will be repreesented by a Knowledge Box:

K = {k1, k2, k3, ...} (1)

with the knowledge elements k1, k2, k3, ....

The ki’s can be deterministic or probabilistic descriptions of knowledge available to the
algorithm for understanding; see also Grenander(2002). The set of K’s used in a situation
will be called the K-lattice; it allows the lattice operations K ′ ∨K ′′ ( increase of knowledge,
includes sensor fusion) , and K ′∧K ′′ ( decrease of knowledge, loss of sensor input) and then
the sup and inf operations. A partial order is naturally induced on K; its operation will be
denoted by the symbol <.

1.1 Examples.

MACHINE: Consider the following Knowledge Box

K(1) =

knowledge element element descriptor

k1 output from specified range camera
k2 scene type forest; parameters=a,b,c...
k3 tree type deciduous; parameters α, β, ...
k4 slowly rolling landscape;parameters=k,l...

With another technology we get another Knowledge Box

K(2) =

knowledge element element descriptor

k1 output from specified FLIR camera
k2 intelligence: a vehicle is likely in the scene, parameters d,e,...

Combining both, K = K(1) ∨K(2), we get the knowledge status that will be assumed in
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PART II. Still another:

K(3) =

knowledge element element descriptor

k1 intelligence: a vehicle in the scene can possibly be a tank
k2 tank specification through a CAD representation

This knowlwdge status was assumed in Grenander (2002b).

ANIMAL: With human perception consider the very limited Knowledge Box

K(4) =

knowledge element element descriptor

k1 visual input
k2 auditory input
k3 intelligence: an animal is likely to be in the scene; parameters g,h,...

This concerned external perception, but we can equally well have internal activities:

K(5) =

knowledge element element descriptor

k1 hunanM1 present in mind
k2 humanF1 present in mind
k3 humanM2 present in mind
k4 humanM1 courting humanF1
k5 intelligence: humanM2 in love with humanF1

Such knowledge structures were used in Grenander (2002a).

2 World Model= Generators+Connectors+Priors .

The organization of algorithms for understanding will be based on a theory of the world in
which the animal/machine lives. Indeed, without any theory predicated it seems impossible
to organize and analyze the received perceptions in a meaningful way. We shall express the
theories in pattern theoretic form, see GPT, PART I.
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2.1 Generators.

These are the primitives in terms of which the understanding will be organized. They belong
to the knowledge lattice of the situation.. They often appear on different levels of specificity
as shown in the following examples.

EXAMPLES (MACHINE):

trunk < trunk sides < curved trunk surface
foliage profile < detailed foliage < detailed foliage with holes
horizontal ground < linear slope ground < curved ground
sky
all with range information.

(ANIMAL):
auditory < talk < answer
visual < color < yellow
feeling < anger < jealousy
as used in Grenander (2002a).

2.2 Invariance via Similarity Groups.

Patterns are formed as equivalence classes of images w.r.t. a similarity group S; P = I/S.

MACHINE): The most obvious similarities are in the space/time domain, say

(a) SE(3)= the special Euclidean group in R3 for change in location and pose
(b) G(3)= the Galilean group in R3 × R also with motion
(c)A(3) = the affine group in R3 for change in location, pose and includes skewing
(d)D(3) = the group of diffeomorphisms in space for topological transformations

(ANIMAL): The patterns are representing mental entities expressing external inputs,
thinking, feelings, external outputs...

(a) Similarity groups are of the form S1×S2× ...Sm× ... where Sm means the permutation
group over the modality Mm. See Grenander (2002a) for details and examples. A good
illustration in Figure 2.5.1, same reference.
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2.3 Connectors.

They connect some generators together following the regularity rules. They can be proba-
bilistic in nature.

EXAMPLES (MACHINE):

trunk side 1 ↔ trunk side 2
vehicle ↔ ground
vehicle body ↔ wheel

(ANIMAL):
modality ↓ modality 2
as explained in Grenander (2002a) with lots of cases.

2.4 Probabilities.

Any realistic inference theory for perception, whether for animals or machines, must be
probabilistic to account for the high variability in the observed images (in the sense of GPT).
But the interpretation of the used probabilities can be different for animals and machines.
For animals we have the added uncertainty due to limitations in predictability of their mental
processes.

(MACHINE): To fix ideas let us discuss natural scenes of forest type. For generators
such as trunks, it makes sense to understand probability distributions of diameters in the
standard frequentist sense, and to estimate them by examining many forest scenes to measure
the diameters at different heights. Or to describe their location on the ground level by some
point process in the way studied in depth in the wonderful work of Matern (19??). The
probability that a tree in a given forest is pine or oak can also be obtained from measurements
specifying the knowledge status, e.g. by a statistical map. (ANIMAL): For animals the

situation is different. It is less clear how to find the probabilities for a certain animal in a
certain situation to react neurally - how would the animal acquire the needed probabilities
? It seems unnatural to assume that they be obtained by some explicit measuring process;
nature does not operate like an efficient engineer optimizing behavior by precise learning
algorithms. At least we believe that this is not so.

Instead we shall think of such a probability as just another parameter that controls neural
behavior and one that is not necessarily defined in the frequency sense. We shall operate
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heuristically with the probabilities. For example, given two functionals f1(I
D) and f2(I

D)
of the observed image we shall treat them as if they were independent stochastic variables,
at least f1 is very different from f2 in nature. This is vague and intentionally so. It reflects
our view that such randomness should be thought of operationally: they are adequate if
they lead to behavior that is more or less consistent with what is being observed. No doubt
this view will appear controversial, to say the least, but we would like to appeal Einstein -
in science one should try to express onself precisely but not more precisely than one’s own
thinking.

3 Statistical Heuristics.

The heuristics will be based on a subset of the knowledge that is available. The selection
of the subset is assumed to be done during evolution of the species and development of the
individual in animals. For machines this is done of course by the designer and will be more
arbitrary.

3.1 Indicators.

The subset will consist of indicators, that is functionals ω1, ω2, . . . ωN , that are assumed to
compress much of the available knowledge that is useful for the intended inference. The
functionals need not be scalar valued. The whole set is denoted

Ω = ∪N
1 ωk (2)

(MACHINE): For example
(i) ω1= 1D histogram
(ii) ω2= empirical spectral density
(iii) ω3= boundary values B from the boundary of ID, the observed picture
(iv) ω1= regions of approximately constant B-values
(v) ω5= intelligence about scene

(ANIMAL): For example
(i) ω1= talk heard by the observer
(ii) ω2= gestures seen
(iii) ω3= movement observed
(iv) ω4= impression of facial look
(v) ω5= body language
(vi) ω6= intelligence about the emotional situation
......
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3.2 Inference based on indicators.

Inference shall be of the form

φ : Ω → P (3)

cence
Some possible types of inference:

(i) prediction of the next image to be expected, perhaps several possibilities with attached
probabilities

(ii) extrapolation of an interior part of the image that was not observed (fully); this is of
importance for reasons discussed in Grenander (2002b).

(iii) analysis, including the estimation of parameters in the regular structures that make
up the pattern class P so that it takes the values of the indicators into a pattern. The
mapping φ can be deterministic or random.
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4 An Example of Statistical Heuristics in Animal

Prediction can take the form image1 → imagek, probabolity = pk. For example

Figure 1

where an eternal triangle leads to three possible reolutions with specified probabilities.
More about this in a future report.

PART II

Special Statistical Heuristics for Range Vision
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5 Pattern Theoretic Approach to Forest Scenes.

We shall concentrate on interpolation inference. Having observed a range image ID
total we

use the FLIR knowledge in K(3) to select a sub-image ID of size l1 × l2 a a candidate for a
region that may contain an OOI (Object Of Interest). Put a frame of widt (L1, L2) around
the sub-image so that we have a somewhat bigger image ID

ext of size L1 × L2; see Figure 2
We shall use the information in the frame F = ID

ext − ID to interpolate the inner image ID,
treating it as unknown. The reason for this is that we do not know if it contains an OOI,
and if it does, where is it? To answer such a question we must know something about the
background and that is exactly the task of the interpolator.

Figure 2

In Grenander (2002b) we attempted various interpolation schemes, in particular those
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based on minimizing the conditional energy

Econd =
l1∑

i1=1

l2∑
i2=1

e[ID(i1, i2)] (4)

minimized over all ID(·, ·)) with boundary values BV obtained from the framed values and
the Laplacian

e[ID(i1, i2)] = f [ID(i1 + 1, i2)] + f [ID(i1 − 1, i2)] + f [ID(i1, i2 + 1)] + f [ID(i1, i2 − 1)] − 4f [ID(i1, i2)] (5)

We used the Bessel K densities b and

f(x) = log[b(x, c, p)] (6)

Here we have used

b(x, c, p) =
1√

πΓ(p)
(
c

2
)

3p
2
− 1

4 xp− 1
2 Kp− 1

2
(x

√
2

c
) .

For the Gaussian case p = +∞ we get the classical harmonic function interpolation. For
finite p-values it should be noticed that the minimum is not unique for p ≤ 1: the energy is
not convex for p < 1 and not strictly convex for p = 1. The results were disappointing. The
reason for this poor inference performance is of course that the assumed pattern probabilities
do not catch much of the real image structure. Indeed, it says only that all the differences

ID(i1 + 1, i2) − ID(i1, i2), I
D(i1, i2 + 1) − ID(i1, i2) (7)

are i.i.d with Bessel K marginals conditioned by boundary values. This expresses the
fact that the images are made up of objects - almost constant values over individual objects
with jumps between them. But it does not say anything about the form of the objects.
The knowledge status is too weak! Only 2D marginal distributions are described . Of
course we have also derived 3D approximations, but while the 2D Bessel K approximations
provided highly accurate quantitative agreement with dat. this was not the case for 3D; only
qualitative similarities with data were observed.

To get better results we must include more knowledge about real forest pictures. But how
much? Only as much as is necessary for reasonable inference performance, otherwise we can
expect too slow algorithms and possibly overfitting the data. Although algorithmic speed
is not our main concern at this stage, we shall aim at least for computational feasibility on
current PC’s.
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6 Heuristics for Forest Scenes

We shall use the generators from section 2.1: G = {foliage, ground, trunk, sky}. This
generator space is a bare minimum and may have to be increased but will have to suffice
for the present. To recognize these four type of generators we shall introduce indicators as
follows.

First, compute the boundary value function BV (s), s ∈ 1 ≤ l along the boundary of ∂ID

with the arc length l = 2l1 + 2l2 + 4. A typical example is shown in Figure 3 Note how
stretches of nearly constant range values or linearly increasing ones are separated by rapidly
changing values.

Figure 3
Determine

M = maxsBV (s); m = minsBV (s) (8)

and introduce the range levels

[rk, rk+1]; k = 1, 2, ...N ; rk = m + (k − 1)/N(M − m) (9)

for some moderate natural number N and with the average range levels mk = (rk + rk+1)/2.
This leads to intervals of the form {s : rk ≤ BV (s) < rk+1} . Now reject small intervals with
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lengths less than some thresold value and filling in holes of length smaller than some other
threshold. This gives us a set INTERVALS = {int1, int2, int3, ...nint} of these intervals, each
interval int ∈ INTERV ALS associated with some range levels and written as [p1(ν), p2(ν)].
We shall use modular addition nint + 1 ≡ 1.

We shall need the following concept. Define a function

Q(s) = 1, s ∈ BELOW ; Q(s) = 2, s ∈ RIGHT ; Q(s) = 3,∈ UP ; Q(s) = 4, s ∈ LEFT (10)

where BELOW, RIGHT, UP, LEFT mean the four sides of the domain X of ID. Now
introduce indicators. For each interval intν define the indicator

ω1
ν = LS(ν) = line segment p1(ν) → p2(ν) (11)

in the rectangle X. The second class of indicators is more involved.
Consider a line segment LS(ν) with associated average range rk and the corresponding

s-set S(ν) along the boundary ∂X. In the frame F find all pixels (i1, i2) ∈ F with range
values in the interval intν . Among those pixels we find the ones connected with points in S(ν)
according to the closest neighbor topology. In other words, find the topological component
C(ν) including the set S(ν). Now find unit vectors U1, U2 to p1(ν) and p2(ν) respectively
enveloping most of C as in Figure 4
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Figure 4
The precise definition of these vectors is given in the MATLAB software. We do not insist

on that particular choice, others may be better and we leave thhis question unanswered. Then
we get indicators of the second class

ω2
ν = (U1, U2) (12)

The rationale behind this choice of indicators is the following. To get a likely continuation
of the line segment, the chord that cuts the foliage object, we shall use the directions indi-
cated by the frame picture. In ither wird, we are estimating derivatives, gradients, which
is a notoriously sensitive task for complex pictures with much local variability. This is the
purpose of the vectors U1, U2.

With these indicator Ω = {ω1(ν), ω2(ν); ν = 1, 2, . . .} we are ready to organize the
inference. But first a detail caused by an artifact in the range data. The output of the laser
radar is 0 for very large distances. To compensate for this we put

ID(i1, i2) = 0 redefined as ID(i1, i2) = M (13)

but keep the unmodified ID as ID
save.

6.1 Trunk.

For a line segment LS(ν) with Q[p1(ν)] = Q[p2(ν)] = 3, that is the segment belongs to UP,
we calculate

rparallel = R(‖U1 − U2‖ ≤ ε1) (14)

with R(x) = exp(−x) and

rvertical = R(‖(U1 + U2)/2 − col(1, 0)} ≤ epsilon2) (15)

. The value r1 is the heuristic probability that the two unit vectors are almost parallel. The
value r1 is the heuristic probability that the average vector (U1 + U2)/2 is almost vertical.
We put

φ1(I
D) → ”trunk element at (p1(ν) + p2(ν))/2” (16)

. With probability r1r2 we introduce a partial interpolator image I∗
t with pixel values equal to

M everywhere except at pixels belonging to a vertical rectangle extending from the interval
intν downwards all the way to ∂X where they will be equal to the average range value rk

of int(ν). Implicitly this makes an indepence assumption following our heurisic principles.
With the complementary probability we do nothing.

The form of R has been selected somewhat but not wholly arbitrarily. The index k is
updated k → for each decision to recognize a generator.

14



6.2 Foliage.

To infer foliage generators requires a new concept, set continuation. For an arbitrary interval
int(ν) ∈ INTERV ALS let us introduce another partial interpolator image I∗

t , again with
all pixel values equal to M , except those in a set CONT [SL(ν)] where the pixel values shall
be equal to the average range value rk associated with int(ν). The set CONT [SL(ν)], the
set continuation of the line segment LS(ν) with directions U1, U2 will be derived as follows.

To contine a set representing some object (here foliage of a tree), we should specify the
knowledge status. It will depend upon what, if anything , is known about the tree species
a priori - is it an oak or a pine... ? Say that we only know that its profile is ”rounded”
with piecewise continuous curvature. Real tree images have holes as modelled in Husby and
Grenander (2001) but this will not be includede in the current knowledge status. We shall
think of the (discrete ) set as made up of line segments with slowly varying positions and
lengths, see Figure 5, forming a Markov process of order 2. The process continues as long a
the line segments have positive length. We access to the observables p1, p2, U1, U2.

Figure 5
Say the cut is along x1 = constant with endpoints [x1

2(t), x
2
2(t)] on level x1 = t. Let us

assume, using discrete space, that the cuts along the following cuts forms a Markov process
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satisfying the coupled Langevin SDE’s

x1
2(t) = 2x1

2(t − 1) + x1
2(t − 2) − k ∗ [x1

2(t − 1) − x2
2(t − 1)] + e1(t) (17)

x2
2(t) = 2x2

2(t − 1) + x2
2(t − 2) + k ∗ [x1

2(t − 1) − x2
2(t − 1)] + e1(t) (18)

with e1(t), e2(t) as white noise N(0, σ2) and k is a restoring force coefficient. The mechanical
analog of this means two mass points attracting each other with a force proportional to
their distance and subject to random impacts. Initial condition x1

2(0) = p1, x
2
2(0) = p2, p2 <

p1; x
1
2(1) = q1, x

2
2(1) = q2. The equation should terminate as soon as x1

2(t) < x2
2(t). In the

mechanical analog [q1 − p1, q2 − p2] is the initial velocity vector.

In Figure 6 we show some set continuations using the Markov cut model; primary cut in
red. Note how the direction tendencies at the initial cut propagate into the protuberance
but gradually die out. The speed of this depends upon k and regulates the (random) size of
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the protuberance, while σ2 controls the smoothness of the boundary.

Figure 6

We then introduce a partial interpolator image I∗
t covering the continued foliage set. This

concludes the discussion of the set continuation we shall use for foliage sets.

6.3 Ground.

Let us consider two intervals i1 = int(ν1), i2 = int(ν2) ∈ INTERV ALS with Q(i1) =
1 or 2, Q(i2) = 4 or 1 and associated with the same average range value V . This gives us
four points P1 = p1(ν1), P2 = p2(ν1), P3 = p1(ν2), P4 = p2(ν2). Find U1(ν1), U2(ν1) for the
interval i1 and U1(ν2), U2(ν2) for the interval i2. Also the probability

rsame height = R(|P2 − P3‖ ≤ epsilon3 and ‖P4 − P1‖ ≤ ε3) (19)

17



Where R is some probability measure. With probability rsame height we then introduce a
partial interpolator image I∗

t for the ground generator; I∗
t consisting of the quadilateral

P2 → P3 → P4 → P1 associated with the range V .

6.4 Sky.

For the intervals in INTERVALS find the ones associated with the range value 0, large
distance. Apply the above set continuation method to extend the lines segmens represented
by these intervals. In the union of these sets make the range equal to rangemax, the largest
distance that the laser radar outputs as a positive number.

Now we combine all the partial interpolator images to the interpolator

I∗ = mint∈T I∗
t (20)

where T is the set of t-values that have been introduced successively in the procedure de-
scribed in this section.

7 Software for Heuristics Applied to Range Images

The algorithm that we have described is fairly complicated with many steps and conditions.
Therefore we have coded it in a modular way with a main calling several auxiliary programs.
In spite of its length it runs at about the same time as the harmonic function interpolator
that we ruled out as useless.

7.1 Evolution of the Heuristics.

While writing the software the many modules of the software developed in time from a
primitive beginning that did not work well at all. To improve the performance, code seg-
ments were added or modified, leading to successively better behavior. Hence, we did not
proceed in the ideal engineering way, starting from an optimality criterion and deriving the
optimal algorithm from it. Our procedure was admittedly less elegant, more heuristic, but
perhaps also closer to how perception tools have evolved in nature over time, correcting poor
properties and aiming for, if not perfection, at least acceptalble performance.

The present stage of the algorithm should be considered as only one step in the evolution
evolution. It realizes the ideas in PART I but specializes some of the choices and of course
the parameters. The parameters are also thought of as evolving in time. The algorihtm has
been executed hundreds of times, successively improving the inferences.
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7.2 Perceptions.

Let us look at some of the results.
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Figure 7

Figure 7 shows a simple task where the scene is simply a hill landscape with no other
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features. The upper left panel shows the selected sub-image and the middle left one also
the frame; the first one indicates how the algorithm has identidfied and organized boundary
intervals into reasonable intervals. The boundary values are in the lower left panel. The
upper right panels is the inference, here an interpolation while the middle right one shows
the true image to be interpolated.

Obviously the algorithm does a fine job here, but the task was not really difficult enough.
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Figure 8

This scene has a big tree and another further away. The inference is fairly good.
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Figure 9

Also with two trees, but at about the same distance. Fine result but of course no
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algorithm could infer the bush between the trees from the frame data.
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Figure 10

Here big foliage to the right and to the left. The low boundary values below and to the
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right fool the algorithm to believe that the ground extends higher than it does. It makes a
halfhearted attempt to continue the left foliage.
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Figure 11

A similar effect: the right foliage has been continued much too far, the direction tenden-
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cies have been poorly estimated.
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Figure 12

The algorithm is thoroughly confused. It just cannot understand such a complicated
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picture.
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Figure 13

The algorithm suspects, rightly, the presence of a massive foliage in the upper left.
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Figure 14

Almost perfect perception inference. For comparison the lower right panel shows the

32



harmonic function interpolator. As we already know its knowledge about this sort of scenes
is almost nil.

7.3 How Did the Inference Algorithm Do?.

Not too badly. It could handle ground and trunk generators well but the foliage presented
greater problems. This is not surprising considering the greater variability of the foliage. No
doubt it could be handled better by improving the modules of the code for foliage recognition,
but it can be questioned if any algorithm could perform really well for foliage. Could one
derive lower bounds for the error probabilities?

It seems that the most vulnerable part of this module is the estimation of the direction
tendencies. Often the inclinations are over estimated; perhaps this should be countered by
systematicallyy avoiding large inclination estimates.

This also applies to the recognition of trunk generators: they are often too inclined left
or right. Same remedy could be attempted.

A common error occurs when a trunk at the left or right boundary is partially visible
together with ground, The algorithm then tends to think of this as a common ground element.
It is not clear how this could be handled better.

When foliage appears it tends to interfere with the recognition of ground, trunk and sky
generators. Possibly the program module could be modified to pay less attention to such
foliage occurrences.

Although some of the inferences are poor, it seems that, considering the enormous vari-
ability of the scenery, that they are far superior to the ones based on the boundary alone; the
exploitation of trunk-foliage-sky-ground structure has helped a lot! At least this approach
has shown its strength and deserves further study and improvement.

8 Postscript

The above study has been dominated by the dichotomy MACHINE VS. ANIMAL. Gradually,
however, this contradistinction seems to vanish: the ideas are very similar for both instances.
Indeed, we have used the same pattern theoretic paradigm to represent both automated
machine understanding and to human mental processes. This point to a more complete
coalescence of ideas in the future.

Once we have deepened this approach, both conceptually/analytically and computation-
ally, it should be applied more systematically to the study of human thought inspired by
what we have learnt about machine understanding. Hence, we announce a more finished
version of the program on the CD ”Windows on the World”:

(i) To extend the ideas in Grenander (2002a) along the lines indicated above and with a
generator space of more realistic size, perhaps 10000 - 100000 with corresponding increase
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in modality structure.
(ii) To code the mind structure in a more systematic and efficient ways, perhaps in C++.
(iii) Include the new memory representation in the code.
(iv) Apply and modify the codes according to different psychological doctrines.
(v) Study the interaction of two different mind structures in the same world.
(vi) Consider the possibility of implementing the codes by a neural network.
At present this will seem over ambitious to some, impossible to many, but we believe

that such a venture will succeed. It can be done - it will be done.
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