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Abstract. Here shape space is either the manifold of simple closed smooth

unparameterized curves in R
2 or is the orbifold of immersions from S1 to R

2

modulo the group of diffeomorphisms of S1. We investige several Riemannian

metrics on shape space: L2-metrics weighted by expressions in length and

curvature. These include a scale invariant metric and a Wasserstein type

metric which is sandwiched between two length-weighted metrics. Sobolev

metrics of order n on curves are described. Here the horizontal projection of

a tangent field is given by a pseudo-differential operator. Finally the metric

induced from the Sobolev metric on the group of diffeomorphisms on R
2is

treated. Although the quotient metrics are all given by pseudo-differential
operators, their inverses are given by convolution with smooth kernels. We
are able to prove local existence and uniqueness of solution to the geodesic
equation for both kinds of Sobolev metrics.

We are interested in all conserved quantities, so the paper starts with the
Hamiltonian setting and computes conserved momenta and geodesics in gen-
eral on the space of immersions. For each metric we compute the geodesic

equation on shape space. In the end we sketch in some examples the differ-
ences between these metrics.

1. Introduction — multiple Riemannian metrics on the space of curves
2. The Hamiltonian approach
3. Almost local Riemannian metrics on Imm(S1,R2) and on Bi.
4. Sobolev metrics on Imm(S1,R2) and on Bi
5. Sobolev metrics on Diff(R2) and its quotients
6. Examples

1. Introduction — multiple Riemannian metrics on the space of

curves

Both from a mathematical and a computer vision point of view, it is of great in-
terest to understand the space of simple closed curves in the plane. Mathematically,
this is arguably the simplest infinite-dimensional truly nonlinear space. From a vi-
sion perspective, one needs to make human judgements like ‘such-and-such shapes
are similar, but such-and-such are not’ into precise statements. The common the-
ory which links these two points of view is the study of the various ways in which
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the space of simple closed curves can be endowed with a Riemannian metric. From
a vision perspective, this converts the idea of similarity of two shapes into a quan-
titative metric. From a mathematical perspective, a Riemannian metric leads to
geodesics, curvature and diffusion and, hopefully, to an understanding of the global
geometry of the space. Much work has been done in this direction recently (see for
example [10, 12, 14, 15, 23]). The purpose of the present paper is two-fold. On
the one hand, we want to survey the spectrum of Riemannian metrics which have
been proposed (omitting, however, the Weil-Peterson metric). On the other hand,
we want to develop systematically the Hamiltonian approach to analyzing these
metrics.

Next, we define the spaces which we will study and introduce the notation we
will follow throughout this paper. To be precise, by a curve we mean a C∞ simple
closed curve in the plane. The space of these will be denoted Be. We will consider
two approaches to working with this space. In the first, we use parametrized curves
and represent Be as the quotient:

Be ∼= Emb(S1,R2)/Diff(S1)

of the smooth Fréchet manifold of C∞ embeddings of S1 in the plane modulo the
group of C∞ diffeomorphisms of S1. In this approach, it is natural to consider all
possible immersions as well as embeddings, and thus introduce the larger space Bi
as the quotient of the space of C∞ immersions by the group of diffeomorphisms of
S1:

Emb(S1,R2) −→ Emb(S1,R2)/Diff(S1) ∼= Be
∩ ∩ ∩

Imm(S1,R2) −→ Imm(S1,R2)/Diff(S1) ∼= Bi

In the second approach, we use the group of diffeomorphisms Diff(R2) of the
plane, where, more precisely, this is either the group of all diffeomorphisms equal
to the identity outside a compact set or the group of all diffeomorphisms which
decrease rapidly to the identity. Let ∆ be the unit circle in the plane. This group
has two subgroups, the normalizer and the centralizer of ∆ in Diff(R2):

Diff0(R2,∆) ⊂ Diff(R2,∆) ⊂ Diff(R2)
‖ ‖

{ϕ | ϕ|∆ ≡ id∆} {ϕ | ϕ(∆) = ∆}
Let i ∈ Emb(S1,R2) be the basepoint i(θ) = (sin(θ), cos(θ)) carrying S1 to the
unit circle ∆. The group Diff(R2) acts on the space Emb(S1,R2) of embeddings by
composition on the left. The action on the space of embeddings is transitive (e.g.,
choose an isotopy between two embedded circles, transform and extend its velocity
field into a time-dependent vector field with compact support on R2 and integrate
it to a diffeomorphism). Diff0(R2,∆) is the subgroup which fixes the base point i.
Thus we can represent Emb(S1,R2) as the coset space Diff(R2)/Diff0(R2,∆).

Furthermore Diff0(R2,∆) is a normal subgroup of Diff(R2,∆), and the quotient
of one by the other is nothing other than Diff(∆), the diffeomorphism group of
the unit circle. So Diff(∆) acts on the coset space Diff(R2)/Diff0(R2,∆) with
quotient the coset space Diff(R2)/Diff(R2,∆). Finally, under the identification of
Diff(R2)/Diff0(R2,∆) with Emb(S1,R2), this action is the same as the previously
defined one of Diff(S1) on Emb(S1,R2). This is because if c = ϕ◦ i ∈ Emb(S1,R2),
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and ψ ∈ Diff(R2,∆) satisfies ψ(i(θ)) = i(h(θ)), h ∈ Diff(S1), then the action of ψ
carries ϕ to ϕ ◦ ψ and hence c to ϕ ◦ ψ ◦ i = ϕ ◦ i ◦ h = c ◦ h.

All the spaces and maps we have introduced can be combined in one commuta-
tive diagram:

Diff(R2)
↓

Diff(R2)/Diff0(R2,∆)
≈−→ Emb(S1,R2) ⊂ Imm(S1,R2)

↓ ↓ ↓
Diff(R2)/Diff(R2,∆)

≈−→ Be ⊂ Bi

See [12] and [8] for the homotopy type of the spaces Imm(S1,R2) and Bi.

What is the infinitesimal version of this? We will use the notation X(R2) to
denote the Lie algebra of Diff(R2), i.e., either the space of vector fields on R2 with
compact support or the space of rapidly decreasing vector fields. As for any Lie
group, the tangent bundle T Diff(R2) is the product Diff(R2) × X(R2) by either
right or left multiplication. We choose right so that a tangent vector to Diff(R2)
at ϕ is given by a vector field X representing the infinitesimal curve ϕ 7→ ϕ(x, y) +
εX(ϕ(x, y)).

Fix ϕ ∈ Diff(R2) and let it map to c = ϕ ◦ i ∈ Emb(S1,R2) and to the curve
C = Im(c) ⊂ R2 on the three levels of the above diagram. A tangent vector to
Emb(S1,R2) at c is given by a vector field Y to R2 along the map c, and the vertical
map of tangent vectors simply takes the vector field X defined on all of R2 and
restricts it to the map c, i.e. it takes the values Y (θ) = X(c(θ)). Note that if c is
an embedding, a vector field along c is the same as a vector field on its image C.
A tangent vector to Be at the image curve C is given by a vector field Y along C
modulo vector fields tangent to C itself. The vertical map on tangent vectors just
takes the vector field X along c and treats it modulo vector fields tangent to c.
However, it is convenient to represent a tangent vector to Be or Bi at C not as an
equivalence class of vector fields along C but by their unique representative which
is everywhere normal to the curve C. This makes TCBi the space of all normal
vector fields to C ⊂ R2.

In both approaches, we will put a Riemannian metric on the top space, i.e.
Imm(S1,R2) or Diff(R2), which makes the map to the quotient Bi or to a coset
space of Diff(R2) into a Riemannian submersion. In general, given a diffeomorphism
f : A → B with a surjective tangent map and a metric Ga(h, k) on A, f is a
submersion if it has the following property: first split the tangent bundle to A
into the subbundle TA> tangent to the fibres of f and its perpendicular TA⊥

with respect to G (called the horizontal bundle). Then, under the isomorphisms

df : TA⊥
a

≈→ TBf(a), the restriction of the A-metric to the horizontal subbundle is

required to define a metric on TBb, independent of the choice of the point a ∈ f−1(b)
in the fiber. In this way we will define Riemannian metrics on all the spaces in our
diagram above. Submersions have a very nice effect on geodesics: the geodesics on
the quotient space B are exactly the images of the geodesics on the top space A
which are perpendicular at one, and hence at all, points to the fibres of the map f
(or, equivalently, their tangents are in the horizontal subbundle).
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On Diff(R2), we will consider only right invariant metrics. These are given by
putting a positive definite inner product G(X,Y ) on the vector space of vector fields
to R2, and translating this to the tangent space above each diffeomorphism ϕ as
above. That is, the length of the infinitesimal curve ϕ 7→ ϕ+ εX ◦ϕ is

√
G(X,X).

Then the map from Diff(R2) to any of its right coset spaces will be a Riemannian
submersion, hence we get metrics on all these coset spaces.

A Riemannian metric on Imm(S1,R2) is just a family of positive definite inner
products Gc(h, k) where c ∈ Imm(S1,R2) and h, k ∈ C∞(S1,R2) represent vector
fields on R2 along c. We require that our metrics will be invariant under the action
of Diff(S1), hence the map dividing by this action will be a Riemannian submersion.
Thus we will get Riemannian metrics on Bi: these are given by a family of inner
products as above such that Gc(h, k) ≡ 0 if h is tangent to c, i.e., 〈h(θ), cθ(θ)〉 ≡ 0
where cθ := ∂θc.

When dealing with parametrized curves or, more generally, immersions, we will
use the following terminology. Firstly, the immersion itself is usually denoted by:

c(θ) : S1 → R2

or, when there is a family of such immersions:

c(θ, t) : S1 × I → R2.

The parametrization being usually irrelevant, we work mostly with arclength ds,
arclength derivative Ds and the unit tangent vector v to the curve:

ds = |cθ|dθ
Ds = ∂θ/|cθ|
v = cθ/|cθ|

An important caution is that when you have a family of curves c(θ, t), then ∂θ and
∂t commute but Ds and ∂t don’t because |cθ| may have a t-derivative. Rotation
through 90 degrees will be denoted by:

J =

(
0 −1
1 0

)
.

The unit normal vector to the image curve is thus

n = Jv.

Thus a Riemannian metric on Be or Bi is given by inner productsGC(a, b) where a.n
and b.n are any two vector fields along C normal to C and a, b ∈ C∞(C,R). Another
important piece of notation that we will use concerns directional derivatives of
functions which depend on several variables. Given a function f(x, y) for instance,
we will write:

D(x,h)f or df(x)(h) as shorthand for ∂t|0f(x+ th, y).

Here the x in the subscript will indicate which variable is changing and the second
argument h indicates the direction. This applies even if one of the variables is a
curve C ∈ Bi and h is a normal vector field.

The simplest inner product on the tangent bundle to Imm(S1,R2) is:

G0
c(h, k) =

∫

S1

〈h(θ), k(θ)〉 · ds.
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Since the differential ds is invariant under the action of the group Diff(S1), the
map to the quotient Bi is a Riemannian submersion for this metric. A tangent
vector h to Imm(S1,R2) is perpendicular to the orbits of Diff(S1) if and only if
〈h(θ), v(θ)〉 ≡ 0, i.e. h is a multiple a.n of the unit normal. This is the same
subbundle as above, so that, for this metric, the horizontal subspace of the tangent
space is the natural splitting. Finally, the quotient metric is given by

G0
c(a · n, b · n) =

∫

S1

a.b.ds.

All the metrics we will look at will be of the form:

Gc(h, k) =

∫

S1

〈Lh, k〉 · ds

where L is a positive definite operator on the vector-valued functions h : S1 → R2.
The simplest such L is simply multiplication by some function Φc(θ). However, it
will turn out that most of the metrics involve L’s which are differential or pseudo-
differential operators. For these, the horizontal subspace is not the natural splitting,
so the quotient metric on Be and Bi involves restricting Gc to different sub-bundles
and this makes these operators somewhat complicated. In fact, it is not guaranteed
that the horizontal subspace is spanned by C∞ vectors (in the sense that the full
C∞ tangent space is the direct sum of the vertical subspace and the horizontal C∞

vectors). When dealing with metrics on Diff(R2) and vertical subspaces defined by
the subgroups above, this does happen. In this case, the horizontal subspace must
be taken using less smooth vectors.

In all our cases, L−1 will be a simpler operator than L: this is because the
tangent spaces to Be or Bi are quotients of the tangent spaces to the top spaces
Diff or Imm where the metrics are most simply defined, whereas the cotangent
spaces to Be or Bi are subspaces of the cotangent spaces of the space ‘above’. The
dual inner product on the cotangent space is given by the inverse operator L−1 and
in all our cases this will be an integral operator with a simple explicit kernel. A final
point: we will use a constant A when terms with different physical ‘dimensions’ are
being added in the operator L. Then A plays the role of fixing a scale relative to
which different geometric phenomena can be expected.

Let us now describe in some detail the contents of this paper and the metrics.
First, in section 2, we introduce the general Hamiltonian formalism. This is, un-
fortunately, more technical than the rest of the paper. First we consider general
Riemannian metrics on the space of immersions which admit Christoffel symbols.
We express this as the existence of two kinds of gradients. Since the energy function
is not even defined on the whole cotangent bundle of the tangent bundle we pull
back to the tangent bundle the canonical symplectic structure on the cotangent
bundle. Then we determine the Hamiltonian vector field mapping and, as a special
case, the geodesic equation. We detemine the equivariant moment mapping for sev-
eral group actions on the space of immersions: the action of the reparametrization
group Diff(S1), of the motion group of R2, and also of the scaling group (if the
metric is scale invariant). Finally the invariant momentum mapping on the group
Diff(R2) is described.
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Section 3 is then devoted to applying the Hamiltonian procedure to almost local
metrics: these are the metrics in which L is multiplication by some function Φ. Let
`c =

∫
S1 ds be the length of the curve c and let

κc(θ) = 〈n(θ), Ds(v)(θ)〉 = 〈Jcθ, cθθ〉/|cθ|3

be the curvature of c at c(θ). Then for any auxiliary function Φ(`, κ), we can define
a weighted Riemannian metric:

GΦ
c (h, k) =

∫

S1

Φ(`c, κc(θ)) · h(θ)k(θ) · ds.

The motivation for introducing weights is simply that, for any 2 curves in Bi, the
infimum of path lengths in the G0 metric for paths joining them is zero, see [12, 13].
For all these metrics, the horizontal subspace is again the set of tangent vectors
a(θ)n(θ), so the metric on Bi is simply

GΦ
c (a · n, b · n) =

∫

S1

Φ(`c, κc(θ))a(θ)b(θ) · ds.

We will determine the geodesic equation, the momenta and the sectional curvature
for all these metrics. The formula for sectional curvature is rather complicated but
for special Φ, it is quite usable.

We will look at several special cases. The weights

Φ(`, κ) = 1 +Aκ2

were introduced and studied in [12]. As we shall see, this metric is also closely
connected to the Wasserstein metric on probability measures (see [1]), if we assign
to a curve C the probability measure given by scaled arc length. We show that it is

sandwiched between the conformal metric G`
−1

and GΦW where ΦW = `−1+ 1
12`κ

2.
Weights of the form

Φ(`, κ) = f(`)

were studied in [10] and independently by [18]. The latter are attractive because
they give metrics which are conformally equivalent to G0. These metrics are a
borderline case between really stable metrics on Be and the metric G0 for which
path length shrinks to 0: for them, the infimum of path lengths is positive but at
least some paths seem to oscillate wildly when their length approaches this infimum.
Another very interesting case is:

Φ(`, κ) = `−3 +A|κ|2`−1

because this metric is scale-invariant.

A more standard approach to strengthening G0 is to introduce higher derivatives.
In section 4, we follow the Sobolev approach which puts a metric on Imm(S1,R2)
by:

Gimm,n
c (h, k) =

∫

S1

n∑

i=0

〈Di
sh,D

i
sk〉ds

=

∫

S1

〈Lh, k〉ds, where L =

n∑

i=0

(−1)iD2i
s
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However, the formulas we get are substantially simpler and L−1 has an elegant
expression is we take the equivalent metric:

Gimm,n
c (h, k) =

∫

S1

(〈h, k〉 +A.〈Dn
s h,D

n
s k〉) ds

=

∫

S1

〈Lh, k〉ds, where L = I + (−1)nAD2n
s

We apply the Hamiltonian procedure to this metric. Here the horizontal space
of all vectors in the tangent space T Imm(S1,R2) which are Gimm,n-orthogonal
to the reparametrization orbits, is very different from the natural splitting in §3.
The decomposition of a vector into horizontal and vertical parts involves pseudo
differential operators, and thus also the horizontal geodesic equation is an integro-
differential equation. However, its inverse L−1 is an integral operator whose kernel
has a simple expression in terms of arc length distance between 2 points on the
curve and their unit normal vectors.

For this metric, we work out the geodesic equation and prove that the geodesic
flow is well posed in the sense that we have local existence and uniqueness of
solutions in Imm(S1,R2) and in Bi. Finally we discuss a little bit a scale invariant
version of the metric Gimm,n. For the simplest of these metrics, the scaling invariant
momentum along a geodesic turns out to be the time derivative of log(`). At this
time, we do not know the sectional curvature for this metric.

In the next section 5, we start with the basic right invariant metrics on Diff(R2)
which are given by the Sobolev Hn-inner product on X(R2).

Hn(X,Y ) =
∑

i,j≥0,i+j≤n

Ai+jn!

i!j!(n− i− j)!

∫∫

R2

〈∂ix∂jyX, ∂ix∂jyY 〉 dx1dx2

=

∫∫

R2

〈LX, Y 〉dx.dy, where L = (1 −A∆)n,∆ = ∂2
x + ∂2

y .

These metrics have been extensively studied by Miller, Younes and Trouvé and their
collaborators [5, 14, 15, 20]. Since these metrics are right invariant, all maps to coset
spaces Diff(R2) → Diff(R2)/H are submersions. In particular, this metric gives a
quotient metric on Emb(S1,R2) and Be which we will denote by Gdiff,n

c (h, k). In
this case, the inverse L−1 of the operator defining the metric is an integral operator
with a kernel given by a classical Bessel function applied to the distance in R2

between 2 points on the curve. We will derive the geodesic equations: they are all
in the same family as fluid flow equations. We prove well posedness of the geodesic
equation on Emb(S1,R2) and on Be. Although there is a formula of Arnold [4] for
the sectional curvature of any right-invariant metric on a Lie group, we have not
computed sectional curvatures for the quotient spaces.

In the final section 6, we study two examples to make clear the differences be-
tween the various metrics. The first example is the geodesic formed by the set of
all concentric circles with fixed center. We will see how this geodesic is complete
when the metric is reasonably strong, but incomplete in most ‘borderline’ cases.
The second example takes a fixed ‘cigar-shaped’ curve C and compares the unit
balls in the tangent space TCBe given by the different metrics.
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2. The Hamiltonian approach

In our previous papers, we have derived the geodesic equation in our various
metrics by setting the first variation of the energy of a path equal to 0. Alternately,
the geodesic equation is the Hamiltonian flow associated to the first fundamental
form (i.e. the length-squared function given by the metric on the tangent bundle).
The Hamiltonian approach also provides a mechanism for converting symmetries of
the underlying Riemannian manifold into conserved quantities, the momenta. We
first need to be quite formal and lay out the basic definitions, esp. distinguishing
between the tangent and cotangent bundles rather carefully: The former consists of
smooth vector fields along immersions whereas the latter is comprised of 1-currents
along immersions. Because of this we work on the tangent bundle and we pull
back the symplectic form from the contantent bundle to T Imm(S1,R2). We use
the basics of symplectic geometry and momentum mappings on cotangent bundles
in infinite dimensions, and we explain each step. See [11], section 2, for a detailed
exposition in similar notation as used here.

2.1. The setting. Consider as above the smooth Fréchet manifold Imm(S1,R2)
of all immersions S1 → R2 which is an open subset of C∞(S1,R2). The tangent
bundle is T Imm(S1,R2) = Imm(S1,R2)×C∞(S1,R2), and the cotangent bundle is
T ∗ Imm(S1,R2) = Imm(S1,R2)×D(S1)2 where the second factor consists of pairs
of periodic distributions.

We consider smooth Riemannian metrics on Imm(S1,R2), i.e., smooth mappings

G : Imm(S1,R2) × C∞(S1,R2) × C∞(S1,R2) → R

(c, h, k) 7→ Gc(h, k), bilinear in h, k

Gc(h, h) > 0 for h 6= 0.

Each such metric is weak in the sense that Gc, viewed as bounded linear mapping

Gc : Tc Imm(S1,R2) = C∞(S1,R2) → T ∗
c Imm(S1,R2) = D(S1)2

G : T Imm(S1,R2) → T ∗ Imm(S1,R2)

G(c, h) = (c,Gc(h, . ))

is injective, but can never be surjective. We shall need also its tangent mapping

TG : T (T Imm(S1,R2)) → T (T ∗ Imm(S1,R2))

We write a tangent vector to T Imm(S1,R2) in the form (c, h; k, `) where (c, h) ∈
T Imm(S1,R2) is its foot point, k is its vector component in the Imm(S1,R2)-
direction and where ` is its component in the C∞(S1,R2)-direction. Then TG is
given by

TG(c, h; k, `) = (c,Gc(h, . ); k,D(c,k)Gc(h, . ) +Gc(`, . ))

Moreover, if X = (c, h; k, `) then we will write X1 = k for its first vector component
andX2 = ` for the second vector component. Note that only these smooth functions
on Imm(S1,R2) whose derivative lies in the image of G in the cotangent bundle
have G-gradients. This requirement has only to be satisfied for the first derivative,
for the higher ones it follows (see [9]). We shall denote by C∞

G (Imm(S1,R2)) the
space of such smooth functions.
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We shall always assume that G is invariant under the reparametrization group
Diff(S1), hence each such metric induces a Riemann-metric on the quotient space
Bi(S

1,R2) = Imm(S1,R2)/Diff(S1).

In the sequel we shall further assume that that the weak Riemannian metric G
itself admits G-gradients with respect to the variable c in the following sense:

Dc,mGc(h, k) = Gc(m,Hc(h, k)) = Gc(Kc(m,h), k) where

H,K : Imm(S1,R2) × C∞(S1,R2) × C∞(S1,R2) → C∞(S1,R2)

(c, h, k) 7→ Hc(h, k),Kc(h, k)

are smooth and bilinear in h, k.

Note that H and K could be expressed in (abstract) index notation as gij,kg
kl and

gij,kg
il. We will check and compute these gradients for several concrete metrics

below.

2.2. The fundamental symplectic form on T Imm(S1,R2) induced by a

weak Riemannian metric. The basis of Hamiltonian theory is the natural 1-
form on the cotangent bundle T ∗ Imm(S1,R2) given by:

Θ : T (T ∗ Imm(S1,R2)) = Imm(S1,R2) ×D(S1)2 × C∞(S1,R2) ×D(S1)2 → R

(c, α;h, β) 7→ 〈α, h〉.

The pullback via the mapping G : T Imm(S1,R2) → T ∗ Imm(S1,R2) of the 1-form
Θ is then:

(G∗Θ)(c,h)(c, h; k, `) = Gc(h, k).

Thus the symplectic form ω = −dG∗Θ on T Imm(S1,R2) can be computed as
follows, where we use the constant vector fields (c, h) 7→ (c, h; k, `):

ω(c,h)((k1, `1), (k2, `2)) = −d(G∗Θ)((k1, `1), (k2, `2))|(c,h)
= −D(c,k1)Gc(h, k2) −Gc(`1, k2) +D(c,k2)Gc(h, k1) +Gc(`2, k1)

= Gc
(
k2, Hc(h, k1) −Kc(k1, h)

)
+Gc(`2, k1) −Gc(`1, k2)(1)

2.3. The Hamiltonian vector field mapping. Here we compute the Hamilton-
ian vectorfield gradω(f) associated to a smooth function f on the tangent space
T Imm(S1,R2), that is f ∈ C∞

G (Imm(S1,R2) × C∞(S1,R2)) assuming that it has
smooth G-gradients in both factors. See [9], section 48. Using the explicit formulas
in 2.2, we have:

ω(c,h) (gradω(f)(c, h), (k, `)) = ω(c,h) ((gradω1 (f)(c, h), gradω2 (f)(c, h)), (k, `)) =

= Gc
(
k,Hc

(
h, gradω1 (f)(c, h)

))
−Gc(Kc(grad

ω
1 (f)(c, h), h), k)

+Gc(`, grad
ω
1 (f)(c, h)) −Gc(grad

ω
2 (f)(c, h), k)

On the other hand, by the definition of the ω-gradient we have

ω(c,h) (gradω(f)(c, h), (k, `)) = df(c, h)(k, `) = D(c,k)f(c, h) +D(h,`)f(c, h)

= Gc(grad
G
1 (f)(c, h), k) +Gc(grad

G
2 (f)(c, h), `)
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and we get the expression of the Hamiltonian vectorfield:

gradω1 (f)(c, h) = gradG2 (f)(c, h)

gradω2 (f)(c, h) =−gradG1 (f)(c, h)+Hc

(
h, gradG2 (f)(c, h)

)
−Kc(grad

G
2 (f)(c, h), h)

Note that for a smooth function f on T Imm(S1,R2) the ω-gradient exists if and
only if both G-gradients exist.

2.4. The geodesic equation. The geodesic flow is defined by a vector field on
T Imm(S1,R2). One way to define this vector field is as the Hamiltonian vector
field of the energy function

E(c, h) =
1

2
Gc(h, h), E : Imm(S1,R2) × C∞(S1,R2) → R.

The two partial G-gradients are:

Gc(grad
G
2 (E)(c, h), `) = d2E(c, h)(`) = Gc(h, `)

gradG2 (E)(c, h) = h

Gc(grad
G
1 (E)(c, h), k) = d1E(c, h)(k) = 1

2D(c,k)Gc(h, h)

= 1
2Gc(k,Hc(h, h))

gradG1 (E)(c, h) = 1
2Hc(h, h).

Thus the geodesic vector field is

gradω1 (E)(c, h) = h

gradω2 (E)(c, h) = 1
2Hc(h, h) −Kc(h, h)

and the geodesic equation becomes:
{
ct = h

ht = 1
2Hc(h, h) −Kc(h, h)

or ctt = 1
2Hc(ct, ct) −Kc(ct, ct)

This is nothing but the usual formula for the geodesic flow using the Christoffel
symbols expanded out using the first derivatives of the metric tensor.

2.5. The momentum mapping for a G-isometric group action. We consider
now a (possibly infinite dimensional regular) Lie group with Lie algebra g with a
right action g 7→ rg by isometries on Imm(S1,R2). If X(Imm(S1,R2)) denotes the
set of vector fields on Imm(S1,R2), we can specify this action by the fundamental
vector field mapping ζ : g → X(Imm(S1,R2)), which will be a bounded Lie algebra
homomorphism. The fundamental vector field ζX , X ∈ g is the infinitesimal action
in the sense:

ζX(c) = ∂t|0rexp(tX)(c).

We also consider the tangent prolongation of this action on T Imm(S1,R2) where
the fundamental vector field is given by

ζT Imm
X : (c, h) 7→ (c, h; ζX(c), D(c,h)(ζX)(c) =: ζ ′X(c, h))

The basic assumption is that the action is by isometries,

Gc(h, k) = ((rg)∗G)c(h, k) = Grg(c)(Tc(r
g)h, Tc(r

g)k).
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Differentiating this equation at g = e in the direction X ∈ g we get

(1) 0 = D(c,ζX(c))Gc(h, k) +Gc(ζ
′
X(c, h), k) +Gc(h, ζ

′
X(c, k))

The key to the Hamiltonian approach is to define the group action by Hamiltonian
flows. To do this, we define the momentum map j : g → C∞

G (T Imm(S1,R2),R)
by:

jX(c, h) = Gc(ζX(c), h).

Equivalently, since this map is linear, it is often written as a map

J : T Imm(S1,R2) → g′, 〈J (c, h), X〉 = jX(c, h).

The main property of the momentum map is that it fits into the following commuta-
tive diagram and is a homomorphism of Lie algebras:

H0(T Imm)
i

// C∞
G (T Imm,R)

gradω

// X(T Imm, ω) // H1(T Imm)

g

j

eeLLLLLLLLLLL
ζT Imm

99ttttttttttt

where X(T Imm, ω) is the space of vector fields on T Imm whose flow leaves ω fixed.
We need to check that:

ζX(c) = gradω1 (jX)(c, h) = gradG2 (jX)(c, h)

ζ ′X(c, h) = gradω2 (jX)(c, h) = − gradG1 (jX)(c, h) +Hc(h, ζX(c)) −Kc(ζX(c), h)

The first equation is obvious. To verify the second equation, we take its inner
product with some k and use:

G
(
k, gradG1 (jX)(c, h)

)
= D(c,k)jX(c, h) = D(c,k)Gc(ζX(c), h) +Gc(ζ

′
X(c, k), h)

= Gc(k,Hc(ζX(c), h)) +Gc(ζ
′
X(c, k), h).

Combining this with (1), the second equation follows. Let us check that it is also a
homomorphism of Lie algebras using the Poisson bracket:

{jX , jY }(c, h) = djY (c, h)(gradω1 (jX)(c, h), gradω2 (jX)(c, h))

= djY (c, h)(ζX(c), ζ ′X(c, h))

= D(c,ζX(c))Gc(ζY (c), h) +Gc(ζ
′
Y (c, ζX(x)), h) +Gc(ζY (c), ζ ′X(c, h))

= Gc(ζ
′
Y (c, ζX(c)) − ζ ′X(c, ζY (c)), h) by (1)

= Gc([ζX , ζY ](c), h) = Gc(ζ[X,Y ](c), h) = j[X,Y ](c).

Note also that J is equivariant for the group action, by the following arguments:
For g in the Lie group let rg be the right action on Imm(S1,R2), then T (rg) ◦ ζX ◦
(rg)−1 = ζAd(g−1)X . Since rg is an isometry the mapping T (rg) is a symplectomor-
phism for ω, thus gradω is equivariant. Thus jX ◦ T (rg) = jAd(g)X plus a possible
constant which we can rule out since jX(c, h) is linear in h.

By Emmy Noether’s theorem, along any geodesic t 7→ c(t, . ) this momentum
mapping is constant, thus for any X ∈ g we have

〈J (c, ct), X〉 = jX(c, ct) = Gc(ζX(c), ct) is constant in t.

We can apply this construction to the following group actions on Imm(S1,R2).
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• The smooth right action of the group Diff(S1) on Imm(S1,R2), given by
composition from the right: c 7→ c ◦ϕ for ϕ ∈ Diff(S1). For X ∈ X(S1) the
fundamental vector field is then given by

ζDiff
X (c) = ζX(c) = ∂t|0(c ◦ FlXt ) = cθ.X

where FlXt denotes the flow of X. The reparametrization momentum, for
any vector field X on S1 is thus:

jX(c, h) = Gc(cθ.X, h).

Assuming the metric is reparametrization invariant, it follows that on any
geodesic c(θ, t), the expression Gc(cθ.X, ct) is constant for all X.

• The left action of the Euclidean motion group M(2) = R2 o SO(2) on
Imm(S1,R2) given by c 7→ eaJc + B for (B, eaJ ) ∈ R2 × SO(2). The
fundamental vector field mapping is

ζ(B,a)(c) = aJc+B

The linear momentum is thus Gc(B, h), B ∈ R2 and if the metric is trans-
lation invariant, Gc(B, ct) will be constant along geodesics. The angular
momentum is similarly Gc(Jc, h) and if the metric is rotation invariant,
then Gc(Jc, ct) will be constant along geodesics.

• The action of the scaling group of R given by c 7→ erc, with fundamental
vector field ζa(c) = a.c. If the metric is scale invariant, then the scaling
momentum Gc(c, ct) will also be invariant along geodesics.

2.6. Metrics and momenta on the group of diffeomorphisms. Very similar
things happen when we consider metrics on the group Diff(R2). As above, the
tangent space to Diff(R2) at the identity is the vector space of vector fields X(R2)
on R2 and we can identify T Diff(R2) with the product Diff(R2) × X(R2) using
right multiplication in the group to identify the tangent at a point ϕ with that
at the identity. The definition of this product decomposition means that right
multiplication by ψ carries (ϕ,X) to (ϕ◦ψ,X). As usual, suppose that conjugation
ϕ 7→ ψ ◦ϕ ◦ψ−1 has the derivative at the identity given by the linear operator Adψ
on the Lie algebra X(R2). It is easy to calculate the explicit formula for Ad:

Adψ(X) = (Dψ ·X) ◦ ψ−1.

Then left multiplication by ψ on Diff(R2) × X(R2) is given by (ϕ,X) 7→ (ψ ◦
ϕ,Adψ(X)). We now want to carry over the ideas of 2.5 replacing the space
Imm(S1,R2) by Diff(R2) and the group action there by the right action of Diff(R2)
on itself. The Lie algebra g is therefore X(R2) and the fundamental vector field
ζX(c) is now the vector field with value

ζX(ϕ) = ∂t|0(ϕ 7→ ϕ ◦ exp(tX) ◦ ϕ−1) = Adϕ(X)

at the point ϕ. We now assume we have a positive definite inner productG(X,Y ) on
the Lie algebra X(R2) and that we use right translation to extend it to a Riemannian
metric on the full group Diff(R2). This metric being, by definition, invariant under
the right group action, we have the setting for momentum. The theory of the last
section tells us to define the momentum mapping by:

jX(ϕ, Y ) = G(ζX(ϕ), Y ).
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Noether’s theorem tells us that if ϕ(t) is a geodesic in Diff(R2) for this metric, then
this momentum will be constant along the lift of this geodesic to the tangent space.
The lift of ϕ(t), in the product decomposition of the tangent space is the curve:

t 7→ (ϕ(t), ∂t(ϕ) ◦ ϕ−1(t))

hence the theorem tells us that:

G(Adϕ(t)(X), ∂t(ϕ) ◦ ϕ−1(t)) = constant

for all X. If we further assume that Ad has an adjoint with respect to G:

G(Adϕ(X), Y ) ≡ G(X,Ad∗
ϕ(Y ))

then this invariance of momentum simplifies to:

Ad∗
ϕ(t)

(
∂t(ϕ) ◦ ϕ−1(t)

)
= constant

This is a very strong invariance and it encodes an integrated form of the geodesic
equations for the group.

3. Geodesic equations and conserved momenta for almost local

Riemannian metrics

3.1. The general almost local metric GΦ. We have introduced above the Φ-
metrics:

GΦ
c (h, k) :=

∫

S1

Φ(`c, κc(θ))〈h(θ), k(θ)〉ds.

Since `(c) is an integral operator the integrand is not a local operator, but the
nonlocality is very mild. We call it almost local. The metric GΦ is invariant under
the reparametization group Diff(S1) and under the Euclidean motion group. Note
(see [12], 2.2) that

D(c,h)`c =

∫

S1

〈hθ, cθ〉
|cθ|

dθ =

∫

S1

〈Ds(h), v〉ds

= −
∫

S1

〈h,Ds(v)〉ds = −
∫

S1

κ(c)〈h, n〉ds

D(c,h)κc =
〈Jhθ, cθθ〉

|cθ|3
+

〈Jcθ, hθθ〉
|cθ|3

− 3κ(c)
〈hθ, cθ〉
|cθ|2

= 〈D2
s(h), n〉 − 2κ〈Ds(h), v〉.

We compute the GΦ-gradients of c 7→ GΦ
c (h, k):

D(c,m)G
Φ
c (h, k) =

∫

S1

(
∂1Φ(`, κ).D(c,m)`c.〈h, k〉 + ∂2Φ(`, κ).D(c,m)κc.〈h, k〉

+ Φ(`, κ).〈h, k〉〈.Ds(m), v〉
)
ds

= −
∫

S1

κc〈m,n〉ds ·
∫

S1

∂1Φ(`, κ)〈h, k〉ds

+

∫

S1

(
∂2Φ(`, κ)(〈D2

s(m), n〉 − 2κ〈Ds(m), v〉) + Φ(`, κ)〈Ds(m), v〉
)
〈h, k〉ds

=

∫

S1

Φ(`, κ)

〈
m ,

1

Φ(`, κ)

(
− κc

(∫
∂1Φ(`, κ)〈h, k〉ds

)
n+D2

s

(
∂2Φ(`, κ)〈h, k〉n

)
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+ 2Ds

(
∂2Φ(`, κ)κ〈h, k〉v

)
−Ds

(
Φ(`, κ)〈h, k〉v

)) 〉
ds

According to 2.1 we should rewrite this as

D(c,m)G
Φ
c (h, k) = GΦ

c (KΦ
c (m,h), k) = GΦ

c

(
m,HΦ

c (h, k)
)
,

where the two GΦ-gradients KΦ and HΦ of c 7→ GΦ
c (h, k) are given by:

KΦ
c (m,h) = −

(∫

S1

κc〈m,n〉ds
)∂1Φ(`, κ)

Φ(`, κ)
h

+
∂2Φ(`, κ)

Φ(`, κ)

(
〈D2

s(m), n〉 − 2κ〈Ds(m), v〉
)
h+ 〈Ds(m), v〉h

HΦ
c (h, k) =

1

Φ(`, κ)

(
−
(
κc

∫
∂1Φ(`, κ)〈h, k〉ds

)
n+D2

s

(
∂2Φ(`, κ)〈h, k〉n

)
+

+ 2Ds

(
∂2Φ(`, κ)κ〈h, k〉v

)
−Ds

(
Φ(`, κ)〈h, k〉v

))

By substitution into the general formula of 2.4, this gives the geodesic equation
for GΦ, but in a form which doesn’t seem very revealing, hence we omit it. Below
we shall give the equation for the special case of horizontal geodesics, i.e. geodesics
in Bi.

3.2. Conserved momenta for GΦ. According to 2.5 the momentum mappings
for the reparametrization, translation and rotation group actions are conserved
along any geodesic t 7→ c(t, . ):

Φ(`c, κc)〈v, ct〉|cθ|2 ∈ X(S1) reparametrization momentum
∫

S1

Φ(`c, κc)ctds ∈ R2 linear momentum

∫

S1

Φ(`c, κc)〈Jc, ct〉ds ∈ R angular momentum

Note that setting the reparametrization momentum to 0 and doing symplectic
reduction there amounts exactly to investigating the quotient space Bi(S

1,R2) =
Imm(S1,R2)/Diff(S1) and using horizontal geodesics for doing so; a horizontal
geodesic is one for which 〈v, ct〉 = 0; or equivalently it is GΦ-normal to the Diff(S1)-
orbits. If it is normal at one time it is normal forever (since the reparametrization
momentum is conserved). This was the approach taken in [12].

3.3. Horizontality for GΦ. The tangent vectors to the Diff(S1) orbit through c
are Tc(c ◦ Diff(S1)) = {X.cθ : X ∈ C∞(S1,R)}. Thus the bundle of horizontal
vectors is

Nc = {h ∈ C∞(S1,R2) : 〈h, v〉 = 0}
= {a.n ∈ C∞(S1,R2) : a ∈ C∞(S1,R)}

A tangent vector h ∈ Tc Imm(S1,R2) = C∞(S1,R2) has an orthonormal decompo-
sition

h = h> + h⊥ ∈ Tc(c ◦ Diff+(S1)) ⊕Nc where
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h> = 〈h, v〉v ∈ Tc(c ◦ Diff+(S1)),

h⊥ = 〈h, n〉n ∈ Nc,

into smooth tangential and normal components, independent of the choice of Φ(`, κ).
For the following result the proof given in [12], 2.5 works without any change:

Lemma. For any smooth path c in Imm(S1,R2) there exists a smooth path ϕ in
Diff(S1) with ϕ(0, . ) = IdS1 depending smoothly on c such that the path e given
by e(t, θ) = c(t, ϕ(t, θ)) is horizontal: et⊥eθ. ¤

Consider a path t 7→ c(·, t) in the manifold Imm(S1,R2). It projects to a path
π ◦ c in Bi(S

1,R2) whose energy is called the horizontal energy of c:

Ehor
GΦ (c) = EGΦ(π ◦ c) = 1

2

∫ b

a

GΦ
π(c)(Tcπ.ct, Tcπ.ct) dt

= 1
2

∫ b

a

GΦ
c (c⊥t , c

⊥
t ) dt = 1

2

∫ b

a

∫

S1

Φ(`c, κc)〈c⊥t , c⊥t 〉ds dt

Ehor
GΦ (c) = 1

2

∫ b

a

∫

S1

Φ(`c, κc)〈ct, n〉2 dθdt

For a horizontal path this is just the usual energy. As in [12], 3.12 we can express
Ehor(c) as an integral over the graph S of c, the immersed surface S ⊂ R3 param-
eterized by (t, θ) 7→ (t, c(t, θ)), in terms of the surface area dµS = |Φt × Φθ| dθ dt
and the unit normal nS = (n0

S , n
1
S , n

2
S) of S:

Ehor
GΦ (c) = 1

2

∫

[a,b]×S1

Φ(`c, κc)
|n0
S |2√

1 − |n0
S |2

dµS

Here the final expression is only in terms of the surface S and its fibration over the
time axis, and is valid for any path c. This anisotropic area functional has to be
minimized in order to prove that geodesics exists between arbitrary curves (of the
same degree) in Bi(S

1,R2).

3.4. The horizontal geodesic equation. Let c(θ, t) be a horizontal geodesic for
the metric GΦ. Then ct(θ, t) = a(θ, t).n(θ, t). Denote the integral of a function
over the curve with respect to arclength by a bar. Then the geodesic equation for
horizontal geodesics is:

at =
−1

2Φ

( (
−κΦ + κ2∂2Φ

)
a2 −D2

s

(
∂2Φ · a2

)
+ 2∂2Φ · aD2

s(a)

− 2∂1Φ · (κa) · a+ (∂1Φ · a2) · κ
)

This comes immediately from the formulas for H and K in the metric GΦ when
you substitute m = h = k = a.n and consider only the n-part. We obtain in this
case:

Φ · 〈K,n〉 = −(κa).∂1Φ.a+ ∂2Φ.D
2
s(a).a+ ∂2Φ.κ

2a2 − Φκa2

Φ · 〈H,n〉 = −(∂1Φa2).κ+D2
s(∂2Φ.a

2) + ∂2Φ.κ
2a2 − Φκa2.

and the geodesic formula follows by substitution.
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3.5. Curvature on Bi,f (S
1,R2) for GΦ. We compute the curvature of Bi(S

1,R2)
in the general almost local metric GΦ. We proceed as in [12], 2.4.3. We use the
following chart near C ∈ Bi(S

1,R2). Let c ∈ Immf (S
1,R2) be parametrized by

arclength with π(c) = C of length L, with unit normal nc. We assume that the
parameter θ runs in the scaled circle S1

L below.

ψ : C∞(S1
L, (−ε, ε)) → Immf (S

1
L,R

2), Q(c) := ψ(C∞(S1
L, (−ε, ε)))

ψ(f)(θ) = c(θ) + f(θ)nc(θ) = c(θ) + f(θ)ic′(θ),

π ◦ ψ : C∞(S1
L, (−ε, ε)) → Bi,f (S

1,R2),

where ε is so small that ψ(f) is an embedding for each f . We have (see [12], 2.4.3)

ψ(f)′ = c′ + f ′ic′ + fic′′ = (1 − fκc)c
′ + f ′ic′

ψ(f)′′ = c′′ + f ′′ic′ + 2f ′ic′′ + fic′′′ = −(2f ′κc + fκ′c)c
′ + (κc + f ′′ − fκ2

c)ic
′

nψ(f) =
1√

(1 − fκc)2 + f ′2

(
(1 − fκc)ic

′ − f ′c′
)
,

Tfψ.h = h.ic′ ∈ C∞(S1,R2) = Tψ(f) Immf (S
1
L,R

2)

=
h(1 − fκc)√

(1 − fκc)2 + f ′2
nψ(f) +

hf ′

(1 − fκc)2 + f ′2
ψ(f)′,

(Tfψ.h)
⊥ =

h(1 − fκc)√
(1 − fκc)2 + f ′2

nψ(f) ∈ Nψ(f),

κψ(f) =
1

((1 − fκc)2 + f ′2)3/2
〈iψ(f)′, ψ(f)′′〉

= κc + (f ′′ + fκ2
c) + (f2κ3

c + 1
2f

′2κc + ff ′κ′c + 2ff ′′κc) +O(f3)

`(ψ(f)) =

∫

S1
L

|ψ(f)| dθ =

∫

S1
L

(1 − 2fκc + f2κ2
c + f ′

2
)1/2 dθ

=

∫

S1
L

(
1 − fκc +

f ′2

2
+O(f3)

)
dθ = L− fκc + 1

2f
′2 +O(f3)

where we use the shorthand g =
∫
S1

L
g(θ) dθ =

∫
S1

L
g(θ) ds. Let GΦ denote also

the induced metric on Bi,f (S
1
L,R

2). Since π is a Riemannian submersion, for f ∈
C∞(S1

L, (−ε, ε)) and h, k ∈ C∞(S1
L,R) we have

((π ◦ ψ)∗GΦ)f (h, k) = GΦ
π(ψ(f))

(
Tf (π ◦ ψ)h, Tf (π ◦ ψ)k

)

= GΦ
ψ(f)

(
(Tfψ.h)

⊥, (Tfψ.k)
⊥
)

=

∫

S1
L

Φ(`(ψ(f)), κψ(f))
hk(1 − fκc)

2

√
(1 − fκc)2 + f ′2

dθ

We have to compute second derivatives in f of this. For that we expand the main
contributing expressions in f to order 2:

(1 − fκ)2(1 − 2fκ+ f2κ2 + f ′
2
)−1/2 = 1 − fκ− 1

2f
′2 +O(f3)

Φ(`, κ) = Φ(L, κc) + ∂1Φ(L, κc)(`− L) + ∂2Φ(L, κc)(κ− κc)
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+ ∂1∂2Φ(L, κc)(`− L)(κ− κc)

+
∂2
1Φ(L, κc)

2
(`− L)2 +

∂2
2Φ(L, κc)

2
(κ− κc)

2 +O(3)

We simplify notation as κ = κc, Φ = Φ(L, κc), ((π◦ψ)∗GΦ)f = GΦ
f etc. and expand

the metric:

GΦ
f (h, k) =

∫

S1
L

hk

(
Φ − ∂1Φ.fκ+ ∂2Φ.(f

′′ + fκ2) − Φ.fκ

+ 1
2∂1Φ.f ′

2 + ∂2Φ.(f
2κ3 + 1

2f
′2κ+ ff ′κ′ + 2ff ′′κ)

− ∂1∂2Φ.fκ(f
′′ + fκ2) +

∂2
1Φ

2
(fκ)2 +

∂2
2Φ

2
(f ′′ + fκ2)2

+ ∂1Φ.fκ.fκ− ∂2Φ.fκ.(f
′′ + fκ2) − Φ. 12f

′2
)
dθ +O(f3)

Note that Gϕ0 (h, k) =
∫
S1

L
hkΦ dθ. We differentiate the metric and compute the

Christoffel symbol at the center f = 0

−2GA0 (Γ0(h, k), l) = −dGA(0)(l)(h, k) + dGA(0)(h)(k, l) + dGA(0)(k)(l, h)

=

∫

S1
L

(
− ∂1Φ.hκ.kl − ∂1Φ.h.kκ.l + ∂1Φ.hk

∫
lκ dθ1 − ∂2Φ

′′.hkl

− 2∂2Φ
′.h′kl − 2∂2Φ

′.hk′l − 2∂2Φ.h
′k′l + ∂2Φ.hklκ

2 − Φ.hklκ
)
dθ

Thus

Γ0(h, k) =
1

2Φ

(
∂1Φ.(hκ.k + h.kκ) − κ∂1Φ.hk

+ ∂2Φ
′′.hk + 2∂2Φ

′.h′k + 2∂2Φ
′hk′ + 2∂2Φ.h

′k′

− ∂2Φ.hkκ
2 + Φ.hkκ

)

Letting h = k = ft = a, this leads to the geodesic equation from 3.4. For the
sectional curvature we use the following formula which is valid in a chart:

2Rf (m,h,m, h) = 2GAf (Rf (m,h)m,h) =

= −2d2GA(f)(m,h)(h,m) + d2GA(f)(m,m)(h, h) + d2GA(f)(h, h)(m,m)

− 2GA(Γ(h,m),Γ(m,h)) + 2GA(Γ(m,m),Γ(h, h))

The sectional curvature at the two-dimensional subspace Pf (m,h) of the tangent
space which is spanned by m and h is then given by:

kf (Pf (m,h)) = −
GΦ
f (R(m,h)m,h)

‖m‖2‖h‖2 −GΦ
f (m,h)2

.

We compute this directly for f = 0, using the expansion up to order 2 of GAf (h, k)

and the Christoffels. We let W (θ1, θ2) = h(θ1)m(θ2)−h(θ2)m(θ1) so that its second
derivative ∂2W (θ1, θ1) = W2(θ1, θ1) = h(θ1)m

′(θ1) − h′(θ1)m(θ1) is the Wronskian
of h and m. Then we have our final result for the main expression in the horizontal
sectional curvature, where we use

∫
=
∫
S1

L
, g =

∫
S1

L
g ds, and Φ1 = ∂1Φ etc. Also



18 PETER W. MICHOR, DAVID MUMFORD

recall that the base curve is parametrized by arc-length.

RΦ
0 (m,h,m, h) = GΦ

0 (R0(m,h)m,h) =

=

∫ (
κ.Φ2 −

Φ

2
+

Φ2.Φ
′′
2 − 2(Φ′

2)
2 − (Φ2κ)

2

2Φ

)
(θ1)W2(θ1, θ1)

2 dθ1

+

∫
Φ22(θ1)

2
W22(θ1, θ1)

2 dθ1

+

∫ (Φ′
1Φ2

Φ
− Φ1Φ2Φ

′
1

Φ2

)
(θ1)W2(θ1, θ1)

∫
W (θ1, θ2)κ(θ2) dθ2 dθ1

+

∫ (Φ1Φ2

Φ
− Φ12

)
(θ1)W22(θ1, θ1)

∫
W (θ1, θ2)κ(θ2) dθ2 dθ1

+

∫∫
Φ1(θ1)

2

(
1 − Φ2.κ

Φ
(θ2)

)
W1(θ1, θ2)

2 dθ2 dθ1

+

∫∫ (Φ2.κ
3 − Φ′′

2 .κ

4Φ
− κ2

4
+
(Φ′

2.κ

2Φ

)′
+
( κ2

8Φ

)
.Φ1

)
(θ1)Φ1(θ2)W (θ1, θ2)

2 dθ2 dθ1

+

∫∫∫ (Φ11

2
− Φ2

1

4Φ

)
(θ1) − Φ1(θ1)

Φ1

2Φ
(θ2)

)

κ(θ2)κ(θ3)W (θ1, θ2)W (θ1, θ3) dθ2 dθ1 dθ3

3.6. Special case: the metric GA. If we choose Φ(`c, κc) = 1 + Aκ2
c then we

obtain the metric used in [12], given by

GAc (h, k) =

∫

S1

(1 +Aκc(θ)
2)〈h(θ), k(θ)〉ds.

As shown in our earlier paper,
√
` is Lipschitz in this metric and the metric domi-

nates the Frechet metric.

The horizontal geodesic equation for the GA-metric reduces to

at =
− 1

2κca
2 +A

(
a2(−D2

s(κc) + 1
2κ

3
c) − 4Ds(κc)aDs(a) − 2κcDs(a)

2
)

1 +Aκ2
c

as found in [12],4.2. Along a geodesic t 7→ c(t, . ) we have the following conserved
quantities:

(1 +Aκ2
c)〈v, ct〉|cθ|2 ∈ X(S1) reparametrization momentum

∫

S1

(1 +Aκ2
c)ctds ∈ R2 linear momentum

∫

S1

(1 +Aκ2
c)〈Jc, ct〉ds ∈ R angular momentum

For Φ(`, κ) = 1 + Aκ2 we have ∂1Φ = 0, ∂2Φ = 2Aκ, ∂2
2Φ = 2A, and the general

curvature formula in 3.5 for the horizontal curvature specializes to the formula in
[12], 4.6.4:

RΦ
0 (m,h,m, h) =

∫ (
− (1 −Aκ2)2 − 4A2κκ′′ + 8A2κ′2

2(1 +Aκ2)
W 2

2 +AW 2
22

)
dθ.
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3.7. Special case: the conformal metrics. We put Φ(`(c), κ(c)) = Φ(`(c)) and
obtain the metric proposed by Menucci and Yezzi and, for Φ linear, independently
by Shah [18]:

GΦ
c (h, k) = Φ(`c)

∫

S1

〈h, k〉ds = Φ(`c)G
0
c(h, k).

All these metrics are conformally equivalent to the basic L2-metric G0. As they
show, the infimum of path lengths in this metric is positive so long as Φ satifies an
inequality Φ(`) ≥ C.` for some C > 0. This follows, as in [12], 3.4, by the inequality
on area swept out by the curves in a horizontal path ct = a.n:

∫
|a|.ds ≤

(∫
a2.ds

)1/2

· `1/2 ≤
(

`

Φ(`)

)1/2

· (GΦ(a, a))1/2

Area swept out ≤ max
t

(
`c(t,·)

Φ(`c(t,·)

)1/2

·
(
GΦ-path length

)
≤ GΦ-path length√

C
.

The horizontal geodesic equation reduces to:

at =
κ

2
a2 − ∂1Φ

Φ
·
(

1
2

(∫
a2.ds

)
κ−

(∫
κ.a.ds

)
a

)

If we change variables and write b(s, t) = Φ(`(t)).a(s, t), then this equation simpli-
fies to:

bt =
κ

2Φ

(
b2 − ∂1Φ

Φ

∫
b2
)

Along a geodesic t 7→ c(t, . ) we have the following conserved quantities:

Φ(`c)〈v, ct〉|c′(θ)|2 ∈ X(S1) reparametrization momentum

Φ(`c)

∫

S1

ctds ∈ R2 linear momentum

Φ(`c)

∫

S1

〈Jc, ct〉ds ∈ R angular momentum

For the conformal metrics, sectional curvature has been computed by Shah [18]
using the method of local charts from [12]. We specialize formula 3.5 to the case
that Φ(`, κ) = Φ(`) is independent of κ. Then ∂2Φ = 0. We also assume that h,m

are orthonormal so that Φh2 = Φm2 = 1 and Φhm = 0. Then the the sectional
curvature at the two-dimensional subspace P0(m,h) of the tangent space which is
spanned by m and h is then given by:

k0(P0(m,h)) = − GΦ
0 (R0(m,h)m,h)

‖m‖2‖h‖2 −GΦ
0 (m,h)2

=

= 1
2Φ.W (h,m)2 +

∂1Φ

4Φ
.(m2κ2 + h2κ2) +

3(∂1Φ)2 − 2Φ∂2
1Φ

4Φ2
(hκ

2
+mκ2)

− ∂1Φ

2Φ
(m′2 + h′2) − (∂1Φ)2

4Φ3
κ2

which is the same as the equation (11) in [18]. Note that the first line is positive
while the last line is negative. The first term is the curvature term for the H0-
metric. The key point about this formula is how many positive terms it has. This
makes it very hard to get smooth geodesics in this metric. For example, in the case
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where Φ(`) = c.`, the analysis of Shah [18] proves that the infimum of GΦ path
length between two embedded curves C and D is exactly the area of the symmetric
difference of their interiors: Area(Int(C)∆ Int(D)), but that this length is realized
by a smooth path if and only if C and D can be connected by ‘grassfire’, i.e. a
family in which the length |ct(θ, t)| ≡ 1.

3.8. Special case: the smooth scale invariant metric GSI . Choosing the

function Φ(`, κ) = `−3 +Aκ2

` we obtain the metric:

GSIc (h, k) =

∫

S1

( 1

`3c
+A

κ2
c

`c

)
〈h, k〉ds.

The beauty of this metric is that (a) it is scale invariant and (b) log(`) is Lipschitz,
hence the infimum of path lengths is always positive. Scale invariance is clear:
changing c, h, k to λ · c, λ · h, λ · k changes ` to λ · ` and κ to κ/λ so the λ’s in GSI

cancel out. To see the second fact, take a horizontal path ct = a ·n, 0 ≤ t ≤ 1, and
abbreviate the lengths of the curves in this path, `c(t,·), to `(t). Then we have:

∂ log `(t)

∂t
=

1

`(t)

∫

S1

κc(t,·)(θ) · a(θ, t)ds, hence

∣∣∣∣
∂ log `(t)

∂t

∣∣∣∣ =

(∫
κ2a2ds

`(t)

)1/2

·
(∫

1 · ds
`(t)

)1/2

≤ 1√
A

(
GSI(a, a)

)1/2
, hence

| log(`(1)) − log(`(0))| ≤ SI-path length/
√
A.

Thus in a path whose length in this metric is K, the lengths of the individual curves

can increase or decrease at most by a factor eK/
√
A. Now use the same argument

as above to control the area swept out by such a path:
∫

|a|ds ≤
(∫

a2ds

)1/2

·
(∫

1 · ds
)1/2

≤
(
`3GSI(a, a)

)1/2 · `1/2 = `2 ·GSI(a, a)1/2, hence

Area-swept-out ≤ eK/
√
A`(0)2 ·K

which verifies the second fact. We can readily calculate the geodesic equation for
horizontal geodesics in this metric as another special case of the equation for GΦ:

at =
−1

1 +A(`κ)2

((
−1 +A(`κ)2

) κa2

2
−A`2D2

s(κ)a
2 − 2A`2κDs(a)

2

− 4A`2Ds(κ)aDs(a) +
(
3 +A(`κ)2

)
(aκ) · a− 3

2
(a2) · κ− A`2

2
(κa)2 · κ

)

where the “overline” stands now for the average of a function over the curve, i.e.∫
· · · ds/`. Since this metric is scale invariant, there are now four conserved quan-

tities, instead of three:

Φ(`, κ)〈v, ct〉|c′(θ)|2 ∈ X(S1) reparametrization momentum
∫

S1

Φ(`, κ)ctds ∈ R2 linear momentum
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∫

S1

Φ(`, κ)〈Jc, ct〉ds ∈ R angular momentum

∫

S1

Φ(`, κ)〈c, ct〉ds ∈ R scaling momentum

It would be very interesting to compute and compare geodesics in these special
metrics.

3.9. The Wasserstein metric and a related GΦ-metric. The Wasserstein met-
ric (also known as the Monge-Kantorovich metric) is a metric between probability
measures on a common metric space, see [1], and [2] for more details. It has been
studied for many years globally and is defined as follows: let µ and ν be 2 proba-
bility measures on a metric space (X, d). Consider all measures ρ on X ×X whose
marginals under the 2 projections are µ and ν. Then:

dwass(µ, ν) = inf
ρ:p1,∗(ρ)=µ,p2,∗(ρ)=ν

∫∫

X×X
d(x, y)dρ(x, y).

It was discovered only recently by Benamou and Brenier [6] that, if X = Rn, this is,
in fact, path length for a Riemannian metric on the space of probability measures
P. In their theory, the tangent space at µ to the space of probability measures and
the infinitesimal metric are defined by:

Tµ,P =

{
vector fields h = ∇f completed in the norm

∫
|h|2dµ

}

where the tangent h to a family t 7→ µ(t) is defined by the identity:

∂µ

∂t
+ div(h.µ) = 0.

In our case, we want to assign to an immersion c the scaled arc length measure
µc = ds/`. This maps Bi to P. The claim is that the pull-back of the Wasserstein

metric by this map is intermediate between G`
−1

and GΦW , where

ΦW (`, κ) = `−1 + 1
12`κ

2.

This is not hard to work out.

(1) Because we are mod-ing out by vector fields of norm 0, the vector field h
is defined only along the curve c and its norm is `−1.

∫
‖h‖2ds.

(2) If we split h = av + bn, then the condition that h = ∇f means that∫
a.ds = 0 and the norm is `−1.

∫
(a2 + b2)ds.

(3) But moving c infinitesimally by h, scaled arc length parametrization of c
must still be scaled arc length. Let c(·, t) = c + th. Then this means
|cθ|t = cnst. |cθ| at t = 0. Since |cθ|t = 〈ctθ, cθ〉/|cθ|, this condition is the
same as 〈Ds(av + bn), v〉 = cnst., or Dsa− bκc = cnst..

(4) Combining the last 2 conditions on b, we get a formula for a in terms of b,
namely a = K ∗ (bκc), where we convolve with respect to arc length using
the kernel K(x) = sign(x)/2 − x/`,−` ≤ x ≤ `.

(5) Finally, since |K ∗ f |(x) ≤ |K|.|f | =
√
`/12|f | for all f , it follows that

`−1.

∫
b2ds ≤ `−1.

∫
(a2 + b2)ds ≤ `−1.

∫
(b2 +

(`κ)2

12
.b2)ds
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which sandwiches the Wasserstein norm between G`
−1

and GΦW for ΦW =
`−1.(1 + (`κ)2/12).

4. Immersion-Sobolev metrics on Imm(S1,R2) and on Bi

4.1. The Gimm,n-metric. We note first that the differential operator Ds = ∂θ

|cθ| is

anti self-adjoint for the metric G0, i.e., for all h, k ∈ C∞(S1.R2) we have
∫

S1

〈
Ds(h), k

〉
ds =

∫

S1

〈
h,−Ds(k)

〉
ds

We can define a Sobolev-type weak Riemannian metric1 on Imm(S1,R2) which is
invariant under the action of Diff(S1) by:

Gimm,n
c (h, k) =

∫

S1

(〈h, k〉 +A.〈Dn
s h,D

n
s k〉) .ds(1)

=

∫

S1

〈Ln(h), k〉ds where

Ln(h) or Ln,c(h) = (I + (−1)nA.D2n
s )(h)(2)

The interesting special case n = 1 and A→ ∞ has been studied by Trouvé and
Younes in [20, 23] and by Mio, Srivastava and Joshi in [16, 17]. In this case, the
metric reduces to:

Gimm,1,∞
c (h, k) =

∫

S1

〈Ds(h), Ds(k)〉.ds

which ignores translations, i.e. it is a metric on Imm(S1,R2) modulo translations.
Now identify R2 with C, so that this space embeds as follows:

Imm(S1,R2)/transl. ↪→ C∞(S1,C)

c 7−→ cθ.

Then Trouvé and Younes use the new shape space coordinates Z(θ) =
√
cθ(θ) and

Mio et al use the coordinates Φ(θ) = log(cθ(θ)) – with complex square roots and logs.
Both of these unfortunately require the introduction of a discontinuity, but this will
drop out when you minimize path length with respect to reparametrizations. The
wonderful fact about Z(θ) is that in a family Z(t, θ), we find:

Zt =
ct,θ

2
√
cθ
, so

∫

S1

|Zt|2dθ = 1
4

∫ |ct,θ|2
|cθ|2

|cθ|dθ = 1
4

∫
|Ds(ct)|2ds

so the metric becomes a constant metric on the vector space of functions Z. With
Φ, one has

∫
|Φt|2ds =

∫
|Ds(ct)|2ds, which is simple but not quite so nice. One

can expect a very explicit representation of the space of curves in this metric.

Returning to the general case, for each fixed c of length `, the differential op-
erator Ln,c is simply the constant coefficient ordinary differential operator f 7→

1There are other choices for the higher order terms, e.g. summing all the intermediate deriva-

tives with or without binomial coefficients. These metrics are all equivalent and the one we use

leads to the simplest equiations.
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f+(−1)nA.f (2n) on the s-line modulo `.Z. Thus its Green’s function is a linear com-
bination of the exponentials exp(λ.x), where λ are the roots of 1+(−1)nA.λ2n = 0.
A simple verification gives its Green’s function (which we will not use below):

Fn(x) =
1

2n
·

∑

λ2n=(−1)n+1/A

λ

1 − eλ`
eλx, 0 ≤ x ≤ `.

This means that the dual metric Ǧimm,n
c = (Gimm,n

c )−1 on the smooth cotangent
space C∞(S1,R2) ∼= G0

c(Tc Imm(S1,R2)) ⊂ T ∗
c Imm(S1,R2) ∼= D(S1)2 is given by

the integral operator L−1 which is convolution by Fn with respect to arc length s:

Ǧimm,n
c (h, k) =

∫∫

S1×S1

Fn(s1 − s2).〈h(s1), k(s2)〉.ds1.ds2.

4.2. Geodesics in the Gimm,n-metric. Differentiating the operator Ds = 1
|cθ|∂θ

with respect to c in the direction m we get − 〈mθ,cθ〉
|cθ|3 ∂θ, or −〈Dsm, v〉Ds. Thus

differentiating the big operator Ln,c with respect to c in the direction m, we get:

D(c,m)Ln,c(h) = (−1)n+1A.

2n−1∑

j=0

Dj
s〈Ds(m), v〉D2n−j

s (h)(3)

Thus we have

D(c,m)G
imm,n
c (h, k) =

= A.

∫

S1

(−1)n+1
2n−1∑

j=0

〈
Dj
s〈Dsm, v〉D2n−j

s (h), k
〉
ds+

∫

S1

〈Ln(h), k〉〈Dsm, v〉ds

= A.

∫

S1

2n−1∑

j=1

(−1)n+j+1
〈
〈Dsm, v〉D2n−j

s (h), Dj
sk
〉
ds+

∫

S1

〈h, k〉〈Dsm, v〉ds

=

∫

S1

〈
m,A.

2n−1∑

j=1

(−1)n+jDs

(
〈D2n−j

s h,Dj
sk〉v

)
−Ds(〈h, k〉v)

〉
ds

According to 2.1 we should rewrite this as

D(c,m)G
imm,n
c (h, k) = Gimm,n

c (Kn
c (m,h), k) = Gimm,n

c

(
m,Hn

c (h, k)
)
,

and thus we find the two versionsKn andHn of theGn-gradient of c 7→ Gimm,n
c (h, k)

are given by:

Kn
c (m,h) = L−1

n

(
(−1)n+1A.

2n−1∑

j=1

Dj
s〈Dsm, v〉D2n−j

s (h) + 〈Dsm, v〉h
)

(4)

and by

Hn
c (h, k) = L−1

n

(
A.

2n−1∑

j=1

(−1)n+jDs

(
〈D2n−j

s h,Dj
sk〉v

)
−Ds(〈h, k〉v)

)

=L−1
n

(
A.

2n−1∑

j=1

(−1)n+j〈D2n−j+1
s h,Dj

sk〉v +A.
2i∑

j=2

(−1)n+j−1〈D2n−j+1
s h,Dj

sk〉v
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+A.

2n−1∑

j=1

(−1)n+j〈D2n−j
s h,Dj

sk〉κcn− 〈Dsh, k〉v − 〈h,Dsk〉v − 〈h, k〉κcn
)

=L−1
n

(
− 〈Ln(h), Dsk〉v − 〈Dsh, Ln(k)〉v − 〈h, k〉κ(c)n

+A.

2n−1∑

j=1

(−1)n+j〈D2n−j
s h,Dj

sk〉κ(c)n
)

(5)

since Ds

(
v
)

= κ(c)n. By 2.4 the geodesic equation for the metric Gn is

ctt = 1
2H

n
c (ct, ct) −Kn

c (ct, ct).

We expand it to get:

(6)

Ln(ctt) = −〈Ln(ct), Ds(ct)〉v −
|ct|2κ(c)

2
n− 〈Ds(ct), v〉ct

+
A

2
.

2n−1∑

j=1

(−1)n+j〈D2n−j
s ct, D

j
sct〉κ(c)n

+ (−1)nA.

2n−1∑

j=1

Dj
s

(
〈Ds(ct), v〉D2n−j

s (ct)
)

From (3) we see that

(Ln(ct))t − Ln(ctt) = dLn(c)(ct)(ct) = (−1)n+1A.
2n−1∑

j=0

Dj
s〈Ds(ct), v〉D2n−j

s (ct).

so that a more compact form of the geodesic equation of the metric Gn is:

(7)

(Ln(ct))t = −〈Ln(ct), Ds(ct)〉v −
|ct|2κ(c)

2
n− 〈Ds(ct), v〉Lnct

+
A

2
.

2n−1∑

j=1

(−1)n+j〈D2n−j
s ct, D

j
sct〉κ(c)n

For n = 0 this agrees with [12], 4.1.2.

4.3. Existence of geodesics.

Theorem. Let n ≥ 1. For each k ≥ 2n+1 the geodesic equation 4.2 (6) has unique
local solutions in the Sobolev space of Hk-immersions. The solutions depend C∞

on t and on the initial conditions c(0, . ) and ct(0, . ). The domain of existence
(in t) is uniform in k and thus this also holds in Imm(S1,R2).

Proof. We consider the geodesic equation as the flow equation of a smooth (C∞)
vector field on the H2-open set Uk×Hk(S1,R2) in the Sobolev space Hk(S1,R2)×
Hk(S1,R2) where Uk = {c ∈ Hk : |cθ| > 0} ⊂ Hk is H2-open. To see that this
works we will use the following facts: By the Sobolev inequality we have a bounded
linear embedding Hk(S1,R2) ⊂ Cm(S1,R2) if k > m + 1

2 . The Sobolev space

Hk(S1,R) is a Banach algebra under pointwise multiplication if k > 1
2 . For any

fixed smooth mapping f the mapping u 7→ f ◦ u is smooth Hk → Hk if k > 0.
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The mapping (c, u) 7→ Ln,cu is smooth U × Hk → Hk−2n and is a bibounded
linear isomorphism Hk → Hk−2n for fixed c. This can be seen as follows (see
4.5 below): It is true if c is parametrized by arclength (look at it in the space
of Fourier coefficients). The index is invariant under continuous deformations of
elliptic operators of fixed degree, so the index of Ln,c is zero in general. But Ln,c
is self-adjoint positive, so it is injective with vanishing index, thus surjective. By
the open mapping theorem it is then bibounded. Moreover (c, w) 7→ L−1

n,c(w) is

smooth Uk × Hk−2n → Hk (by the inverse function theorem on Banach spaces).
The mapping (c, f) 7→ Dsf = 1

|cθ|∂θf is smooth Hk × Hm ⊃ U × Hm → Hm−1

for k ≥ m, and is linear in f . Let us write Dcf = Dsf just for the remainder of
this proof to stress the dependence on c. We have v = Dcc and n = JDcc. The
mapping c 7→ κ(c) is smooth on the H2-open set {c : |cθ| > 0} ⊂ Hk into Hk−2.
Keeping all this in mind we now write the geodesic equation as follows:

ct = u =: X1(c, u)

ut = L−1
n,c

(
− 〈Ln,c(u), Dc(u)〉Dc(c) −

|ct|2κ(c)
2

JDc(c) − 〈Dc(u), Dcc〉u

+
A

2
.

2n−1∑

j=1

(−1)n+j〈D2n−j
c u,Dj

cu〉κ(c)JDc(c)

+ (−1)nA.

2n−1∑

j=1

Dj
c

(
〈Dc(u), Dc(c)〉D2n−j

c (u)
) )

=: X2(c, u)

Now a term by term investigation of this shows that the expression in the brackets
is smooth Uk ×Hk → Hk−2n since k − 2n ≥ 1 > 1

2 . The operator L−1
n,c then takes

it smoothly back to Hk. So the vector field X = (X1, X2) is smooth on Uk ×Hk.

Thus the flow Flk exists on Hk and is smooth in t and the initial conditions for
fixed k.

Now we consider smooth initial conditions c0 = c(0, . ) and u0 = ct(0, . ) =

u(0, . ) in C∞(S1,R2). Suppose the trajectory Flkt (c0, u0) of X through these intial

conditions inHk maximally exists for t ∈ (−ak, bk), and the trajectory Flk+1
t (c0, u0)

in Hk+1 maximally exists for t ∈ (−ak+1, bk+1) with bk+1 < bk. By uniqueness

we have Flk+1
t (c0, u0) = Flkt (c0, u0) for t ∈ (−ak+1,bk+1). We now apply ∂θ to the

equation ut = X2(c, u) = L−1
n,c( . . . ), note that the commutator [∂θ, L

−1
n,c] is a pseudo

differential operator of order −2n again, and write w = ∂θu. We obtain wt = ∂θut =
L−1
n,c∂θ( . . . ) + [∂θ, L

−1
n,c]( . . . ). In the term ∂θ( . . . ) we consider now only the terms

∂2n+1
θ u and rename them ∂2n

θ w. Then we get an equation wt(t, θ) = X̃2(t, w(t, θ))

which is inhomogeneous bounded linear in w ∈ Hk with coefficients bounded linear
operators on Hk which are C∞ functions of c, u ∈ Hk. These we already know on
the intervall (−ak, bk). This equation therefore has a solution w(t, . ) for all t for
which the coefficients exists, thus for all t ∈ (ak, bk). The limit limt↗bk+1

w(t, . )

exists in Hk and by continuity it equals Dc(u) in Hk at t = bk+1. Thus the Hk+1-
flow was not maximal and can be continued. So (−ak+1, bk+1) = (ak, bk). We can
iterate this and conclude that the flow of X exists in

⋂
m≥kH

m = C∞. ¤
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4.4. The conserved momenta of Gimm,n. According to 2.5 the following mo-
menta are preserved along any geodesic t 7→ c(t, . ):

〈cθ, Ln,c(ct)〉|cθ(θ)| ∈ X(S1) reparametrization momentum
∫

S1

Ln,c(ct) ds =

∫

S1

ct ds ∈ R2 linear momentum

∫

S1

〈Jc, Ln,c(ct)〉 ds ∈ R angular momentum

4.5. Horizontality for Gimm,n. h ∈ Tc Imm(S1,R2) is Gimm,n
c -orthogonal to the

Diff(S1)-orbit through c if and only if

0 = Gimm,n
c (h, ζX(c)) = Gimm,n

c (h, cθ.X) =

∫

S1

X.〈Ln,c(h), cθ〉 ds

for all X ∈ X(S1). So the Gimm,n-normal bundle is given by

Nn
c = {h ∈ C∞(S,R2) : 〈Ln,c(h), v〉 = 0}.

The Gimm,n-orthonormal projection Tc Imm → N n
c , denoted by h 7→ h⊥ = h⊥,G

n

and the complementary projection h 7→ h> ∈ Tc(c ◦ Diff(S1)) are determined as
follows:

h> = X(h).v where 〈Ln,c(h), v〉 = 〈Ln,c(X(h).v), v〉
Thus we are led to consider the linear differential operators associated to Ln.c

L>
c , L

⊥
c : C∞(S1) → C∞(S1),

L>
c (f) = 〈Ln,c(f.v), v〉 = 〈Ln,c(f.n), n〉,

L⊥
c (f) = 〈Ln,c(f.v), n〉 = −〈Ln,c(f.n), v〉.

The operator L>
c is of order 2n and also unbounded, self-adjoint and positive on

L2(S1, |cθ| dθ) since
∫

S1

L>
c (f)gds =

∫

S1

〈Ln,c(fv), v〉gds

=

∫

S1

〈fv, Ln,c(gv)〉ds =

∫

S1

fL>
c (g)ds,

∫

S1

L>
c (f)fds =

∫

S1

〈fv, Ln,c(fv)〉ds > 0 if f 6= 0.

In particular, L>
c is injective. L⊥

c , on the other hand is of order 2n−1 and a similar
argument shows it is skew-adjoint. For example, if n = 1, then one finds that:

L>
c = −A.D2

s + (1 +A.κ2).I

L⊥
c = −2A.κ.Ds −A.Ds(κ).I

Lemma. The operator L>
c : C∞(S1) → C∞(S1) is invertible.

Proof. This is because its index vanishes, by the following argument: The index
is invariant under continuous deformations of elliptic operators of degree 2n. The
operator

L>
c (f) = (−1)n

A

|cθ|2n
∂2n
θ (f) + lower order terms



RIEMANNIAN METRICS ON SPACES OF CURVES, HAMILTONIAN APPROACH 27

is homotopic to (1 + (−1)n∂2n
θ )(f) and thus has the same index which is zero since

the operator 1 + (−1)n∂2n
θ is invertible. This can be seen by expanding in Fourier

series where the latter operator is given by (f̂(m)) 7→ ((1 + m2n)f̂(m)), a linear
isomorphism of the space of rapidly decreasing sequences. Since B>

c is injective, it
is also surjective. ¤

To go back and forth between the ‘natural’ horizontal space of vector fields a.n
and the Gimm,n-horizontal vector fields {h | 〈Lh, v〉 = 0}, we only need to use these
operators and the inverse of L>. Thus, given a, we want to find b and f such that
L(an+ bv) = fn, so that an+ bv is Hn-horizontal. But this implies that

L⊥(a) = −〈L(an), v〉 = 〈L(bv), v〉 = L>(b).

Thus if we define the operator Cc : C∞(S1) → C∞(S1) by

Cc := (L>
c )−1 ◦ L⊥

c ,

we get a pseudo-differential operator of order -1 (which is an integral operator), so
that a.n+C(a).v is always H imm,n-horizontal. In particular, the restriction of the
metric Gimm,n to horizontal vector fields hi = ai.n+ bi.v can be computed like this:

Gimm,n
c (h1, h2) =

∫

S1

〈Lh1, h2〉.ds

=

∫

S1

〈L(a1.n+ b1.v), n〉.a2.ds

=

∫

S1

(
L>(a1) + L⊥(b1)

)
.a2.ds

=

∫

S1

(
L> + L⊥ ◦ C

)
a1.a2.ds.

Thus the metric restricted to horizontal vector fields is given by the pseudo differ-
ential operator Lred = L> + L⊥ ◦ (L>)−1 ◦ L⊥. On the quotient space Bi, if we
identify its tangent space at C with the space of normal vector fields a.n, then:

Gimm,nC (a1, a2) =

∫

C

(L> + L⊥ ◦ (L>)−1 ◦ L⊥)a1 · a2 · ds

Now, although this operator may be hard to analyze, its inverse, the metric on
the cotangent space to Bi, is simple. The tangent space to Bi at a curve C is
canonically the quotient of that of Imm(S1,R2) at a parametrization c of C, modulo
the subspace of multiples of v. Hence the cotangent space to Bi at C injects into
that of Imm(S1,R2) at c with image the linear functionals that vanish on v. In
terms of the dual basis v̌, ň, these are multiples of ň. On the smooth cotangent
space C∞(S1,R2) ∼= G0

c(Tc Imm(S1,R2)) ⊂ T ∗
c Imm(S1,R2) ∼= D(S1)2 the dual

metric is given by convolution with the elementary kernel Kn which is a simple
sum of exponentials. Thus we need only restrict this kernel to multiples a(s).ňc(s)
to obtain the dual metric on Bi. The result is that:

Ǧnc (a1, a2) =

∫∫

S1×S1

Kn(s1 − s2).〈nc(s1), nc(s2)〉.a1(s1).a2(s2).ds1ds2.
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4.6. Horizontal geodesics. The normal bundle Nc mentioned in 4.5 is well de-
fined and is a smooth vector subbundle of the tangent bundle. But Imm(S1,R2) →
Bi(S

1,R2) = Imm /Diff(S1) is not a principal bundle and thus there are no princi-
pal connections, but we can prove the main consequence, the existence of horizontal
paths, directly:

Proposition. For any smooth path c in Imm(S1,R2) there exists a smooth path ϕ
in Diff(S1) with ϕ(0, . ) = IdS1 depending smoothly on c such that the path e given
by e(t, θ) = c(t, ϕ(t, θ)) is horizontal: 〈Ln,e(et), eθ〉 = 0.

Proof. WritingDc instead ofDs we note thatDc◦ϕ(f◦ϕ) = (fθ◦ϕ)ϕθ

|cθ◦ϕ|.|ϕθ| = (Dc(f))◦ϕ
for ϕ ∈ Diff+(S1). So we have Ln,c◦ϕ(f ◦ ϕ) = (Ln,cf) ◦ ϕ.

Let us write e = c ◦ϕ for e(t, θ) = c(t, ϕ(t, θ)), etc. We look for ϕ as the integral
curve of a time dependent vector field ξ(t, θ) on S1, given by ϕt = ξ ◦ ϕ. We want
the following expression to vanish:

〈Ln,c◦ϕ(∂t(c ◦ ϕ)), ∂θ(c ◦ ϕ)〉 = 〈Ln,c◦ϕ(ct ◦ ϕ+ (cθ ◦ ϕ)ϕt), (cθ ◦ ϕ)ϕθ〉
= 〈Ln,c(ct) ◦ ϕ+ Ln,c(cθ.ξ) ◦ ϕ, cθ ◦ ϕ〉ϕθ
=
(
(〈Ln,c(ct), cθ〉 + 〈Ln,c(ξ.cθ), cθ〉) ◦ ϕ

)
ϕθ.

Using the time dependent vector field ξ = − 1
|cθ| (L

>
c )−1(〈Ln,c(ct), v〉) and its flow

ϕ achieves this. ¤

If we write

ct = na+ vb =
(
n, v

)(a
b

)

then we can expand the condition for horizontality as follows:

Ds(ct) =
(
Dsa+ κ(c)b

)
n+

(
Dsb− κ(c)a

)
v.

= (n, v)

(
Ds κ
−κ Ds

)(
a

b

)

Lcn(ct) = ct + (−1)nA(n, v)

(
Ds κ
−κ Ds

)2n(
a

b

)

= ct + (−1)nA(n, v)

(
D2
s − κ2 Dsκ+ κDs

−Dsκ− κDs D2
s − κ2

)n(
a

b

)

so that horizontality becomes

0 = 〈Ln,c(ct), v〉 = 〈ct, v〉 + (−1)n(0, 1)

(
D2
s − κ2 Dsκ+ κDs

−Dsκ− κDs D2
s − κ2

)n(
a

b

)

We may specialize the general geodesic equation to horizontal paths and then
take the v and n parts of the geodesic equation. For a horizontal path we may
write Ln,c(ct) = ãn for ã(t, θ) = 〈Ln,c(ct), n〉. The v part of the equation turns out
to vanish identically and then n part gives us (because nt is a multiple of v):

ãt = −|ct|2κ(c)
2

− 〈Dsct, v〉ã+
κ(c)

2

2n−1∑

j=1

(−1)n+j〈D2n−j
s ct, D

j
sct〉
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Note that applying 4.3 with horizontal initial vectors gives us local existence and
uniqueness for solutions of this horizontal geodesic equation.

4.7. A Lipschitz bound for arclength in Gimm,n. We apply the inequality of
Cauchy-Schwarz to the derivative of the length function `(c) =

∫
|cθ|dθ along a

path t 7→ c(t, . ):

∂t`(c) = d`(c)(ct) =

∫

S1

〈ctθ, cθ〉
|cθ|

dθ =

∫

S1

〈Ds(ct), v〉 ds

≤
(∫

S1

|Ds(ct)|2ds
) 1

2 ·
(∫

S1

12ds
) 1

2 ≤
√
`(c)

1

A
‖ct‖G1 ,

≤
√
`(c)C(A,n)‖ct‖Gn ,

∂t
√
`(c) =

∂t`(c)

2
√
`(c)

≤ C(A,n)

2
‖ct‖Gn .

Thus we get

|
√
`(c(1, . )) −

√
`(c(0, . ))| ≤

∫ 1

0

|∂t
√
`(c)| dt ≤ C(A,n)

2

∫ 1

0

‖ct‖Gn dt

=
C(A,n)

2
LGn(c).

Taking the infinimum of this over all paths t 7→ c(t, . ) from c0 to c1 we see that
for n ≥ 1 we have the Lipschitz estimate:

|
√
`(c1) −

√
`(c0)| ≤

1

2
distImm

Gn (c1, c0)

Since we have Lhor
Gn (c) ≤ LGn(c) with equality for horizontal curves we also have:

If n ≥ 1, |
√
`(C1) −

√
`(C0)| ≤

1

2
distBi

Gn(C1, C0)

4.8. Scale invariant immersion Sobolev metrics. Let us mention in passing
that we may use the length of the curve to modify the immersion Sobolev metric
so that it becomes scale invariant:

Gimm,scal,n
c (h, k) =

∫

S1

(
`(c)−3〈h, k〉 + `(c)2n−3A〈Dn

s (h), Dn
s (k)〉

)
ds

=

∫

S1

〈
(`(c)−3 + (−1)n`(c)2n−3AD2n

s )h, k
〉
ds

This metric can easily be analyzed using the methods described above. In particular
we note that the geodesic equation on Imm(S1,R2) for this metric is built in a
similar way than that for Gimm,n and that the existence theorem in 4.3 holds for
it. Note the conserved momenta along a geodesic t 7→ c(t, . ) are:

1

`(c)3

∫

S1

ct ds+ (−1)n`(c)2n−3A

∫

S1

D2n
s (ct) ds

=
1

`(c)3

∫

S1

ct ds ∈ R2 linear momentum

1

`(c)3

∫

S1

〈Jc, ct〉 ds+ (−1)n`(c)2n−3A

∫

S1

〈Jc,D2n
s (ct)〉 ds angular momentum
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1

`(c)3

∫

S1

〈c, ct〉 ds+ (−1)n`(c)2n−3A

∫

S1

〈c,D2n
s (ct)〉 ds scaling momentum

As in the work of Trouvé and Younes [20, 23], we may consider the following variant.

Gimm,scal,n,∞
c (h, k) = lim

A→∞

1

A

∫

S1

〈
(`(c)−3 + (−1)n`(c)2n−3AD2n

s )h, k
〉
ds

= (−1)n`(c)2n−3

∫

S1

〈
D2n
s h, k

〉
ds

It is degenerate with kernel the constant tangent vectors. The interesting fact is
that the scaling momentum for Gimm,scal,1,∞ is given by

− 1

`(c)

∫

S1

〈c,D2
s(ct)〉ds = ∂t log `(c).

5. Sobolev metrics on Diff(R2) and on its quotients

5.1. The metric on Diff(R2). We consider the regular Lie group Diff(R2) which
is either the group Diffc(R

2) of all diffeomorphisms with compact supports of R2 or
the group DiffS(R2) of all diffeomorphisms which decrease rapidly to the identity.
The Lie algebra is X(R2), by which we denote either the Lie algebra Xc(R

2) of vector
fields with compact support or the Lie algebra XS(R2) of rapidly decreasing vector
fields, with the negative of the usual Lie bracket. For any n ≥ 0, we equip Diff(R2)
with the right invariant weak Riemannian metric GDiff,ngiven by the Sobolev Hn-
inner product on Xc(R

2).

Hn(X,Y ) =
∑

0≤i,j≤n
i+j≤n

Ai+jn!

i!j!(n− i− j)!

∫

R2

〈∂ix1∂
j
x2X, ∂

i
x1∂

j
x2Y 〉 dx

=
∑

0≤i,j≤n
i+j≤n

(−A)i+j
n!

i!j!(n− i− j)!

∫

R2

〈∂2i
x1∂

2j
x2X,Y 〉 dx

=

∫

R2

〈LX, Y 〉 dx where

L = LA,n = (1 −A∆)n, ∆ = ∂2
x1 + ∂2

x2 .

(We will write out the full subscript of L only where it helps clarify the meaning.)
The completion of Xc(R

2) is the Sobolev space Hn(R2)2. With the usual L2-
inner product we can identify the dual of Hn(R2)2 with H−n(R2)2 (in the space
of tempered distributions). Note that the operator L : Hn(R2)2 → H−n(R2)2 is a
bounded linear operator. On L2(R2) the operator L is unbounded selfadjoint and

positive. In terms of Fourier transform we have L̂A,nu(ξ) = (1 + A|ξ|2)nû. Let
FA,n in the space of tempered distributions S ′(R2) be the fundamental solution (or
Green’s function: note that we use the letter ‘F’ for ‘fundamental’ because ‘G’ has
been used as the metric) of LA,n satisfying LA,n(FA,n) = δ0 which is given by

FA,n(x) =
1

2π

∫

R2

ei〈x,ξ〉
1

(1 +A|ξ|2)n dξ.
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The functions FA,n are given by the classical modified Bessel functions Kr (in the
notation, e.g., of Abramowitz and Stegun [7] or of Matlab) by the formula:

FA,n(x) =
1

2nπ(n− 1)!A
.

( |x|√
A

)n−1

Kn−1

( |x|√
A

)
.

and it satisfies (L−1u)(x) =
∫

R2 F (x− y)u(y) dy for each tempered distribution u.

The function FA,n is Cn−1 except that FA,1 has a log-pole at zero. At infinity,

FA,n(x) is asymptotically a constant times xn−3/2e−x: these facts plus much much
more can be found in [7].

5.2. Strong conservation of momentum and ‘EPDiff’. What is the form of
the conservation of momentum for a geodesic ϕ(t) in this metric, that is to say, a
flow x 7→ ϕ(x, t) on R2? We need to work out Ad∗

ϕ first. Using the definition, we
see:∫

R2

〈LX,Ad∗
ϕ(Y )〉 :=

∫

R2

〈LAdϕ(X), Y 〉 =

∫

R2

〈(dϕ.X) ◦ ϕ−1, LY 〉

=

∫

R2

det(dϕ)〈dϕ.X,LY ◦ ϕ〉 =

∫

R2

〈X,det(dϕ).dϕT .(LY ◦ ϕ)〉

hence:

Ad∗
ϕ(Y ) = L−1

(
det(dϕ).dϕT .(LY ◦ ϕ)

)
.

Now the conservation of momentum for geodesics ϕ(t) of right invariant metrics on
groups says that:

L−1

(
det(dϕ)(t).dϕ(t)t.

(
L(
∂ϕ

∂t
◦ ϕ−1) ◦ ϕ

))

is independent of t. This can be put in a much more transparent form. First, L
doesn’t depend on t, so we cross out the outer L−1. Now let v(t) = ∂ϕ

∂t ◦ϕ−1 ∈ X(R2)
be the tangent vector to the geodesic. Let u(t) = Lv(t), so that:

det(dϕ)(t).dϕ(t)t.(u(t) ◦ ϕ(t))

is independent of t. We should not think of u(t) as a vector field on R2: this is
because we want 〈u, v〉 to make invariant sense in any coordinates whatsoever. This
means we should think of u as expanding to the differential form:

ω(t) = (u1.dx
1 + u2.dx

2) ⊗ µ

where µ = dx1 ∧ dx2, the area form. But then:

ϕ(t)∗(ω(t)) = 〈dϕt.(u ◦ ϕ(t)), dx〉 ⊗ det(dϕ)(t).µ

so conservation of momentum says simply:

ϕ(t)∗ω(t) is independent of t

This motivates calling ω(t) the momentum of the geodesic flow. As we mentioned
above, conservation of momentum for a Riemannian metric on a group is very
strong and is an integrated form of the geodesic equation. To see this, we need only
take the differential form of this conservation law. v(t) is the infinitesimal flow, so
the infinitesimal form of the conservation is:

∂

∂t
ω(t) + Lv(t)(ω(t)) = 0
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where Lv(t) is the Lie derivative. We can expand this term by term:

Lv(t)(ui) =
∑

j

vj .
∂ui
∂xj

Lv(t)(dxi) = dvi =
∑

j

∂vi

∂xj
.dxj

Lv(t)(µ) = div v(t)µ

Lv(t)(ω(t)) =


∑

i,j

(
vj .

∂ui
∂xj

.dxi + uj .
∂vj

∂xi
.dxi

)
+ div v.

∑

i

uidx
i


⊗ µ.

The resulting differential equation for geodesics has been named EPDiff:

v =
∂ϕ

∂t
◦ ϕ−1, u = L(v)

∂ui
∂t

+
∑

j

(
vj .

∂ui
∂xj

+ uj .
∂vj

∂xi

)
+ div v.ui = 0.

Note that this is a special case of the general equation of Arnold: ∂tu = − ad(u)∗u
for geodesics on any Lie group in any right (or left) invariant metric. The name
‘EPDiff’ was coined by Holm and Marsden and stands for ‘Euler-Poincaré’, although
it takes a leap of faith to see it in the reference they give to Poincaré.

5.3. The quotient metric on Emb(S1,R2). We now consider the quotient map-
ping Diff(R2) → Emb(S1,R2) given by ϕ 7→ ϕ ◦ i as in the section 1. Since this
identifies Emb(S1,R2) with a right coset space of Diff(R2), and since the metric
Gndiff is right invariant, we can put a quotient metric on Emb(S1,R2) for which this
map is a Riemannian submersion. Our next step is to identify this metric. Let
ϕ ∈ Diff(R2) and let c = ϕ ◦ i ∈ Emb(S1,R2). The fibre of this map through ϕ is
the coset

ϕ.Diff0(S1,R2) = {ψ | ψ ◦ c ≡ c}.ϕ.
whose tangent space is (the right translate by ϕ of) the vector space of vector fields
X ∈ X(R2) with X ◦ c ≡ 0. This is the vertical subspace. Thus the horizontal
subspace is {

Y

∣∣∣∣
∫

R2

〈LY,X〉dx = 0, if X ◦ c ≡ 0

}
.

If we want Y ∈ X(R2) then the horizontal subspace is 0. But we can also search for
Y in a bigger space of vector fields on R2. What we need is that LY = c∗(p(θ).ds),
where p is a function from S1 to R2 and ds is arc-length measure supported on C.
To make c∗(p(θ).ds) pair with smooth vector fields X(R2) in a coordinate invariant
way, we should interpret the values of p as 1-forms. Solving for Y , we have:

Y (x) =

∫

S1

F (x− c(θ)).p(θ)ds

(where, to make Y a vector field, the values of p are now interpreted as vectors, using
the standard metric on R2 to convert 1-forms to vectors). Because F is not C∞,
we have a case here where the horizontal subspace is not given by C∞ vector fields.
However, we can still identify the set of vector fields in this horizontal subspace
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which map bijectively to the C∞ tangent space to Emb(S1,R2) at c. Mapped to
Tc Emb(S1,R2), the above Y goes to:

(Y ◦ c)(θ) =

∫

S1

F (c(θ) − c(θ1)).p(θ1).|c′(θ1)|dθ1
=: (Fc ∗ p)(θ) where(1)

Fc(θ1, θ2) = F (c(θ1) − c(θ2)) =
1

2π

∫

R2

ei〈c(θ1)−c(θ2),ξ〉
1

(1 +A|ξ|2)n dξ.

Note that here, convolution on S1 uses the metric L2(S1, |c′(θ|dθ) and it defines a
self-adjoint operator for this Hilbert space. Moreover, it is covariant with respect
to change in parametrization:

Fc◦ϕ ∗ (f ◦ ϕ) = (Fc ∗ f) ◦ ϕ.

What are the properties of the kernel Fc? From the properties of F , we see that
Fc is Cn−1 kernel (except for log poles at the diagonal when n = 1). It is also a
pseudo-differential operator of order −2n+ 1 on S1. To see that let us assume for
the moment that each function of θ is a periodic function on R. Then

c(θ1) − c(θ2) =

∫ 1

0

cθ(θ2 + t(θ1 − θ2))dt.(θ1 − θ2) =: c̃(θ1, θ2)(θ1 − θ2)

Fc(θ1, θ2) =
1

2π

∫

R2

ei(θ1−θ2)〈c̃(θ1,θ2),ξ〉
1

(1 +A|ξ|2)n dξ

=
1

2π

∫

R

ei(θ1−θ2)η1
(∫

R

|c̃(θ1, θ2)|−2

(1 + A
|c̃(θ1,θ2)|2 (|η1|2 + |η2|2))n

dη2

)
dη1

=:
1

2π

∫

R

ei(θ1−θ2)η1 F̃c(θ1, θ2, η1) dη1

where we changed variables as η1 = 〈c̃(θ1, θ2), ξ〉 and η2 = 〈Jc̃(θ1, θ2), ξ〉. So we see
that Fc(θ1, θ2) is an elliptic pseudo differential operator kernel of degree −2n + 1

(the loss comes from integrating with respect to η2). The symbol F̃c is real and
positive, so the operator p 7→ Fc ∗ p is self-adjoint and positive. Thus it is injective,
and by an index argument similar to the one in 4.5 it is invertible. The inverse
operator to the integral operator Fc is a pseudo-differential operator Lc of order
2n− 1 given by the distribution kernel Lc(θ, θ1) which satisfies

Lc ∗ Fc ∗ f = Fc ∗ Lc ∗ f = f

Lc◦ϕ ∗ (h ◦ ϕ) = ((Lc ∗ h) ◦ ϕ) for all ϕ ∈ Diff+(S1)(2)

If we write h = Y ◦ c, then we want to express the horizontal lift Y in terms of
h and write Yh for it. The set of all these Yh spans the horizontal subspace which
maps isomorphically to Tc Emb(S1,R2). Now:

h = Y ◦ c = (F ∗ (c∗(p.ds))) ◦ c = Fc ∗ p.
Therefore, using the inverse operator, we get p = Lc ∗ h and:

Yh = F ∗ (c∗(p.ds)) = F ∗ (c∗((Lc ∗ h).ds)) or

Yh(x) =

∫

S1

F (x− c(θ))

∫

S1

Lc(θ, θ1)h(θ1)|c′(θ1)|dθ1|c′(θ)|dθ



34 PETER W. MICHOR, DAVID MUMFORD

and LYh = c∗((Lc ∗ h).ds). Thus we can finally write down the quotient metric

Gdiff,n
c (h, k) =

∫

R2

〈LYh, Yk〉dx

=

∫

S1

〈
Lc ∗ h(θ),

∫

S1

F (c(θ) − c(θ1))

∫

S1

Lc(θ1, θ2)k(θ2)ds2 ds1

〉
ds(3)

=

∫

S1

〈Lc ∗ h(θ), k(θ)〉ds =

∫∫

S1×S1

Lc(θ, θ1)〈h(θ1), k(θ)〉ds1 ds.

The dual metric on the associated smooth cotangent space Lc ∗ C∞(S1,R2) is
similarly:

Ǧdiff,n
c (p, q) =

∫∫

S1×S1

Fc(θ, θ1)〈p(θ1), q(θ)〉ds1 ds.

5.4. The geodesic equation on Emb(S1,R2) via conservation of momen-

tum. A quite convincing but not rigorous derivation of this equation can be given
using the fact that under a submersion, geodesics on the quotient space are the pro-
jections of those geodesics on the total space which are horizontal at one and hence
every point. In our case, the geodesics on Diff(R2) can be characterized by the
strong conservation of momentum we found above: ϕ(t)∗ω(t) is independent of t.
If X(t) is the tangent vector to the geodesic, i.e. the velocity X(t) = ∂tϕ ◦ ϕ−1(t),
then ω(t) is just LX(t) = c∗(p(θ, t).ds) = c∗(p(θ, t).|cθ(θ, t)|.dθ) considered as a
measure valued 1-form instead of a vector field.

When we pass to the quotient Emb(S1,R2), a horizontal geodesic of diffeomor-
phisms ϕ(t) with ϕ(0) = identity gives a geodesic path of embeddings c(θ, t) =
ϕ(t) ◦ c(0, θ). For these geodesic equations, it will be most convenient to take as
the momentum the 1-form p̃(θ, t) = p(θ, t).|cθ(θ, t)|, the measure factor dθ being
constant along the flow. We must take the velocity to be the horizontal vector field
X(t) = F ∗ c(·, t)∗(p̃(θ, t).dθ). For this to be the velocity of the path of maps c,
we must have ct(θ, t) = X(c(θ), t) because the global vector field X must extend
ct. To pair p̃ and ct, we regard p̃ as a 1-form along c (the area factor having been
replaced by the measure dθ supported on C). The geodesic equation must be the
differential form of the conservation equation:

ϕ(t)∗p̃(·, t) is independent of t.

More explicitly, if dx stands for differentiating with respect to the spatial coordi-
nates x, y, then this means:

dxϕ(t)T |c(θ,t)p̃(θ, t) = cnst.

We differentiate this with respect to t, using the identity:

∂tdxϕ(t) = dx(ϕt(t)) = dx(X ◦ ϕ(t)) = (dx(X) ◦ ϕ(t)) · dxϕ(t),

we get

0 = dxϕ(t)T ·
(
(dx(X)T ◦ c(θ, t)) · p̃(θ, t) + p̃t(θ, t)

)
.
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Writing this out and putting the discussion together, we get the following form for
the geodesic equation on Emb(S1,R2):

ct(θ, t) = X(t) ◦ c(θ, t)
p̃t(θ, t) = − gradXt(c(θ, t), t) · p̃(θ, t)
X(t) = F ∗ c(·, t)∗ (p̃(θ, t).dθ)

Note that X is a vector field on the plane: these are not closed equations if we
restrict X to the curves. The gradient of X requires that we know the normal
derivative of X to the curves. Alternatively, we may introduce a second vector-
valued kernel on S1 depending on c by:

F ′
c(θ1, θ2) = gradF (c(θ1) − c(θ2)).

Then the geodesic equations may be written:

ct(θ, t) = (Fc ∗ p̃)(θ, t)
p̃t(θ, t) = −〈p̃(θ, t), (F ′

c ∗ p̃)(θ, t)〉.

where, in the second formula, the dot product is between the two p̃’s and the vector
value is given by F ′

c.

The problem with this approach is that we need to enlarge the space Diff(R2) to
include diffeomorphisms which are not C∞ along some C∞ curve but have a mild
singularity normal to the curve. Then we would have to develop differential geom-
etry and the theory of geodesics on this space, etc. It seems more straightforward
to outline the direct derivation of the above geodesic equation, along the lines used
above.

5.5. The geodesic equation on Emb(S1,R2), direct approach. The space of
invertible pseudo differential operators on a compact manifold is a regular Lie group
(see [3]), so we can use the usual formula d(A−1) = −A−1.dA.A−1 for computing
the derivative of Lc with respect to c. Note that we have a simple expression for
Dc,hFc, namely

Dc,hFc(θ1, θ2) = dF (c(θ1) − c(θ2))(h(θ1) − h(θ2)) = 〈F ′
c(θ1, θ2), h(θ1) − h(θ2)〉

hence

Dc,`Lc(θ1, θ2) = −
∫

(S1)2
Lc(θ1, θ3)Dc,hFc(θ3, θ4)Lc(θ4, θ2) dθ3 dθ4

= −
∫

(S1)2
Lc(θ1, θ3) 〈(F ′

c(θ3, θ4), `(θ3)〉Lc(θ4, θ2) dθ3 dθ4

+

∫

(S1)2
Lc(θ1, θ4) 〈(F ′

c(θ4, θ3), `(θ3)〉Lc(θ3, θ2) dθ3 dθ4

We can now differentiate the metric where θ = (θ1, θ2, . . . , θn) is the variable on
(S1)n:

Dc,`G
diff,n(h, k) =

∫

(S1)2
Dc,`Lc(θ1, θ2)〈h(θ2), k(θ1)〉dθ

=

∫

(S1)4

〈
− Lc(θ1, θ3)F

′
c(θ3, θ4)Lc(θ4, θ2)



36 PETER W. MICHOR, DAVID MUMFORD

+ Lc(θ1, θ4)F
′
c(θ4, θ3)Lc(θ3, θ2), `(θ3)

〉
〈h(θ2), k(θ1)〉 dθ

We have to write this in the form

Dc,`G
diff,n
c (h, k) = Gdiff,n

c (`,Hc(h, k)) = Gdiff,n
c (Kc(`, h), k)

For Hc we use δ(θ5 − θ3) =
∫
Lc(θ5, θ6)Fc(θ6, θ3)dθ6 = (Lc ∗ Fc)(θ5, θ3) as follows:

Dc,`G
diff,n(h, k) =

∫

(S1)6
Lc(θ5, θ6)

〈
`(θ5),

(
− Lc(θ1, θ3)F

′
c(θ3, θ4)Lc(θ4, θ2)

+ Lc(θ1, θ4)F
′
c(θ4, θ3)Lc(θ3, θ2)

)
Fc(θ6, θ3)〈h(θ2), k(θ1)〉

〉
dθ

Thus

Hc(h, k)(θ0) =

∫

(S1)4

(
− Lc(θ1, θ3)F

′
c(θ3, θ4)Lc(θ4, θ2)

+ Lc(θ1, θ4)F
′
c(θ4, θ3)Lc(θ3, θ2)

)
Fc(θ0, θ3)〈h(θ2), k(θ1)〉 dθ

Similarly we get

Dc,`G
diff,n(h, k) =

∫

(S1)6
Lc(θ6, θ5)

〈
Fc(θ1, θ6)

〈
− Lc(θ1, θ3)F

′
c(θ3, θ4)Lc(θ4, θ2)

+ Lc(θ1, θ4)F
′
c(θ4, θ3)Lc(θ3, θ2), `(θ3)

〉
h(θ2), k(θ5)

〉
dθ

so that

Kc(`, h)(θ0) =

=

∫

(S1)2

(
− 〈F ′

c(θ0, θ1)Lc(θ1, θ2), `(θ0)〉 + 〈F ′
c(θ0, θ1)Lc(θ1, θ2), `(θ1)〉

)
h(θ2) dθ

By 2.4 the geodesic equation is given by

ctt(θ0) = 1
2Hc(ct, ct)(θ0) −Kc(ct, ct)(θ0)

Let us rewrite the geodesic equation in terms of Lc ∗ ct. We have (suppressing the
variable t and collecting all terms)

(Lc ∗ ct)t(θ0) =

∫

S1

Dc,ct
Lc(θ0, θ1)ct(θ1) dθ1 + Lc ∗ ctt

= 1
2

∫

S1

(
F ′
c(θ1, θ0) − F ′

c(θ0, θ1)
)
〈Lc ∗ ct(θ0), Lc ∗ ct(θ1)〉 dθ1

Since the kernel F is an even function we get the same geodesic equation as above
for the momentum p̃(θ, t) = Lc ∗ ct = p(θ, t).|cθ|:

(1) p̃t(θ0) = −
∫

S1

F ′
c(θ0, θ1)〈p̃(θ0), p̃(θ1)〉 dθ1

5.6. Existence of geodesics.

Theorem. Let n ≥ 1. For each k > 2n − 1
2 the geodesic equation 5.5 (1) has

unique local solutions in the Sobolev space of Hk-embeddings. The solutions are
C∞ in t and in the initial conditions c(0, . ) and ct(0, . ). The domain of existence
(in t) is uniform in k and thus this also holds in Emb(S1,R2).



RIEMANNIAN METRICS ON SPACES OF CURVES, HAMILTONIAN APPROACH 37

An even stronger theorem, proving global existence on the level of Hk-diffeomor-
phisms on R2, has been proved by [19, 21, 22].

Proof. Let c ∈ Hk. We begin by checking that F ′
c is a pseudo differential operator

kernel of order −2n+ 2 as we did for Fc in 5.3.

c(θ1) − c(θ2) =: c̃(θ1, θ2)(θ1 − θ2)

gradF (x) =
1

2π

∫

R2

ei〈x,ξ〉
Jξ

(1 +A|ξ|2)n dξ

F ′
c(θ1, θ2) =

1

2π

∫

R2

ei(θ1−θ2)〈c̃(θ1,θ2),ξ〉
Jξ

(1 +A|ξ|2)n dξ

=
1

2π

∫

R

ei(θ1−θ2)η1
(∫

R

|c̃(θ1, θ2)|−3.Jη

(1 + A
|c̃(θ1,θ2)|2 (|η1|2 + |η2|2))n

dη2

)
dη1

=:
1

2π

∫

R

ei(θ1−θ2)η1 F̃c(θ1, θ2, η1) dη1

where we changed variables as η1 = 〈c̃(θ1, θ2), ξ〉 and η2 = 〈Jc̃(θ1, θ2), ξ〉. So we see
that F ′

c(θ1, θ2) is an elliptic pseudo differential operator kernel of degree −2n + 2
(the loss of 1 comes from integrating with respect to η2). We write the geodesic
equation in the following way:

ct = Fc ∗ q =: Y1(c, q)

qt =
〈
q, F ′

c ∗ q
〉

=

∫
F ′
c( . , θ)〈q(θ), q( . )〉 dθ =: Y2(c, q)

We start with c ∈ Hk where k > 2n − 1
2 , in the H2-open set Uk := {c : |cθ| >

0} ⊂ Hk. Then q = Lc ∗ ct ∈ Hk−2n+1 and F ′
c ∗ q ∈ Hk−1 ⊂ Hk−2n+1. By

the Banach algebra property of the Sobolev space Hk−2n+1 the expression (with
missuse of notation) Y2(c, q) = 〈q, F ′

c ∗ q〉 ∈ Hk−2n+1. Since the kernel F is not
smooth only at 0, all appearing pseudo differential operators kernels are C∞ off
the diagonal, thus are smooth mappings in c with values in the space of operators
between the relevant Sobolev spaces. Let us make this more precise. We claim that
c 7→ F ′

c∗( . ) ∈ L(Hk, Hk+2n−2) is C∞. Since the Sobolev spaces are convenient, we
can (a) use the smooth uniform boundedness theorem [9], 5.18, so that it suffices to
check that for each fixed q ∈ Hk the mapping c 7→ F ′

c ∗ q is smooth into Hk+2n−2.
Moreover, by [9], 2.14 it suffices (b) to check that this is weakly smooth: Using
the L2-duality between Hk+2n−2 and H−k−2n+2 it suffices to check, that for each
p ∈ H−k−2n+2 the expression
∫
p(θ1)(F

′
c ∗ q)(θ1) dθ1 =

=

∫∫
p(θ1)

2π

∫

R

ei(θ1−θ2)η1
(∫

R

|c̃(θ1, θ2)|−3.Jη

(1 + A
|c̃(θ1,θ2)|2 (|η1|2 + |η2|2))n

dη2

)
dη1q(θ2) dθ1 dθ2

is a smooth mapping Emb(S1,R2) → R2. For that we may assume that c de-
pends on a further smooth variable s. Convergence of this integral depends on the
highest order term in the asymptotic expansion in η, which does not change if we
differentiate with respect to s.
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Thus the geodesic equation is the flow equation of a smooth vector field Y =
(Y1, Y2) on Uk×Hk−2n+1. We thus have local existence and uniqueness of the flow

Flk on Uk ×Hk−2n+1.

Now we consider smooth initial conditions c0 = c(0, . ) and q0 = q(0, . ) = (Lc ∗
ct)(0, . ) in C∞(S1,R2). Suppose the trajectory Flkt (c0, q0) of Y through these intial
conditions in Uk ×Hk+1−2n maximally exists for t ∈ (−ak, bk), and the trajectory

Flk+1
t (c0, u0) in Uk+1×Hk+2−2n maximally exists for t ∈ (−ak+1, bk+1) with bk+1 <

bk. By uniqueness we have Flk+1
t (c0, u0) = Flkt (c0, u0) for t ∈ (−ak+1,bk+1). We

now apply ∂θ to the equation qt = Y2(c, q), note that the commutator q 7→ [F ′
c, ∂θ]∗

q = ∂th(F
′
c ∗ q)−F ′

c ∗ (∂θq) is a pseudo differential operator of order −2n+2 again,
and obtain

∂θqt =

∫
[F ′
c, ∂θ]( . , θ)〈q(θ), q( . )〉 dθ +

∫
F ′
c( . , θ)〈∂θq(θ), q( . )〉 dθ

+

∫
F ′
c( . , θ)〈q(θ), ∂θq( . )〉 dθ

which is an inhomogeneous linear equation for w = ∂θq in Uk ×Hk+1−2n. By the
variation of constant method one sees that the solution w exists in Hk for as long
as (c, q) exists in Uk × Hk+1−2n, i.e., for all t ∈ (−ak, bk). By continuity we can
conclude that w = ∂θq is the derivative in Hk+2−2n for t = bk+1, and thus the
domain of definition was not maximal. Iterating this argument we can conclude
that the solution (c, q) lies in C∞ for t ∈ (−ak, bk). ¤

5.7. Horizontality for Gdiff,n. The tangent vector h ∈ Tc Emb(S1,R2) is Gdiff,n
c -

orthogonal to the Diff(S1)-orbit through c if and only if

0 = Gdiff,n
c (h, ζX(c)) =

∫

(S1)2
Lc(θ1, θ2)〈h(θ2), cθ(θ1)〉X(θ1) ds1 ds2

for all X ∈ X(S1). So the Gdiff,n-normal bundle is given by

N diff,n
c = {h ∈ C∞(S1,R2) : 〈Lc ∗ h, v〉 = 0}.

Working exactly as in section 4, we want to split any tangent vector into vertical
and horizontal parts as h = h> + h⊥ where h> = X(h).v for X(h) ∈ X(S1) and
where h⊥ is horizontal, 〈Lc ∗ h⊥, v〉 = 0. Then 〈Lc ∗ h, v〉 = 〈Lc ∗ (X(h)v), v〉 and
we are led to consider the following operators:

L>
c , L

⊥
c : C∞(S1) → C∞(S1),

L>
c (f) = 〈Lc ∗ (f.v), v〉 = 〈Lc ∗ (f.n), n〉,

L⊥
c (f) = 〈Lc ∗ (f.v), n〉 = −〈Lc ∗ (f.n), v〉.

The pseudo differential operator L>
c is unbounded, selfadjoint and positive on

L2(S1, dθ) since we have
∫

S1

L>
c (f).f dθ =

∫

(S1)2
〈Lc(θ1, θ2)f(θ2)v(θ2), f(θ1).v(θ1)〉 dθ = ‖f.v‖2

Gdiff,n > 0.

Thus L>
c is injective and by an index argument as in 4.5 the operator L>

c is invert-
ible. Moreover, the operator L⊥

c is skew-adjoint. To go back and forth between the
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natural horizontal space of vector fields a.n and the Gdiff,n-horizontal vectors, we
have to find b such that Lc ∗ (a.n+ b.v) = f.n for some f . But then

L⊥
c (a) = −〈Lc ∗ (a.n), v〉 = 〈Lc ∗ (b.v), v〉 = L>

c (b) thus b = (L>
c )−1L⊥

c (a).

Thus a.n+(L>
c )−1L⊥

c (a).v is always Gdiff,n-horizontal and is the horizontal projec-
tion of a.n+ b.v for any b.

Proposition. For any smooth path c in Imm(S1,R2) there exists a smooth path ϕ
in Diff(S1) with ϕ(0, . ) = IdS1 depending smoothly on c such that the path e given
by e(t, θ) = c(t, ϕ(t, θ)) is Gdiff,n-horizontal: 〈Lc ∗ et, eθ〉 = 0.

Proof. Let us write e = c ◦ ϕ for e(t, θ) = c(t, ϕ(t, θ)), etc. We look for ϕ as the
integral curve of a time dependent vector field ξ(t, θ) on S1, given by ϕt = ξ ◦ ϕ.
We want the following expression to vanish. In its computation the equivariance of
Lc under ϕ ∈ Diff+(S1) from 5.3(2) will play an important role.

〈
Lc◦ϕ ∗ (∂t(c ◦ ϕ)), ∂θ(c ◦ ϕ)

〉
= 〈Lc◦ϕ ∗ (ct ◦ ϕ+ (cθ ◦ ϕ)ϕt), (cθ ◦ ϕ)ϕθ〉

=
〈
((Lc ∗ ct) ◦ ϕ) + ((Lc ∗ (cθ.ξ)) ◦ ϕ), (cθ ◦ ϕ)ϕθ

〉

=
(
(〈Lc ∗ ct, cθ〉 + 〈Lc ∗ (ξ.cθ), cθ〉) ◦ ϕ

)
ϕθ.

Using the time dependent vector field ξ = −(L>
c )−1〈Lc ∗ ct, cθ〉 and its flow ϕ

achieves this. ¤

To write the quotient metric on Be, we want to lift normal vector fields a.n
to a curve C to horizontal vector fields on Emb(S1,R2). Substituting h = a.n +
(L>

c )−1L⊥
c (a).v, k = b.n+ (L>)−1L⊥(b).v in 5.3(3), we get as above:

Gdiff,n
C (a, b) =

∫

C

(
L>
c + L⊥

c (L>
c )−1L⊥

c

)
(a).bds.

The dual metric on the cotangent space is just the restriction of the dual metric
on Emb(S1,R2) to the cotangent space to Be and is much simpler. We simply set
p = f.n, q = g.n and get:

Ǧdiff,n
C (f, g) =

∫∫

C2

F (x(s) − x(s1)).〈n(s), n(s1)〉.f(s)g(t).dsds1

where x(s) ∈ R2 stands for the point in the plane with arc length coordinate s
and F is the Bessel kernel. Since these are dual inner products, we find that the
two operators, (a) convolution with the kernel F (x(s)−x(s1)).〈n(s), n(s1)〉 and (b)
L>
c + L⊥

c (L>
c )−1L⊥

c are inverses of each other.

5.8. The geodesic equation on Be via conservation of momentum. The
simplest way to find the geodesic equation on Be is again to specialize the general
rule ϕ(t)∗ω(t) = cnst. to the horizontal geodesics. Now horizontal in the present
context, that is for Be, requires more of the momentum ω(t). As well as being
given by c∗(p(s).ds), we require the 1-form p to kill the tangent vectors v to the
curve. If we identify 1-forms and vectors using the Euclidean metric, then we may
say simply p(s) = a(s).n, where a is a scalar function on C. But note that if you
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take the momentum as c∗(a(s)n(s)ds) and integrate it against a vector field X,
then you find:

〈X, c∗(a(s)n(s)ds)〉 =

∫

C

a(s)〈X,n(s)〉ds =

∫

C

a(s).iX(dx ∧ dy)

where iX is the ‘interior product’ or contraction with X taking a 2-form to a 1-form.
Noting that 1-forms can be integrated along curves without using any metric, we
see that the 2-form along c defined by {a(s).(dx ∧ dy)c(s)} can be naturally paired
with vector fields so it defines a canonical measure valued 1-form. Therefore, the
momentum for horizontal geodesics can be identified with this 2-form.

If ϕ(x, t) is a horizontal geodesic in Diff(R2), then the curves Ct = image(c(·, t))
are given by Ct = ϕ(C0, t) and the momentum is given by a(θ, t).(dx ∧ dy), where
c(θ, t) parametrizes the curves Ct. Note that in order to differentiate a with respect
to t, we need to assign parameters on the curves Ct simultaneously. We do this in
the same way we did for almost local metrics: assume cθ is a multiple of the normal
vector nC . But θ0 7→ ϕ(θ0, t) gives a second map from C0 to Ct: in terms of θ,
assume this is θ = ϕ̄(θ0, t). Then the conservation of momentum means simply:

a(ϕ̄(θ0, t), t).det(Dxϕ)(c(θ0, 0), t) is independent of t.

Let X be the global vector field giving this geodesic, so that ϕt = X ◦ϕ. Note that
ϕ̄t = (〈X ◦c, v〉/|cθ|)◦ ϕ̄. Using this fact, we can differentiate the displayed identity.
Recalling the definition of the flow from its momentum and the identifying TCBe
with normal vector fields along C, we get the full equations for the geodesic:

Ct = 〈X,n〉 · n
at = −〈X, v〉Ds(a) − div(X).a

X = F ∗ c∗(a(s)n(s)ds)

Note, as in the geodesic equations in 5.4, that we must use F to extend X to the
whole plane. In this case, we only need (a) the normal component of X along C,
(b) its tangential component along C and (c) the divergence of X along C. These
are obtained by convolving a(s) with the kernels (which we give now in terms of
arc-length):

Fnnc (s1, s2) = F (c(s1) − c(s2))〈n(s1), n(s2)〉ds2
F vnc (s1, s2) = F (c(s1) − c(s2))〈v(s1), n(s2)〉ds2
F div
c (s1, s2) = 〈gradF (c(s1) − c(s2)), n(s1)〉ds2

Then the geodesic equations become:

Ct = (Fnnc ∗ a).n
at = −(F vnc ∗ a)Ds(a) − (F div

c ∗ a).a

Alternately, we may specialize the geodesic equation in 5.4 to horizontal paths.
Then the v part vanishes identically and the n part gives the last equation above.
We omit this calculation.
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6. Examples

6.1. The Geodesic of concentric circles. All the metrics that we have studied
are invariant under the motion group, thus the 1-dimensional submanifold of Be
consisting of all concentric circles centered at the origin is the fixed point set of the
group of rotations around the center. Therefore it is a geodesic in all our metrics.
It is given by the map c(t, θ) = r(t)eiθ. Then cθ = ireiθ, vc = ieiθ, nc = −eiθ,
`(c) = 2πr(t), κc = 1

r and ct = rte
iθ = −rt.nc.

The parametrization r(t) can be determined by requiring constant speed σ, i.e.
if the metric is G(h, k), then we require Gc(ct, ct) = r2tGc(nc, nc) = σ2, which leads

to
√
Gc(ct, ct) dt = ±

√
Gc(nc, nc) dr. To determine when the geodesic is complete

as r → 0 and r → ∞, we merely need to look at its length which is given by:
∫ ∞

0

√
Gc(ct, ct)dt =

∫ ∞

0

√
Gc(nc, nc)dr,

and we need to ask whether this integral converges or diverges at its two limits.
Let’s consider this case by case.

The metric GΦ: The geodesic is determined by the equation:

GΦ(ct, ct) = 2πr · Φ
(

2πr(t),
1

r(t)

)
· r2t = σ2.

Differentiating this with respect to t leads to the geodesic equation in the standard
form rtt = r2t f(r). It is easily checked that all three invariant momentum mappings
vanish: the reparameterization, linear and angular momentum.

Theorem. If Φ(2πr, 1/r) ≈ C1r
a (resp. C2r

b) as r → 0 (resp. ∞), then the ge-
odesic of concentric circles is complete for r → 0 if and only a ≤ −3 and is
complete for r → ∞ if and only if b ≥ −3. In particular, for ϕ = `k, we find
k = a = b and the geodesic is given by r(t) = cnst.t2/(k+3. For the scale invariant

case Φ(`, κ) = 4π2

`3 + κ2

` , we find a = b = −3, the geodesic is given by r(t) = e
√

2σt

and is complete. Moreover, in this case, the scaling momentum 2rt

r is constant in
t along the geodesic.

The proof is straightforward.

The metric Gimm,n Recall from 4.1 the operator Ln,c = I + (−1)nA.D2n
s . For

c(t, θ) = r(t)eiθ 6.1 we have

Ln,c(ct) =
(
1 + (−1)n

A

r2n
∂2n
θ

)
(rte

iθ) = rt
(
1 +

A

r2n
)
eiθ

which is still normal to cθ. So t 7→ c(t, . ) is a horizontal path for any choice of
r(t). Thus its speed is the square root of:

Gimm,n(ct, ct) = 2πr ·
(

1 +
A

r2n

)
· r2t = σ2.

For n = 1 this is the same as the identity for the metric with Φ(`, κ) = 1 + Aκ2

which was computed in [12], 5.1. An explanation of this phenomenon is in [12], 3.2.

Theorem. The geodesic of concentric cirles is complete in the Gimm,n metric if
n ≥ 2. For n = 1, it is incomplete as r → 0 but complete if r → ∞.
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The metric Gdiff,n To evaluate the norm of a path of concentric circles, we now
need to find the vector field X on R2 gotten by convolving the Bessel kernel with
the unit normal vector field along a circle. Using circular symmetry, we find that:

X(x, y) = f(r)
(x
r
,
y

r

)
rt

(
I −A(∂rr +

1

r
∂r)

)n
f = 0 except on the circle r = r0

f ∈ C2n−2 everywhere, f(r0) = 1

For n = 1, we can solve this and the result is the vector field on R2given by the
Bessel functions I1 and K1:

X(x, y) =





I1(r/
√
A)

I1(r0/
√
A)

if r ≤ r0
K1(r/

√
A)

K1(r0/
√
A)

if r ≥ r0

Using the fact that the Wronskian of I1,K1 is 1/r, we find:

Gdiff,1(rtn, rtn) =

∫
〈(I −A4)X,X〉r2t =

2πr2t
K1(r/

√
A).I1(r/

√
A)
.

Using the asymptotic laws for Bessel functions, one finds that the geodesic of con-
centric circles has finite length to r = 0 but infinite length to r = ∞.

For n > 1, it gets harder to solve for X. But lower bounds are not hard:

Gdiff,n(n, n) = inf
X,〈X,n〉≡1 on Cr

∫
〈(I −A4)nX,X〉

≥ An. inf
„

X,〈X,n〉≡1 on Cr

X→0, when x→∞

«

∫
〈4n(X), X〉 =

def
M(r)

Then M(r) scales with r: M(r) = M(1)/r2n−2, hence the length of the path when
the radius shrinks to 0 is bounded below by

∫
0
dr/rn−1 which is infinite if n > 1.

On the other hand, the metric Gdiff,n dominates the metric Gdiff,1 so the length of
the path when the radius grows to infinity is always infinite. Thus:

Theorem. The geodesic of concentric cirles is complete in the Gdiff,n metric if
n ≥ 2. For n = 1, it is incomplete as r → 0 but complete if r → ∞.

6.2. Unit balls in five metrics at a ‘cigar’-like shape. It is useful to get a sense
of how our various metrics differ. One way to do this is to take one simple shape
C and examine the unit balls in the tangent space TCBe for various metrics. All of
our metrics (except the simple L2 metric) involve a constant A whose dimension is

length-squared. We take as our base shape C a strip of length L, where L À
√
A,

and width w, where w ¿
√
A. We round the two ends with semi-circles, as shown

in on the top in figure 1.

As functions of a normal vector field a.n along C, the metrics we want to compare
are:

(1) GAC(a, a) =
∫
C

(1 +Aκ2)a2.ds

(2) Gimm,1
C (a, a) = inf

b

∫
C

(
|a · n+ b · v)|2 +A|Ds(a · n+ b · v)|2

)
ds
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PSfrag replacements

C

ϕ−

ϕf

ϕ+

ϕx

L

I

2w involution

Figure 1. The cigarlike shape and their deformations

(3) Gdiff,1
C (a, a) = 1√

A
inf

„

R
2-vec.flds.X
〈X,n〉=a

«

∫∫
R2

(
|X|2 +A|DX|2

)
dx dy,

(4) Gdiff,2
C (a, a) = 1√

A
inf

„

R
2-vec.flds.X
〈X,n〉=a

«

∫∫
R2

(
|X|2 + 2A|DX|2 +A2|D2X|2

)
dx dy

The term 1√
A

in the last 2 metrics is put there so that the double integrals have

the same ‘dimension’ as the single integrals. In this way, all the metrics will be
comparable.

To compare the 4 metrics, we don’t take all normal vector fields a.n along C.
Note that C has an involution, which flips the top and bottom edges. Thus we
have even normal vector fields and odd normal vector fields. Examples are shown
in figure 1. We will consider two even and two odd normal vector field, described
below, and normalize each of them so that

∫
C
a2ds = 1. They are also shown in

figure 1. They involve some interval I along the long axis of the shape of length
λÀ w. The interval determines a part It of the top part of C and Ib of the bottom.

(1) Let a ≡ +1/
√

2λ along It and a ≡ −1/
√

2λ along Ib, a zero elsewhere
except we smooth it at the endpoints of I. Call this odd vector field ϕ−.

(2) Fix a high frequency f and, on the same intervals, let a(x) = ± sin(f.x)/
√
λ.

Call this odd vector field ϕf .

(3) The third vector field is even and is defined by a(x) =
√

2
πw 〈n, ∂∂x 〉 at the

right end of the curve, being zero along top, bottom and left end. Call this
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ϕx. The factor in front normalizes this vector field so that its L2 norm is
1.

(4) Finally, we define another even vector field by a = +1/
√

2λ on both It and
Ib, zero elsewhere except for being smoothed at the ends of I. Call this ϕ+.

The following table shows the approximate leading term in the norm of each of
these normal vector fields a in each of the metrics. By approximate, we mean the
exact norm is bounded above and below by the entry times a constant depending
only on C and by leading term, we mean we ignore terms in the small ratios w/

√
A,

λ/
√
A:

function GA Gimm,1 Gdiff,1 Gdiff,2

ϕ− 1 1 1 1

ϕf 1 (
√
Af)2

√
Af (

√
Af)3

ϕ+ 1 1
√
A/w (

√
A/w)3

ϕx A/w2
√
A/w

√
A

w log(A/w2)

√
A/w

Thus, for instance:

GA(ϕx, ϕx) =
2

πw

∫

right end

(1 +Aκ2)〈n, ∂∂x 〉2ds

= 2
πw (1 +Aw−2)`(right end)Ave(〈n, ∂∂x 〉2)

= (1 +Aw−2) ≈ A/w2

The values of all the other entries under GA are clear because κ ≡ 0 in their support.

To estimate the other entries, we need to estimate the horizontal lift, i.e., the
functions b or v. To estimate the norms for Gimm,1, we take b = 0 in all cases except
ϕx and then get

Gimm,1
C (a, a) = ‖a‖2

H1
A

the first Sobolev norm. For a = ϕf , we simplify this, replacing the full norm by
the leading term A(Ds(a))

2 and working this out. To compute Gimm,1(ϕx, ϕx), let

k =
√

2
πw be the normalizing factor and lift a.n along the right end of C to the R2

vector field k. ∂∂x . This adds a tangential component which we taper to zero on the

top and bottom of C like k.e−x/
√
A. This gives the estimate in the table.

Finally, consider the 2 metrics Gdiff,k, k = 1, 2. For these, we need to lift the
normal vector fields along C to vector fields on all of R2. For the two odd vector
fields f = ϕ− and f = ϕf , we take v to be constant along the small vertical lines
inside C and zero in the extended strip −w ≤ y ≤ w, x /∈ I and we define v outside
−w ≤ y ≤ w by:

v(x, y + w) = v(x,−y − w) = F (x, y) ∂∂y ,

F̂ (ξ, η) =
k
√
A(1 +Aξ2)k−1/2.f̂(ξ)

π(1 +A(ξ2 + η2))k

We check the following:

(a)
(
(I −A4)kF

)∧
= k

π

√
A(1 +Aξ2)k−1/2f̂(ξ) is indep. of η hence

support(I −A4)kF ) ⊂ {y = 0}
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(b)

∫
F̂ dη = f̂ , hence F |y=0 = f.

Thus:

Gdiff,k
C (f, f) ≈ 1√

A

∫∫

R2

〈(I −A4)kF, F 〉dxdy

= k
π

∫
(1 +Aξ2)k−1/2|f̂(ξ)|2dξ = k

π‖f‖2

H
k−1/2

A

The leading term in the kth Sobolev norm of ϕf is (
√
Af)2k, which gives these

entries in the table.

To estimate Gdiff,1
C (ϕ+, ϕ+), we define v by extending ϕ+ linearly across the

vertical line segments −w ≤ y ≤ w, x ∈ I, i.e. to ϕ+(x)y/w. This gives the leading
term now, as the derivative there is ϕ+/w. In fact for any odd vector field a of
L2-norm 1 and for which the derivatives are sufficiently small compared to w, the
norm has the same leading term:

Gdiff,1
C (a, a) ≈

√
A/w.

To estimate Gdiff,2
C (ϕ+, ϕ+), we need a smoother extension across the interior of

C. We can take ϕ+(x). 32 ( yw − 1
3 ( yw )3). Computing the square integral of the second

derivative, we get the table entry Gdiff,2
C (a, a) ≈ (

√
A/w)3.

To estimate Gdiff,k+1
C (ϕx, ϕx), we now take v to be

v = c(k,A,w)

[(
|x|√
A

)k
Kk

(
|x|√
A

)
∗ χD

]
∂

∂x
.

where D is the disk of radius w containing the arc making up the right hand
end of C, and where c(k,A,w) is a constant to be specified later. The function

1
2πk!A

(
|x|√
A

)k
Kk

(
|x|√
A

)
is the fundamental solution of (I − A4)k+1 and is C1 for

k > 0 but with a log pole at 0 for k = 0. Thus:

(I −A4)k+1v = 2πk!Ac(k,A,w)χD.
∂

∂x

while, up to upper and lower bounds depending only on k, the restriction of v to the
disk D itself is equal to log(

√
A/w)c(0, A,w)w2 if k = 0 and simply c(k,A,w)w2 for

k > 0. By symmetry v is also constant on the boundary of D and thus v extends
ϕx if we take c(0, A,w) = c0/ log(

√
A/w)w5/2 if k = 0 and c(k,A,w) = ck/w

5/2 if
k > 0 (constants ck depending only on k). Computing the Hk-norm of v, we get
the last table entries.

Summarizing, we can say that the large norm of ϕx is what characterizes GA;
the large norms of ϕ+ characterize Gdiff ; and the rate of growth in frequency of the
norm of ϕf distinguishes all 4 norms.
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