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State Estimation in Stochastic Hybrid Systems

with Sparse Observations

Eugenio Cinquemani and Mario Micheli

Abstract

In this paper we study the problem of state estimation for a class of sampled-measurement stochastic

hybrid systems, where thecontinuousstatex satisfies a linear stochastic differential equation, and noisy

measurementsy are taken at assigned discrete-time instants. The parameters of both the state and

measurement equation depend on thediscretestateq of a continuous-time finite Markov chain. Even

in the fault detection setting we consider – at most one transition forq is admissible – the switch may

occurbetweentwo observations, whence it turns out that the optimal estimates cannot be expressed in

parametric form and time integrations are unavoidable, so that the known estimation techniques cannot

be applied. We derive and implement an algorithm for the estimation of the statesx, q and of the

discrete-state switching time that is convenient for both recursive update and the eventual numerical

quadrature. Numerical simulations are illustrated.
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I. I NTRODUCTION

Over the last three decades, a substantial effort has been dedicated to the study of the so-called

Jump Markov Linear Systems(JMLS). These are linear Gaussian systems switching among a

finite number of linear modes indexed by adiscrete stateq. In general, measurementsy of the

continuous statex also depend onq. Switching follows the laws of a Markov chain independent

of the initial statex(0) and of the system inputs. Typical linear system estimation problems

carry over to JMLS, such as continuous state filtering and prediction. In addition, being the

trajectory ofq the outcome of an unobserved stochastic process, estimation ofq from the available

measurements is also a concern. However, for any fixed trajectory ofq, the system is linear time-

variant. It follows that the statistics ofx andy are mixtures of Gaussian distributions, and their

optimal (Bayesian) estimates are found byaveraging of conditional Kalman filters; this also

leads to an optimal estimation of stateq.

Most of the literature deals with discrete-time JMLS, for which the complexity of the optimal

Bayesian estimates ofx and q is exponential in time. Thus, a big effort has been devoted to

derive effectivesuboptimalalgorithms of reasonable (bounded) complexity, usually by eliciting

a fixed number of “most likely” discrete state trajectories and obtaining approximate estimates

by suitable averaging. In the Generalized Pseudo Bayes approach of Ackerson and Fu [1],

approximation is achieved by fitting a Gaussian distribution to the actual distribution of the

state. Tugnait [18] uses a Detection-Estimation strategy: at each step, the most probable mode

q(t + 1) is detected out of the possible transitions ofq(t) according to a new measurement of

the system’s state. Blom & Bar-Shalom [2] keep track of a fixed number of trajectoriesq(t) by

“merging” those that prove “undistinguishable”, and pruning the unlikely ones. Sequential Monte

Carlo methods are considered in Doucetet al. [8], [9], among others, whichexploreat random the

space of all possible discrete trajectories based on a convenient generating distribution. Further

tecniques are illustrated in the works by Costa [6], [7], Chen & Liu [3], Elliottet al. [10],

Germaniet al. [12], and Logothethis & Krishnamurthy [16]. Less attention has been dedicated

to the continuous-time counterpart. The interested reader may consult the work by Hibey &

Charalambous [13], Huet al. [14], Miller & Runggaldier [17], and Zhang [19].
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Both the discrete-time and the continuous-time models are unsatisfactory whenever continuous-

time information (estimates) about the system state needs to be drawn from measurements

sampledat a rate comparable to that of the system dynamics. In the present paper we introduce

a model where the continuous statex evolves in continuous time according to a linear stochastic

differential equation, whereas noisy measurements are acquired at given discrete time instants.

The parameters of both the state equation and the measurement equation depend on a discrete

state q which evolves in time as acontinuous-time Markov chain. Since the discrete-state

switch occurs almost surelybetweentwo successive measurements, ordinary JMLS estimating

techniques such as those listed abovecannotbe applied. In fact, since the optimal state estimates

will rely on a continuousmixture of Gaussian densities the estimation problem cannot be solved

in a parametric manner and numerical integrations over time intervals arenot avoidable. In this

work we restrict our attention to a typical fault detection setting where all but one discrete state

are absorbing. We formulate a recursive estimation scheme that updates at each step a finite

number of parameters and allows to isolate out of the recursion the integral approximation,

which is performed at the very end of the computation. The use of such scheme is suitable

for the analysis of processes that are subject to sudden changes but observations are relatively

sparse. In medical applications, for example, measurements such as blood samples cannot be

taken too frequently, however the evolution of a disease or the effect of a therapy need to be

closely monitored.

II. PROBLEM FORMULATION

Let T = {tk}k∈N0 (whereN0 = {0, 1, 2, . . .}) be an arbitrary deterministic sequence, with

tk < tk+1 and tk →∞. Consider a finitestate spaceQ = {0, 1, 2, . . . , N − 1} and letq denote

its generic element. Assume that we are given matrix functions:F : Q → Rn×n, G : Q → Rn×m,

H : Q → Rp×n, andK : Q → Rp×r, which assign to each valueq ∈ Q a four-tuple of matrices

(Fq, Gq, Hq, Kq).
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Consider the following dynamical model:





ẋ(t) = Fq(t)x(t) + Gq(t)u(t)

yk = Hq(tk)x(tk) + Kq(tk)vk

, t ∈ R, tk ∈ T , (1)

wherex : R → Rn, y : N0 → Rp, are stochastic processes. The equations in (1) are called,

respectively, thestate and measurement equations. Continuous-time noiseu(t), t ∈ R, and

discrete-time noisevk, k ∈ N0, are zero-mean, normalized, white and Gaussian. We assume that

{u(t)}t∈R, {vk}k∈N0 and the initial conditionx(t0) ∼ N (
µ0, Σ0

)
are mutually independent;µ0

andΣ0 are given. Furthermore, we shall assume thatq(t), t ∈ R, is a continuous-time, homoge-

neousMarkov chain(independent of{u(t)}, {vk} andx0) with assigned transition probabilities

Ti,j(δ) , P[q(t + δ) = j | q(t) = i], i, j ∈ Q, and initial probabilitiespq , P[q(t0) = q], q ∈ Q.

Our problem is the following: given measurements up to timetk, that isyk , {y0, . . . , yk},
we wish to compute the least-squares estimate of thecontinuousstatex(t`):

x̂a
`|k , arg min

g(yk):g∈M
E

[||g(yk)− x(t`)||2
]

= E
[
x(t`)

∣∣ yk
]
, (2)

(whereM is the set of measurable functionsg : R(k+1)p → Rn) and at the same time thea

posteriori probability distribution of thediscretestate:

p`|k(q) , P
[
q(t`) = q

∣∣ yk
]
. (3)

We will mostly restrict our attention to the cases` = k (filtering) and` = k + 1 (prediction).

Estimatex̂a is, as we shall see, a weighedaverageof a continuumof Bayesian estimates for

different linear stochastic systems —hence the superscript “a”.

According to our model the discrete state switches among different values inQ betweentwo

successive measurements with probability one —in principle, even more than once: this makes

exact estimation a formidable task. In the present paper, however, we shall limit ourselves to a

fault detectionsetting: i.e. we shall assume that nonzero states inQ areabsorbing. This induces

a constraint on the structure of theN ×N transition probability matrixT (δ) = [Ti,j(δ)], which
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Fig. 1. Graphical representation of Markov Process (4).

takes the form:

T (δ) =


 e−λδ · · · λj

λ

(
1− e−λδ

) · · ·
0 IN−1


 (4)

where {λ1, . . . , λN−1} is a given set of positive parameters,λ ,
∑N−1

i=1 λi, and IN−1 is the

(N − 1)-dimensional identity matrix. See Figure 1 for the graphical representation of such

Markov process.

Given the restriction above, trajectoryq(t) is characterizedby theswitching timet? (i.e. the

time at which the event takes place) and thefinal discrete stateq?. The joint probability

distribution of t? and q? is given by Ft?,q?(t, q) , P[t? ≤ t, q? = q] = λq

λ
(1 − e−λt)p0 + pq

for q = 1, . . . , N − 1 and t ≥ 0; it is zero forq = 0 and is undefined fort < 0. If we introduce

the further simplifying hypothesis thatp0 = 1, i.e. that the discrete stateq is initially zero, then

the switching time becomes exponentially distributed,t? ∼ E(λ) and random variablest? and

q? are in factindependent. The assumptionp0 = 1 will be maintained throughout the rest of the

paper. In addition to the problem of computing the state estimates (2) and (3), we shall consider

the problem of computing the least-squares estimate of the switching time:

t̂?k , arg min
h(yk):h∈M

E
[||h(yk)− t?||2] = E[t?|yk]. (5)

Given the continuous nature of random variablet?, this problem is peculiar of the sampled-

measurement model we are considering and has no equivalent in the context of discrete-time

jump Markov systems. One key ingredient that we shall need to solve our problem will be

ft?,q?|yk(t, q) , d
dt
P
[
t? ≤ t, q? = q

∣∣ yk
]
. (6)
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In fact one may easily computep`|k(·) andt̂?k from the above density. Moreover, we will see in the

following section that estimates (2) can be computed as the weighted average of linear Bayesian

estimates, where the weight is given precisely by density (6). We shall denote this quantity

simply by f(t?, q?|yk). Similarly, we shall writef(t?, q?) to denote d
dt

Ft?,q?(t, q) = λqe
−λt.

III. T HE CONDITIONED KALMAN FILTERING APPROACH

Consider the computation of̂xa
`|k. Application of the total probability law to equation (2)

yields

x̂a
`|k =

N−1∑
q?=1

∫ +∞

0

x̂`|k(t
?, q?)f(t?, q?|yk)dt?, (7)

with x̂`|k(t?, q?) , E[x(t`)|yk, t?, q?]. By Bayes’rule,f(t?, q?|yk) = f(yk|t?, q?)f(t?, q?)/f(yk),

with

f(yk) =
N−1∑
q?=1

∫ +∞

0

f(yk|t?, q?)f(t?, q?)dt?. (8)

In turn,f(yk|t?, q?) may be computed by the recursionf(yk+1|t?, q?) = f(yk+1|yk, t?, q?)f(yk|t?, q?),

initialized byf(y0|t?, q?) = f(y0), which is purely Gaussian. The computation oft̂?k and ofp`|k(q)

also follows from that off(t?, q?|yk) by way of suitable integrations. Therefore, computing

estimates of the state as well as of the switching time amounts to computingx̂`|k(t?, q?) and

f(yk+1|yk, t?, q?).

Consider the model obtained from (1) byfixing the trajectoryq(·) according to given values

of t? andq?. According to this model, which will be called theconditionedmodel, the optimal

estimator ofx(t`) given measurementsyk is preciselyx̂`|k(t?, q?). Since the conditioned model

is linear and Gaussian,̂x`|k(t?, q?) may be computed by a Kalman recursion matched to the

specific system parameters [15]. In addition,

f(yk+1|yk, t?, q?) = N (ŷk+1|k(t
?, q?), Λk+1(t

?, q?)), (9)

whereŷk+1|k(t?, q?) is the Kalman predictor for the model conditioned ont? andq? andΛk+1(t
?, q?)

is the corresponding innovations variance.
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Due to the continuous nature of random variablet?, integrations arenot avoidable. In general,

they cannot be solved analytically. Therefore, a key issue is to express the conditioned estimates

x̂`|k(t?, q?), ŷk+1|k(t?, q?) and Λk+1(t
?, q?) in a way convenient for both update and numerical

integration. Specifically, we wish to carry out the integrations by an adaptive quadrature approach

[11], such as Simpson’s method. The idea is to evaluate the integrand on a grid of points which is

adapted to the shape of the function by an iterative procedure. Based on this strategy, arbitrarily

low integration errors may usually be achieved at the cost of an increasing number of iterations.

In the present context, adaptation implies evaluatingx̂`|k(t?, q?), ŷk+1|k(t?, q?) and Λk+1(t
?, q?)

on a set of values oft? which depends on the data and is different at everyk. In this case, the use

of standard Kalman filtering is largely inefficient, because a different matched filter needs to be

run for every different value oft?. Instead, parametric expressions of the conditioned estimates

should be used, allowing for bothexplicit evaluation at arbitrary values oft? and recursive

parameter update. Formulae as such will be derived in the next sections. In order to achieve

this, we shall interpret̂x`|k(t?, q?), ŷk+1|k(t?, q?) and Λk+1(t
?, q?) in terms of the Kalman filter

designed for a discrete-time version of the conditioned model. The properties of the discrete-time

conditioned system will be used to rewrite the Kalman recursions so to make the dependence

on t? explicit. Algorithms for the computation of̂xa
`|k, p`|k andf(t?|yk) will follow.

IV. EXPLICIT EXPRESSIONS FOR THE CONDITIONEDKALMAN FILTER

Fix q?, an indexh and a value oft? ∈ (th, th+1). For xk , x(tk), let us write the conditioned

system in the form of a discrete-time system:





xk+1 = Ak(t
?, q?) xk + uk

yk = Ck(t
?, q?) xk + Dk(t

?, q?) vk

(10)

with Var(uk) = Qk(t
?, q?), {uk} white and independent of{vk} andx0. We wish to choose the

parameters of (10) so to preserve the joint statistical description of the measurements and the

state of (1) at sample times. Integrating the state equation of (1) along the trajectoryq(t) fixed
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by t? andq?, one gets the following [4]. Fork < h (i.e. t? > tk+1):

Ak(t
?, q?) = Âk,0, Qk(t

?, q?) = Q̂k,0,

Ck(t
?, q?) = H0, Dk(t

?, q?) = K0;

for k > h (i.e. t? < tk):

Ak(t
?, q?) = Âk,q? , Qk(t

?, q?) = Q̂k,q? ,

Ck(t
?, q?) = Hq? , Dk(t

?, q?) = Kq? ;

for k = h (i.e. tk < t? < tk+1):

Ak(t
?, q?) = Ãk(t

?, q?)Ãk(t
?, 0), Qk(t

?, q?) = Ãk(t
?, q?)Q̃k(t

?, 0)Ãk(t
?, q?) + Q̃k(t

?, q?),

Ck(t
?, q?) = H0, Dk(t

?, q?) = K0,

with Âk,q , eFq(tk+1−tk), while Ãk(t
?, q) , eF0(t?−tk) for q = 0 and Ãk(t

?, q) , eFq(tk+1−t?) for

q 6= 0. If the spectrum ofFq is non-mixing(i.e. the spectra ofFq and−Fq are disjoint), then

Q̂k(t
?, q) = Jq − Âk,qJqÂ

T
k,q and Q̃k(t

?, q) = Jq − Ãk(t
?, q)JqÃ

T
k (t?, q), whereJq is the unique

(symmetric) solution of Lyapunov equationFqJq + JqF
T
q = −GqG

T
q . Otherwise,Q̂k(t

?, q) and

Q̃k(t
?, q) must be computed by numerical integration; this instance is rather pathological an will

not be discussed here, see instead [4]. The conditioned estimates of section III may now be

expressed in terms of the following discrete-time Kalman equations in which, in principle, all

quantities depend onh, t? andq?:

x̂k|k = x̂k|k−1 + Pk|k−1C
T
k Λ−1

k [yk − Ckx̂k|k−1]

Pk|k = Pk|k−1 − Pk|k−1C
T
k Λ−1

k CkPk|k−1

(11)

x̂k+1|k = Akx̂k|k

Pk+1|k = AkPk|kAT
k + Qk

(12)

with Λk = CkPk|k−1C
T
k +DkD

T
k andŷk|k−1 = Ckx̂k|k−1. Initializations are as follows:̂x0|−1 = x0

andP0|−1 = P0. Note that the above equations areexact, in the sense that no approximation has

been introduced in the discretization process. However, one notes thatAk andQk areconstant
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w.r.t. t? for k 6= h. Similarly, Ck, Dk never depend ont?. On the contrary, fork = h, Ak and

Qk depend on the specific value oft?. Therefore, fork < h, the conditioned estimates do not

depend ont?; for k = h, the value oft? plays a role in the time update (12) only; and finally,

for k > h, their expressions depend ont? only through the values of̂xh+1|h and Ph+1|h. This

analysis translates to the following statements. Let superscript “0” denote the estimates computed

by running equations (11)÷(12) with parametersAk = Âk,0, Qk = Q̂k,0, Ck = H0, Dk = K0,

∀k (i.e. as ifq never switched). These quantities do not depend onh, t? or q?.

Proposition 1: Assume thatt? ∈ (th, th+1). Then it holds that

x̂k|k(t?, q?) = x̂0
k|k, Pk|k(t?, q?) = P 0

k|k, k ≤ h,

x̂k+1|k(t?, q?) = x̂0
k+1|k, Pk+1|k(t?, q?) = P 0

k+1|k, k < h.

As a consequence, fork < h, Λk+1(t
?, q?) = Λ0

k+1 and ŷk+1|k(t?, q?) = ŷ0
k+1|k = H0x̂

0
k+1|k.

Next, denote with a superscript “†” the estimates obtained by running equations (11)÷(12)

for k ≥ h + 1 with parametersAk = Âk,q? , Qk = Q̂k,q?, Ck = Hq?, Dk = Kq?, initialized

by x̂h+1|h = 0 and Ph+1|h = 0. Let Φ†
k , Âk,q?(I − P †

k|k−1H
T
q?(Λ

†
k)
−1Hq?) be the associated

predictor transition matrix [15]. These quantities depend onh andq?, but not ont?. Also define

∆q? , HT
q?(Kq?KT

q?)−1Hq? .

Proposition 2: Assume thatt? ∈ (th, th+1). For k ≥ h + 1, it holds that:

x̂k|k(t
?, q?) = x̂†k|k + Â−1

k,q?Uk{I + SkPh+1|h(t
?, q?)}−T{x̂h+1|h(t

?, q?) + Ph+1|h(t
?, q?)Mk},(13)

Pk|k(t
?, q?) = P †

k|k + Â−1
k,q?Uk{I + SkPh+1|h(t

?, q?)}−T Ph+1|h(t
?, q?)UT

k Â−T
k,q? , (14)

x̂k+1|k(t
?, q?) = x̂†k+1|k + Uk{I + SkPh+1|h(t

?, q?)}−T{x̂h+1|h(t
?, q?) + Ph+1|h(t

?, q?)Mk}, (15)

Pk+1|k(t
?, q?) = P †

k+1|k + Uk{I + SkPh+1|h(t
?, q?)}−T Ph+1|h(t

?, q?)UT
k , (16)

whereUk, Sk andMk obey the recursionsUk = Φ†
kUk−1, Sk = UT

k−1(I+∆q?P †
k|k−1)

−1∆q?Uk−1+

Sk−1 and Mk = UT
k−1(H

T
q?(Kq?KT

q?)−1yk − (I + ∆q?P †
k|k−1)

−1∆q?M̃k) + Mk−1, initialized by

Uh = I, Sh = 0 and Mh = 0. In turn, M̃k = Φ†
k−1M̃k−1 + P †

k|k−1H
T
q?(Kq?KT

q?)−1yk, with

M̃h = 0.
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Proposition 2 relies on algebraic results discussed in [5]. In (13)÷(14), the inversion of ma-

trix Âk,q? may be avoided thanks to the equalitŷA−1
k,q?Uk = (I − P †

k|k−1C
T
k (Λ†k)

−1Ck)Uk−1.

QuantitiesUk, Mk, Sk depend onh andq? but not ont?. Therefore equations (13)÷(16) provide

formulae for the conditioned estimates in terms ofx̂h+1|h(t?, q?), Ph+1|h(t?, q?). Explicit formulae

in terms oft? are then obtained by means of relations (12) evaluated atk = h, namely:

x̂h+1|h(t
?, q?) = Ãk(t

?, q?)Ãk(t
?, 0)x̂0

h|h,

Ph+1|h(t
?, q?) = Ãk(t

?, q?)
{
Ãk(t

?, 0)P 0
h|hÃk(t

?, 0)T + Q̃k(t
?, 0)

}
Ãk(t

?, q?)T + Q̃k(t
?, q?).

Finally, for everyq?, everyh and all t? ∈ (th, th+1), an explicit expression forf(yk+1|yk, t?, q?)

follows from those of̂yk+1|k(t?, q?) andΛk+1(t
?, q?) by means of equation (9). In particular, by

Proposition 1, it is constant w.r.t. tot? for h ≥ k + 1. Hencef(yk+1|yk, t?, q?) = f 0(yk+1|yk)

for t? > tk+1.

V. COMPUTATION OF THE ESTIMATES

For the sake of clarity, let us begin with the computation of the normalization factor (8). Fix

k ∈ N0. The recursive computation off(yk|t?, q?) yields f(yk|t?, q?) =
∏k−1

i=0 f(yi+1|yi, t?, q?) ·
f(y0|t?, q?), wheref(y0|t?, q?) = f(y0) does not depend ont? andq?. Following on the previous

section, for everyh = 0, . . . , k − 1, consider the piece of integration wheret? ∈ (th, th+1). For

i = 0, . . . , h − 1, the termf(yi+1|yi, t?, q?) is constant w.r.t.t? and q?, being determined by

x̂0
i+1|i and P 0

i+1|i. For i = h, . . . , k − 1, it is expressed in terms of the parametersx̂†i+1|i(h, q?),

P †
i+1|i(h, q?), Si(h, q?), Mi(h, q?) and Ui(h, q?). Next consider the piece of integration where

t? ∈ (tk, +∞). All terms f(yi+1|yi, t?, q?), i = 0, . . . , k − 1 are determined bŷx0
i+1|i andP 0

i+1|i,

i.e. they do not depend ont? andq?. Therefore, we shall rewrite the integration in (8) as

k−1∑

h=0

{
f 0

h ·
∫ th+1

th

( k−1∏

i=h

f(yi+1|yi, t?, q?)
)
f(t?, q?)dt?

}
+ f 0

k ·
∫ +∞

tk

f(t?, q?)dt?, (17)

where, for a generic indexj, f 0
j ,

∏j−1
i=0 f 0(yi+1|yi)f(y0). The rightmost integral has a simple

analytic solution. To solve the integrations over(th, th+1), h = 0, . . . , k − 1, a routine is set up
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which takes fixed values oft? ∈ (th, th+1) and parameterŝx†i+1|i(h, q?), P †
i+1|i(h, q?), Si(h, q?),

Mi(h, q?) and Ui(h, q?) as inputs and evaluates the integrand based on the explicit formulae

developed above. This routine shall be invoked repeatedly by an adaptive quadrature algorithm

so to achieve a desired accuracy. At stepk, the overall computation requires the knowledge

of x̂†i+1|i(h, q?), P †
i+1|i(h, q?), Si(h, q?), Mi(h, q?) and Ui(h, q?), for i = h, . . . , k − 1 and h =

0, . . . , k − 1; and of f 0
j , for j = 0, . . . , k. For increasing values ofk, these parameters are

updated by Algorithm 1 below, which uses the formulae of section IV and the recursionf 0
k =

f 0(yk|yk−1)f 0
k−1.

Algorithm 1 Iterative parameter update

{Initialization}
x̂0

0|−1 ⇐ µ0

P 0
0|−1 ⇐ P0

f0
−1 ⇐ 1

k ⇐ 0
loop {Iterations}

computef0(yk|yk−1) from x̂0
k|k−1, P 0

k|k−1

computef0
k from f0

k−1, f0(yk|yk−1)
{Measurement update}
for h = 0, . . . , k − 1 and all q? do

compute : from :
x̂†k|k(h, q?) x̂†k|k−1(h, q?), P †k|k−1(h, q?)
P †k|k(h, q?) P †k|k−1(h, q?)
Uk(h, q?) Uk−1(h, q?)
Sk(h, q?) Sk−1(h, q?), Uk−1(h, q?), . . .

. . . P †k|k−1(h, q?)
M̃k(h, q?) M̃k−1(h, q?), P †k|k−1(h, q?)
Mk(h, q?) Mk−1(h, q?), M̃k−1(h, q?), . . .

. . . Uk−1(h, q?), P †k|k−1(h, q?)
end for

computex̂0
k|k from x̂0

k|k−1, P 0
k|k−1

computeP 0
k|k from P 0

k|k−1

{Time update}
for all h = 0, . . . , k − 1 and all q? do

computex̂†k+1|k(h, q?) from x̂†k|k(h, q?)
computeP †k+1|k(h, q?) from P †k|k(h, q?)

end for
computex̂0

k+1|k from x̂0
k|k

computeP 0
k+1|k from P 0

k|k
{Initialization of the next step}
for all q? do

x̂†k+1|k(k, q?) ⇐ 0
P †k+1|k(k, q?) ⇐ 0
Uk(k, q?) ⇐ I
Sk(k, q?) ⇐ 0
M̃k(k, q?) ⇐ 0
Mk(k, q?) ⇐ 0

end for
k ⇐ k + 1

end loop

The computation of̂xa
`|k, p`|k andE[t?|yk] is set up in a similar way. For instance, for` = k,

the integration in (7) is recast as the following formula, which must be normalized byf(yk):

k−1∑

h=0

{
f 0

h ·
∫ th+1

th

x̂k|k(t
?, q?)

( k−1∏

i=h

f(yi+1|yi, t?, q?)
)
f(t?, q?)dt?

}
+ x̂0

k|kf
0
k ·

∫ +∞

tk

f(t?, q?)dt?.
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VI. N UMERICAL EXAMPLE

We will now show numerical results concerning a specific example. We will compute prob-

ability pk|k(·) and estimateŝt?k and x̂a
k|k, as functions of indexk. Let Q = {0, 1, 2}. Consider

system (1) withtk , k · T , T = 0.5, and parametersµ0 = 0, Σ0 = 0.1 · I2×2. We chose 4-tuples

(Fq, Gq, Hq, Kq) to be





 −0.4 0.6

cq −0.5


 ,


 0.2 0.1

0.1 0.2


 ,


 1 0

0 1


 ,


 0.1 0

0 0.1







where c0 = 0, c1 = 1, c2 = −2. That is, only the state evolution matrix changes withq.

This modifies the character of the continuous-time system from stable (q = 0, stable node) to

unstable (q = 1, saddle) or oscillatory (q = 2, stable focus), according to the different spectra

σ(F0) = {−0.4,−0.5}, σ(F1) = {−1.22, 0.32}, σ(F2) = {−0.45 ± i 1.09}. In this settingy

is a noisy version of the statex. As usual we assume thatp0 = 1; switching intensities are

fixed to λ1 = 0.06, λ2 = 0.08. With this choice,E[t?] = 1/λ ' 7.14, P[q? = 1] ' 0.43,

P[q? = 2] ' 0.57. We started off the simulations fromx(0) = 0. We then randomly generatedx

andy up to timekmax·T , with kmax = 30, for a jump ofq(t) occurring at timēt = 5.25 < E[t?];

we considered both̄q = 1 and q̄ = 2 as final discrete states (t̄ and q̄ are thesample valuesof

random variablest? and q?). The values assumed byt? (i.e. t̄) and q? (i.e. q̄ = 1 and q̄ = 2,

in turn) have been chosen manually by the programmer; note also the relative sparseness of

measurements. Computations were carried out inMATLAB . Function quad – implementing

Simpson’s adaptive quadrature – was used to solve numerical integrations.

Figure 2 shows, for different values ofk, the a posteriori density f(t?|yk) for the cases

q̄ = 1 (left) and q̄ = 2 (right). The evolution from the exponential prior to a density roughly

concentrated around the true switching instant may be observed. The evolution of estimatet̂?k and

posterior probabilitypk|k(q) are reported in Figure 3 for̄q = 1 and2. One may note that, even

before the switch happens,pk|k(0) adjusts to values that are less than one, due to fluctuations

of the statex around zero. Also, for̄q = 1, t̂?k grows in a quasi-linear fashion: this is due to

the memoryless nature of random variablet?. In fact one may prove the following bound [4]:
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Fig. 2. Density functionf(t?|yk) plotted for k = 0, 8, 16 and 24. Left: q̄ = 1; Right: q̄ = 2. Dash-dotted lines mark the
actual switching timet̄ = 5.25.
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Fig. 3. Evolution of the estimatêt?
k (above) and of the probability functionpk|k(q) (below; left bar:pk|k(0), center bar:

pk|k(1); right bar:pk|k(2)). Left: q̄ = 1; Right: q̄ = 2. Dash-dotted lines mark theactual switching timet̄ = 5.25.

pk|k(0)/λ+pk|k(0)·tk ≤ t̂?k ≤ pk|k(0)/λ+tk. Whence the larger the value ofpk|k(0) is, the tighter

the bounds will be, as in the casēq = 1. After the switch occurs a few measurements suffice

to both detect the new discrete stateq̄ and estimate the switching timēt. However, comparing

the plots suggests that is is relatively easier to detect a switch fromq = 0 (stable) toq̄ = 1

(unstable) rather than tōq = 1 (stable), which keeps statex close to zero. In general, the more

“different” the modes are, the quicker the algorithm is to detect the switch.
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Fig. 4. Evolution of the statexk (solid line) and its estimateŝxk|k(t̄) (dotted line) and̂xa
k|k; first and second component of

state and relevant estimates are considered above and below, in the order. Left:q̄ = 1; Right: q̄ = 2. Dash-dotted lines mark
the actual switching timet̄ = 5.25.

Plots of the estimates of the continuous statex are drawn in Figure 4. The optimal estimates

x̂a
k|k are compared with the true valuesxk and with the best estimateŝxk|k(t̄, q̄) one could produce

in case the switching event were known in advance. In both the casesq̄ = 1 andq̄ = 2, estimates

x̂a
k|k follow the benchmark̂xk|k(t̄, q̄) quite accurately, even in the “transient” between the actual

switching instant and the time whenpk|k(q) clearly singles out the final value of the discrete

state.

VII. C ONCLUSIONS

In this paper we introduced a switching state-space model in which the continuous statex

satisfies a linear stochastic differential equation, noisy measurements are taken at known sample

times and the parameters of the whole system change in time according to a continuous-time

Markov chainq of known statistics. Such model accounts for switchesbetweenmeasurements,

whence classical estimation techniques for JMLS cannot be applied.

We focused on a fault detection setting and solved the problem of the recursive Bayesian

estimation of the joint state(x, q) at sampling timestk from the collection of measurementsyk

by optimal averaging of the conditional state estimates associated to every possible switching

event. Using the same tools, we also solved the problem of computing optimal Bayesian estimates
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of the switching timet?. Due to the continuous-time nature oft? the overall system is non-

Gaussian, whence the optimal estimates cannot be expressed in a simple parametric form and

numerical integrations over time intervals are unavoidable. One major challenge is to express

the key quantitiesf(t?, q?|yk), f(xk|t?, q?, yk) in a form that is convenient for both numerical

quadrature and recursive update. We achieved this by a formal discretization of the system

conditionedon the switching event. The estimation algorithms we proposed update a finite

number of parameters by way of exact matrix iterations, whereas integral approximations are

isolated out of the recursion and are performed at the very end of the overall calculation. This

prevents accumulation of errors and yields an accurate computation of the estimates.

REFERENCES

[1] G. A. Ackerson and K. S. Fu. On state estimation in switching environments.IEEE Transactions on Automatic Control,
15(1):10–17, 1970.

[2] H. A. P. Blom and Y. Bar-Shalom. The interacting multiple model algorithm for systems with Markovian switching
coefficients.IEEE Transactions on Automatic Control, 33(8):780–783, Aug. 1988.

[3] R. Chen and J. S. Liu. Mixture Kalman Filters.Journal of the Royal Statistical Society – Series B, 62:493–508, 2000.
[4] E. Cinquemani.Estimation Problems in Jump Markov Systems. Ph.D. Thesis, University of Padova, Italy, 2005.
[5] E. Cinquemani. A superposition principle for the Kalman filter.Systems and Control Letters, 55(1):38–44, Jan. 2006.
[6] O. L. V. Costa. Linear minimum mean square error estimation for discrete-time Markovian jump linear systems.IEEE

Transactions on Automatic Control, 39(8):1685–1689, Aug. 1994.
[7] O. L. V. Costa and S. Guerra. Stationary filter for linear minimum mean square error estimator of discrete-time Markovian

jump systems.IEEE Transactions on Automatic Control, 47(8):1351–1356, Aug. 2003.
[8] A. Doucet, N. J. Gordon, and V. Krishnamurthy. Particle filters for state estimation of jump Markov linear systems.IEEE

Transactions on Signal Processing, 49(3):613–624, 2001.
[9] A. Doucet, A. Logothetis, and V. Krishnamurthy. Stochastic sampling algorithms for state estimation of Jump Markov

linear systems.IEEE Transactions on Automatic Control, 45(2):188–201, 2000.
[10] R. J. Elliott, F. Dufour, and D. D. Sworder. Exact hybrid filters in discrete time.IEEE Transactions on Automatic Control,

41(12):1807–1810, Dec. 1996.
[11] W. Gander and W. Gautschi. Adaptive quadrature – revisited.BIT Numerical Mathematics, 40:84–101, 2000.
[12] A. Germani, C. Manes, and P. Palumbo. Polynomial filtering for stochastic systems with Markovian switching coefficients.

In Proceedings of the 42nd IEEE Conference on Decision and Control (CDC 2003), pages 1392–1397, Maui, Hawaii,
Dec. 2003.

[13] J. L. Hibey and C. D. Charalambous. Conditional densities for continuous-time nonlinear hybrid systems with application
to fault detection.IEEE Transactions on Automatic Control, 44(11):2164–2169, Nov. 1999.

[14] J. Hu, J. Lygeros, and S. S. Sastry. Towards a Theory of Stochastic Hybrid Systems. InThird International Workshop on
Hybrid Systems: Computation and Control, Pittsburgh, PA, 2000. Springer Verlag Lecture Notes on Computer Science,
vol. 1790.

[15] A. H. Jazwinski.Stochastic Processes and Filtering Theory. Academic Press, London, 1970.
[16] A. Logothetis and V. Krishnamurthy. Expectation maximization algorithms for map estimation of jump Markov linear

systems.IEEE Transactions on Signal Processing, 47(8):2139–2156, Aug. 1999.
[17] B. M. Miller and W. J. Runggaldier. Kalman filtering for linear systems with coefficients driven by a hiddem Markov

jump process.Systems and Control Letters, 31:93–102, 1997.
[18] J. K. Tugnait. Adaptive estimation and identification for discrete systems with Markov jump parameters.IEEE Transactions

on Automatic Control, 27(5):1054–1065, Oct. 1982.
[19] Q. Zhang. Hybrid filtering for linear systems with non-Gaussian disturbances.IEEE Transactions on Automatic Control,

45(1):50–61, Jan. 2000.

March 28, 2006 DRAFT


