State Estimation in Stochastic Hybrid Systems

with Sparse Observations

Eugenio Cinquemani and Mario Micheli

Abstract

In this paper we study the problem of state estimation for a class of sampled-measurement stochastic
hybrid systems, where ttmntinuousstatez satisfies a linear stochastic differential equation, and noisy
measurementy are taken at assigned discrete-time instants. The parameters of both the state and
measurement equation depend on digcretestateq of a continuous-time finite Markov chain. Even
in the fault detection setting we consider — at most one transitio feradmissible — the switch may
occur betweenwo observations, whence it turns out that the optimal estimates cannot be expressed in
parametric form and time integrations are unavoidable, so that the known estimation techniques cannot
be applied. We derive and implement an algorithm for the estimation of the statgsand of the
discrete-state switching time that is convenient for both recursive update and the eventual numerical

quadrature. Numerical simulations are illustrated.
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. INTRODUCTION

Over the last three decades, a substantial effort has been dedicated to the study of the so-called
Jump Markov Linear Systen{§MLS). These are linear Gaussian systems switching among a
finite number of linear modes indexed bydecrete state;. In general, measuremenjsof the
continuous state: also depend on. Switching follows the laws of a Markov chain independent
of the initial statex(0) and of the system inputs. Typical linear system estimation problems
carry over to JMLS, such as continuous state filtering and prediction. In addition, being the
trajectory ofq the outcome of an unobserved stochastic process, estimatidnooh the available
measurements is also a concern. However, for any fixed trajectarytioé system is linear time-
variant. It follows that the statistics af andy are mixtures of Gaussian distributions, and their
optimal (Bayesian) estimates are found &yeraging of conditional Kalman filterghis also
leads to an optimal estimation of state

Most of the literature deals with discrete-time JMLS, for which the complexity of the optimal
Bayesian estimates af and ¢ is exponential in time. Thus, a big effort has been devoted to
derive effectivesuboptimalalgorithms of reasonable (bounded) complexity, usually by eliciting
a fixed number of “most likely” discrete state trajectories and obtaining approximate estimates
by suitable averaging. In the Generalized Pseudo Bayes approach of Ackerson and Fu [1],
approximation is achieved by fitting a Gaussian distribution to the actual distribution of the
state. Tugnait [18] uses a Detection-Estimation strategy: at each step, the most probable mode
q(t + 1) is detected out of the possible transitionsq6f) according to a new measurement of
the system’s state. Blom & Bar-Shalom [2] keep track of a fixed number of trajecigrieby
“merging” those that prove “undistinguishable”, and pruning the unlikely ones. Sequential Monte
Carlo methods are considered in Douetdl.[8], [9], among others, whickexploreat random the
space of all possible discrete trajectories based on a convenient generating distribution. Further
tecniques are illustrated in the works by Costa [6], [7], Chen & Liu [3], Elliettal. [10],
Germaniet al. [12], and Logothethis & Krishnamurthy [16]. Less attention has been dedicated
to the continuous-time counterpart. The interested reader may consult the work by Hibey &

Charalambous [13], Het al. [14], Miller & Runggaldier [17], and Zhang [19].
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Both the discrete-time and the continuous-time models are unsatisfactory whenever continuous-
time information (estimates) about the system state needs to be drawn from measurements
sampledat a rate comparable to that of the system dynamics. In the present paper we introduce
a model where the continuous statevolves in continuous time according to a linear stochastic
differential equation, whereas noisy measurements are acquired at given discrete time instants.
The parameters of both the state equation and the measurement equation depend on a discrete
state ¢ which evolves in time as &ontinuous-time Markov chainSince the discrete-state
switch occurs almost surelgetweentwo successive measurements, ordinary JMLS estimating
techniques such as those listed aboaanotbe applied. In fact, since the optimal state estimates
will rely on a continuousmixture of Gaussian densities the estimation problem cannot be solved
in a parametric manner and numerical integrations over time intervalsoa@/oidable. In this
work we restrict our attention to a typical fault detection setting where all but one discrete state
are absorbing. We formulate a recursive estimation scheme that updates at each step a finite
number of parameters and allows to isolate out of the recursion the integral approximation,
which is performed at the very end of the computation. The use of such scheme is suitable
for the analysis of processes that are subject to sudden changes but observations are relatively
sparse. In medical applications, for example, measurements such as blood samples cannot be
taken too frequently, however the evolution of a disease or the effect of a therapy need to be

closely monitored.

[I. PROBLEM FORMULATION

Let 7 = {tx}ren, (WhereNy = {0,1,2,...}) be an arbitrary deterministic sequence, with
t) < tys1 andt, — oco. Consider a finitestate spaceQ = {0,1,2,..., N — 1} and letq denote
its generic element. Assume that we are given matrix functibns@ — R"*", G : @ — R™*"™,
H:Q — R and K : Q — RP*", which assign to each valuge Q a four-tuple of matrices

(Fq7 GQ’H(PKQ)'
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Consider the following dynamical model:

z(t) = Fypx(t)+ Gupul(t
0) = Fwr®+Guu® | oy o @)

e = Hyuyx(te) + Kok

wherez : R — R”, y : Ny — RP, are stochastic processes. The equations in (1) are called,
respectively, thestate and measurement equation€ontinuous-time noise:(t), t € R, and
discrete-time noise;, k € N, are zero-mean, normalized, white and Gaussian. We assume that
{u(t)}er, {vr}ren, and the initial conditionz(to) ~ A (10, %) are mutually independents,
andX, are given. Furthermore, we shall assume t{a}, ¢t € R, is a continuous-time, homoge-
neousMarkov chain(independent of u(t)}, {vx} andx,) with assigned transition probabilities
T; ;(0) = Plg(t +6) = j | q(t) =], i,j € Q, and initial probabilities, = P[q(ty) = q], ¢ € Q.

Our problem is the following: given measurements up to timethat isy* = {yo,..., v},
we wish to compute the least-squares estimate ottminuousstatex(t,):

P = in E[|lg(y*) —x(t)|]*] = Elz(t) | v* 2
Ty Sarg min [1lg(y*) — z(to)|[°] = E[z(te) | ¥*], 2)

(where M is the set of measurable functiogs: R*+)? — R") and at the same time the

posteriori probability distribution of thediscretestate:

pa(q) = P[a(te) = q|y"] . ©)

We will mostly restrict our attention to the casés= k (filtering) and/ = k + 1 (prediction).
Estimatez® is, as we shall see, a weighaglerageof a continuumof Bayesian estimates for
different linear stochastic systems —hence the supersaipt “

According to our model the discrete state switches among different valu@sbietweenwo
successive measurements with probability one —in principle, even more than once: this makes
exact estimation a formidable task. In the present paper, however, we shall limit ourselves to a
fault detectionsetting: i.e. we shall assume that nonzero stateg areabsorbing This induces

a constraint on the structure of thié x N transition probability matrix’(6) = [1; ;(4)], which
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Fig. 1. Graphical representation of Markov Process (4).

takes the form:

=N Aj 1 N
T(5) = i ) (4)
0 In_q
where {)\;,..., \x_1} is a given set of positive parameters,= ZZ-N:II N, and Iy_; is the

(N — 1)-dimensional identity matrix. See Figure 1 for the graphical representation of such
Markov process.

Given the restriction above, trajectogyt) is characterizedby the switching timet* (i.e. the
time at which the event takes place) and fiveal discrete stateg*. The joint probability
distribution of t* and ¢* is given by Fy. .- (t,q) 2 P[t* < t,¢* = ¢] = 32(1 — e )py + p,
forgq=1,...,N —1andt > 0; it is zero forq = 0 and is undefined fot < 0. If we introduce
the further simplifying hypothesis that = 1, i.e. that the discrete stateis initially zero, then
the switching time becomes exponentially distributeéd~ £(\) and random variables™ and
g* are in factindependentThe assumptiop, = 1 will be maintained throughout the rest of the
paper. In addition to the problem of computing the state estimates (2) and (3), we shall consider
the problem of computing the least-squares estimate of the switching time:

= in  E[||h(y*) = t*||*] = E[t*|y*]. 5
S min [[Ih(y*) = ¢*]]?] = E[t*|y"] (5)

Given the continuous nature of random variablg this problem is peculiar of the sampled-
measurement model we are considering and has no equivalent in the context of discrete-time

jump Markov systems. One key ingredient that we shall need to solve our problem will be

d
Serqir (6, 0) 2 o P[t* <t ¢"=q|y"]. (6)

March 28, 2006 DRAFT



In fact one may easily compute(-) andi: from the above density. Moreover, we will see in the
following section that estimates (2) can be computed as the weighted average of linear Bayesian
estimates, where the weight is given precisely by density (6). We shall denote this quantity

simply by f(t*,¢*|y*). Similarly, we shall writef(t*, ¢*) to denoted F. .« (t,q) = Age ™.

[11. THE CONDITIONED KALMAN FILTERING APPROACH

Consider the computation oifm Application of the total probability law to equation (2)

yields

f%k—Z/ Zor(t", q") F (5, ¢ ly*)dt, (7)

with 2o (t, ¢*) 2 Ela(to)|y*,t*, ¢*]. By Bayes'rule, f(t, ¢*y*) = f(y*[t*,q*) f(t*.a%)/ F(y"),
with

N-1 rtoo

6= [ et (8)

g*=1
In turn, f(y*|t*, ¢*) may be computed by the recursidty**|t*, ¢*) = f(yre1|y®, t*, ¢) f (Y51t ),
initialized by f(y°|t*, ¢*) = f(yo), Which is purely Gaussian. The computatiortpand ofp;.(q)
also follows from that off(¢*, ¢*|y*) by way of suitable integrations. Therefore, computing
estimates of the state as well as of the switching time amounts to computify’, ¢*) and
Flupaly® t, q%).

Consider the model obtained from (1) Eying the trajectoryq(-) according to given values
of t* andg*. According to this model, which will be called tlenditionedmodel, the optimal
estimator ofz(t,) given measurementg’ is preciselyz(¢*, ¢*). Since the conditioned model
is linear and Gaussiar,.(t*,¢*) may be computed by a Kalman recursion matched to the

specific system parameters [15]. In addition,

FWrra [y, 7. 0) = N (G (5 6, Mga (87, ¢7)), 9

whereg;, 1, (t*, ¢*) is the Kalman predictor for the model conditionedtomndg* and A1 (t*, ¢*)

is the corresponding innovations variance.
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Due to the continuous nature of random variafdlentegrations ar@ot avoidable. In general,
they cannot be solved analytically. Therefore, a key issue is to express the conditioned estimates
Zoe(t*, q), Jepk(t*, ¢*) and A1 (%, ¢*) in @ way convenient for both update and numerical
integration. Specifically, we wish to carry out the integrations by an adaptive quadrature approach
[11], such as Simpson’s method. The idea is to evaluate the integrand on a grid of points which is
adapted to the shape of the function by an iterative procedure. Based on this strategy, arbitrarily
low integration errors may usually be achieved at the cost of an increasing number of iterations.
In the present context, adaptation implies evaluating(t*, ¢*), Ur41x(t*, ¢*) and Ay (t*, ¢*)
on a set of values aof* which depends on the data and is different at every this case, the use
of standard Kalman filtering is largely inefficient, because a different matched filter needs to be
run for every different value of*. Instead, parametric expressions of the conditioned estimates
should be used, allowing for botexplicit evaluation at arbitrary values df and recursive
parameter update. Formulae as such will be derived in the next sections. In order to achieve
this, we shall interpre.(t*, ¢*), Je+1x(t*, ¢*) and Ay (t*, ¢*) in terms of the Kalman filter
designed for a discrete-time version of the conditioned model. The properties of the discrete-time
conditioned system will be used to rewrite the Kalman recursions so to make the dependence

on t* explicit. Algorithms for the computation oig}lk, pee @and f(¢*|y*) will follow.

IV. EXPLICIT EXPRESSIONS FOR THE CONDITIONEOKALMAN FILTER

Fix ¢*, an indexh and a value ot* € (¢, t,,1). Forz; £ z(t;), let us write the conditioned

system in the form of a discrete-time system:

T = At q) e + w

ye = Cp(t,q¢")x, + Di(t,q") vk

(10)

with Var(ux) = Qx(t*, ¢%), {ux} white and independent dfv;} andz,. We wish to choose the
parameters of (10) so to preserve the joint statistical description of the measurements and the

state of (1) at sample times. Integrating the state equation of (1) along the trajegtpfixed
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by t* and ¢*, one gets the following [4]. Fok < h (i.e. t* > tj1):

Ak<t*7q*) = ‘A\k’,(]? Qk(t*vq*) = Cjk,Oa

Ci(t*,q*) = Ho, Dy(t*,q*) = Ko;
for k > h (i.e.t* < t;):

Ak(t*> q*) = A\k,q*v Qk(t*v q*) = @\k,q*a

Ck(t*7q*) = Hq*a Dk(t*vq*) - Kq*;

for k = h (i.e. tp <t* <tryq):

Ak<t*7 q*) - Ek(t*, q*)gk(t*7 0)7 Qk (t*7 q*) - "Zk<t*7 q*)@k(t*a 0)11](: (t*v q*) + @k (t*7 q*)7
Ci(t*,q*) = Ho, Dy (t*,q*) = Ko,

with A, £ eFalteni=tn) while A,(t*,q) £ P~ for ¢ = 0 and Ay (t*, q) £ eFalte+1=1") for

q # 0. If the spectrum off;, is non-mixing(i.e. the spectra of, and —F;, are disjoint), then
Qu(t*, q) = J, - Ek,qu/T{q and Qx(t*, q) = J, — An(t*,q)J,AL(t*, q), where J, is the unique
(symmetric) solution of Lyapunov equatidf,J, + JquT = —GquT. Otherwise,@k(t*,q) and

@k(t*, q) must be computed by numerical integration; this instance is rather pathological an will
not be discussed here, see instead [4]. The conditioned estimates of section Ill may now be
expressed in terms of the following discrete-time Kalman equations in which, in principle, all

guantities depend oh, t* and ¢*:

Ty = Tgg—1 T Pk\kflokTA;;l[yk — CrZp)p—1] (1)
Py = Pijg—1 — Pop1CFA Cr Py
T = Az
k+1k kTk|k (12)

Poyip = ApPurAL + Qx

with A, = CkPMk_lC,ZJerDkT andyyr—1 = CrpZyp—1. Initializations are as followst,_; = z
and Fy -, = Fy. Note that the above equations @&eact in the sense that no approximation has

been introduced in the discretization process. However, one notesl theatd (), are constant
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w.r.t. t* for k # h. Similarly, C, D, never depend otr. On the contrary, fok = h, A, and
Q@ depend on the specific value of. Therefore, fork < h, the conditioned estimates do not
depend on*; for £ = h, the value oft* plays a role in the time update (12) only; and finally,
for £ > h, their expressions depend onhonly through the values of;. ), and P,q,. This
analysis translates to the following statements. Let superséfigighote the estimates computed
by running equations (13)(12) with parametersi, = ;1]630’ QL = @,@0, Cy = Hy, D, = K,
vk (i.e. as ifg never switched). These quantities do not depend.,otf or ¢*.

Proposition 1: Assume that* € (¢, t,+1). Then it holds that

(', q*) = 3?2|k, Pyt q*) = P;SW k< h,

£k+1\k(t*7q*) - j:2+1|].;;7 Pk+1|k(t*7q*) = P0+1|]<;7 k < h.
As a consequence, for < h, Api(t*,¢%) = Ajyy and grp(t,¢) = 9y, = Hodpy e

Next, denote with a superscriptf™the estimates obtained by running equations £i(1p)
for k > h + 1 with parametersd, = Ay, Qr = Qry» Cr = Hye, Dy, = K., initialized
by @np1n = 0 and Py = 0. Let @] 2 Ay (1 — P,I‘k_lﬂgl(AL)”Hq*) be the associated
predictor transition matrix [15]. These quantities dependv@nd ¢*, but not ont*. Also define
Ap & Hl (K KL) " He.

Proposition 2: Assume that* € (¢, t,41). Fork > h + 1, it holds that:

B, q") = &, + AL UT + SePosan(t,¢) Y T {aneapn (. ¢°) + Poyan(t, ¢*) Mifd3)
Pow(t*,q°) = Pl + Ap b U + SiProain(t, 0} Pogn (8, ¢ UL AL, (14)
Tpp et q") = jiTchwg + Up{I + SpProin (8, @)} {E (. @) + P (t*, ¢*) My}, (15)

Pop(t*,q") = P;IHW + Up{I + Sk P (., ¢*)} T Poan (5, ¢9)UL, (16)

whereU,, S, and ;. obey the recursions);, = CIDLU,H, Sp = U,€T_1(1+Aq*P,j|k71)—1Aq* Up_1-+
Sk—1 and My, = Ul | (HL (K KL ) 'y — (I + Aq*P,I‘k_l)*lAq*]\A]k) + M1, initialized by

U, =1, S, = 0and M, = 0. In turn, M, = d),i_lﬂkfl + P,jlk_ngl(Kq*Kgl)—lyk, with

M, = 0.
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Proposition 2 relies on algebraic results discussed in [5]. In+{Bj), the inversion of ma-
trix Ay, may be avoided thanks to the equalify’.Uj, = (I — Pl CLAL) T Cr) Uk

QuantitiesUy, My, S, depend orh andg* but not ont*. Therefore equations (13)16) provide
formulae for the conditioned estimates in termsipf 1, (t*, ¢*), Pui1n(t*, ¢*). Explicit formulae

in terms oft* are then obtained by means of relations (12) evaluatéd-at,, namely:

Thpn(t*,¢°) = At ") Ayt 0)Zp s

Popin(t, 0%) = At ) { Au(t, O)thAk(t* 0)7 + Qu(t*, 0) } Ap(t*, ") + Qu(t*, 7).

Finally, for everyq*, everyh and allt* € (t,t4,1), an explicit expression fof (yx.1|y*, t*, ¢*)
follows from those ofy;..x(t*, ¢*) and A1 (t*, ¢*) by means of equation (9). In particular, by
Proposition 1, it is constant w.r.t. to for h > k + 1. Hence f(yu1|v*, t*, ¢*) = fO(yr1|vb)

for t* > tgiq.

V. COMPUTATION OF THE ESTIMATES

For the sake of clarity, let us begin with the computation of the normalization factor (8). Fix
k € No. The recursive computation of(y*|t*, ¢*) yields f(y*[t*, ¢*) = T2y f(viralt' t*, @) -
f(yolt*, q*), where f(yo|t*, ¢*) = f(yo) does not depend ari and¢*. Following on the previous
section, for everyh = 0, ...,k — 1, consider the piece of integration wherec (t,,t,.1). For

i =0,...,h — 1, the term f(y;41|v", t*, ¢*) is constant w.r.tz* and ¢*, being determined by

@)y, and P Ford = h,... .k —1, it is expressed in terms of the parameté};l‘i(h,q*),
Pjﬂ‘l(h,q ), Si(h,q*), M;(h,q*) and U;(h, q*). Next consider the piece of integration where

* € (ty, +00). All terms f(y;1|y',t*,¢%), i =0,...,k — 1 are determined by:?w and Pﬁrw,

i.e. they do not depend ari and g¢*. Therefore, we shall rewrite the integration in (8) as

k— +o00

1 th+1
- (Hf waly's ) s Lo 2 [ e, a)
0

h= ty

where, for a generic indey, /7 = 1= f°(yisaly’) £ (yo)- The rightmost integral has a simple

analytic solution. To solve the integrations oV, ¢,41), h =0,...,k — 1, a routine is set up
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which takes fixed values aof € (¢, t,.1) and parameterszﬂlz(h,q ), Pjﬂ‘l(h,q*), Si(h,q%),
M;(h,q*) and U;(h,q¢*) as inputs and evaluates the integrand based on the explicit formulae
developed above. This routine shall be invoked repeatedly by an adaptive quadrature algorithm
so to achieve a desired accuracy. At stepthe overall computation requires the knowledge

of & Z+1|Z(h, a), th(h q), Si(h,q*), M;(h,q*) andU;(h,q*), fori = h,...,k —1 andh =

0,...,k—1; and of ij, for j = 0,...,k. For increasing values of, these parameters are

updated by Algorithm 1 below, which uses the formulae of section IV and the recuf$ien

FOCurly™ 1) -y

Algorithm 1 Iterative parameter update

{Initalization} computexk,k from &y, 10 Pl
To_1 = Ho computePy, from Pg,
Py, < P {Time updat@
=1 forallh:(),...,k—landallq*do
k = 0 compute;f:LH‘k(h,q ) from :Eklk(h,q*)
loop {Iterationg com "
. puteP! . (h,q*) from P! (h,q*)
computef©(yxly* ") from @, |, P, endfor " o
computef; from f_,, fO(yxly"~") computexkﬂlk from 29,
{Measurement updaje X computePy, ,,, from Pf,
for h=0,...,k—1 and all ¢* do {Initialization of the next step
compute :  from : for all ¢* do
o xy At « pt x
xk‘k(h,q ) xk|k_1(h7q )ka|k_1(haq ) §:£+1‘k(k7q*) <= 0
Pl (hq*) Pl (h.q") i
k|l d klk—1\'H 4 Pk“\k(k,q*) <= 0
Ur(h,q*) Up-1(h,q*) Ui (k,q*) i
Si(h, ¢*) Sk—l(h,q*)7Uk—1(Th,q*)a-~- Si(k, q%) = 0
. . . "Pk|k—1(h’ q*) ]T/fk(k,q*) <= 0
Mk(h,(]*) Mk—l(h7q ) k‘k 1(h q*) Mk(kvq*) < 0
Mol Miaha): Moa ), onae
~Ug-1(h,q*), P k|k— 1(h q)
end for end loop

The computation ofj,, py andE[t*|y*] is set up in a similar way. For instance, o= k,
the integration in (7) is recast as the following formula, which must be normalizef{#Y):

k-1 +o0

{f}?./tmrl xk:lk: 7q <Hf yz+1|y t* .q )>f(t*aq*)dt*}+ig|kf;8- f(t*,q*)dt*.

h=0 t
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VI. NUMERICAL EXAMPLE

We will now show numerical results concerning a specific example. We will compute prob-
ability py(-) and estimates; and iy, as functions of index. Let Q@ = {0,1,2}. Consider
system (1) witht;, £ k- T, T = 0.5, and parameterg, = 0, Xy = 0.1 - I,». We chose 4-tuples
(F,, Gy, Hy, K,) tO be

—04 0.6 0.2 0.1 1 0 01 O
¢ —05 0.1 0.2 01 0 0.1
wherecy = 0, ¢ = 1, cg = —2. That is, only the state evolution matrix changes wjth

This modifies the character of the continuous-time system from stable (], stable node) to
unstable ¢ = 1, saddle) or oscillatory¢ = 2, stable focus), according to the different spectra
o(Fy) = {-0.4,-05}, o(F) = {-1.22,0.32}, o(F,) = {-0.45 4+ i1.09}. In this settingy
is a noisy version of the state. As usual we assume that = 1; switching intensities are
fixed to \; = 0.06, Ay = 0.08. With this choice E[t*] = 1/\ ~ 7.14, P[¢* = 1] ~ 0.43,
Plg* = 2] ~ 0.57. We started off the simulations from(0) = 0. We then randomly generated
andy up to timekmpax- T', with kmax = 30, for a jump ofq(¢) occurring at timef = 5.25 < E[t*];
we considered botlf = 1 and g = 2 as final discrete state$ &nd g are thesample value®f
random variableg* and ¢*). The values assumed liy (i.e. t) and¢* (i.e.¢ = 1 and g = 2,
in turn) have been chosen manually by the programmer; note also the relative sparseness of
measurements. Computations were carried ouMiaTLAB. Functionquad — implementing
Simpson’s adaptive quadrature — was used to solve numerical integrations.

Figure 2 shows, for different values @f, the a posteriori density f(t*|y*) for the cases
g = 1 (left) and g = 2 (right). The evolution from the exponential prior to a density roughly
concentrated around the true switching instant may be observed. The evolution of egfiarate
posterior probabilityp,;(¢) are reported in Figure 3 faf = 1 and2. One may note that, even
before the switch happens,.(0) adjusts to values that are less than one, due to fluctuations
of the statex around zero. Also, fofj = 1, X grows in a quasi-linear fashion: this is due to

the memoryless nature of random variableIn fact one may prove the following bound [4]:

March 28, 2006 DRAFT



13

L1 k=2

oof L

0.8

0.7F

ty")
)

0.6

f(t'=
fit'=

0.5f

0.4
k=8

0 4 8 12

Fig. 2. Density functionf(t*|y*) plotted fork = 0,8,16 and 24. Left: § = 1; Right: § = 2. Dash-dotted lines mark the
actual switching timet = 5.25.
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Fig. 3. Evolution of the estimaté; (above) and of the probability functiopy,, (¢) (below; left bar:py,(0), center bar:
prik(1); right bar: py . (2)). Left: ¢ = 1; Right: ¢ = 2. Dash-dotted lines mark theectual switching timet = 5.25.

Prk(0)/A+prr(0)-tr < 5 < prr(0)/A+t. Whence the larger the value pfj.(0) is, the tighter
the bounds will be, as in the cage= 1. After the switch occurs a few measurements suffice
to both detect the new discrete stgtend estimate the switching time However, comparing
the plots suggests that is is relatively easier to detect a switch §rem0 (stable) tog = 1
(unstable) rather than 9= 1 (stable), which keeps stateclose to zero. In general, the more

“different” the modes are, the quicker the algorithm is to detect the switch.
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Fig. 4. Evolution of the state (solid line) and its estimates,,(¢) (dotted line) andty,,.; first and second component of
state and relevant estimates are considered above and below, in the ordef. £eft: Right: § = 2. Dash-dotted lines mark
the actual switching timet = 5.25.

Plots of the estimates of the continuous stataere drawn in Figure 4. The optimal estimates
iy, are compared with the true valuesand with the best estimatés: (¢, ¢) one could produce
in case the switching event were known in advance. In both the gasesandg = 2, estimates
iy, follow the benchmarkiy (2, ) quite accurately, even in the “transient” between the actual
switching instant and the time when,.(¢) clearly singles out the final value of the discrete

state.

VIlI. CONCLUSIONS

In this paper we introduced a switching state-space model in which the continuous: state
satisfies a linear stochastic differential equation, noisy measurements are taken at known sample
times and the parameters of the whole system change in time according to a continuous-time
Markov chaing of known statistics. Such model accounts for switchesveenmeasurements,
whence classical estimation techniques for JMLS cannot be applied.

We focused on a fault detection setting and solved the problem of the recursive Bayesian
estimation of the joint statér, ¢) at sampling times; from the collection of measuremens$
by optimal averaging of the conditional state estimates associated to every possible switching

event. Using the same tools, we also solved the problem of computing optimal Bayesian estimates

March 28, 2006 DRAFT



15

of the switching timet*. Due to the continuous-time nature of the overall system is non-
Gaussian, whence the optimal estimates cannot be expressed in a simple parametric form and
numerical integrations over time intervals are unavoidable. One major challenge is to express
the key quantitiesf (t*, ¢*|v*), f(x|t*, ¢*,y*) in a form that is convenient for both numerical
qguadrature and recursive update. We achieved this by a formal discretization of the system
conditionedon the switching event. The estimation algorithms we proposed update a finite
number of parameters by way of exact matrix iterations, whereas integral approximations are
isolated out of the recursion and are performed at the very end of the overall calculation. This

prevents accumulation of errors and yields an accurate computation of the estimates.
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