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Abstract of “Statistical Methods for the Assessment of Temporal Structure in
the Activity of the Nervous System,” by Asohan Amarasingham, Ph.D., Brown
University, May 2004

One of the fundamental questions in neuroscience concerns the nature of the neural code:
how the information, or signal, that one neuron communicates to others is embodied in
its biophysical processes. A basic controversy in investigations of this topic involves the
rate-coding hypothesis. This is roughly the hypothesis that the information conveyed by a
neuron in a sequence of action potentials (or spikes) is contained wholly in the number of
spikes which occur in coarse temporal intervals on the order of several tens or hundreds of
milliseconds. Alternatively, the temporal coding hypothesis holds that the precise location
of spikes (for example on millisecond time scales) conveys information. We examine statisti-
cal techniques which are employed in the analysis of experimentally-obtained measurements
of spike trains, with a view toward elucidating this controversy. A recurring theme which we
emphasize is the assumption of repeatability which underlies estimation-based approaches
to such analyses and which, while common in general in statistical methodology, is problem-
atic for these investigations in light of the available experimental knowledge. With these
issues in mind, we describe statistical models for spike trains which bear on rate versus
temporal coding distinctions, and develop hypothesis tests for the purpose of relating the
models to experimental data. In particular, we focus on applications to two controversial
phenomena in in vivo cortical physiology: the variability of spike counts, and the phe-
nomenon of synchronous spiking among simultaneously-recorded neurons. Our goal is to
develop definitions and methodology to assess the existence and nature of fine temporal
structure in the neural records using assumptions which are compatible with the theoretical

goals of neuroscience.
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And in the midst of this wide quietness,

A rosy sanctuary will I dress

With the wreath’d trellis of a working brain,
With buds, and bells, and stars without a name
John Keats

Yesterday, I thought I was gathering wood,
and today, when I returned,
my whole house was on fire.

I’d never been taught how scarcely
Nature lays herself bare
in her own light.



Chapter 1

Introduction: the Neural Code

One of the fundamental questions in neuroscience concerns the nature of the neural code:
how the information, or signal, that one neuron communicates to others is embodied in its
biophysical processes, generally, and, in particular, in the sequences of action potentials or
spike trains that are transmitted through axons, and which apparently form a fundamental
basis of activity in the nervous system.

The oldest model for the neural code is the rate-coding hypothesis, which holds, roughly,
that the signal embedded in a neural spike train is an underlying rate, varying on coarse
time intervals on the order of several tens or hundreds of milliseconds; the rate in these
intervals is reflected in the number of spikes which they contain. The precise placement
of the spikes is random and immaterial. This view is in many ways a dominant paradigm
in neuroscientific thought and reflects, in part, a great deal of the history of behavioral
neurophysiology, which consists in the main of collecting observations of covariations of
(temporally-coarse) firing rates with environmental and behavioral variables, measured by
a variety of methods, from single-electrode recordings in anesthetized animals, to modern
multi-electrode and imaging studies in awake, behaving subjects. An alternative model for
the neural code, whose implications we will explore here, often called the temporal coding
hypothesis, holds that part of a neural spike train’s signal is embedded in the fine, perhaps
millisecond-scale, temporal structure of spike positions. Commonly discussed alternatives
of this nature include the synchronous firing of spikes across populations of neurons (due to
empirical as well as theoretical motivations), a topic we will explore in some depth in this
work, and reliable temporal sequences of spike activity within and across multiple neurons
(synfire chains [1]).

The distinction between the rate-coding and temporal-coding hypotheses can be some-
what difficult to make precise, certainly because the two models represent points along a
continuum, a point of view we share with many authors. Further, distinguishing them ex-
perimentally (regardless of the choice of definition) presents its own difficulties. A primary
difficulty is that the implications of the presence of covariation between neural phenomena
and stimulus aspects for theories of neural coding is somewhat unclear. Just because firing
rates in V1, for example, covary with the orientation of a bar of light does not mean that V1
neurons code for orientation through firing rates; the covariation could merely be epiphe-
nomenal, a reflection of some more central processes. The same goes, practically without
saying, for observations of covariation with higher-order temporal structures (such as, for
example, reproducible, finely-structured patterns of firing among neurons).

Putting aside the question of coding, however, it is natural to suggest that the existence
of structure such as firing rates or temporal patterns of some form is a prerequisite for the



use of that structure in coding itself. Hence a great deal of research has been devoted to the
search for various forms of structure in neural spike trains, and the subsequent association
of such structures with behavioral and environmental events. As Dayan & Abbott have
advocated:

“The debate between rate and temporal coding dominates discussions about the neural
code. Determining the temporal resolution of the neural code is clearly important, but
much of the debate seems uninformative. We feel the central challenge is to identify rela-
tionships between the firing patterns of different neurons in a responding population and
to understand their significance for neural coding.”

The work described here is a contribution to questions that are preliminary, and perhaps
prerequisite to, such investigations: that is, how are we to identify firing patterns among
different neurons in a population from the available experimental evidence? As stated, this
is essentially a question of statistical inference.

An essential phenomenon of in wivo, particularly cortical, spike trains, is their vari-
ability. Present an optimally-tuned stimulus to a neuron (interpreting the word ‘optimal’
generously) many times, and the spike response usually varies considerably. As a conse-
quence, an important practical problem in the statistical modelling of neural spike trains
is the identification of models that usefully capture the variability of the neural response.
The most natural and simplest model is the inhomogeneous Poisson process [11]. A Poisson
process with rate function (%) is a stochastic point process on [0,T] with the following two
properties

e N(s,t), the random variable corresponding to the number of spikes between s and ¢
has expected value

t
E[N(s,1)] = / Au)du. (1.1)
S
where 0 < s <t <T.
e N(s,t) and N(u,v) are independent if s <t < u < w.

These two properties are indeed sufficient to uniquely characterize the process. It turns out
then that the distribution of N(s,t) is

e~ Ja Mw)du fst)\(u)du *
P(N(s,t) =k) = Ec! ) ) (1.2)

ie., N(s,t) is a Poisson random variable with rate |, : A(u)du. The special case where
A(t) = X is a constant is called a homogeneous Poisson process.

As a consequence, the Poisson model, particularly with slowly-varying rate functions
A(t) has a natural resonance with the rate-coding hypothesis, and it underlies, though often
implicitly, a great deal of the analysis and interpretation of spike trains. The rough idea
is that the event or signal that the spike train encodes in fact merely determines a slowly-
varying rate, and the observed variability in the spike train is in fact due to the resulting
(Poisson) noise.

Interpreting variability in this light is tricky, however, as a simple and familiar thought
experiment can illustrate. Consider the following idealized model of a neuronal response
during a 100 millisecond recording interval in response to, say, a bar of light in an iden-
tified receptive field. Suppose that what the neuronal response actually encodes is in fact
a far richer state space than the qualities of the bar of light, and involves other contex-
tual elements such as the attentional state of the monkey, the past history of the neuron,
the states of other neurons, other aspects of the visual stimulus, etc. (One could, quite



reasonably, compile an unending list of such alternatives.) Now imagine that this larger
state space contains exactly 2! alternatives (the specific numbers are not important here),
and furthermore that the neuron codes for them ezactly deterministically, to within, say,
1 ms resolution: there is a one-to-one mapping between the state space and each of the
2100 possible spike trains. This neuron is notably a paradigm for the fine-temporal coding
hypothesis. Now we present the bar several times. How does the neuron behave? Clearly, it
depends on the probability distribution on the state space, or particularly, the probability
distribution on the state space conditioned on presentation of the bar. For example, if we
imagine that conditioned on presentation of the bar, all configurations of the state space are
equally likely, then we would in fact observe, for the discretized spike train, a homogeneous
Bernoulli process (with rate 1/2), the discrete cousin of the homogeneous Poisson process
and the prototypical example of a temporally structureless stochastic process. Of course,
from the perspective of physics, this has a familiar ring: it is difficult to meaningfully dis-
tinguish randomness induced by our uncertainty of the event (to be signalled) from the
noise inherent in the (signalling) process.

The problem here, of assuming repeatability in the process underlying the neural re-
sponse in order to make inferences about that process, is a critical issue in behavioral neuro-
physiology because it defeats a great deal of statistical methodology which has been crafted
in general for cases where one assumes some form of repeatability in the data-generating
process. On the other hand, the issue has at its heart central questions: What theories
are our data even capable of distinguishing between?, and What is the relevance of those
theories for neuroscience?.

A concrete example may serve to cohere these questions. One of the problems addressed
in this dissertation concerns the occurrence of synchronous spiking among pairs of simulta-
neously recorded neurons. We observe, for example, a peak in a cross-correlogram of two
neurons at time lag 0 (see Figure 3.4 or 3.6 for an example), indicative of synchronous fir-
ing, and ask: is the peak significant, or in other words, is the quantity of synchronous firing
more than one would expect from chance? The notion of chance, of course, presupposes a
source of variability in the spiking process, and we are thus led to the problem of modelling
that variability. The rate-coding hypothesis supplies the classical model: the environmental
context determines a rate function, and the spike times are generated by a Poisson process
with the associated rate function. In this sense, assessing the significance of synchrony could
be viewed as an attempt to test the rate hypothesis.

Generally, approaches to this analysis have hinged on the assumption of repeatability.
For example, suppose we represent the response of two neurons after repeated presentation
with a stimulus n times, X*(¢) and Y*(¢), so X* represents the response of neuron X during
trial 4, and Y represents the response of the neuron Y during trial i. Traditional approaches
to assessing synchrony in this case involve (sometimes implicitly) estimating the probability
of firing at each time, independently for each neuron, by averaging across the n trials
[39, 10, 41], under a null hypothesis that i) X and Y are independent, ii) X (s) and X (¢) are
independent for s # ¢, and iii) Y'(s) and Y (¢) are independent for s # ¢. This is, of course,
a Poisson-style assumption, unless time is discrete, in which case it is the discrete-analogue,
an inhomogeneous Bernoulli assumption (see below). The stimulus simply determines a
rate function for each neuron, and thus, conditioned on the stimulus (or, equivalently, the
rate), the neurons act independently, and thus their spikes do as well.

Brody [9, 10] suggested these analyses were problematic from the perspective of the fine
temporal structure debate, by pointing out some models that were alternative to such a null
hypothesis but nevertheless shared the spirit of the rate coding hypothesis: so-called latency
and excitability covariations. The models he described were of the mixture-of-Poisson type,
in which each neuron has a stimulus-determined rate function but the rate function is



shifted in time by a trial-varying latency parameter, and scaled by a trial-varying gain
parameter. However, the trial-varying latency and gain parameters are common to both
neurons (hence latency and excitability covariations). In such a case, the latency and gain
covariations can lead to the detection of significant synchrony, using typical methods, under
the standard Poisson null hypothesis. In principle, one could accommodate identifiable
sources of variability like these (i.e., latency and scale), but it is of course not clear that
this even is a sufficient relaxation. The neuroscientific motivation for this alternative is that
slow changes in state (such as could be due to attention, for example) could “masquerade”
as synchrony due to fine temporal structure. This is, then, just another version of the sort
of difficulties introduced in the thought experiment above. Furthermore, it is not at all
clear why such “changes in state” could be adequately accounted for by simply introducing
a trial-varying scale and latency parameter.

This can be a recurring problem with the methods employed to analyze spike trains.
Often a problem is identified which invalidates a typical approach to spike train analysis
(such as, in this case, slow changes in state), and then a generalization of the underlying
assumptions is sought which addresses the problem (such as latency and scale parameters).
Then a generalized solution is chosen which often seems less to do with neuroscientific
issues than statistical convenience (and convenience, in this sense, tends to take the form
of familiarity). To provide one of many possible examples of this, in his textbook [29],
after defining the notion of a stationary process, and then suggesting its shortcomings as a
neural model, Koch writes: “Since true stationarity is very difficult to verify in practice, it
is common to use the less stringent concept of a wide-sense or weakly stationary process...”
(p- 352). It is certainly easy to see the problems with using stationary process theory
for spike trains, but it is not so easy to see how wide-sense stationary processes (in which
not the entire process, but just the mean and autocorrelation are time-invariant) are much
more relevant, either. Their main virtue appears to be that they are a generalization that
is classically well-understood.

Allowing for abitrarily general models of the sort suggested by these difficulties, on the
other hand, leads to identifiability issues. For example, let us model a spike train as a
mixture of inhomogeneous Bernoulli processes. An inhomogeneous Bernoulli process is the
discrete-time analogue of the inhomogeneous Poisson process. A discrete-time stochastic
process X = (X1, Xo,..., X7) on 1 < i < T is an inhomogeneous Bernoulli process with rate
function 71,79, ..., r7 if

T
P(X) =21,Xy =29,... X7 =27) = 1_[7";”(1 — )17
i=1
V(z1, 22, - 27) € {0,1}7.

The properties of independence (of the X;’s) and the rate function make the analogy to the
(continuous-time) Poisson process, and indeed one can obtain the Poisson process by taking
suitable limits of finer discretizations of Bernoulli processes. Despite artifacts introduced
by discretizations (which are also present in data collection, nevertheless), the Bernoulli
process is a convenient model to illustrate more cleanly the essential identifiability problem.

Suppose, now, in the spirit of the above thought experiment, one wishes to test the
hypothesis of a mizture of inhomogeneous Bernoulli processes with respect to synchrony.
Immediately we encounter the following dilemma: every discrete-time stochastic point pro-
cess is a mizture of Bernoulli processes.

To see this, suppose that we have an arbitrary discrete stochastic point process, Y =
(Y1,...,Yr), on a time interval of length 7. This merely means there is an assignment of
probabilities

(1.3)

P(Y =y)=py Vye{0,1}7, (1.4)

4



which additionally satisfies

Y, py=1 (1.5)

ye{0,1}7

Each outcome y of the process in the sample space {0,1}7 however is itself a Bernoulli
process with rate function (r1,...,77) = (y1, ..., yr): this is just the tautological observation
that one can represent any deterministic discrete time point process with a Bernoulli process,
simply by restricting the rate function to the exact values of 0 and 1. Thus to each outcome
y we assign a unique rate function ry = (y1,y2, ..., Yn), and we assign to each ry the mixture
probability py. The resulting mixture process Z, is a mixture of inhomogeneous Bernoulli
processes, which has probabilities

P(Z=y)= Z P(Z = y|rs)p. = py, (1.6)
2€{0,1}T

i.e., Z has the distribution of the original process Y.

This has the following implication: for the discretized spike train, if you give up the
repeatability assumption, then modeling the spike trains with Bernoulli processes is tau-
tologically valid. The same observation is even more general, and can include arbitrary
sequences of processes which are not independent across trials, for the same reasons. In
other words, the model is maximally arbitrary, and if we were to invoke it as a null hypoth-
esis, there would be no alternatives, and correspondingly no role for a hypothesis test to
play.

These observations suggest that the difficulty of assuming traditional forms of repeatabil-
ity in the spiking process makes it hard to infer facts about the nature of the spiking process
from general observations of variability in neural spike trains. The converse is not true: ob-
servations of regularity in spiking processes, on the other hand, are not necessarily subject
to our uncertainties about repeatability, inescapable as they might be. Forms of regularity
in spike trains can reveal temporal structure in the processes underlying nervous system
activity, and thus offer the promise of shedding light on the rate versus temporal-coding
hypotheses. This fact forms the conceptual basis for this dissertation. From this perspective
we will examine two controversial phenomena in in vivo cortical physiology: the variability
of spike counts, and the phenomenon of synchronous spiking among simultaneously-recorded
neurons. Our goal is to develop definitions and methodology to assess the existence and na-
ture of fine temporal structure in the neural records using assumptions which are compatible
with the theoretical goals of neuroscience.



Chapter 2

Spike Count Variability and the
Poisson Hypothesis

2.1 Introduction

A statistic commonly employed to assay variability in spike trains is the empirical variance-
mean ratio of the spike counts (the Fano factor) across trials [52, 45, 54]. For example, the
spike counts of an inhomogeneous Poisson process, a frequently used model, are distributed
as a discrete Poisson random variable, for which the mean and variance are identical. In
general the spike counts of in vivo cortical spike trains (in contrast perhaps to subcortical
structures) have been found to be as variable as Poisson processes and perhaps even more
so [45, 29]. As Shadlen and Newsome have written: “When an identical visual stimulus is
presented for several repetitions, the variance of the neural spike count has been found to
exceed the mean spike count by a factor of 1-1.5 wherever it has been measured.”

The variability of spike trains bears on theories of neural coding. A range of hypotheses
have been offered. At one extreme, the existence and precise location of every spike is
significant. At another extreme, spikes are the events of a slow-varying inhomogeneous
Poisson process (the “Poisson hypothesis”). Fine-temporal coding would be more likely to
yield highly regular spike counts from repeated trials, whereas the Poisson hypothesis, by
virtue of the Fano factor, limits the degree of regularity across trials.

Inferring a lack of precision in the neural code from observations of variability is tricky.
One line of reasoning is that the existence of variability under identical conditions, when
the neuron is presumably signaling the same event, reflects noise (e.g. Poisson noise) in
the signaling process itself. However, it is certainly plausible that a significant source of
variability is the experimenter’s own uncertainty about hidden, contextual variables which
the neuron is encoding (and which may be, for example, internal to the brain), such as
attention, or the states of other neurons. Furthermore, the variability of overt behaviors
that are difficult, but not impossible to measure, like precise eye position, have been shown
to contribute to at least some of the variability commonly reported in cortical responses
[24]. As Barlow wrote about neural responses in 1972: “their apparently erratic behavior
was caused by our ignorance, not the neuron’s incompetence.”

Regularity, on the other hand, cannot be explained away so easily, and in this light
evidence of finer temporal structure, particularly deeper in cortex, is especially intriguing.
Recently, Muller et al. [37] have observed, from recordings of V1 cells in primates presented
with sinusoidal gratings, that near stimulus onset the empirical variance-mean ratio is strik-
ingly smaller than unity (in contradiction to the Poisson hypothesis). Our purpose in this
chapter is twofold. First, we present evidence consistent with that of Muller et al., gathered
here in cells from anterior IT of primates presented with more complex visual stimuli, of
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Figure 2.1: Basic fixation task performed by the monkeys. In a single observation period,
between three and five individual visual stimuli were flashed on and off as the monkey
fixated a spot in front of the images. At the end of the trial, the monkey received juice
reward for reacquiring the spot as it jumped from the center of the screen to one of four
randomly selected peripheral locations.

low variance-mean ratios particularly near stimulus onset. Second, we derive a simple and
exact test of the Poisson hypothesis with respect to the variability of spike counts across
trials. Using this test, we are able to reject the Poisson hypothesis, with a notably small
amount of data, predominantly near stimulus onset. We are able to argue, furthermore,
that these results are not due to the effects of the refractory period per se, but rather reflect
regularity in the neural response.

2.2 Methods

2.2.1 Subjects and Materials

We use data whose collection has been described previously [46, 47]. In brief, following
initial behavioral training, two rhesus monkeys underwent aseptic surgery for the placement
of head restraint and a scleral search coil. All surgical procedures were carried out in
accordance with the NRC Guide for the Care and Use of Laboratory Animals. Following
surgery, the monkeys were trained to fixate a small yellow spot (0.25 degrees) appearing
in the center of a CRT monitor. After acquiring the spot, between three and five visual
images, 4 deg on a side, were flashed behind the spot for either 800 or 1100 ms. Interstimulus
intervals (during which only the spot was visible) were set to the same duration as the
stimulus presentation duration (Figure 2.1). Visual stimuli were selected from a set of
commerically available stock photographs of animals, natural scenes, and man made objects
(Corel Corp).

During stimulus presentation, the monkeys were required to maintain fixation within a
virtual square region 2 deg on a side. During data collection, the digitized eye position was
stored to disk every 5 ms (200hz). In addition to keeping their gaze directed within the
virtual window, the monkeys learned to follow the spot as it jumped from the center of the
display to a new position. Upon refixation of the spot, they were rewarded with a drop of
apple juice.



2.2.2 Single Cell Recordings

Once the animals were trained in the fixation task, a ball and socket chamber housing
an 18 gauge guide tube was placed directly above the anterior temporal lobes (AP: +18,
ML: +19). Single unit recordings were made by lowering glass coated platinum-iridium
electrodes by microdrive (Kopf Model 650) into the lower bank of the superior temporal
sulcus (STS) and the lateral convexity of the inferior temporal gyrus, just posterior to
the anterior middle temporal sulcus (AMTS). The neural signal was amplified using a
Bak A-1 amplifier with remote head stage, and the conditioned signal was fed into a time-
amplitude window discriminator. Individual cells were isolated while the animals performed
the fixation task. Each cell was tested with at least eight stimuli, but often with many
more (up to 80). Note that a significant effort was made to subselect visual stimuli from
the relatively large test set that effectively elicited robust neuronal responses, as judged by
online rasters.

2.2.3 A Statistical Test

Consider a series of spike trains from a single neuron obtained from n separate trials (each
involving, for example, presentation of the same stimulus):

{t 835 83 coes ty 1 {81, 83,83, o T 1o ooy {21585, st 3
where there are m; spikes in trial j, and t? is the time of occurrence of the i’th spike in the
7’th trial, relative to a stimulus onset at time 0.

A homogeneous Poisson process of rate A is a statistical model of the spike train which
is characterized by two conditions: i) the events in non-overlapping time intervals are in-
dependent, and ii) the expected number of spikes in a time interval of length 7' is AT
An inhomogeneous Poisson process is the nonstationary analogue of this: events in non-
overlapping time intervals are independent, but the expected number of spikes is governed
by a time-varying rate A(t).

Our null hypothesis (Hy) is that my,mg, ..., m, are independent Poisson random vari-
ables. This contains, as a special case, the hypothesis that the recordings come from inde-
pendent and possibly inhomogeneous Poisson processes.

Let /i be the mean number of counts,

1 n
o= Ez_zlmz

In section 2.3.1 we derive the following exact statistical test, the Poisson Variability Test,
for Hy: Reject Hy at level « if

n
S m? < f(n, o, i)
=1
We provide a simple algorithm for computing f, as well as links to tables with pre-computed
values.
The test has power towards alternative hypotheses that would predict more repeatable
observations of spike counts than the Poisson hypothesis.

2.2.4 Grouping the Tests

To group the tests, we would like to assess the significance of the number of rejections
of the Poisson variability test in a given epoch across a collection of cell-stimulus pairs,
under the null hypothesis that every cell-stimulus pair is independent. One idea is to apply
a binomial test to the number of rejections across the population of cell-stimulus pairs,



assuming that the likelihood of rejection is a = 5%, and that the tests are independent.
This is conservative, however, especially because one cause for a failure to reject the null
hypothesis in a single cell-stimulus pair might simply be a lack of data, either in the form
of a paucity of trials or a paucity of spikes. Indeed, for some values of n, the number of
trials, and of N, the total number of spikes (i.e., Y ;- m;), it is impossible to reject the
null hypothesis for any configuration of the data. This is the case if P(}." ;| X? < ki) > «

where
n

: 2
ky = m1,.T7ITLI}1€N,Zmi’ (2.1)
2imymi=N =1
where N represents the non-negative integers and X1, Xo, ..., X, ~ M(N;1/n, 1/n,...,1/n).
The effect is more general: in other cases it is not necessarily impossible to reject the null,
but simply less likely than 5%. One can view this formally as an effect of the discreteness
of the multinomial statistics, which correspondingly becomes more pronounced as the total
number of spikes gets smaller. We can take account of this, by conditioning further, on the
number of trials n and the total number of spikes nji for each cell-stimuli pair, and then
grouping the results, as follows.
Let

T*(TL, aala) =P (Z XZZ < f(na aala))
i=1
where X1, ..., X, ~ M{nji;1/n,1/n,....,1/n}.

Then for a given cell-stimulus pair k, if Y is the rejection event,

Y := {rejectHp} := {me < f(n, a,ﬂ)} , (2.3)

i=1
then by the definition of f we have

P(reject Hy|n, i) = P(Y|n, i) <7*(n,a, i) < a. (2.4)

Analogously for a collection of N cell-stimulus pairs, if we denote Y; the rejection event for

cell-stimulus pair ¢, fi; the average number of spikes per trial, n; the number of trials, then
we have

P(Y;|ng, i) < r*(ni, o fi;) < a Vi (2.5)

Then denoting 7 = (n1,...,nx), we define

g7, iy ey AN = min{t : P (Z Z; > t) < ﬁ} (2.6)

=1

where Z1,Z5,...,Zn are independent {0,1} (Bernoulli) random variables with Pr{Z; =
1} = 7*(n4, @, f1;). The number of rejections under the Poisson variability test is y ;. ; Y;
and the critical region {Zf\;l Y; > g(#, fi1, ..., an)} tests the hypothesis that the observed
number of rejections occured by chance, at level 8. Given a particular value for 3, the
critical value ¢(7, fi1, ..., in)} can be computed efficiently by recursion (see the Appendix).



2.3 Results

2.3.1 Derivation of the Poisson Variability Test

Our null hypothesis (Hp) is that my, ma, ..., m, are independent Poisson random variables.
Let us designate the (unknown) rates as A1, Ao, ..., A. Define the empirical mean and vari-
ance statistics as usual:

. 1 < A2 1 2
pimg gm0t oy mim i
1=

=1

We seek a hypothesis test under our null which has power when 62//i is small, or more to
the point, such that 62 is small, given fi. It is equivalent to use Yoy m? in place of &2,
since they preserve the same order when ji is fixed.

One way to proceed is to form a partition of the sample space based on 4. We seek
f(n,a, i) such that

p (Zm2 < f(n, e, 1)

=1

g) <a Vi VPeH,. (2.7)

Then the event {}_"  m? < f(n,q,fi)} will be an a-level hypothesis test, since:

P (Zm? < f(n, a,m> =) P (Zm% < fn, )
i i=1

i=1

ﬂ) P(p) < Zﬂ:aP(ﬂ) 2.9
=a VP e€H,

To derive f(n,a, i), it is straightforward to apply the following proposition. We defer the
proof and other technical details to the appendix.

Proposition 1. If mq,ms,...,m, are independent Poisson random wvariables with rates
A1, A2, .oy Ap, TESPectively, then for all v, and for all i, we have

n n
max P m; <r|j)=P XP<r
AL A2 An (; ' M) (; L )

where X1, X2, ..., Xy, are distributed multinomially with parameters {nj; 1/n,1/n, ...,1/n}.

A multinomial distribution generalizes the binomial distribution to a many-sided die,
and has the form

N i s .
(m1 mo mn) H?:l pzm if Z?:l m; = N

P(Xi=m1,Xo=m9,... X, =m,) =
K b2 2 ) {O otherwise,

where p1,p2, ..., pn, satisfy p; >0 and Y p; = 1.
Thus we have

fn,a, i) = max{k:P(inSk)Sa}

i=1
where X1,..., X, ~ M(np;1/n,1/n,...,1/n)

There are at least two practical ways to compute the multinomial probability associated
with f. It can be computed exactly, as we do in the experiments reported below, by dynamic

10



programming [6] (see the appendix), provided that > ; m; and Y 1 ; m? are not too large.

Or it can be computed approximately, by Monte Carlo methods (see the appendix). A table
of values can be found in the appendix.

It is worth pointing out that the Poisson variability test covers a more general null hy-
pothesis: mj,mg,...,my, are conditionally independent and Poisson distributed, given the
Poisson rates A1, A2, ..., Ap. Thus the null hypothesis includes: a) trial-varying inhomoge-
neous Poisson processes (as stated above), but also b) Cox processes, in which a particular
inhomogeneous rate function is chosen, randomly, at each epoch for each neuron from an
ensemble of possible rate functions.

2.3.2 Analysis of Cell Recordings

Our interest in the trial to trial variability of inferotemporal cells emerged as a consequence
of the simple impression that, given an appropriate stimulus, neuronal responses at least
seemed reliable, especially near the onset of the stimulus (Figure 2.2). Given the prevailing
view that cells throughout cortex are invariably irregular, we set out to more rigorously
explore this issue.

We divided the neural response into epochs, consisting of disjoint equal-length time
intervals, beginning 100 ms after the onset of presentation of a stimulus. We used intervals
of length 100 ms and 50 ms in the experiments described below. The pairing of a cell and a
stimulus presented repeatedly to the cell we labelled a cell-stimulus pair. For a fixed epoch,
associated with each particular cell-stimulus pair are the data points m1,me, ..., my, of spike
counts for each of the n presentations of the stimulus to that cell during the epoch. For
each cell-stimulus pair, m1,mg, ..., my, (in particular the statistics > ; m; and Y 1 | m?),
determine the p-value, the minimal value of « that the Poisson variability test will reject,
which we compute as per above.

We analyzed 328 cell-stimulus pairs, drawn from recordings from a total of 27 cells (18
from the first monkey and 9 from the second). These cells were selected on the basis of
their clear visual response to at least one visual stimulus and based on the quality of the
single unit isolation, which was as high as possible to prevent the uncertainty introduced
by a noisy signal from contaminating our data. The number of presentations n varied with
each cell-stimulus pair, ranging from n = 2 to n = 14, with a median value of 7.

Using 100 ms epochs, 47 of the 328 pairs were rejected by the Poisson variability test at
a significance level of 95% in the 100 to 200 ms period following stimulus onset. In contrast,
the number of rejected cell-stimulus pairs decreased rapidly and progressively at subsequent
epochs, further away from onset: 19 rejected pairs between 200 to 300 ms, 11 rejected pairs
between 300 and 400 ms, and fewer further on. Similar trends are evident for 50 ms epoch
partitions, as illustrated in Figure 2.3.

To assess the meaning of the number of rejections, we calculated the significance of
the number of rejections of the Poisson variability test under the assumption that the
results of the individual cell-stimulus pair tests are independent (as discussed in Methods).
Consistently, the significance of the number of rejections is very high for the 100 ms to 200
ms period (significance 1-10733), and decreases rapidly at subsequently epochs. These and
similar trends for the 50 ms epoch partition are also illustrated in 2.3.

2.4 Discussion

2.4.1 Small Samples

The statistical significance of the results is somewhat surprising in light of the small sample
sizes, ranging from 2 to 14 per cell-stimulus pair. Indeed, some of the observations are

11
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Figure 2.2: Reliable response from a single cell, indicating that particular stimuli can elicit highly regular
trial-to-trial spike discharges from a neuron. A. Response to three of the stimuli used during testing of
Each plot includes the spike rasters aligned to the onset of the stimulus (time indicated by the
At the bottom of each plot is an estimate of the instantaneous firing rate.
Enlarged view of the aligned spike times for all responses to the most effective stimulus show in A (taken
from two separate blocks). C. A temporally expanded view of the spiking activity near stimulus onset, with
the number of spikes occuring in the 50 ms shaded area indicated to the right of each trial. Note that the

this cell.
left vertical green line).

Time after stimulus onset (n s)

mean of the counts far exceeds the variance of the counts (ratio: 7.6 times).
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Figure 2.3: Summary of the rejections from the Poisson variability test across a total of
328 cell-stimulus pairs for each epoch. The 800 milliseconds following stimulus onset were
partitioned into disjoint intervals of equal length called epochs. Epochs are labelled along
the x-axis by the starting time of the interval with which they are associated. The first row
summarizes the results from the 100 ms epoch partition, and the second row from the 50
ms epoch partition. The first column illustrates the total number of rejections vs. epoch.
The second column graphs the epoch-by-epoch significance of the number of rejections of
the Poisson hypothesis, towards excess regularity, under the assumption that the results of
the individual cell-stimulus pair tests are independent (see Methods, Section 2.2.4). For the
first three 100 ms epochs (100 ms, 200 ms, and 300 ms; first 3 bars, 1st row, 2nd column)
the significances are 1 — 10733,1 — 107, and 1 — 1073, respectively. For the first four 50
ms epochs (100 ms, 150 ms, 200 ms, and 250 ms; first 4 bars, 2nd row, 2nd column) the
significances are 1 — 107°,1 — 10723,1 — 10719, and .9992.
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so small that rejection of Hy at 95% is mathematically impossible (see the discussion in
Section 2.2.4). For example, even if every 100 ms post-stimulus epoch had ezactly 2 spikes
(corresponding to the most reliable outcome at 20 Hz), the Poisson variability test would
only achieve 95% significance with 4 or more trials. In fact, to take one example, in the
analysis of the 100 ms to 200 ms epoch, for 50% of the cell-stimulus pairs it was impossible
to reject the null hypothesis on the basis of the total number of trials and spikes alone.

2.4.2 Refractory Period

One of the most natural biophysical objections to Poisson models of neural activity is the
refractory period [7], which at the least introduces short-term dependencies in spike train
structure. A statistical test which is sensitive to reliability in the spike counts may merely
reflect such local structures, particularly among cell-stimuli pairs with relatively high firing
rates, since the effect of the refractory period on reliability will increase with the firing
rate. One way to examine this interpretation is to compare the results of the variability
test across epochs, among cell-stimuli pairs that have the same mean spike counts. If the
observed (super-Poisson) reliability is merely due to the refractory period or another local
effect imposed on an “otherwise” Poisson process (a Poisson-refractory process, perhaps
of the type proposed by Kass and Ventura [28]), then all other things being equal, one
would expect the effect to be independent of the time of occurrence relative to stimulus
onset. Figure 2.4 provides a scatter plot of firing rate versus p-value, for cell-stimulus
pairs separated by epoch. There is evidently a systematic effect of epoch on spike count
reliability, which is independent of firing rate, and which cannot be explained by refractory
period alone.

2.4.3 Effect of eye position

In an attempt to more carefully characterize the variable response observed in primary
visual cortical cells, Gur et al. (1997) found that the use of moving stimuli coupled with
precise control of stimulus position on the retina lowered the variance to mean ratio com-
pared to previously reported values. In the present experiment, we did not reposition the
stimulus in real time, but we did record eye position throughout each trial. Figure 2.5
shows one measure of the variability due to eye movements during our task, by plotting
the standard deviation of the monkeys’ horizontal and vertical eye position as a function
of time. In general, the variability at each time point was quite low (less than 0.25deg),
but there is a notable increase in this variability starting approximately 300 ms after the
stimulus appeared. Even during periods of controlled fixation, eye movements are not com-
pletely abolished, and we cannot, therefore, rule out the possibility that increased positional
uncertainty contributed to higher variability in later temporal epochs.

2.4.4 Behavioral relevance

The present data were collected under conditions where the recorded neural signal was in
no obvious way related to the animals’ behavior. However, numerous previous studies have
demonstrated the importance of inferotemporal cortex in successful execution of complex
pattern recognition tasks [32]. The speed with which monkeys can perform these tasks is of
special interest, because they give some hints as to when, and for how long, neuronal signals
emanating from IT cortex may be integrated to drive recognition behaviors. Using stimuli
similar to those employed in this study, for example, Vogels [57] found that monkeys could
accurately categorize tree and non-tree stimuli in under 300 ms. More recently, Sheinberg
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Figure 2.4: A scatter plot of log;, p-value vs. firing rate in hertz, across all cell-stimulus
pairs, separated in 100 millisecond epochs. The dotted line is the line of 95% significance.
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Figure 2.5: Eye position variability. The average standard deviation of both horizontal and
vertical eye position for the 800ms period following stimulus onset indicates that although
there was relatively little positional uncertainty, the variability did increase later in the
trial, and this may have contributed to variability later in the neuronal response.

et al. [48] found that highly similar complex visual images could be discriminated by button
response in approximately 425 ms, but that clear evidence for stimulus identity was evident
in the monkeys oculomotor behavior approximately 200 ms following stimulus onset. This
lower bound of 200 ms is intriguing because it leaves little time for extensive averaging of
highly variable signals. Indeed, the average onset latency of selective neuronal responses
in IT cortex falls somewhere between 100 ms and 140 ms [42, 58, 47]. Thus, the temporal
epoch between initial IT cell activation and discriminatory motor response is quite short,
on the order or 100 ms or less. Interestingly, it is precisely during this epoch where we find
that individual neurons are most likely to respond reliably to particular visual stimuli.

2.4.5 Models

Identifying a model which usefully captures the variability of a cortical spike train is a key
problem in the statistical modelling of neural data. A commonly-invoked model is the slow-
varying inhomogeneous Poisson process, which follows in a natural way from a rate-coding
viewpoint [45]: the signal embedded in a neural spike train is an underlying rate, varying on
coarse time intervals on the order of several tens or hundreds of milliseconds, and hence the
precise placement of spikes is random and irrelevant. We are ignorant of what variables a
recorded neuron codes for, however, and it is reasonable that they include internal variables
such as attention, the states of other neurons, et cetera which certainly might vary across
recording trials, even though the presented stimulus does not.

A Cox process generalizes the Poisson process by making the rate function itself random,
which seems a reasonable way to incorporate a stochastic and trial-varying dependence of
the spike train on contextual variables. Because of this generality a Cox process, equipped
perhaps in addition with a refractory period, goes a long way towards providing an arguably
universal model of the spike train.
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Our null hypothesis Hj contains Cox processes, and we reject this hypothesis in favor
of reliability, near stimulus onset. Furthermore, the rejection cannot only be due to the
(time-independent) refractory period, since the rejection occurs near stimulus onset and
not further away even among populations of cell-stimulus pairs with similar average firing
rates.

From a pedagogical point of view, it is important to reiterate that the rejection of a
null hypothesis implies only that, the rejection of a hypothesis: it in no way identifies an
alternative. However, the form of the statistical test, and in particular the distribution of
its power among the space of alternative hypotheses, may shed light on the data-generating
process. In our case, it is important that the Poisson variability test is targeted towards
reliability in the spike counts, and in that light it may be worth bearing the following two
alternatives in mind. In the first, the spike train is generated by a random rate function, and
at the least the reliability of the rate function is greater near stimulus onset than later. In
the second, the spike train near stimulus onset may be a finely structured temporal process
with high precision on many or most of the spikes. Significantly, the distinction between
these models can begin to blur.

In any case, there is strong statistical evidence that neuronal responses near the onset
of a stimulus cannot in general be well modeled by a simple Poisson process, even allowing
for a trial-dependent inhomogeneous rate function.

2.5 Appendix

2.5.1 Proof of Proposition 1

We say the nonnegative integer-valued random variables X, Xo, ..., X;, are multinomially
distributed with parameters {N;pi,p2,...,pn} if

N i —
(m1 ma mn) H?:l p:n if E?:l m; = N

P(X:i =m1,Xo=mo,..., X, =my) =
= b2 2 " n) {0 otherwise,

where (p1,p2, ..., pn) satisfy p; > 0 and Y 7 | p; = 1. In this case we write X, Xo,..., X, ~

M(N;pl,pQ,“'apn)'
Our goal is

Proposition 1. If mi,me,...,my, are independent Poisson random variables with rates
A1, A2, ...y An, Tespectively, then for all v, and for all i, we have

n n
max P m:<rip|l=P X2<r

where X1, Xo, ..., X, are distributed multinomially with parameters {nj;1/n,1/n,...,1/n}.

We first prove some lemmas about the multinomial distribution which will be useful.

Lemma 2.5.1. If
X17X2a 7Xn ~ M(N;p17p2a "'7pn)7

and

n
D1 P2 Pk
Yl,YQ,...,Yk ~ M (N — Z m;y & , % g eeey & > ,
i=k+1 Ei:l b 2121 Di Eizl Di
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with k < n then
P(X1 =m1,Xo =ma, ..., X = mg|Xgtr1 = Mgty o, Xn = mp) = P(Y1 = m1,Ye = mo, ..., Yy = my).
Proof.

P(X1 = ml,XQ = may, ,Xk = mk|Xk+1 = mk+1, 7Xn = mn)

_ P(X1 =m1,Xo =ma,... X =mp)
P(XIH—I = Mk+1, ey X = mn)

(mlmif..mn)ﬁpri
)3 ) I T

k Ty Tk ( Tk T4 = i=k+1
i1 J?i:N—E?:k-H m;

by an application of the multinomial formula,

k m;
_ (N — ikt mz) H Di
my ... Mg i=1 Ef:l bi

= P(Y1 = ml,YQ = ma, ...,Yk == mk)

Corollary 2.5.2. If X1, X5,.... X;, ~ M(N;p1,p2, -, Pn),
P(X3,...Xp| X1 =5, Xo=k—j)=P(Xs,...Xp| X1 + Xo=k) VEk,j<k.

Proof. This follows from Lemma 2.5.1, since X3, ..., X;, depends on X; and X5 only through
the sum X7 + X5.

Lemma 2.5.3. If X1, Xy are multinomially distributed with parameters {N;p,1 —p}, then
for all N and for all r,
mﬁxp(p,l—p) (XT +X3 <)

1 achieved by p = %

Proof of Lemma. Two observations simplify the problem. The first is that (X7, X2) has
the same distribution as (Y, N —Y'), where Y is binomially distributed with parameters
(N, p). (This is essentially the observation that the multinomial distribution generalizes the
binomial distribution.) The second is algebraic: for every r, 3r" such that

Y2+ (N-Y)’<r}= {‘Y——‘ }

To see this, define

N
f) =Y -3
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then

VP -vR<r) - {(§+f<y>)2+(§—f<y>)29}

— {2 (g)Q +2f(Y)* < r}

= {fm?*<r}
N
{21}
r—2( N ) ?
using ' = ——=2% r" = v/r’. Thus if we take Y as a binomially-distributed random variable

with parameters (N, p), it suffices to prove that for all N, and all r

N 1
arg max P (‘Y — —‘ < r) =-.
p 2 2

We seek to maximize the binomial probability g(p) with respect to the parameter p:

Differentiating g with respect to p, we obtain:
N—k
N\ . i N N i
0= |(V)wa-p - (N - iwia -
j=k

Let us define a; and b; as follows:

aj = (J;r)jp"lu B (JJV> (N — j)pi (1 — p)N—i-1

i.e., so that ¢'(p) = Zjv;kk a;j — b;. Now using the identity (]]V) (N—j)= (ji[l)(j +1), we
can observe

%=(ny—ﬁwu—mle

- (jJJ\:1> G+ 1)p'(1 — p)N-I-1
= Qj41-

So ¢'(p) forms a telescoping sum

N—k
g = a—b
=k

=ar — by &
_ (]I:[)k [pk—1(1 )Nk _ pN=k(q p)k—l]
_ (]Z)k (1 — p)]F~? [(1 _ p)N-2k+1 _pN—2k+1] :
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assuming p > 0. We can conclude by inspection that ¢’(p) = 0 at p = 3, ¢'(p) > 0 for
0<p< %, and ¢'(p) < 0 for % < p < 1, by inspection. Thus g(p) attains its maximum at
p= %, establishing the lemma.

Lemma 2.5.4. If X1, Xy, ..., X, are multinomial random variables distributed with param-
eters {N;p1,p2,...,pn}, (respecting > i, p; = 1), then for all v, and for all N,

n
max P (Z X2 < r)
i=1

(p1,p25---sPn)

is achieved by (p1,p2,...,pn) = (1/n,1/n,...,1/n).
Proof. When p = (p1,p2, ..., pn), We write

n
P, (Z X2 < 7")
=1

to denote the probability that X? < r when Xi, X», ..., X,, are distributed multinomially
with parameters {N;p1,pa, ..., pn }. Define

p* = (1/n,1/n, ., 1/n),

and fix an arbitrary p(® € {Fe R*|0 < p; < 1V, > pi =1}. Then we would like to

show that
Py (Z X7 < ?“) < Pp- (Z X7 < r)
i=1

=1

We will construct a sequence of vectors pg, pi, P2, -.- such that

n n
P (Z X2 < r) < PG+ (Z X? < 7~> Vi (2.9)

i=1 i=1
and .
lim pV) = p* (2.10)
j—oc

The continuity of P, (Z?:l Xi2 < 7") in p will then imply

n n n

o (S0t <r) < i (02 <) = (02 <).
i=1 i=1 i=1

We construct the sequence {p()} as follows. Where p{/) = @gj ), pgj ), ...,pglj )), choose

() )

o = arg maxp; B = arg minp;
1<k<n 1<k<n
Then define plt1) via
b0 40 -
p(j+1) _ )= ifk e {od, 57},
kT ;
p,(cj ) otherwise.

First, we establish (2.9). Without loss of generality, we assume o/ = 1 and 3/ = 2 (this
solely acts to simplify the indexing notation). Observe

Py (X1 + Xo = k) = Py (Xa + Xo = k), Vk, (2.11)

20



since

P(Xi+Xo=k)= > (m . > Hp

L1ye-e93Ln
T1+x2=k
z3+...+Tn=N—k

n
= Z L!Hp??i Z 1 PPl p22
o3z, 4L zlzg!t Lt 2

=3

Z35---3Xn = T1,T2
z3+...+xn=N—-k Z1+$2*k
_ k—j
= > sz E : p’lp
x3l..zp z3l..zp,! k!
TL3yeeesLp

z3+...+xn=N—k

@) Z Lﬁp%_i(p + o)t
wgloap! L10 Kl L

L3yeeeyn
r3+...+rpn=N—k

—

where (a) follows from an application of the binomial formula. Since p(‘7+1) + pg] D _
pgj) +pg /) and p(ﬁl) g) for 3 < k < n, this implies Eq. (2.11). Furthermore,
Py (X3, X4, .., Xn| X1 + Xo = k) = B0 (X3, X4, .., Xn| X1 + X = k) (2.12)

since

Py (X3, Xty ooy X X1 + Xz = k) 2 Py (X3, Xy oo, X | X1 = 0, Xz = K)
b
QP sy (X, Xy o, Xn| X1 = 0, X5 = k)

Pp(]+1) (X37X4a Xn|X1 + X2 = k)

(a)

where (a) follows from Corollary (2.5.2), (b) from Lemma (2.5.1).
Equations (2.11) and (2.12) imply

Py (X3, X4, -y Xn) = Ppg1) (X3, X, ooy Xip) (2.13)

since

Py (X35 X4, ey Xn)

Z o) (X355 ey X | X1 + Xo = k) Py (X1 + Xo = k)

Z ) (X3 =, X = | X1 + X = K) Py (X1 + X2 = k)

= p(j+1)(X3,X4,---,Xn)

where (a) follows from (2.12) and (2.11).
Now we can combine these arguments to conclude

n
Py (Z X7 < 7")

=1
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X3 =ms, ;Xn = mn) Pp(j) (X3 =1ms, ;XTL = mn)

n
_ Y p, (x%+x§5r—zm%

M3 yensy My =3
E?:g m; <N
Yimami<r
n
(a) 2 2 2
= Y P | XT+X3<r=) ml| X3 =ma,..., Xp = mp | Byoen) (X3 =ma, ..., X = mip)
ma3,...,Mm. =3
Zin=3 mlSnN
Siami<r
®) 2 2 S 2
< ). Py | XT+X3<r =) ml| Xs=ms, .., X =y | Byoen)(Xs = ma, ..., Xy = 1)
N3 yeeeyTTL i—3
S mi<N '
Yiami<r
n
2
= p(j+1) ZXz S T
=1

where (a) follows from (2.13), and (b) follows from an application of Lemma 2.5.1 and

Lemma 2.5.3.
Finally we return to Eq (2.10)

lim pl) = p*.
j—oo
Note that
: Vol ) 1 .
p) = max p) > =37 p!) = = v (2.14)
SRS =1
and analogously
OJERNC B I < ¢ B S
Py = min py < nl;pl == Vi (2.15)
Hence we have . )
ji+1 F j
P+ _ 5( rO) 1)) < ! <p§3) N 5) (2.16)

So that

i+1
pffm) < max

G+ , 1 ()
Do+t +n) ’kg{g}?ﬁH}pk }

( (2.17)
(

i+1) , 1 L( G4n-1) 1
p((jj+1) + 5) [REES} 5 (pgj+2—1) + E)}

since pgﬂ) < p((jj) Vj, by construction. (2.17) implies limsup,_, ., maxi<g<n pg ) < % (One
can see this by considering the first order linear difference equation yUt1) = %(y(j) + %),

and noting y(") > pgj)). Since Yy, pg) = 1Vj, we have
lim pi = p*,
j—o0

establishing the lemma.
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Proposition 1. If mi,mo,...,m, are independent Poisson random wvariables with rates
A1, A2, .-y An, TESPectively, then for all v, and for all [i, we haves

n
ma m <rig|=P X2<r

where X1, Xo, ..., Xy, are distributed multinomially with parameters {nj;1/n,1/n,...,1/n}.

Proof. Conditioned on the event {ZZ L mi = n,u} X1, Xo,...X,, is distributed multinomi-

ally with parameters {nj; E" R A ol " }:
ﬁ e_’\i)\;”"
P(ml =T1yeeey My = :L’n) _ i1 ./L‘z'
n — = = —vn 1 _
PEEm =) e S o
(ni2)!

SO ()
mi1mg...Mpy i—1 Zin:1Ai

As a consequence, the proposition follows as a corollary of Lemma 2.5.4.

2.5.2 Dynamic Programming Algorithm

Dynamic programming [6] is a technique for computing functionals of functions on high-
dimensional spaces which exploits “conditional independence”-like relations (literally in
somes cases such as in Markov random fields) among variables by breaking the computa-
tional problem down into smaller subproblem which are then recombined, for the purpose
of gains in computational efficiency. The technique is quite general (see [20, 33]), but an
elementary example suffices for our purposes. Suppose the function f : X — R where X
is some finite state space, can be decomposed as follows:

f(z1,m2,...;zn) = fi(z1,72) fa(T2,73) - - - fr1(Tn—1,Tn), (2.19)

and we would like to compute

> f(z1, 22, ..., 2n), (2.20)

(21,22,..,Tn)EXN

then one could utilize the decomposition (2.19) as follows:

Z f(xlng,---;-Tn)

Z1,22,..yTn

= Z fiz1,z2) fa(z, 23) - - fn—1(Tn—1,2n)

T1,L2,.yTn

:ZZ"'Zfl(-’El,xQ)fz(wmws)"-fn—1(xn_1,mn)
= ZZfl T1, T2 Zfz Z9, T3 Z --an_l(;yn_l,xn)

1 T2

(2.21)
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As a consequence, to obtain (2.20) one can work backwards through the sums in (2.21):
gn—l(ﬁcn—l) = Z fn—l(xn—la -Tn)
Tn

In—2(@n-2) == Y fo-2(Tn-2,Tn-1)gn-1(Tn_1)

Tn—1

gn—3($n—3) = Z fn—3($n—3a$n—2)gn—2($n—2)
Tn—2 (2.22)

92(x2) := Y fo(®2, m3)g3(w3)
g1(z1) := Y f1(w1,2)g2(w2)

and then (through (2.21))

> F(@1,32, 0y n) = Y g1(z1). (2.23)

(I1;$25-"!z‘ﬂ)€XN

The computational savings can be considerable: in this problem the brute-force approach
(i.e., enumerating all possibilities and summing directly) would require O(| X |") operations,
whereas dynamic programming computes the sum O((n — 1)| X|?) operations, with | X| the
cardinality of the space X.

Returning to our multinomial probability, we seek to compute

P (gxz? < k) = > (m1 mQN mn) (%)N (2.24)

LA LD PIRIPY L7

2imimi=N
23;1 m%ﬁk
where X1, Xs, ..., X, ~ M(N; %, %, - %) This can be decomposed into a form amenable

to dynamic programming: the basic idea is to transform the apparently global constraints
o mi=Nand Y " m? < k into local constraints by working directly with the partial
sums Y 7_, m; and > 7_; m?. If we employ the substitution

J
S5 = ka §j = Zmi, (2.25)
k=1

we observe that the constraint sets

n n
{ml,mg,...,mn : Zmz = N,Zm? < k} (2.26)
=1 =1

and

B :={51,89, .., S, 81, 82, -y 8, 18, = N, §,, <k,
sj-1 <85V, (2.27)

55 =35j_1+ (s —5j-1)* Vj},
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are equivalent (with respect to (2.26)). Therefore,

2, (o) G)
m1,M2,...,Mp mimeo +++ My n

-z : )G
N—Sn_l Sp—2 — Sp—1...82 — 8181 n

i=1 mi2=N

n

i=1™M; <k
‘El:"';‘z’n
§1yee0s8n

sn=N
$n<k
85-1<5;Vj
§j:§j_1+(s]'—5j_1)2 Vk

5 Aot y o
= 81y eeey Sy 81y eeey S —
Bio G AN — 81 893-9 — Sp—1 .. S3 — 81 81 n

‘El:"';‘in
§1y--y8n

(2.28)
Now, using the pairwise subconstraints

C:= {(Sjasj—lagjagj—l) Ryt < Sj
5;=58;_1+ (Sj - Sj_1)2 (2.29)
§j S k,Sj S N},

we have

n

13(511 ---as’nagla §n) = 1{N}(3n) ) 10(05 8115150) ) H ]-C(Sj’sjflagjagjfl)ﬁ (230)
=2

(the second indicator function on the righthand side is analogous to implicitly enforcing
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s0 = 0,8y = 0). And returning to (2.28)

>

flﬂ""fn
815--+38n

13(81, ...,Sn,gl, ,§n) (N

Z 1{N}(3n) ) 10(07317517

flv---vfn
S14::498n

.(N

Z 1iny(sn) - 1c(0, 51, 31,

)

N

—Sn-18n—-2 — Sn

813380

-(

2.0

Sn Sn—1
Sn Sp—1

-(

N

Sp—1

Sn—1

Sn—2

31
N

Sp—1

Sn—1

JE)

Sp—2

— Sp—

h Z l{N}(S”) ' 10(0,31,51,
S1

N

18p—2 — Sp—1..-82 — 81 81

1

)G

n
0)- [11c(ssr85-1,55,51)

NICh

0)- [T 1c(sss85-1,55,5-1)

=2
) N

)
0)- [T (s 55-1,85,5-1)

=2
) N

1

~1.-.82 — 8181 n

1

n

52
S1

1

n

52

) (

S1

1\ " N o
=\ - : ZI{N}(STL) Z 1C’(Sn73n—173n73n—1)
n Sn Spn—1 Sn—1
Sn gnfl
Sn—1 ~ ~ 59 -~ o~
> 10(Sn—1,8n-2,8n—1,8n-2) - 1c(s2, 81,82, 51)
o Spn—2 51 \51
Sp—2 51
1\V7s-t /N
= 1 s — 1o(sn, Sn—1,8n, Sp—
; {N}( n);(N) (Sn—1> C( nsSn—1,9n,5n 1)
g" gn—l
1 Sn—1—"8n-2 So _ ~
: Z (N) ( " 1) 1C(3n—153n—253n—153n—2)
o Sn—2
gn—Z

1

N

-2

82
) 10(327311§2551)1

(2.31)
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As in (2.22), one can compute

N s 1% I
g2(s9,82) == Y (;) (ﬁ) Lo(s2, 81, 82,81)

S1
S1

~ s 1) %75 L. -
g3(s3,83) = ) (;) (N) Lc(s3, 52,83, 52)g2(s2, §2)

s2
52

~ Sp1 1 Spn—1—8n—2 B B .
In-1(Sn—1,8n-1) == Y _ (S 2) (—) 1c(Sn—1,8n—2, Sn—1, $n—2)gn—2(Sn—2, Sn—2)
Sp—2 n—

3
S
N

N 1\ Nt
gn(gn) = Z ( ) (N) 1C’(N7 Sn—lagnagn—l)gn—l(sn—lagn—l)
Sn—1

(2.32)

and then

P (ZTL:XZQ < k) :Zgn(gn)- (2.33)
=1 §n

2.5.3 Monte Carlo Estimation

The dynamic programming solution to the calculation of the multinomial probability (2.24),
p = P( 1 X2 < k) can be computationally infeasible if .1 ; m; and Y, m? are too
large. An alternatlve way to compute it is via approximation by Monte Carlo methods
[17, 26]. The idea is to produce M ii.d. vector samples X(V X2 XM) where XU) =

(X(]) Xéj), ,X( )) and X( ) (J) X(J) ~M(N; 2 L 1) for each j. Then defining

'nindt

vy .— X, (2.34)

Lisn (Xi”)?gk}(

the law of large of numbers implies

Jim Z YU [ ] (Z X2 < k> w.p.1) (2.35)

which provides the estimate

P = 1\14 Z YO (Z X2 < k) (2.36)

with M large. In order to assess the accuracy of the estimate p, we seek to form a-level
confidence intervals of tolerance e¢ which satisfy

P(p—pl<e)>a (2.37)

One can get a handle on € by invoking a central limit theorem approximation,

1 & 1— 1—
=gy ¥~ o (n 20 2) v (252, (2.39)
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Then

ST -
P<|ﬁ—P|S3- 7%)2.99, (2.39)

which provides 99% approximate confidence intervals for the Monte Carlo approximation
p. The central limit theorem approximation works well: as Freiberger and Grenander [17]
point out the randomness of the error bound “is more nearly a psychological difficulty than
areal one.” In this problem, it may not be worth the effort of more sophisticated techniques.

2.5.4 Computing g by recursion

=1 (2.40)
where Z1, Zs, ..., Z areindependent, and
Zi ~ Be(lr*(nia «, /1'1)) V’L,
For simplicity we will denote
pi = 1" (ni, o, fii). (2.41)
Then observe that
J Jj—1 Jj—1
P (ZZZ- :t> =P (ZZZ- :t> P(Zj=0)+P (ZZi:t—1> P(Z;=1)
i=1 i=1 \i=l (2.42)
Jj—1 Jj—1
:P<ZZi:t) (l—pj)—}—P(ZZi :t—l)pj
i=1 i=1
and

which determines a recursion that can be computed in less than 3N? operations.

2.5.5 The most reliable outcome

One cause for a failure to reject the null hypothesis in a single cell-stimulus pair might
simply be a lack of data, either in the form of a paucity of trials or a paucity of spikes.
Indeed, for some values of n, the number of trials, and of N, the total number of spikes
(ie., >ty m;), it is impossible to reject the null hypothesis for any configuration of the
data. This is the case if P(>.1 ; X2 < k,) > o where

n
ki == i ?=N 2.44
8 0 D =V (249
Em=N
and X1, Xo,...,X,, ~ M(N;1/n,1/n,...,1/n). Obtaining k., the value of Y I ; m? corre-
sponding to the most reliable outcome (in mean square sense) consistent with a given n
and N, is helpful in the optimizing the code for computing f, the threshold for significant
rejection. Rather than use dynamic programming again, we can get this directly.
Lemma 2.5.5. (The most reliable outcome)
n

ky := min E mZ2
M1 yeeeyMp EZL™

() A N )
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Proof. In the continuum, it is straightforward to see that

min Z xy, (2.46)

T1,...,Ln€ER™
Yoy @i=N =1

is achieved by

z; = N/n Vi, (2.47)
since any solution which satisfies ) ;" ; z; = N, can be represented as
z; =N/n+¢ (2.48)

with €1, €2, ..., €, satisfying > ; €; = 0. But then we can expand

n
Zw —ZN/TL—FEZ')Q:NQ/TL—I-ZGQ, (2.49)
=1 =1

which is evidently minimized by ¢; = 0Vi. Thus the minimal z* = (z7,...,z},) has =} =
N/nVi. (This of course immediately reveals the solution to the integer minimization prob-
lem in the case where N mod n = 0, and is consistent with (2.45)).

Now a geometric argument reveals the effect of restricting mg,...,m, to the integer
space Z". Define the vertices of the hypercube on the integer lattice surrounding the point
z = (z1,%2,...,2,) € R" as H(z):

H(zi,z2,...,xn) = {(y1,Y2, -y yn) € R* 1 y; € {|z4], |zi] + 1} Vi}. (2.50)
Then
arg min Zm € H(z"), (2.51)
mi,.. ,mnEZ"Z 1
Yimimi=N
To show this, suppose not: then there exists a point z € Z" such that z ¢ H(z*), and

na2< Minye 77 (5> )ZZ lyZ But since ZZ LT3 is radially symmetric, one can then

trace an arc A from z to 2’ such that >, y? = E 22Vy € A, and such that the ray

i=17%;
n

from z* to 2’ 1ntersects a vertex p (of the hypercube) in H(x*). Therefore Y ()? <
minye r(g+) Dogey Y5~ But ZZ (@)2 <3 (2D and Y01 (20)2 < Y°F, p? contradicts the
convexity of f(z) = Z? |z estabhshmg (2.51).

Thus there exists m], m2, .,m; € H(z*) such that

n

2 2

Z(m:) = mlr,nlr}nn m; (2.52)
=1 Yiym?

This turns out to identify m* because the condition ) ;" ; m] = N uniquely characterizes

m € H(x*). Essentially, m; = [%J, or m; = L%J + 1. Let j denote the number of variables

among myq, ..., m, that take the value L%J (so n— j variables take the value L%J +1.) Then

gmi:ng+(n_j)<[%J“>:N (2.53)

]:nq%J +1) - N. (2.54)

This determines the unique point m* € H(z*) on the hyperplane > ; m; = N. Plugging
m* into Y ; m? finally produces (2.45).

Solving for j, we get

2.5.6 Table of Significance Thresholds

29



Table 2.1: Significance Thresholds

# of Trials n | # of Spikes nji | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, i)
2 1 1 0.000000 1 0.000000
2 2 2 0.000000 2 0.000000
2 3 5 0.000000 5 0.000000
2 4 8 0.000000 8 0.000000
2 5 13 0.000000 13 0.000000
2 6 18 0.000000 18 0.000000
2 7 25 0.000000 25 0.000000
2 8 32 0.000000 32 0.000000
2 9 41 0.000000 41 0.000000
2 10 50 0.000000 50 0.000000
2 11 61 0.000000 61 0.000000
2 12 72 0.000000 72 0.000000
2 13 85 0.000000 85 0.000000
2 14 98 0.000000 98 0.000000
2 15 113 0.000000 113 0.000000
2 16 128 0.000000 128 0.000000
2 17 145 0.000000 145 0.000000
2 18 162 0.000000 162 0.000000
2 19 181 0.000000 181 0.000000
2 20 200 0.000000 200 0.000000
3 1 1 0.000000 1 0.000000
3 2 2 0.000000 2 0.000000
3 3 3 0.000000 3 0.000000
3 4 6 0.000000 6 0.000000
3 5 9 0.000000 9 0.000000
3 6 12 0.000000 12 0.000000
3 7 17 0.000000 17 0.000000
3 8 22 0.000000 22 0.000000
3 9 27 0.000000 27 0.000000
3 10 34 0.000000 34 0.000000
3 11 41 0.000000 41 0.000000
3 12 48 0.000000 48 0.000000
3 13 57 0.000000 57 0.000000
3 14 66 0.000000 66 0.000000
3 15 75 0.000000 75 0.000000
3 16 86 0.000000 86 0.000000
3 17 97 0.000000 97 0.000000
3 18 109 0.044275 108 0.044275
3 19 121 0.000000 121 0.000000
3 20 134 0.000000 134 0.000000
3 21 148 0.038151 147 0.038151
3 22 162 0.000000 162 0.000000
3 23 177 0.000000 177 0.000000
3 24 193 0.033515 192 0.033515
3 25 209 0.000000 209 0.000000

continued on next page
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
3 26 226 0.000000 226 0.000000
3 27 244 0.029883 243 0.029883
3 28 262 0.000000 262 0.000000
3 29 281 0.000000 281 0.000000
3 30 301 0.026961 300 0.026961
4 1 1 0.000000 1 0.000000
4 2 2 0.000000 2 0.000000
4 3 3 0.000000 3 0.000000
4 4 4 0.000000 4 0.000000
4 5 7 0.000000 7 0.000000
4 6 10 0.000000 10 0.000000
4 7 13 0.000000 13 0.000000
4 8 17 0.038452 16 0.038452
4 9 21 0.000000 21 0.000000
4 10 26 0.000000 26 0.000000
4 11 31 0.000000 31 0.000000
4 12 37 0.022030 36 0.022030
4 13 43 0.000000 43 0.000000
4 14 50 0.000000 50 0.000000
4 15 57 0.000000 57 0.000000
4 16 65 0.014683 64 0.014683
4 17 74 0.049922 73 0.049922
4 18 82 0.000000 82 0.000000
4 19 92 0.042683 91 0.042683
4 20 101 0.010671 100 0.010671
4 21 112 0.037348 111 0.037348
4 22 122 0.000000 122 0.000000
4 23 134 0.032809 133 0.032809
4 24 145 0.008202 145 0.008202
4 25 158 0.029294 157 0.029294
4 26 171 0.040802 170 0.040802
4 27 184 0.026230 183 0.026230
4 28 197 0.006558 197 0.006558
4 29 212 0.023771 211 0.023771
4 30 227 0.033428 226 0.033428
4 31 242 0.021589 241 0.021589
4 32 257 0.005397 257 0.005397
4 33 274 0.019790 273 0.019790
4 34 291 0.028036 290 0.028036
4 35 308 0.018171 307 0.018171
4 36 325 0.004543 325 0.004543
4 37 344 0.016808 343 0.016808
4 38 363 0.023952 362 0.023952
4 39 382 0.015569 381 0.015569
4 40 403 0.046352 401 0.003892

continued on next page
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
5 1 1 0.000000 1 0.000000
5 2 2 0.000000 2 0.000000
5 3 3 0.000000 3 0.000000
5 4 4 0.000000 4 0.000000
5 5 6 0.038400 5 0.038400
5 6 8 0.000000 8 0.000000
5 7 11 0.000000 11 0.000000
5 8 14 0.000000 14 0.000000
5 9 17 0.000000 17 0.000000
5 10 21 0.011612 20 0.011612
5 11 26 0.042578 25 0.042578
5 12 30 0.000000 30 0.000000
5 13 35 0.000000 35 0.000000
5 14 41 0.027553 40 0.027553
5 15 46 0.005511 46 0.005511
5 16 53 0.022042 52 0.022042
5 17 60 0.037472 59 0.037472
5 18 67 0.033724 66 0.033724
5 19 74 0.016019 73 0.016019
5 20 81 0.003204 81 0.003204
5 21 90 0.013456 89 0.013456
5 22 99 0.023683 98 0.023683
5 23 108 0.021788 107 0.021788
5 24 117 0.010458 116 0.010458
5 25 128 0.036953 126 0.002092
5 26 137 0.009064 137 0.009064
5 27 148 0.016315 147 0.016315
5 28 161 0.047676 158 0.015227
5 29 172 0.045210 170 0.007360
5 30 183 0.026706 181 0.001472
5 31 196 0.040043 194 0.006519
5 32 209 0.037569 206 0.011920
5 33 222 0.035723 219 0.011239
5 34 235 0.034118 233 0.005459
5 35 250 0.045274 246 0.001092
5 36 263 0.030706 261 0.004913
5 37 278 0.029034 276 0.009089
5 38 293 0.027762 291 0.008635
5 39 310 0.046406 306 0.004209
5 40 325 0.035764 321 0.000842
5 41 342 0.042622 338 0.003835
5 42 357 0.023108 355 0.007159
5 43 374 0.022195 372 0.006841
) 44 393 0.037524 389 0.003344
5 45 410 0.028962 406 0.000669

continued on next page
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
5 46 429 0.034746 425 0.003077
5 47 448 0.047222 444 0.005784
5 48 467 0.045409 463 0.005553
5 49 486 0.030965 482 0.002721
5 50 507 0.048443 501 0.000544
6 1 1 0.000000 1 0.000000
6 2 2 0.000000 2 0.000000
6 3 3 0.000000 3 0.000000
6 4 4 0.000000 4 0.000000
6 5 5 0.000000 5 0.000000
6 6 7 0.015432 6 0.015432
6 7 9 0.000000 9 0.000000
6 8 12 0.000000 12 0.000000
6 9 15 0.000000 15 0.000000
6 10 18 0.000000 18 0.000000
6 11 22 0.020630 21 0.020630
6 12 25 0.003438 25 0.003438
6 13 30 0.014899 29 0.014899
6 14 35 0.028971 34 0.028971
6 15 40 0.032190 39 0.032190
6 16 45 0.021460 44 0.021460
6 17 50 0.008107 50 0.008107
6 18 57 0.031753 55 0.001351
6 19 62 0.006418 62 0.006418
6 20 69 0.013371 68 0.013371
6 21 76 0.015599 75 0.015599
6 22 85 0.048261 82 0.010725
6 23 92 0.037000 90 0.004111
6 24 99 0.017130 97 0.000685
6 25 108 0.030833 106 0.003426
6 26 117 0.033650 115 0.007423
6 27 126 0.030731 124 0.008907
6 28 135 0.029014 133 0.006235
6 29 146 0.047281 142 0.002411
6 30 155 0.035561 151 0.000402
6 31 166 0.041209 162 0.002076
6 32 175 0.021574 173 0.004614
6 33 186 0.019937 184 0.005639
6 34 199 0.044778 195 0.003994
6 35 210 0.031826 206 0.001553
6 36 223 0.046789 219 0.006916
6 37 234 0.028282 230 0.001368
6 38 247 0.035635 243 0.003095
6 39 260 0.039655 256 0.003832
6 40 273 0.031774 269 0.002737

continued on next page
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
6 41 286 0.022612 282 0.001069
6 42 301 0.033803 297 0.004854
6 43 316 0.046221 312 0.009335
6 44 331 0.046'786 325 0.002194
6 45 346 0.041612 342 0.010000
6 46 361 0.042653 357 0.009670
6 47 376 0.038243 372 0.007635
6 48 393 0.047000 387 0.003560
6 49 408 0.035057 404 0.006928
6 50 425 0.035715 421 0.007972
6 51 442 0.031869 438 0.007522
6 52 459 0.032860 455 0.007309
6 53 478 0.042820 472 0.005791
6 54 495 0.036653 491 0.009738
6 55 514 0.039513 508 0.005308
6 56 533 0.044377 527 0.006148
6 57 552 0.047071 546 0.005826
6 58 571 0.041306 565 0.005683
6 59 590 0.034080 584 0.004514
6 60 611 0.045867 605 0.007654
7 1 1 0.000000 1 0.000000
7 2 2 0.000000 2 0.000000
7 3 3 0.000000 3 0.000000
7 4 4 0.000000 4 0.000000
7 5 5 0.000000 5 0.000000
7 6 7 0.042839 6 0.042839
7 7 8 0.006120 8 0.006120
7 8 11 0.024480 10 0.024480
7 9 14 0.047211 13 0.047211
7 10 16 0.000000 16 0.000000
7 11 20 0.044160 19 0.044160
7 12 23 0.022711 22 0.022711
7 13 26 0.007029 26 0.007029
7 14 31 0.029122 29 0.001004
7 15 34 0.005021 34 0.005021
7 16 39 0.011477 38 0.011477
7 17 44 0.015484 43 0.015484
7 18 49 0.013272 48 0.013272
7 19 56 0.044831 54 0.007205
7 20 61 0.028020 59 0.002287
7 21 68 0.049218 64 0.000327
7 22 73 0.022015 71 0.001797
7 23 80 0.027753 78 0.004429
7 24 87 0.026636 85 0.006327
7 25 94 0.024290 92 0.005649
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
7 26 103 0.049674 99 0.003147
7 27 110 0.036216 106 0.001012
7 28 117 0.024423 115 0.005000
7 29 126 0.030343 122 0.000838
7 30 135 0.035516 131 0.002155
7 31 144 0.040675 140 0.003182
7 32 153 0.037458 149 0.002909
7 33 162 0.027912 158 0.001646
7 34 173 0.046076 169 0.007194
7 35 182 0.029208 178 0.002741
7 36 193 0.040349 189 0.006166
7 37 204 0.045981 200 0.008258
7 38 215 0.042397 211 0.008243
7 39 226 0.039888 222 0.007727
7 40 237 0.038046 233 0.006753
7 41 250 0.049348 244 0.004355
7 42 261 0.039761 257 0.008588
7 43 274 0.043919 268 0.003822
7 44 287 0.046626 281 0.005205
7 45 298 0.027994 294 0.005256
7 46 313 0.048250 307 0.004968
7 47 326 0.039888 320 0.004374
7 48 339 0.033654 335 0.008345
7 49 354 0.042552 348 0.005690
7 50 367 0.030367 363 0.007481
7 51 382 0.032552 378 0.009169
7 52 397 0.035808 391 0.003554
7 53 412 0.034195 406 0.003381
7 54 429 0.047378 423 0.007858
7 55 444 0.040718 438 0.005798
7 56 461 0.047332 455 0.008726
7 57 476 0.037250 470 0.005262
7 58 493 0.039867 487 0.006506
7 59 510 0.038834 504 0.007849
7 60 527 0.037226 521 0.007491
7 61 546 0.049196 538 0.005669
7 62 563 0.041284 555 0.004191
7 63 582 0.049260 574 0.006370
7 64 599 0.038289 593 0.009310
7 65 618 0.042252 610 0.004782
7 66 637 0.043675 629 0.005807
7 67 656 0.042138 648 0.005568
7 68 675 0.037804 669 0.009825
7 69 696 0.047521 688 0.007607
7 70 715 0.038158 707 0.004791
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
8 1 1 0.000000 1 0.000000
8 2 2 0.000000 2 0.000000
8 3 3 0.000000 3 0.000000
8 4 4 0.000000 4 0.000000
8 5 5 0.000000 5 0.000000
8 6 6 0.000000 6 0.000000
8 7 8 0.019226 7 0.019226
8 8 9 0.002403 9 0.002403
8 9 12 0.010815 11 0.010815
8 10 15 0.023657 14 0.023657
8 11 18 0.032528 17 0.032528
8 12 21 0.030495 20 0.030495
8 13 24 0.019822 23 0.019822
8 14 27 0.008672 27 0.008672
8 15 32 0.034843 30 0.002323
8 16 35 0.011131 33 0.000290
8 17 40 0.024681 38 0.001645
8 18 45 0.034039 43 0.004319
8 19 50 0.034763 48 0.006839
8 20 59 0.031344 53 0.007124
8 21 60 0.027010 58 0.004987
8 22 65 0.019862 63 0.002285
8 23 72 0.037313 68 0.000626
8 24 7 0.021844 75 0.003364
8 25 84 0.029493 82 0.008189
8 26 91 0.033876 87 0.001390
8 27 98 0.038095 94 0.002346
8 28 105 0.037980 101 0.002566
8 29 112 0.031013 108 0.001860
8 30 119 0.022686 117 0.008035
8 31 128 0.037120 124 0.004296
8 32 135 0.023279 133 0.009492
8 33 144 0.031461 140 0.003545
8 34 153 0.038307 149 0.005473
8 35 162 0.038303 158 0.006048
8 36 171 0.035045 167 0.005738
8 37 180 0.032945 176 0.005150
8 38 191 0.047001 185 0.003920
8 39 200 0.038887 196 0.008197
8 40 211 0.047526 205 0.004844
8 41 220 0.033859 216 0.007034
8 42 231 0.035671 227 0.008534
8 43 242 0.038143 236 0.003224
8 44 253 0.038649 247 0.003102
8 45 264 0.033694 260 0.008757
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
8 46 277 0.049012 271 0.006480
8 47 288 0.039003 282 0.004651
8 48 301 0.048346 295 0.007099
8 49 312 0.034695 306 0.004083
8 50 325 0.039058 319 0.005032
8 51 338 0.039139 332 0.006024
8 52 351 0.036986 345 0.006330
8 53 364 0.035191 358 0.005338
8 54 379 0.045318 371 0.003966
8 59 392 0.038512 386 0.007098
8 56 407 0.044445 399 0.004433
8 57 420 0.034960 414 0.006384
8 58 435 0.037384 429 0.008207
8 59 450 0.039356 444 0.008518
8 60 465 0.039029 459 0.007992
8 61 480 0.035928 474 0.007710
8 62 497 0.046149 489 0.006694
8 63 512 0.039373 506 0.009817
8 64 529 0.046664 521 0.007195
8 65 544 0.036159 538 0.008933
8 66 561 0.038934 555 0.009711
8 67 578 0.038913 570 0.005789
8 68 595 0.037875 587 0.005459
8 69 614 0.049446 606 0.009803
8 70 631 0.044271 623 0.008147
8 71 648 0.039455 640 0.006842
8 72 667 0.044343 659 0.008848
8 73 686 0.048556 676 0.006283
8 74 703 0.038006 695 0.006873
8 75 722 0.039416 714 0.007621
8 76 743 0.049637 733 0.007954
8 77 762 0.048554 752 0.007037
8 78 781 0.045363 771 0.005859
8 79 800 0.039198 792 0.008704
8 80 821 0.044603 811 0.006426
9 1 1 0.000000 1 0.000000
9 2 2 0.000000 2 0.000000
9 3 3 0.000000 3 0.000000
9 4 4 0.000000 4 0.000000
9 5 5 0.000000 5 0.000000
9 6 6 0.000000 6 0.000000
9 7 8 0.037935 7 0.037935
9 8 9 0.008430 9 0.008430
9 9 12 0.034656 10 0.000937
9 10 13 0.004683 13 0.004683
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
9 11 16 0.011448 15 0.011448
9 12 19 0.017808 18 0.017808
9 13 22 0.019292 21 0.019292
9 14 25 0.015005 24 0.015005
9 15 28 0.008336 28 0.008336
9 16 33 0.033212 31 0.003176
9 17 36 0.014746 34 0.000750
9 18 41 0.032075 39 0.004082
9 19 46 0.045318 42 0.000528
9 20 49 0.016448 47 0.001563
9 21 54 0.018847 52 0.002837
9 22 59 0.017917 57 0.003468
9 23 66 0.048993 62 0.002954
9 24 71 0.037214 67 0.001751
9 25 76 0.026643 74 0.008104
9 26 83 0.042144 79 0.003679
9 27 88 0.025956 86 0.008924
9 28 95 0.033975 91 0.002862
9 29 102 0.041704 98 0.004904
9 30 109 0.044285 105 0.005958
9 31 116 0.041287 112 0.005895
9 32 123 0.037634 119 0.005333
9 33 130 0.033224 126 0.004370
9 34 139 0.047846 135 0.009995
9 35 146 0.037275 142 0.006627
9 36 155 0.046295 149 0.003390
9 37 162 0.031502 158 0.005473
9 38 171 0.034161 167 0.006896
9 39 180 0.035561 176 0.008048
9 40 189 0.036628 185 0.008711
9 41 198 0.033965 194 0.007998
9 42 207 0.028388 203 0.006253
9 43 218 0.041898 212 0.004548
9 44 227 0.031990 223 0.007998
9 45 238 0.040700 232 0.004909
9 46 249 0.046432 243 0.006912
9 47 260 0.049031 254 0.009040
9 48 269 0.033550 263 0.003984
9 49 280 0.032078 276 0.009730
9 50 293 0.048089 287 0.009111
9 51 304 0.042308 298 0.008247
9 52 315 0.036143 309 0.006418
9 53 328 0.044714 320 0.004261
9 54 339 0.035015 333 0.006672
9 55 352 0.040082 346 0.008844
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
9 56 365 0.044135 359 0.009944
9 57 378 0.045037 370 0.005668
9 58 391 0.043870 383 0.005522
9 59 404 0.041623 396 0.005214
9 60 417 0.038570 411 0.009005
9 61 432 0.047268 424 0.007486
9 62 445 0.041214 437 0.005907
9 63 460 0.046410 452 0.007845
9 64 473 0.037431 467 0.009620
9 65 488 0.039076 480 0.006030
9 66 503 0.040341 495 0.006532
9 67 518 0.040496 510 0.006977
9 68 533 0.038745 525 0.006634
9 69 550 0.048740 540 0.005619
9 70 565 0.043725 557 0.008897
9 71 580 0.037203 572 0.006799
9 72 597 0.042512 589 0.009124
9 73 614 0.046541 604 0.006181
9 74 631 0.048172 621 0.007375
9 75 648 0.048728 638 0.007983
9 76 665 0.049464 655 0.007789
9 77 682 0.047570 672 0.007454
9 78 699 0.043365 689 0.006995
9 79 716 0.039626 708 0.009507
9 80 735 0.045350 725 0.007989
9 81 752 0.039077 744 0.009572
9 82 771 0.042126 761 0.007352
9 83 790 0.044860 780 0.008066
9 84 809 0.045974 799 0.008634
9 85 828 0.044751 818 0.008959
9 86 847 0.043209 837 0.008617
9 87 866 0.041373 856 0.007671
9 88 887 0.047083 875 0.006612
9 89 906 0.042810 896 0.008606
9 90 927 0.046083 915 0.006714
10 1 1 0.000000 1 0.000000
10 2 2 0.000000 2 0.000000
10 3 3 0.000000 3 0.000000
10 4 4 0.000000 4 0.000000
10 5 5 0.000000 5 0.000000
10 6 6 0.000000 6 0.000000
10 7 7 0.000000 7 0.000000
10 8 9 0.018144 8 0.018144
10 9 10 0.003629 10 0.003629
10 10 13 0.016692 11 0.000363
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
10 11 16 0.037921 14 0.001996
10 12 17 0.005389 17 0.005389
10 13 20 0.009341 20 0.009341
10 14 23 0.011442 22 0.011442
10 15 26 0.010298 25 0.010298
10 16 31 0.040211 29 0.006865
10 17 34 0.027927 32 0.003335
10 18 37 0.015256 35 0.001125
10 19 42 0.033262 40 0.005940
10 20 47 0.049072 43 0.001449
10 21 50 0.023533 48 0.004158
10 22 55 0.028935 53 0.007470
10 23 60 0.031862 58 0.009608
10 24 65 0.033103 63 0.009874
10 25 70 0.030884 68 0.008989
10 26 75 0.025088 73 0.007536
10 27 82 0.046537 78 0.005470
10 28 87 0.033031 83 0.003093
10 29 94 0.048790 90 0.007644
10 30 99 0.030656 95 0.003410
10 31 106 0.039476 102 0.005955
10 32 113 0.044126 109 0.007852
10 33 120 0.045380 116 0.009125
10 34 127 0.045971 123 0.009926
10 35 134 0.044049 130 0.009624
10 36 141 0.038137 137 0.008026
10 37 148 0.031264 144 0.006002
10 38 157 0.045061 151 0.004187
10 39 164 0.033722 160 0.007429
10 40 173 0.042472 167 0.004368
10 41 182 0.049654 176 0.006193
10 42 189 0.032351 185 0.008109
10 43 198 0.034916 194 0.009496
10 44 207 0.034372 203 0.009629
10 45 216 0.032074 212 0.009010
10 46 227 0.047529 221 0.008203
10 47 236 0.040890 230 0.006842
10 48 245 0.034522 239 0.004926
10 49 256 0.042180 250 0.008036
10 50 265 0.032841 259 0.005006
10 51 276 0.037063 270 0.006947
10 52 287 0.040911 281 0.008240
10 53 298 0.042828 292 0.008876
10 54 309 0.042240 303 0.009361
10 55 320 0.040183 314 0.009270
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Table 2.1: continued

# of Trials n | # of Spikes nj | f(n,.05,4) | 7*(n,.05,4) | f(n,.01,4) | r*(n,.01, )
10 56 331 0.037428 325 0.008192
10 57 344 0.047823 336 0.006804
10 58 355 0.041691 347 0.005508
10 59 368 0.049045 360 0.007899
10 60 379 0.040259 371 0.005628
10 61 392 0.044019 384 0.006976
10 62 405 0.047333 397 0.008261
10 63 418 0.049009 410 0.009223
10 64 431 0.048278 423 0.009306
10 65 444 0.046233 436 0.008846
10 66 457 0.043729 449 0.008320
10 67 470 0.040167 462 0.007363
10 68 485 0.047557 475 0.005877
10 69 498 0.041125 490 0.008240
10 70 513 0.045838 503 0.005968
10 71 528 0.049258 518 0.007416
10 72 541 0.039487 533 0.008347
10 73 556 0.040092 548 0.008866
10 74 571 0.040417 563 0.009227
10 75 586 0.039726 578 0.009146
10 76 603 0.048757 593 0.008370
10 77 618 0.045266 608 0.007283
10 78 633 0.040099 623 0.006204
10 79 650 0.046157 640 0.007999
10 80 665 0.039096 655 0.006210
10 81 682 0.042558 672 0.007300
10 82 699 0.044335 689 0.008370
10 83 716 0.044963 706 0.009036
10 84 733 0.045174 723 0.009113
10 85 750 0.044334 740 0.008829
10 86 767 0.041834 757 0.008352
10 87 786 0.049317 774 0.007598
10 88 803 0.044749 793 0.009837
10 89 820 0.039298 810 0.008335
10 90 839 0.043501 829 0.009860
10 91 858 0.046751 846 0.007678
10 92 877 0.048193 865 0.008359
10 93 896 0.048867 884 0.008804
10 94 915 0.049032 903 0.009076
10 95 934 0.048047 922 0.008960
10 96 953 0.045816 941 0.008404
10 97 972 0.042650 960 0.007538
10 98 993 0.048420 981 0.009765
10 99 1012 0.043401 1000 0.008166
10 100 1033 0.047134 1021 0.009694
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Chapter 3

Jitter Methods

3.1 Introduction: The Temporal Structure of the Neural
Code

The rate-coding versus temporal-coding debate has been studied by innumerable experts
from the whole range of backgrounds which comprise modern investigations of neuroscience.
This is reflected in the plethora of definitions and methods for the analysis of temporal
structure in spike trains. Indeed, as Dayan & Abbot point out in their textbook, the issue
tends to “dominate” [13] discussions of the neural code. The central question is whether
spike timing matters: that is, whether the precise temporal position of spike times matters
in the functioning of the brain. Most thinkers would agree, at least when pressed, that
such distinctions in the nature of the neural code lie along a continuum. A first difficulty
is defining “precision” and “matters” in a way that are relevant to one another. A second
(and clearly more profound) difficulty is relating definitions to physiological experiments.
There is a great controversy as to whether progress has been made on any of these fronts.

One method of investigation involves presenting a stimulus repeatedly to a subject,
measuring the neural response over many such presentations, and examining the resulting
empirical rate: the empirical frequency of firing as a function of time, relative to stimulus
onset (or for time-varying stimuli, relative to a fixed time in the stimulus presentation).
If the neuron was coding for the identity of stimulus and environmental context precisely
in its spike positions, one would expect that the rate would appear to be changing very
rapidly: spikes are laid down with great precision. This is, for example, referred to as
temporal coding in [13]. If, on the other hand, the spikes are not laid down precisely,
one would expect the empirical rate function to be slow-varying, or flatter; this would be
consistent with rate-coding. Clearly, the central problem raised in the introduction, that
of assuming repeatability across trials in such experiments is a danger here. Again, it is
certainly possible that the neuron signals, in whole or in part, something that varies across
trials (such as attention, or the states of other neurons), but that it signals them with
high precision: across trials, the empirical rate could well appear flat, despite the ostensible
temporal coding. To make an analogy with hypothesis testing: the failure to reject the
null hypothesis (in this case, of coarse temporal structure) has to be interpreted with care;
it is not necessarily evidence for the null hypothesis. Interpretation has to do, of course,
with the power of a test. Thus it is an interesting problem to discover means of identifying
temporal structure in the neural response even in cases where the empirical rate function,
averaged across trials, varies slowly.

A particularly elegant way of beginning to conceptualize the temporal coding debate
has been suggested in the form of a thought experiment due to Elie Bienenstock, which
we take as a guiding principle in the investigations described here. The experiment is
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as follows. Suppose we had a magical pharmacological agent that we could distribute
throughout the brain that had the effect of randomly jittering the individual spikes on the
order of k milliseconds. That is, wherever spikes would have occurred naturally (without
the drug), with the drug they now appear randomly, uniformly distributed, say, in a k-
millisecond interval around their “naturally occurring” position. Now, the question is: how
big does k have to be before one ceases to think? If £ is indeed very small, on the order
of microseconds for instance, then few would suppose brain functioning would suffer. On
the other hand, if £ is on the order of seconds or hundreds of milliseconds then the rates,
in the conventional sense, would clearly be disrupted, and by this thinking brain activity
would correspondingly be severely affected. More moderate values of k, on the order of
milliseconds or tens of milliseconds, are where the controvery lies: this is the region of
temporal coding.

Bienenstock’s thought experiment does suggest a preliminary operational definition of
the temporal scale of neural activity,'but there is, however, and unfortunately, no apparent
way to conduct this experiment in practice. It does, on the other hand, lead to a profitable
way of thinking about statistical approaches to studying the spike train similar in purpose
to the approach sketched above (involving the empirical rate function), but more flexible in
the alternatives which it gives power to.

For example, the thought experiment certainly suggests a data-analytic method : ran-
domly and independently perturb (or jitter) each spike in a recorded train, using perturba-
tions on the order of L milliseconds, and compute the value of some statistic on the jittered
train.2 Roughly, jittering the train should have the effect of preserving the coarse temporal
structures of the trains (or those structures coarser than L milliseconds, such as, for exam-
ple, spike counts measured in L millisecond intervals.) This leads to the following strategy
for assessing the existence of fine temporal structure: repeating the jittering process many
times, one can tabulate a distribution on the value of the statistic for jittered versions of the
spike train, and then compare the value of the statistic on the original, unjittered spike train.
If the original statistic is then atypical with respect to the jittered trains (for example, if
it lies in a tail of the tabulated distribution), then one is led to suspect that the presence
of fine temporal structure is necessary to account for the observed spike train. Specifically,
one concludes that the data is incompatible with temporal structure that is (L-millisecond)
coarse.

We develop the statistical meaning of this approach, the jitter method [12], in what
follows.

3.2 The Jitter Method

3.2.1 Method

We will be working with discretized spike trains (with typical discretizations on the mil-
lisecond scale), consisting of 7" bins. Define

) {1, if there is a spike in bin ¢ of the spike train of neuron j
Sj =

0, otherwise.

We will partitition each of the L spike trains into N disjoint windows with a fixed length
of J bins each. With the windows numbered sequentially from 1 to NN, if we label the set

!Preliminary, at the least because it certainly ignores the secondary effects of local temporal structures
in the spike trains (for example, jittering the spike trains literally could lead to violations of the absolute
refractory period), which we will address later.

%See also [44], Figure 3.20, for a similar application of this idea.
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of bins associated with window k as Wp, we further define

mi(k) == si(t),

teWy,

i.e., my(k) is the number of spikes in window k, for neuron /. The family of random variables
containing all the window spike counts we call M,

M= {m(1),ma (2)y oy (N), ety mi (1), mp (2), -y mi (N) .
The algorithm proceeds as follows:

(1) (& )y

e For each original spike train s;, generate M surrogate spike trains s;

sampling M times, independently and uniformly from

2(t) €{0,1},0 <t <T| > z(t) =my(k), VI<E < N o,
teWy,

i.e, from the space of spike trains which have the same total number of spikes in each
window as the original train. Note that this is not literally jittering the train, but a
natural analogue of it.

e Given any function f(s1,...,sr) which is a function of L discrete spike trains, compute
the statistic

Y = f(s1,--,5L),

for the original spike trains as well as
Y; = f (Sgl), ...,Sg)> )
for the “surrogate” spike trains.

e From Y1,Y3, ..., Yur, form the order statistics Y(1), Y(2), .-, Y(ar). (i.e., where Y{;) is the
i’th ordered value of Y7, Y5, ..., Yy, ranked from lowest to highest). Then reject Hy of
(window length) J if

{Y >Y

where 6 := [(1 — «)(M + 1)]. The parameter « will turn out to be the level of
a hypothesis test, under a suitably formulated null hypothesis, which we describe
below. In practice, one can just compute the p-value of this test. In this case the

p-value is
M—-k+1
=— 3.1
M+1 7 (3-1)
where
k:=min{j : Y > Y} (3.2)

The data can reject the null hypothesis at significance 1 — a if p < a.
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Jitter Method

Synchrony
Count

Original Spike Trains

Significance of Synchrony

1D

100

o

Origingl Synchrony( p=.025)
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o ©

©

Synchrony

Figure 3.1: A pictorial description of the jitter method, using the number of synchronous co-occurrences
of spikes as the jitter statistic f. Here windows of length J=5 bins are used. 5 windows are shown. We
have the counts M in the original spike trains: mi(1) = 1,m1(2) = 1,m1(3) = 2,m1(4) = 2,m1(5) = 2
and ma(1) = 1,m2(2) = 3,m2(3) = 1,m2(4) = 2, m2(5) = 2. The randomly sampled surrogate spike trains
preserve the counts M. Finally, a distribution of the synchrony counts is tabulated (here presuming many
more windows which are not shown), and the significance of the synchrony from the original distribution
assessed from the tabulated distribution.
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3.2.2 Statistical Interpretation

A Bernoulli process is a discrete-time stochastic process composed of a sequence of in-
dependent Bernoulli random variables. That is, a discrete-time stochastic process X =
(X1,X9,...,X7) on 1 <t < T is an inhomogeneous Bernoulli process with rate function

r(t) = (r1,72,...,r7) if
T
P(X1 =x1,Xo =x9,...., X7 = xT) — H,,.ft(l _ ,rt)(lfzct)
i=1
V1,22, ...,z € {0,1}7.

(3.3)

The model is natural, and one can obtain the Poisson process by taking suitable limits
of finer and finer discretizations of Bernoulli processes. When the rate function r(t) is a
constant (r(t) = r), we call this a homogeneous Bernoulli process.

Null Hypothesis. The jitter method described above tests the null hypothesis, Hy, that,
conditioned on the rate functions 71 (t),r2(t), ..., 71 (¢) for L neurons, the discrete spike trains
are samples from independent Bernoulli processes that are homogeneous (i.e., of constant
rate) within each window:

HO : P(Sl(l) = :1}1(1)...,31(T) = .Il(T), ...,SL(l) = :EL(l)...,SL(T) = .TL(T))

where z;(t) € {0,1} V1,1
and pi(t) = p(t') if t,#' € Wy (for some k), V1 <[ < L

This includes the special case where the spike trains are themselves inhomogeneous Bernoulli
processes with constant rates in every window. But because the assumption of independence
is conditional, it also includes, for example, mixtures of Bernoulli processes in which the
rate functions themselves are random (and possibly dependent), but are chosen randomly
from an ensemble of rate functions which all share the property of constancy within the
windows. Thus the null hypothesis evades the assumption of statistical repeatability, while
still capturing the notion of coarse temporal structure with the homogeneous windows.
Now we demonstrate the validity of the test, beginning with a preliminary lemma.

Lemma 3.2.1. If Xy, X1,..., Xar are independent and identically-distributed random vari-
ables then

M—-k+1
PXo>Xw) < e

where X 1) is the k’th order statistic of the random variables X1, ..., X .

Remark. A straightforward way to understand this lemma is to consider the case where
X, is a continuous random variable. Then considering the space II of permutations of
{0,1,..., M},

> P(Xny > Xpy > o> Xpy) = 1,

w€ll
since ties occur with zero probability. Furthermore, given any 7,7’ € II, symmetry alone
implies that

P(Xﬂ'o > Xﬂ'l > e > XT('M) == P(XWE) > Xﬂ.’l > . > Xﬂ—;\l)'
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From there, it is a transparent counting argument to

M-k+1
P(X() >X(k)) = 7M-|—1 s

a stronger result for the continuous case. Generalizing this argument for non-continuous

random variables introduces logistical details associated with the occurrence of ties, which

we defer to the appendix.
Corollary 3.2.2. If P € Hy, then

P({reject Ho}) := P({Y > Y5 }) <«

Proof. By virtue of the null hypothesis, Yy, Y1, Y5, ..., Yy are conditionally independent
and identically-distributed, conditioned on M. Hence an application of Lemma 3.2.1 gives

P(Yy > Vi) = Y P (Yo > Y| M) P(M)
M

<> (%) P(M) (3.4)

M —k+1
O M+1

Plugging in k = 0 := [(1 — a)(M + 1)] into (3.4) yields the corollary. In addition, the
inequality (3.4) justifies the p-value defined by (3.1).

3.2.3 Interpreting the Null Hypothesis

The idea of the jitter method, and its null hypothesis, is to explore ways of identifying finer
temporal structure in the spike train (i.e., fast changes in rates), in cases where it is not
compelling to assume repeatability in the spike-generating process, for our usual reasons. As
we state in the introduction, if it were reasonable to assume repeatability, the most natural
inference technique would be to measure the empirical rate function across trials, and then
observe how quickly the rate function varies. This is inference via estimation. What about
when the process is not repeating? An alternative way to define coarse-temporal structure
statistically is to assume the spike counts in intervals are a sufficient statistic. A statistic
T is sufficient with respect to a class of distributions C when the distribution of the data,
conditioned on the sufficient statistic, is the same for all distributions in C: i.e.,

Pi(X|T(X)) = Py(X|T (X)) VP, P € C. (3.5)

In such a situation, the value of T'(X) alone is therefore sufficient to make inferences about
the distribution governing X, with respect to the class C. For our null hypothesis Hj
the class of processes such that conditioned on the rate, the process is an inhomogeneous
Bernoulli process with constant rates (within pre-specified windows), the data is distributed
identically (in fact, uniformly) for all processes, given M. Thus M forms a sufficient statistic
for the null hypothesis, and this is a statistical analogue of saying ‘only the counts matter’.

The symmetry implied by a sufficient statistic for a class of distributions C has practical
implications for testing the null hypothesis Hy = C [49, 31]. This is useful because in general
the problem of testing composite hypotheses, in which the null hypothesis contains many
distributions, is difficult. Sufficient statistics reduce an otherwise composite hypothesis
testing problem to a simple one, in the following way. Given a sufficient statistic, one can
seek a critical region f(T'(X)) for each value of T'(X) such that

P(X € f(T(X))|T(X)) <a VPe€H, (3.6)
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By virtue of sufficiency, for a given value of T'(X), this is a problem of a simple hypothesis,
since the conditional distribution of the data given 7'(X) is the same for all distributions in
the null hypothesis. The function f then gives rise to a conditional test, to test the general
hypothesis Hy. That is, the event {X € f(T(X))} is then an a-level hypothesis test:

P(X € f(T(X))) = Y P(X € f(T(X))IT(X))P(T(X)) < Y aP(T(X)) =a. (3.7)
T(X) T(X)

This is the mathematical essence underlying the data-analytic intuition of the jittering
procedure. M, the counts in the windows, forms a sufficient statistic of the null hypothesis,
and jittering is akin to Monte Carlo estimation of the conditional distribution P(-|M).

As a toy example, consider an 18-bin model of a short spike train. Let us model the
spike train as a pattern of two spikes, spaced 5 bins apart, with its location uniformly
distributed on the interval. Now we will place 2 5-bin windows in the center 10 bins of the
18 bins (we take this slightly cumbersome route of embedding the windows within a larger
model to avoid edge effects, which would become asymptotically negligible as we lengthen
the model). If you were to sample 7" times from this model (corresponding to 7' trials), the
empirical rate function on the 10 bins would converge to a constant as 7" increases. On the
other hand, this clearly seems like an example of temporal structure: the precise location of
one spike predicts (in fact, determines) the precise location of the other. Now, if we employ
as our jitter statistic the following function

(3.8)

1, if there are two spikes in the train 5 ms apart
f(s) = :
0, otherwise.

Then clearly the jitter method will quickly lead to reliable rejection of the null hypothesis,
whereas using the empirical rate function would not.

As this example illustrates, however, clearly the choice of f is crucial for the rejection.
Some choices of the function f would not lead to rejection. For example, it is not difficult
to construct an f which essentially mimics the procedure of measuring the rate of variation
of the empirical firing frequency; thus jittering can be seen as a more general procedure.
To do this, let r; = 7 Z]T:1 s;(4), the average number of spikes in bin ¢ across trials, where
we index ¢ along the 10-bin window, 1 < ¢ < 10. Thus r1,79,...,719 is the empirical rate
function. Then employ as f a measure of the variation across r. For example

10

£6) = 55 3 (i = 712, (5:9)

_ 10 . ..
where 7 = % > i=1Ti, i.e., here f measures mean square variation. Because of the law of

large numbers, for sufficiently large 7', f(s) will be near zero. On the other hand, jittered
versions of the train will also be near zero, since the jittered trains themselves will also
have flat empirical rate functions. The empirical rate function does not reveal the temporal
structure of this model.

In this regard, the failure to reject the null hypothesis via the jitter method, as usual, is
not necessarily evidence for the null hypothesis: it may be that an alternative choice of the
jitter statistic f would lead to a rejection. Since the choice of candidate functions f is virtu-
ally unbounded, judicious choices for the function f is an important issue. This can be seen
as a virtue: since any f can be used with essentially no change in the method, it is possible,
by suitable choice of f, to adapt the method to produce tests of the coarse temporal struc-
ture hypothesis which are well-adapted to alternatives of scientific interest.®Furthermore,

3In this respect, the method shares a theme with other modern developments in statistics, such as the
bootstrap [15], which take advantage of computing methods to widen the scope of available inferences.
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the form of the function f can then be suggestive, in cases where the null hypothesis is
rejected, of the types of alternatives which could have generated the data.

For one final point of clarification, we return to the statement of the null hypothesis:
conditioned on their rate functions, the discretized spike trains are Bernoulli processes that
are homogeneous within each window. This can be a little confusing. It is clear from
the statement that Bernoulli processes with window-constant rate functions are in the null
hypothesis. It is also clear, that mixtures of Bernoulli processes drawn from random but
window-constant rate functions are also in the null hypothesis. However, rate functions are
not literally observed, hence the possible confusion. Taken literally, the statement has to do
with representations of discrete point processes, which takes us back to the notion to the
universality of the Bernoulli representation.

That is, to repeat, every collection of discrete-time stochastic point processes is a col-
lection of miztures of Bernoulli processes (refer to the discussion leading to Equation 1.6).
Therefore, one can represent arbitrary discrete point processes with a hierarchical model
in which the spike train is a random sample from a random rate function. However, such
a representation is not necessarily unique. One can make this point with a model of the
simplest such process: a two bin spike train, represented by s(1) and s(2). Such a model is
specified by three probabilities p1g, po1,p11:

P(s(l) =1 8(2) = 0) = P10

P(s(1) =0, 8( )=1)=po
P(s(1) =1,5(2) =1) =pn (3-10)
P(s(1) = 0 3( ) =0)=1—pio—po1 — pi1

Now, let us suppose that pgg = .25,p11 = .25,po1 = .25,p11 = .25. This is, of course, a
Bernoulli process with rate %, and therefore is a candidate for the null hypothesis (when
placed in a window, et cetera). However, one could in principle represent it with a mixture-
Bernoulli model with non-constant rate functions. This is essentially the exercise that gives
rise to (1.6): Just use the following four rate functions:

Ta = (O,O)
Ty = (170)

_ (0’ 1) (3.11)
rd = (1, 1),

and mix them with probability .25. Then we have the same process, but the rate functions ry
and r, are, of course, not constant. This example extends to arbitrarily long time domains.
Therefore to be (perhaps overly) explicit, the null hypothesis Hj contains discrete point
processes which merely can be represented as mixture-Bernoulli processes with window-
constant rates.

3.3 Results

A statistic f can be drawn from any of the virtually unbounded class of functions of mul-
tidimensional spike processes, and by virtue of Corollary 3.2.2, the jitter method will test
a null hypothesis of ‘coarse temporal structure’. In our case, one would like to choose a
statistic that has power under a presumed alternative distribution: P({reject Hy}) should
be high for an alternative distribution P of interest (i.e., a distribution, for example, that
is plausible under a neuroscientific theory of interest, or which could be generated by a
plausible neural mechanism). Such a choice of f is most likely to reveal temporal structure
insomuch as the assumptions giving rise to its use are true.
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The jitter method has been applied to two different problems involving multi-neuronal
cortical recordings. The original application was to assessing the significance of synfire
chains, the second application was to the problem of identifying significant synchrony.

3.3.1 Synfire Chains

The jitter method was first introduced in [12], where it was applied in the context of synfire
chains. Synfire chains are the repeated, temporally-precise sequential activation of neuronal
subpopulations which have been proposed to occur in cortex [1, 2]. To determine whether
synfire chains are detectable in neurophysiological records, it is necessary to rule out the
hypothesis that the observable temporally-precise repetitions of neuronal firing could have
arisen in the absence of temporal structure. Hence the jitter method was developed.

The statistic f employed was the maximum number of repetitions of spatiotemporal
patterns of a given complezity. For example, a pattern of complexity 4 is: neuron 1 firing,
then 15 milliseconds later neuron 7 firing, then 3 milliseconds later neuron 3 firing, and
then neuron 1 firing after another 10 milliseconds. Fixing an upper bound w, on the total
time it takes for a pattern of complexity k to occur, there are a finite number of possible k-
complexity patterns in a set of spike trains in discrete time. For each such pattern, one can
count the number of repetitions of the pattern in the neuronal records, and then optimize
over patterns to produce f, the maximum number of repetitions of spatiotemporal patterns
of complexity k.

The method was applied to simultaneous recordings of five neurons obtained from pri-
mate Supplemental Motor Area (SMA) in monkeys performing reaching tasks. Details on
the experiments, as well as methods for efficiently computing f can be found in [12]. The
null hypothesis of window size J=6 milliseconds was rejected at a significance level of 97.5%,
and the more restrictive null hypothesis of J=15 was rejected at significance level of 99.5%.

3.3.2 Synchrony

In [27], the jitter method is applied to the question of whether the synchronous firings
observed in a pair of cortical spike trains are in excess of what one would expect from
a rate hypothesis. The spike trains were discretized into bins of 1-2 milliseconds. One
train from the pair was (arbitrarily) designated as the reference train, and windows (with
lengths ranging from 2 to 8 milliseconds) were centered around the spikes in the reference
train. These windows were then used as the jittering windows for spikes in the target
train. Synchrony, defined as the number of target neuron spikes falling in the center of the
reference windows was used as the jittering statistic f, and the jitter method was used to
test the hypothesis that, conditioned on the reference train, the spikes in the target train
were a, Bernoulli process with constant rates in the reference-anchored windows.

The pairwise test was applied to a total of 224 cell pairs obtained from several simul-
taneous recording sessions from M1 of macaque primates performing reaching tasks. In
order to accommodate multiple testing, the rejection or failure of rejection of each pairwise
synchrony test was itself treated as a statistic, and the binomial test was used to assess the
general (but not quite appropriate, due to pairwise redundancy) null hypothesis that each
cell pair was a pair of independent processes drawn from the null hypothesis of the pairwise
jitter synchrony test. The null hypothesis was rejected (p < 0.01) for all three of the testing
parameters: { 1 ms discretization, 2 ms windows }, {2 ms discretization, 4 ms windows},
and {2 ms discretization, 8 ms windows}.
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3.4 Discussion

We have proposed a technique for defining and inferring the time scale of the brain, from
observations of temporal structure in neural spike trains. The definition is the null hypoth-
esis: that the spike train is a Bernoulli process whose rate function is constant in windows
of length L. The technique is the jitter method, a hypothesis test, which provides a method
for calculating the significance of a chosen statistic under the null hypothesis, and which
we propose to use as a basis for inference. The choice of statistic is, of course, crucial,
and depends on scientific criteria. The utility of a hypothesis test depends on the ability
of a statistic to distinguish (via its distribution) the null hypothesis from an alternative
distribution of interest. This is classically the issue of the power of a test. The choice, or
design, of a statistic makes any hypothesis test just as much about the null hypothesis, as
about the alternative hypotheses that the test is optimal and hence targeted towards.

The size of the window J is a proxy for the ‘time scale’ of nervous system activity.
Roughly, the null hypothesis expresses the idea that the spike processes are ultimately
random when viewed at a resolution finer than {J X bin size}. Thus rejecting such a null
makes a statement about the temporal resolution of nervous system activity. This can be
viewed as well from the perspective of sufficient statistics: the size of the window is the
resolution at which “the spike counts matter”. There is a degree of artifice in this approach,
however. The essence of coarse temporal structure is not necessarily constancy but really
slow wvariation in the likelihood of spiking across time. In this sense the null hypothesis
merely offers an approximation to the notion of coarse temporal structure in terms of slow
variation in rates: roughly, a process is in the null hypothesis when it is well-approximated
by a process that has constant rates in windows of size J. Furthermore, the pre-selection
of window locations is arbitrary.

This approximation introduces a problem in the form of an interaction between the
quality of approximation (i.e., the degree of slow variation) and the amount of data available
to the test. Given enough data, a hypothesis test could in principle reject an arbitrarily
small deviation from the null hypothesis. An example is the elementary problem of testing
the hypothesis p < .5 for a Bernoulli random variable with probability p. Via the law of
large numbers, we know that, given enough samples, a binomial test for p < .5 will reject the
hypothesis for samples with p = .5+ €, for any ¢ > 0. Because of this confound between the
amount of deviation from the null and the amount of data, many statisticians eschew such
sharp hypothesis tests in favor of confidence intervals. The same sort of problem arises for
permutation tests such as the jitter method. Since we are often dealing with great amounts
of data in the form of long spike trains, this concern warrants serious consideration.

Furthermore, the mere ezistence of fine temporal structure in the spiking processes can
already be taken for granted on the grounds of biophysical knowledge. Due to intrinsic
membrane properties involving the recovery of neuronal polarization following an action
potential, there is a period of time of duration approximately 1 to 3 milliseconds following
a spike, the absolute refractory period, during which the neuron is incapable of spiking at
all. Furthermore, there is in addition a relative refractory period of longer extension, a
consequence of the same recovery, in which more synaptic input is in general required to
fire a spike than at equilibrium, and which is likely to introduce a local dependence among
the spikes. In addition some cortical neurons possess specialized ionic channels which cause
them to regularly fire not single spikes, but short, finely-timed bursts of spikes in response
to sufficient input. All of these phenomena are stereotyped forms of fine temporal structure
which are local, but perhaps not as interesting from the perspective of the timing of the
neural code. Nevertheless, they do represent deviations from the null hypothesis which
could increase the likelihood of rejection by jittering.
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This line of thought leads us to seek a generalization of the jitter null hypothesis: non-
repeating processes in which the rate of change of the underlying rate functions are para-
metrically bounded (in analogy to the approach of confidence intervals), and a method in
which rejection implies temporal structure over and above local fine temporal structure of
the sort attributable to refractory periods and bursts.

However, it is not clear how to solve these two problems generically in the framework
of the jitter method. The goal of the remaining development of these ideas is to preserve
the themes of the jitter method (particularly, with respect to the issues of repeatability),
while taking into account these general problems, in the context of the specific alternatives
of processes exhibiting synchronous spiking.

3.5 Related Work

Temporal and rate coding is the subject of a vast literature. The observation that rates of
spiking are correlated with behavioral and environmental variables occurred as early as the
pioneering work of Adrian [4]. Since then, it has played the role of a dominant paradigm,
and similar sorts of correlations have been observed in nearly every system and preparation
investigated in behavioral neurophysiology. It also underlies the thinking of much of neural
network research in which the signals sent from one model neuron to another are presumed
to be continuous variables. Notions of temporal coding tend to be of more recent vintage,
though temporal coding has long been acknowledged to exist in early sensory systems where
the neural responses tend to be very direct reflections of sensory input, which themselves
contain precise temporal structures [55]. Commonly-cited and striking examples are often
drawn from the auditory system where the detection and communication of very precise
temporal events are built into the problem which the brain has to solve, for example the
problem of detecting the very fine differences between sounds detected at the two ears for
the purpose of computing the location of a sound-emitting source in space. In such systems
neurons which detect coincidences for functional purposes on millisecond time scales are
routinely found. Deeper in the brain, particularly in cortex, the subject of temporal codes
is controversial, and it is hard to paint a clear picture of the schools of thought in the field.
Perhaps the central question is whether temporal codes signal more abstract, or processed,
events than raw sensory signals contain. In this light, the work of Laurent and colleagues
[30, 53] in insect olfaction has probably been the most compelling (some might say, the only)
case for temporal structures in coding, but the issue is fraught with so many methodological
difficulties that it is hard to interpret the lack of evidence as a negative conclusion.

Some of the early work involving the recurrence of temporally-precise statistical struc-
tures arose from Abeles’ thinking on synfire chains [1]. This was the motivation for the
original proposals of the jitter method. Methods for assessing the significance of repeated
observations of spatiotemporal patterns with respect to null models of chance are discussed
in [3], and further applications can be found in [2, 43, 56]. Oram and colleagues [38] argued
that assumptions of repeatability and the Poisson assumptions in these methods confounded
the conclusions, and suggested that more intricate models threw a negative light on conclu-
sions from these studies. The fitting process in these methods are a little involved however,
and, though their critique is certainly valid, it can be a little difficult to identify the null
hypothesis in their proposals, and how restrictive it is. Other approaches to this problem
includes the papers [18, 19], where the authors consider the significance of the number of
recurrences of a particular spatiotemporal pattern of neural firing, using assumptions of a
similar flavor.

The case of synchrony is the center of a great deal of work on temporal coding. One
clear line of thought begins with the theories of von der Malsburg [59, 60], which proposed
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synchronous co-occurrence among neurons as a way to solve the binding problem, the prob-
lem of representing the relationships among the features present in a stimulus, in neural
networks which employ distributed representations [16]. Experimental results consistent
with these ideas were presented in [21]: here the responses of two distant V1 cells (from an
anesthetized cat) whose receptive fields had similar orientation selectively but were spatially
distinct exhibited synchronous co-activity when a coherent line of light which crossed the
receptive fields of both cells was presented, and not when the cells were activated by two
independent lines that were identical in the receptive fields proper. Moreover, the amount
of activity in both situations was similar, indicating that the effect was independent of rate
coding. These experiments spurred a flurry of subsequent work (see [51] for a review), and
in turn highlighted a need for analytical methods which could precisely detect the the oc-
currence of synchronous activity to guide experimental work. As Wolf Singer concluded in a
review article [50] on this topic in 1994: “As temporal relations such as synchrony can only
be evaluated by simultaneously recording the activity of different cells, critical tests require
the application of multielectrode recordings, and it will most likely also be necessary to
develop new analytical methods to reliably detect transient temporal relations among the
activities of widely distributed groups of neurons. For the brain, a synchronous discharge of
several thousand cells is likely to be a highly significant event — even if it occurs only once —
but for the experimenter, such episodes may pass undetected as long as only the responses
of a few neurons can be examined at a time.”

Methods for analyzing cross-correlations between two spike trains were introduced in
[41]. A basic idea is to correct for the effects of the stimulus-induced rate on each spike
train, estimated by averaging across trials, separately in order to predict its effect on the
joint behavior of the two spike trains. Suppose we represent the response of two neurons
after repeated presentation with a stimulus n times, X%(t) and Y*(¢), so X* represents
the response of neuron X during trial 4, and Y* represents the response of the neuron Y’
during trial 7. In [41], a permutation test is suggested: randomly permute the responses
Y1, Y2 ..,Y", and compute the cross-correlation between the responses X', ..., X™ and the
permuted Y responses. If the permuted cross-correlation differs significantly from the origi-
nal cross-correlation between X and Y, then the difference can be attributed to interactions
within trials, independently of the stimulus-dependent responses. Implicitly, this tests the
null hypothesis that Y7, ..., Y, are exchangeable, hence this is an assumption of repeatability.
Rather than use the permutation idea directly, Perkel applied assumptions of independence,
within and across the trains, to assess the significance of the difference between the original
and the permuted records. This is a rate-coding type of assumption: the stimulus deter-
mines a rate, and hence conditioned on the stimulus (or equivalently, the rate), the neurons
act independently, and hence their spikes are as well. Formally similar tests operating under
the same hypotheses are presented in [39] and [5].

Brody [9, 10] suggested these methods were problematic from the perspective of the fine
temporal structure debate, by pointing out some models that were alternative to such a
null hypothesis but nevertheless shared the spirit of the rate coding hypothesis: so-called
latency and excitability covariations. The models he described were mixture-of-Poisson
style, in which each neuron has a stimulus-determined rate function but across trials the rate
function is shifted in time by a trial-varying latency parameter, and scaled by a trial-varying
gain parameter. However, the trial-varying latency and gain parameters are common to both
neurons (hence latency and excitability covariations). In such a case, the latency and gain
covariations can lead to the detection of significant synchrony, using these methods, under
the straight Poisson null hypothesis.

Griin et al. [22] and [23] develop methods for detecting coincident activity among many
cells in multi-neuronal records. The central assumption of the null hypothesis in [22] is that
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the spiking process is a homogeneous Bernoulli process for every spike train, and that all
spike trains are independent. Under this assumption, the rate can be estimated from the
frequency of the spike counts, and the distribution of the number of occurrences of coincident
activity of any particular subassembly can be computed. The computed distribution can
then be used to evaluate the significance of coincident activity from the multi-neuronal
records. In [23], the problem of nonstationarity in the spike trains is addressed by using
a sliding window and assuming only that the process is homogeneous Bernoulli in the
smaller sliding window: this roughly amounts to approximating nonstationary processes
as ‘locally’ stationary. Giitig [25] invests this framework with a permutation test. The
null hypothesis also is that the neurons consist of independent, homogeneous Bernoulli
processes, but rather than estimating the Bernoulli rates (as in [22],[23]), one computes the
probability of coincidence counts conditioned on the spike counts in both trains, in order to
evaluate the significance of the observed coincidence count. This conditional distribution
is independent of the rate, under the Poisson model, and as in the jitter method. This is
very much akin to the jitter method, specialized for the case of synchrony in which Monte
Carlo estimation is not necessary, but with large jittering windows. They show that the
permutation test is uniformly more powerful than the rate-estimation method of [22] for
alternatives consisting of pairs of homogeneous Poisson processes with non-zero correlation
across the trains. Notably, regarding the problem of correlations across time, Giitig writes
“The important task of overcoming the difficulties introduced by serially correlated [i.e.,
temporally-correlated] spike trains is the subject of ongoing research.”

Another approach to identifying higher-order correlations is presented in [35]. Here
log-linear models of the joint probability distribution of multiple spike trains are employed
to test hypotheses about interactions among the trains, but the trains are assumed to be
homogeneous in time.

In [40], the authors attempt to overcome the problems with trial-to-trial variability (i.e.,
the assumption of repeatability [9]) to locally estimate the firing rates from spike trains in
each trial individually, with a view towards detecting significant synchrony. The idea is to
work with a null hypothesis in which the spike trains are Poisson rate-governed but that
the rates are not repeatable. To accomplish this, they estimate the rate function in a given
trial from the interspike interval function: smoothing the interspike interval function while
allowing for large discontinuities in the rate functions in periods of spike bursting. There
are a number of parameters in the approach, however, and it appears difficult to clearly
identify the null hypothesis.

3.6 Pattern Jitter: Asymmetric Methods

We want to generalize the jitter method in two directions. In the first, we want to capture the
notion that coarse temporal structure is not so much about constant rates in pre-specified
windows as about slow variation in the rates. In the second, we want to allow for local
fine temporal structures (bursts, refractory periods) in the null hypothesis itself, precluding
them from being a source of rejection.

To see how to approach this generalization, one can look at the jitter method from
the following perspective. Its essence is the implication of the null hypothesis that, within
every window, conditioned on the counts in the window, all configurations of spikes with that
number of spikes are equally likely. As a consequence of this, under the null hypothesis,
the Monte Carlo surrogate spike trains s, @ . s are independent and identically
distributed samples from the original distribution of the process, conditioned on the counts
in all windows. As a consequence of that fact, the validity of the test is then guaranteed by
Lemma 3.2.1.
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We can re-cast the two problems we seek to solve in the framework of this perspective.
First, the problem with local temporal structures is that it is not true that, conditioned on
the count in a window, all configurations of spikes with that count are equally likely: the
particular pattern of spikes in the window may modify its relative likelihood with respect to
other patterns of spikes with the same count. The obvious example is the absolute refractory
period: for a given spike count, some configurations of spikes in the windows will actually
violate the absolute refractory period which would have probability zero under a valid model.
Bursts and the relative refractory period would give rise to similar phenomena. Secondly, if
the rate of spiking across a window was not constant, but simply slowly varying, then the
relative locations of spikes conditioned on the counts would be affected by this structure as
well.

A natural way to accommodate these observations is to refine the partition of the out-
come space of spike trains from counts more finely into patterns of spikes. This would have
the effect of preserving the local temporal structure of spikes in a window. Furthermore, we
could assign as a parameter a bound on the relative likelihood of the locations of patterns,
conditioned on their identity. The bound, by limiting how precisely patterns of spikes are
placed within a window, would thus limit the temporal precision of the process, and serve
as the measure of temporal structure in the process.

We formalize such a null hypothesis below, but there is no obvious way to build tests of
this null hypothesis for arbitrary statistics, as we can using Monte Carlo-like methods in the
standard jitter method. Rather, we develop a specialized test designed with synchrony-based
statistics, which has power for finely-structured point processes that exhibit synchronous
spiking. We call this method the pattern jitter method.

3.6.1 Null Hypothesis

This suggests the modified null hypothesis of the pattern jitter method. A window-division
is a division of the discrete time domain into N windows of length J bins, with the condition
that every window is separated from its neighboring windows by a S bin interval. We refer to
these conditions as the window-separation constraints, and we define the following random
variables.

Notation.
£; := the location of the first spike in window 4

A; := the pattern of spikes in window %, irrespective of their temporal location
A= (Al, A2, teey AN)
Zé = (Zl,ég, ...,Zi_1,£i+1,£i+2, fN)

Null Hypothesis. We distinguish two discrete point processes separately as a reference
process and a target process. A probability distribution P on the reference and target pro-
cesses is in the null hypothesis Hy if, conditioned on the reference process, for any window-
division on the target process satisfying the window-separation constraints, the target process
satisfies

1 Plli=jlit,A)
A~ P(EZ =37+ 1|Z£,A)

<A V1< < jmax(A), V1 <i < N, Vil VA (3.12)
where jmax(A;) is the mazimal location of ¢; associated with A;, (i.e., the mazimal value of

the locations of the first spike which keeps the pattern in the window.)

Remarks.
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e The windows are separated so that locally stereotyped patterns such as bursts from
one window will not interact with one another in such a way as to complicate the
independence relations across windows. Hence the size of the separation parameterizes
the length of "local’ fine temporal structures, such as bursts, which are permitted under
the null hypothesis.

e Note that the choice of location for the windows is arbitrary, so long as the windows
satisfy the (S bin) separation property. The choice of window locations within this
constraint, might affect the power of a test (as described below), i.e, how it behaves
under alternative distributions.

e Bernoulli processes which are of constant rate in the windows satisfy the conditions
of the null hypothesis with A = 1. Thus this null hypothesis generalizes that of the
jitter method (in the direction of temporal precision).

e A therefore serves as a restriction on the temporal structure of the process, over and
above local temporal structure (parameterized by the degree of separation of windows).

e Interpreting the independence assumptions can cause some confusion. In this regard,
it is useful to keep in mind the idea of the original jitter method, of which this is
a generalization (i.e., the jitter null hypothesis is contained here as a special case of
A =1.) There, the idea is that the rate functions (and hence their sufficient statistic,
the counts) themselves might have any particular dependence: across time, across
trains, et cetera, but over and above this dependence, there is no structure in the
spike times. The same idea holds in spirit here, but for patterns (which determine
the counts) more specifically. Since the conditions of the hypothesis hold conditioned
on A, the patterns in windows across time might have any possible dependence. But,
over and above that dependence, there is no structure in the control of spike positions
apart from the structure that the parameter A permits.

3.6.2 Method

In the jittered trains, the reference train is preserved, and patterns in the target train are
translated randomly in a weighted manner determined by A. The “synchrony” count here
is not literally a synchrony count, but the number of windows in the target train in which
there is a spike in the center bin (i.e., synchronous with the spike in the reference train
that “anchors” the window). The tabulated distribution of these synchrony counts among
the pattern-jittered trains is used to assess the significance of the synchrony counts in the
original train with respect to the A null hypothesis. Actually, the pattern-jittered trains
here are metaphorical: the actual distribution is computed analytically.

Algorithm.

e From the discretized reference spike train, identify N spikes that are separated by at
least S+ 2- 2] bins each (in practice J is taken to be odd), by proceeding from the
onset of the train forwards, and ignoring spikes that are within S +2- 4| bins from
their neighboring previous spike. Here |z] is the largest integer that is less than or
equal to z. Then create N time windows of length J bins in the identically-aligned
and discretized target spike train centered at the identified spikes in the reference
train. Define ¢; and A; as in the notations from the #’th window of the target train,
i.e., where /; is the location of the first spike in the window relative to the onset of
the window, and A; characterizes the pattern of spikes in the target train.
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Figure 3.2: Pictorial description of the asymmetric pattern jitter. Here J = S = 5 bins. X’s mark out
regions of the spike train which are ignored on account of the S-bin separation requirement. There are 3
windows (indexed by k). In the target train we have A, = {1},4; = 3, A, = {101}, ¢, =2, A3 = {1}, 43 = 1.
In the jittered trains, the reference train is preserved, and patterns in the target train are translated randomly
in a weighted manner determined by A (i.e., preserving A = (A1, A2, A3). The “synchrony” count here is
not literally a synchrony count, but the number of windows in the target train in which there is a spike
in the center bin (i.e., synchronous with the spike in the reference train that “anchors” the window). The
tabulated distribution of these synchrony counts among the pattern-jittered trains is used to assess the
significance of the synchrony counts in the original train with respect to the A null hypothesis. Actually,
the pattern-jittered trains here are metaphorical: the actual distribution is computed analytically.
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e Define

S(A;) := the values of ¢; for which A; will place a spike in the center bin of window i,
(3.13)
and for each window %, compute

pi= max Y g (3.14)

QIa---:Qjmax(A-) .
>0Vi  JES(A)
ZiinI

L 9 <A

A=gi41—

by linear programming [34].

e From p7,p3, ..., pj, compute the (reverse) cumulative probability distribution

N
f)="P (ZE > t) ; (3.15)
i=1

where each Y; is distributed as a Bernoulli random variable with parameter p;, and
Y1,Ys,..., YN are independent. An algorithm for efficiently computing f is described
in the appendix of chapter 2.

e Count the number of windows Y in which there is a spike in the center bin of the
target train, and reject Hy of A if

{Y >inf{t: f(t) < a}}. (3.16)
3.6.3 Validity of the Test

The following lemma is the essence of the proof of significance.

Lemma 3.6.1. If X1, Xo, ..., X, are Bernoulli random variables and
P(X; =1;X) <p; Vi,;X
Then

n n
P(inzk) gP(ZY;Zk) VE,
=1 i=1

where Y1,Ys, ..., Y, are independent Bernoulli random variables with Y; ~ Be(p;).

Proof. The proof is by induction. The case n = 1 is self-evident. Accordingly, assume
that the lemma holds for n — 1. Observe that

n n—1
P (ZX,- zk) :P(ZXZ- >k
=1 =1
Z n—1
+P (ZXZ- >k—1

X, = 0) (1-P(X, = 1))

i=1

X, = 1) P(X, =1),

and, analogously,

n n—1
P (ZY; > k) =P (ZY; > k) (1—=pn)
=1 i=1
n—1
+P(Zn2k—1>pn,

=1
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using the same decomposition but noting the independence of the Y;’s. Now, conditioning

on X, = 0, the hypotheses of the lemma are satisfied for X;, Xo, ...,

n — 1), and hence
n—1
p (ZXZ- >k
i=1

and by the same reasoning,

n—1
P (ZXZ >k—1
=1

n
Xn=0) SP(ZYizk),
=1

n—1
Xn:1> gP(ZY}Zk—l).

=1

Furthermore, the set relation {>°7" | ¥; > k} C {>",Y; > k — 1} implies

n—1 n—1
P(ZE’E’C) SP<ZYizk—1)
=1 =1

Finally, we also have

X,=1)

ZP

Equations (3.17)-(3.20) yield

n n—1
=1 =1

+P

n—1
> p (
i=1

+P

n—1
> p (
=1

+P

-

Xp = 1;X)P

< an = Pn-

ZY; 2k> (1_pn)
<nz_:1y; > k_1> Pn

=1

dy; Zk) (1-P(X, =1))
(g:lyg 2k—1> P(X,=1)

=1

> Xi>k

X, = o) (1-P(X, =1))

n—1
(ZX,- >k—1

=1

n
=1

X, = 1) P(X, =1)

concluding the induction and the proof.

Corollary 3.6.2. (Validity of the Test) If P € Hy, then

P({reject Hy at A}) < a.

Proof. Define

9i ‘= Lges(ay
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the indicator of synchrony in window . We will show that

P(fjgizk A) gP(ij;zk> VA, (3.23)
1=1

=1
where Y1, ..., Y, are independent and Y; ~ Be(p}). Observe that

P(g; =1|i¢, A) <p; Vil, A (3.24)

by the definition of p}, Equation (3.14), and that ;g is a function of ;¢ and A, which we will
denote by h:
i9 = hit, A). (3.25)

As a consequence,

P(g;=1,,9,A
P(gi = 1]ig, A) = (gp(ig Ag) )
_ (et A)=ig 95 = 1il, A)P(:£|.A)
P(ig|A) (3.26)
< Do (il A)=ig} Pi P (| A)
a P(ig|A)

= p;.

Now an application of Lemma 3.6.1 gives Eq (3.23), as desired, and plugging in k£ = inf{¢ :
f(t) < a} yields the corollary.

3.7 Pattern Jitter: Symmetric Method

The pattern jitter method described in the previous section has one obvious (at minimum,
aesthetic) flaw, asymmetry. The internal statistical structure of the reference train has
no bearing on the null hypothesis. Intuitively, this means that the process underlying the
reference train can vary very (in fact, arbitarily) quickly, independently of the likelihood of
rejecting the null hypothesis. In effect, this is because the target train can depend on the
precise location of the spikes in the reference train, which is in itself a form of fine temporal
structure. This is a weaker hypothesis than we wish to test; the natural hypothesis is that
both spike trains are bounded in their temporal precision. Furthermore, the outcome of
the test depends on the choice of reference and target: swap the trains, and the p-value
changes. Both of these characteristics seem unappealing.

To extend the analogy of the asymmetric pattern jitter, the natural thing would be
to write down the same null hypothesis, but for both spike trains. In analogy to the
one train case, the natural assumption is that locations £ of patterns in different windows
are independent, given the patterns .A. Then, there is the problem of where to place the
windows: if you choose one train as a “reference” train as before, to anchor the windows,
then a dependence is introduced. For example, if a local pattern in one spike train consisted
of a single spike, then anchoring the window around that spike in fact determines the location
of the pattern ¢ in the center of the window: there is no room for temporal variation.
Therefore, it is necessary to choose the windows in fact independently of both spike trains
in order to accommodate a symmetric null hypothesis. This means in practice, fixing the
windows in advance of the analysis. This introduces a loss of power, since spikes will
be ignored as a consequence; this is akin to “throwing away” data. On the other hand,
compared to the asymmetric pattern jitter method, this loss of power is balanced by the
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gain in power due to restricting the rate of change of both processes, rather than just one.
Given enough data, the more restrictive symmetric null hypothesis would then be more
powerful, but it is an empirical question if the amount of data that we have is enough. For
the data sets we examined in these investigations (described below), the symmetric test was
more powerful in the sense of giving rise to rejection of larger A, and these are the results
we report.

3.7.1 Null Hypothesis

We partition the discrete time domain into N windows of length J, with the condition that
every window is separated from its neighboring windows by a S bin interval, and define the
following random variables. There are 2N windows in the two spike trains: windows 1 to N
correspond to the first spike train, and windows N+1 to 2N correspond to the second spike
train.

Notation.
Z; := the location of the first spike in window 3.

A; := the pattern of spikes in window i, irrespective of their temporal location
A= (A1, As, ..., Agy)
il = (b1, 0o, e li1, i1, biva, - LoN)
Null Hypothesis. A probability distribution P is in the null hypothesis Hy if it satisfies

1 _Pli=jlA)
A — P(lz :j+1|.A)

<A V1< < jmax(4),V1 < i < 2N, VA, (3.27)

and
£1,4y,....,4oN are conditionally independent given A, (3.28)

where jmax(A;) is the mazimal location of ¢; associated with A;, (i.e., the mazimal value of
the locations of the first spike which keeps the pattern in the window.)
Remark. Actually, a slightly more general null hypothesis is also valid:

1 Pli=jlitA
A~ P(ly=j+1]i4,A)

and

P(li| A, il) = P(Li|A, i a@)f) Vil,VA, (3.30)

where a(i) = (N +4) mod 2N (i.e., a(i) is the window corresponding to window 7 in the
alternate spike train.)

3.7.2 Method
Algorithm.

e In the discrete time domain and starting with the first bin, demarcate N windows
with a width of J bins, with each window separated from its preceding neighbor by
S bins (i.e., bins 1 to J compose the first window, J + S + 1 to 2J + S compose the
second window, et cetera).

Define ¢; and A; as in the notations from the 7’th window of the target train, i.e.,
where #; is the location of the first spike in the window relative to the onset of the
window, and A; characterizes the pattern of spikes in the target train. Note that here
the window ¢ and the window N + ¢ correspond to the windows occupying the same
position in time for the two spike trains.
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Figure 3.3: Pictorial description of the symmetric pattern jitter method. Here J = S = 5 bins. X’s mark
out the region of separation between windows. The synchrony count here is simply the number of windows
that contain at least one synchronous spike. The method is similar to that illustrated in Figure 3.2, but
patterns in both trains are translated randomly in the jittered trains, in a weighted manner determined by
A. The tabulated distribution of these synchrony counts among the pattern-jittered trains is used to assess
the significance of the synchrony counts in the original train with respect to the A null hypothesis. The
pattern-jittered trains here are metaphorical: the actual distribution is computed analytically.
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e Define
S(A;, An+i) :=the values of (¢;,£n;) for which (A4;, Ay4;) will induce

a least one pair of synchronous spikes among the spikes in windows
1 and N + 1.
(3.31)

and for each window 7 restricted to 1 < i < N, compute

pi(Ai, An1i) = max > TjYk- (3.32)
zl"“’a“jmax(Ai) ]
Yl Yimax(Ay i) (:K)ES(As Ani)
2;>0Vi
2 zi=l1

1 x;
~<——t-<A
A=y =

yi >0Vi
Ei yi=1
< Yi <A

1

A=yip1=
Equation (3.32) is a quadratic programming problem, and hence more difficult to
compute than the analogous maximization problem in the asymmetric pattern jitter
method, Equation (3.14), which reduces to linear programming. On the other hand,
(3.32) is equivalent to maximizing a convex function, hence it is sufficient to maximize
over the extremal points of its constraint set, which can be accomplished at least by
enumeration, if J is not too big, in general. This is the method we adopt, facilitated by
the construction of a table to reduce re-computation. It is an open question whether
there is a more efficient method of determining the maximum. The explicit solution
for the case of one spike in each window, p}(1, 1), however, is derived in Lemma 3.8.5
below.

e From p7,p3, ..., pj, compute the (reverse) cumulative probability distribution

N
ft)y="Pp (ZY% > t) , (3.33)
=1

where each Y; is distributed as a Bernoulli random variable with parameter p;, and
Y1,Ys,...,Yn are independent. This is as in the asymmetric pattern jitter (see the
appendix of Chapter 2 for an efficient method for computing f).

e Count the number of windows Y in which there is (at least) one synchronous spike
among the pair of neurons, and reject Hy at A if

{Y >inf{t: f(¢) < a}}. (3.34)
Corollary 3.7.1. (Validity of the Symmetric Test) If P € Hy, then
P({reject Hy at A}) < a.

Proof. In analogy to Corollary 3.6.2, the proof is essentially an application of Lemma
3.6.1. Define

9i *= L{(t;,bn45)€S(A1L AN )} (3.35)

the indicator of synchrony between windows 7 and N + i. We will show that

P (igi >k A) <P (znjyz 2k> VA, (3.36)

=1
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where Y1, ..., Y,, are independent and Y; ~ Be(p}). Equations (3.27) and (3.28), along with
the definition of p*, imply that

P(g; =1[£, A) <p; Vil,A (3.37)
Further, ;g is a function of ;¢ and A, which we will denote by h:
ig = h(it, A), (3.38)
and hence the same partition argument of Equation (3.26) yields
P(gi = 1|ig,A) <p; V1<i<N. (3.39)

Finally an application of Lemma 3.6.1 gives Equation 3.36, and plugging in k = inf{t :
f(t) < a} gives the corollary.

3.7.3 Experimental Results

The symmetric pattern jitter method was applied to data from array-based recordings
of neurons in primates, provided by Nicholas Hatsopoulos, Department of Anatomical &
Organismal Biology, University of Chicago. A total of 6 data sets were obtained from three
monkeys (Macaca fascicularis and Macaca mulatta), performing reaching tasks.

Experimental Methods

A silicon-based electrode array developed at the University of Utah was used to record
neural discharge from multiple sites in the arm area of primary motor cortex (M1) and
supplementary motor area (SMA) (see [36] for more details concerning the electrode array).
During a recording session, signals from up to fifty electrodes were amplified and recorded
digitally onto disk at either 20 or 30 kHz per channel (Datawave Technologies, Longmont,
CO & Bionics Technologies, Salt Lake City, UT). Only waveforms that crossed a threshold
(1.5 ms in duration) were stored and spike-sorted off-line. Autocorrelation functions were
computed to verify single unit isolation.

Two reaching tasks were performed in separate experiments by the animals, called a
center-out task and a binding task. In the center-out task, animals moved a two-joint
manipulandum in the horizontal plane to direct a cursor from a central hold position to
one of two (left or right) or eight possible (radially-positioned) targets that were displayed
on a computer monitor in front of the monkey. A trial was composed of three epochs: a
hold period during which time the monkey had to maintain the cursor at the hold position
for 0.5 s, a random 1-1.5 s instructed delay period during which one of the radial targets
appeared but movement was withheld, and a movement period initiated by target blinking
(time to movement onset 365 ms). The symmetric pattern jitter method was applied
to center-out task data from every trial for each unique neuronal pair, starting from the
instruction period to the end of movement.

In the binding task, animals moved a two-joint manipulandum in the horizontal plane
to direct a cursor from the bottom target through an intermediate target or via a point,
and then to one of two possible final targets, either to the left or to the right. In addition, a
control condition was added in which the monkey was instructed to move to the intermediate
target and stop at that target. This condition was included to insure that the animal was
paying close attention to the visual cues indicating which movement to perform. Data from
this condition was not analyzed and, therefore, is not further referred to in this work. All
five kinds of trials (i.e. {leftward & rightward} x {bound & unbound}, plus the control)
were intermingled randomly throughout the experiment. Two kinds of instruction signal
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were used in separate experiments. In some experiments (visually-guided), the intermediate
and final targets appeared in green while all other targets were white. In other experiments
(non-visually guided), all nine targets appeared in the same color. Two circles appeared in
the middle of the screen either in blue, signaling a leftward sequence, or in yellow, signaling
a rightward sequence. This was deemed non-visually guided because the monkey did not
simply move to a different colored target, but had to learn a rule or association linking the
color of the circles to the final target (either left or right) that had to be reached. Data
were analyzed for each unique neuronal pair for every trial, starting from the instruction
period to the end of the second movement.

In addition, there was a final data set (no task) in which the animal was performing no
task, but was kept in position looking at a computer monitor.

Data Analysis

Individual experiments produced as many as 28 isolated, simultaneously-recorded spike
trains. Spike trains were discretized into 1 ms bins (the original, post-isolated data was
recorded at a maximum resolution of .25 milliseconds). Then for each unique pair of neurons
(e.g., for the 28-neuron recording, there are 378 unique pairs), the mazimal A that can be
rejected at 95% significance was determined to a resolution of .01, using window sizes
J=10 bins=10 milliseconds and separations =10 bins=10 milliseconds. Similarly, we also
computed the maximal A that can be rejected at 99% significance. A was varied from its
minimal value of 1 (corresponding to the constant rate null hypothesis). Hence, we interpret
the output of this procedure for a specific neuron pair as a (statistical) lower bound on the
minimal temporal resolution that could support the observed synchrony, as defined by the
null hypothesis.

Some neuronal pairs examined in this way exhibited very fine temporal structure. Fig-
ures 3.4, 3.5, and 3.6 show the cross-correlations taken from three neuron pairs drawn from
these data sets. For these neuron pairs, the null hypothesis of temporal structure with
A values of 1.15, 1.18, and 1.29, with 95% confidence. The pair exhibited in Figure 3.6,
rejecting A=1.29, is the highest value of A which was rejected in all three data sets. Taken
as is, this is by itself evidence for very fine temporal structure in cortical spike trains.

One could raise the objection, of course, of “fishing”, on the basis of this evidence alone.
Given enough samples, one could find particular examples of data that rejected the null
hypothesis, even were the null hypothesis true. Hence we should consider ways of grouping
the results of the tests. One way to do this is to apply a binomial test to the number
of rejections at 95% confidence, assuming that the likelihood of rejection is 5%, and that
the tests are independent. The notion of independence is problematic here, because some
neurons are redundant in the pairs (For example, consider we have the test results for
neurons pairs 1 & 2, and 2 & 3; then the results of the test for 1 & 3 are not independent of
the first two tests). It is not clear how to account for this redundancy, on the other hand,
in a simple way. Nevertheless, the binomial test does seem to present a useful rule of thumb
for assessing the meaning of multiple tests here (which we suspect, furthermore, is on the
conservative side). A table of results from the binomial test is provided in Table 3.1. The
binomial test suggests that a A hypothesis of 8-10%/ms variation can be rejected on the
basis of these data sets.

From a neural coding perspective, however, the example of the extraordinary pairs (for
example the pair in Figure 3.6, where 29% per millisecond rate changes are rejected) may be
the most relevant, despite concerns about fishing, for the following reasons. The alternative
hypothesis of temporal coding which we really have in mind is that some pairs of neurons
exhibit synchrony, that is indicative of temporal structure, and others do not. This is
because insomuch as synchrony is a phenomenon presumed to be involved in coding, the
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Table 3.1: Binomial Test Results for Symmetric Pattern Jit-
ter : maximum A rejected

Significance Level Criterion
for Pattern Jitter

95% 99%
Set 1 Binomial Test | 95% | 1.07 1.08
Significance Level | 99% | 1.05 1.05
Set 2 Binomial Test | 95% | 1.08 1.05
Significance Level | 99% | 1.07 1.05
Set 3 Binomial Test 95% | 1.09 1.10
Significance Level | 99% | 1.09 1.08
Set 4 Binomial Test | 95% | None None
Significance Level | 99% | None None
Set 6 Binomial Test 95% | 1.09 None
Significance Level | 99% | None None
Set 8 Binomial Test 95% | 1.08 1.02
Significance Level | 99% | 1.08 1.01
All Sets Binomial Test 95% | 1.10 1.10
Significance Level | 99% | 1.08 1.08

theoretical thinking generally is that the occurrence of synchrony among a pair of neurons
circumstantially signals a relationship between the pair. However, from the perspective of
the null hypothesis, we have to assume that all neurons have the same amount of temporal
structure (say, 10%/ms variation in rates), in order to reject that amount of structure. This
is the function of the binomial test. Therefore, if the alternative we have in mind is actually
true, the degree of temporal structure we will be able to reject is certainly less than the
amount present in those some neurons that have extraordinary synchrony, because it will
be mixed together with those neurons that are not firing synchronously. As a consequence,
grouping to account for fishing will not characterize the alternative hypothesis which we
have in mind adequately.

On the other hand, a rather remarkable, though perhaps mostly informally acknowl-
edged, phenomenon in multi-neuronal recording is the persistent recurrence of synchrony
in the form of discontinuities at time lag 0 of the cross-correlation function (as in Figure
3.6), in contrast to discontinuities at other time lags, which seem to occur markedly less
frequently. This, for example, is certainly the case in the six data sets which were examined
in this study. If this phenomenon, the predominance in the cross-correlations of disconti-
nuities at 0, is reflective of a general principle, which appears plausible, then it becomes
slightly less plausible to attribute instances of significant synchrony to fishing. That is,
if temporal structure in the form of the precise timing of one spike train, with respect to
another, were simply due to the (say 5%) noise in the null hypothesis, it is not obvious why
precise timing would occur only at time lag 0. In that light, perhaps the degree of rejection
in those cases of high synchrony alone (such as e.g., 29% per millisecond) might be more
relevant for understanding the temporal precision the brain is, or is capable of, using in its
spike trains.
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Cross—-Correlation, setl, n4 vs. n7, reject A=1.15, p<.05
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Figure 3.4: Given two discretized binary spike trains s;(¢) and s3(t) for our purposes here

we define the cross-correlation function C(7) = %ﬁgw The cross-correlation function
t

C(7) here is drawn from two neurons in a 2-direction center-out task. The data is drawn
from 304 trials from the instruction to the end of movement, for a total 710 seconds of data.
Spike trains were discretized in bins of 1 millisecond. The x-axis 7 is expressed in units
of seconds. For this neuron pair, using J = S = 10 bins=10 milliseconds, the symmetric
pattern jitter method rejected A = 1.15 with 95% confidence.

x107° Cross—Correlation, set2, n5 vs. n9, reject A=1.18, p<.05
T T T T T

0
-0.1 -0.08 -006 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Figure 3.5: Cross-Correlation C(7), as in Figure 3.4, here drawn two neurons in a 4-direction
center-out data set. The data is drawn from 400 trials from the instruction to the end of
movement, for a total 902 seconds of data. Spike trains were discretized in bins of 1
millisecond. The x-axis 7 is expressed in units of seconds. For this neuron pair, using
J = 8§ = 10 bins=10 milliseconds, the symmetric pattern jitter method rejected A = 1.18
with 95% confidence.
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Cross—Correlation, set3, n8 vs. n9, reject A=1.29, p<.05
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Figure 3.6: Cross-Correlation C(7), as in Figure 3.4, here drawn from two neurons in the
no-task task. The data is drawn a total 3605 seconds of data. Spike trains were discretized
in bins of 1 millisecond. The x-axis 7 is expressed in units of seconds. For this neuron
pair, using J = S = 10 bins=10 milliseconds, the symmetric pattern jitter method rejected
A =1.29 with 95% confidence.

3.7.4 Connections to Bernoulli Processes

The jitter method originated as a method for testing a spike train null hypothesis of locally
constant rate Bernoulli processes, via a permutation test, with an arbitrary choice of statistic
(or, perhaps in other words, an arbitrary choice of power). The constant rate assumption
was a practical concern, since arbitrarily small deviations from ‘constancy’ could lead to
rejection, given enough data. This assumption is appropriately relaxed in the pattern jitter
method, but an alternative and natural way to relax that assumption would be to consider a
null hypothesis which bounds the maximal percentage change in the rate function directly.
This handles the primary statistical challenge in evaluating temporal structure from the
spike train: allowing for differences in ‘rate’ at different times in the records. This would
not be able to account for local temporal structures as the pattern jitter method does,
but since it is perhaps an easier null hypothesis to think about it is interesting to wonder
what happens if this approach were pursued. This leads to the following question: what
adjustment in the jitter method (in particular, in the calculation of significance) needs to
be made to accommodate a changing rate function with a bounded rate of change? It turns
out that the required adjustment can be made arbitrarily large by increasing the rate of the
process: there is no way to bound the adjustment without requiring an upper bound on the
rate function itself. However, in the low rate limit, this null hypothesis is related to the null
hypothesis of the pattern jitter method. This is useful to note because the low rate limit is
the practical one for spike trains: even if a neuron is spiking at 100 Hz, the probability of
spiking in a 1 millisecond bin is only 0.1. One way to express this is via a consistency-type
theorem: in the limit of large data and small rates, the delta boundary of the pattern jitter
method is the same boundary as the delta boundary of inhomogenous Bernoulli processes.
Explicitly, we mean:

Definition. (Temporally-Bounded Inhomogeneous Bernoulli Process Models).
We model a pair of spike trains (Xy,Yy) by pairs of independent inhomogeneous Bernoulli
processes. Given a pair of rate functions, r(t), and s(t), let us denote their associated
inhomogeneous Bernoulli processes by the measure Py g1). Ezplicitly, under Py g, the
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probability that the neuron X spikes at time t, P(Xy = 1) = r(t), and the probability of X
spiking at one time is independent of its firing at other times. Similarly, P(Yy = 1) = s(t),
and the probability that neuron Y spikes at one time is independent of its firing at other
times. Further, the processes Xy and Yy are independent. Then we define the class of such
processes:

r(t)
r(t+1)

s(t)
<yV1I<t<T -1, sups(t)<r*;,
yTsErD ST TS e <)

i.e., Pr(vy,r*) is the class of Bernoulli processes whose rate functions cannot change faster
than v, and are bounded above by r*.

Pr(v,m) = {Pir(y),s()) <yV1<t<T -1, Sgpr(t) <r’

(3.40)

Theorem 3.7.2. (Pattern Jitter Consistency) Under the symmetric pattern jitter method,

0 if v <A,

1 ify>A. (3.41)

lim lim  sup P(rejectHy at A) =
r*10T—00 PG’PT('y,'r*)

We present the proof of this theorem in the appendix.

3.7.5 Simulations of Bernoulli Processes

The inhomogeneous Bernoulli process is a flawed model for the spike train but nevertheless
its simplicity makes it useful for examining the effectiveness of the pattern jitter method
in handling the basic problem of normalizing for the effects of baseline rate on observed
synchrony. We partitioned a discrete time domain into bins corresponding to 1 ms, with
windows of length J=10 bins separated by S=10 bins, as in the analysis, and constructed
rate functions that started at 25 Hz, 50 Hz, and 100 Hz, respectively, at every window,
and then decreased the rate function at a rate of 10% per millisecond. This corresponds to
maximizing the expected total number of synchronous spikes for a fixed expected number of
total spikes. We extended the rate functions to 40,000 windows, comparable to the amount
of time analyzed from many of the data sets above. Then we sampled 2 Bernoulli processes
from these rate functions, and applied the pattern jitter method to the resulting model spike
trains. 50 model spike trains were sampled for each rate function. Figure 3.7 shows the
results as an empirical distribution of the maximal A rejected by the pattern jitter method,
for the three types of rate functions. The interpretation of A as a statistical upper bound on
the maximal rate of change of Bernoulli processes appears to remain a good approximation
even at high firing rates.

3.8 Appendix

Lemma 3.2.1 If Xy, X1,..., XN are independent and identically-distributed random vari-
ables then

N -k

where Xy is the k’th order statistic of the random variables Xo, X1,..., Xn.

Proof. The proof is a matter of setting up partitions. With a = (ag,a1,...,an) €
{0, 13N+ write

Qo = {w: X3y = X(j31) if and only if a; = 1,V0 < i < n},
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Figure 3.7: Symmetric pattern jitter results for simulations of Bernoulli processes. Bernoulli
processes which maximized the number of synchronous spikes were simulated with differing
peak firing rates (see text), and the pattern jitter method to determine the maximal A that
could be rejected at 95% significance. The distribution of the maximal A that was rejected
at 95% significance for 50 runs is plotted separately for peak firing rates of 25 Hz, 50 Hz,
and 100 Hz. The starred point at 0.95 represents the number of samples that were not
rejected at any A.
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and note that Q, N Q) =0 if a # o', and Useto,13v+1) 2a = 2. So Q, forms a partition of
the sample space according to where ties occur among the order statistics. Thus it suffices
to show

N —
P (X X Q) <

Fixing an a € {0,1}(¥*D, take 7 = (mg,71,...,75) € I, where II, is the space of
permutations of {0, 1..., N} which satisfy the restriction that m; > w41 if @; = 1. Then
define the events

Va e {0,1}(VF1),

Qg = {w Xy, < Xpyy, ifa; =0
Xp, = Xy, ifa; = 1}

Now define f, : II, — II, (implicitly) via f(w) = 7*, where
e « satisfies m, = 0.
o B=max{j <a:aj_1=0o0rmj_1>m}U{0}.

o 7w =0.

Ty = mp_1, for B <k < o
o T = T, for hitherto undefined k.
It is not hard to conclude that
Qi ~a Qv g i f(m) = f(n)

defines an equivalence relation over (and hence a partition of) Q4 = U, ¢, 2r,a- Thus (and
again), fixing a € {0,1}¥*1) and in addition an equivalence class of Q, via 7* = f(r) for
some 7 € Il,, it suffices to show

N -k
P X0>X(k)| U Qﬂ',a < N1l
mif (m)=m*

Noting that symmetry alone implies that

P(Qrq) = P(Qp o) Vm,n’ €1, (3.42)

I

we have

Pl Xy > X(k)| U Qﬂ,a
m f(m)=m*
_ PXo > Xy, Unpy=n ma)
P(Uﬂ':f(w):ﬂ'* Qra)

_ Hmelly: f(m) =7, a(r) > k,3j s.t. k< j < a(r) and a; = 0}] - P(Qrq)

- {m €My : f(m) =7} - P(Qr,a)

< Hm el : f(r) =%, a(r) > k)}

- [{m € Iy : f(m) = m*}|

N —k

= Nil
Definition. (Temporally-Bounded Inhomogeneous Bernoulli Process Models).
We model a pair of spike trains (Xi,Yy) by pairs of independent inhomogeneous Bernoulli
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processes. Given a pair of rate functions, r(t), and s(t), let us denote their associated
inhomogeneous Bernoulli processes by the measure Py g1). Ezplicitly, under Py g, the
probability that the neuron X spikes at time t, P(Xy = 1) = r(t), and the probability of X
spiking at one time is independent of its firing at other times. Similarly, P(Yy = 1) = s(t),
and the probability that neuron Y spikes at one time is independent of its firing at other
times. Further, the processes Xy and Y are independent. Then we define the class of such
processes:

Pr(y, ) := {Pug),st) 1o r(f) <yV1<t<T -1, supr(t) <r*
’ v or(t+1) t (3.43)
1 s(t) )
- < <yVI<t<T-1 t) <r*
S Ssarn SYVists : Sl;PS()_T},

i.e., Pr(vy,r*) is the class of Bernoulli processes whose rate functions cannot change faster
than v, and are bounded above by r*.

Theorem 3.7.2 (Pattern Jitter Consistency) Under the symmetric pattern jitter method,

0 ify <A,

1 ify>A. (3.44)

lim lim  sup P(rejectHy at A) =
r*10 T—o0 PEPT(’Y,T*)

Proof. (We presuppose here some basic tools from probability theory [8, 14]). The basic
idea is simple. For a y-bounded Bernoulli process, some algebraic manipulation produces
(Lemma 3.8.4, below):

_ p¥ [As| = 7|A; —r* 44
! ( 1 —r ) < _Pli=jlA) _ (M) , (3.45)
Al \ 1 —r*/y P(t; = j+1|4;) 1=r

where | 4;| is the number of spikes in window 7. Intuitively, in the low rate limit of small r*,
the cases A; = 1 (one spike) and A; = 0 (no spikes) will dominate. Windows with no spikes

do not affect rejection, and so the relevant ratio of conditional probabilities, %,

will typically be bounded by % — o(r*) and v + o(r*). This connects the A of the null
hypothesis to the v of the Bernoulli process.

We start with the first case: v < A. The outline of the proof proceeds as follows. As in
Corollary 3.7.1, define

9i = Lt bn10)€S(AL AN)} (3.46)

the indicator of synchrony between windows ¢ and N + .
Then we can write the rejection event as:

{reject Hy at A} = {Zgl Zinf{t:u (2:1/'Z Zt) ga}}

=1 =1

N 1 N
Z{ZgiZN-inf{t:u(NZYizt)Sa}} (3.47)

=1 =1

1 N 1 N

where p distributes the Y/s independently with Y; ~ Be(p}(A4;, An+i)). (This form makes
the connection to the law of large numbers more apparent.) Using the inequality (3.45), we
deduce the existence of R > 0 and constants ¢; and ¢y such that

EP[p*(Ai’AN+i)] >c1>c > EP[gi]a VZ,VP € ’PT(’Y’R) (348)
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Variations on the law of large numbers then imply

N N
. 1 P 1
hj{rn_fgop N iE_l g; < lﬂloréf inf {t D (N ZE_I Y; > t) < a} w.p.1, P € Pr(y,R). (3.49)

which means (through (3.47))

lim P(rejectHy at A) = 0.

N—o00

To establish (3.48), define the event

A == {AZ > 1, ANy > 2} U {AZ > 2, ANy > 1}, (350)
and write
Elgi]
Elp*(Ai; An+i]
P(g; =1)

~ E[p*(Ai, An1i)]
P(g; = 1|A; = Anyi = 1)P(A; = Anyi = 1) + P(g; = 1|4;) P(A)
p*(L)P(A; = Anyi = 1) + > p*(j1,42) P(Ai = j1, An+i = jo)
(J1,52)€{j1>1,j2>2}U{j1>2,j2>1}

P(A; = Anyi =1
P(gzzllAz:AN—H:l) (Z N )

+ P(gi = 1] A)

B P(A;)
T, P(A, = Ay =1 . . P(Ai=j1,Anyi=7
pran TR =l > PG, ) e =)
’ (j1,42) €51 > 1,42 >2}U{j1>2,j2>1} ’
P(A; = Ay =1
P(g;=14; = Anti = 1) ( P(/JlYSL ) + P(g; = 1|.A;)
< 1
- « P(A; = Any; =1
P(A; = Ay =1
P(gi =1|A; = Ay = 1) ( P(j; )+1
< 1
- % P(AZ = AN+i = 1) ’
1,1
(3.51)

where we have used the fact that {4; = 0} U{Ans+; = 0} = {g; = 0} and p*(0,0) =
p*(1,0) = p*(0,1) = 0,VA. By Lemma 3.8.2 below we have

P(AZ = AN—H’ = 1)

li

710 pep *) 4
r*>0 € T('Yar )

= 00, (3.52)

which in tandem with (3.51) means that it is sufficient for (3.48) to establish that

P(gi = 1|Ai = AN—|—i = 1)

limsup sup - <1, (3.53)
r*10  PePrp(y,r*) p (1’ 1)
r*>0

which is the content of Lemma 3.8.1. Thus we have (3.48):

Ep[p*(Ai, Anyi)] > c1 > c2 > Eplgi]. Vi,VP € Pr(y, R).
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Now we would like to show (3.49). First, since the g;’s are bounded ([14])

N
. 1
Jim ;gz — Elgi] = 0,w.p.1, (3.54)
and therefore
1 & 1 &
li;]nj;lop I Z_Zl gi = li;]njélop N ; Elgi] < ¢y w.p.l. (3.55)

Secondly, we show that

N
% . 1
Ep[p*(Ai, An+i)] > = lﬁloréfmf{t D (N ZYz > t) < a} >c w.p.l (3.56)

Let
LN
M = {w : lg\gri}ioréfﬁ le*(Ai,AN+i) > cl} . (3.57)
1=
Since Ep[p*(Ai, AN+i)] > c1, P(M) = 1. Fixing w € M, Lemma 3.8.3 then implies

N
1
U(NZ;Y;-Zt)—)l Vi < ¢1,Yw € M. (3.58)
Thus
N
liminfinf{ ¢ : p iZY~>1: <ap>c YweEM (3.59)
N—o0 AN T T T ! ' '

But since P(M) = 1, this gives (3.56). (3.55) and (3.56) give (3.49):

N N

. 1 N 1

hmsupﬁ E gi < l}vnigéf 1nf{t D (ﬁ E Y; > t) < a} w.p.1,P € Pr(v,R).
=1

N—o00 i=1
Because of the identity of {reject Hp}, (3.47), (3.49) implies
lim P(rejectHp at A) = 0.
N—00

Now we return to the other case: v > A. The reasoning is similar. Fixing v > A, here it
suffices to exhibit inhomogeneous Bernoulli processes which satisfy the v requirement and
asymptotically yield a rejection probability of 1. In fact, we will demonstrate the slightly
stronger statement: 3¢ > 0 such that

lim  sup P(rejectHp at A) =1 Vr* <gq. (3.60)
N—oo PEPT(’)’,'I'*)

We will define a rate function r(1),7(2),...,7(n) on a window of fixed length n by

r(l) =r*
r(z’+1):r(7—"), Vi<i<n-—1. (3.61)

Taking two independent Bernoulli process samples from two windows with this rate function,
as before we will denote A1 and Ax41, the pattern of spikes in the respective windows, ¢;
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and £y 41 their respective locations, and g; the event of synchrony between them. We will

demonstrate that
P(gl = 1|A1 = AN_|_1 = 1)

lim inf > 1. 3.62
10 pi(1,1) (3:62)

To accomplish this, define
m; = P(ly =i|A; = 1) = P(Uny41 = i|Ans1 = 1) (3.63)

Then by the algebra of Lemma 3.8.4, and the independence of the two windows

m; _ P(£1:Z|A1 :AN—|—1:]-) _ T; 1_Ti+1 (364)
mMit1 P(fl =1+ 1|A1 = AN+1 = 1) riv1 1—1; ’ )

Fix € > 0 such that ¢ < vy — A. Since 1tits 4 1 uniformly in 4 as * | 0, Ir* > 0 such that

1—7r;

y< - <yte Vi (3.65)
mi+1
Since in addition ) ; m; = 1, we have

n
P(gi = 1|A1 = AN_|_1 = 1) = Zmzz

=l (3.66)
< pfy—|—€(17 1)

<pa(L,1),

by the definition of p%(1,1), and its strict monotonicity in z (Lemma 3.8.5). This establishes
(3.62). This in turn implies that

E
lim inf 9]

>1, 3.67
10 E[pi (A1, Any1)] (3.67)

by the same argument which leads to (3.53) (i.e., Lemma 3.8.2). Thus we have exhibited a
rate function for a pair of windows such that

Elgi1] > E[pa (A1, An1)]s (3.68)

which satisfies the v constraints for any v > A. Replicating these windows infinitely across
time will give
lim P(rejectHy at A) =0, (3.69)
N—o0

by the same arguments as Case I (i.e., laws of large numbers). This completes the proof.

Lemma 3.8.1.
P(gi =1|A; = Anyi = 1)

limsup  sup <1 (3.70)
ri0 PePriys) p*(1,1)
>

Proof. Here we will explicitly note p*’s dependence on the value of A by writing p’,. Define
zj =Pl = jlAi) y; = P(Inyi = jlAN+i)- (3.71)

Then by the inequality of Lemma 3.8.4, there exists ¢ > 0 such that

Y

1 .
< <yie and <-H <y+te VY, (3.72)
’Y+€ Tjt1 ’Y+€ Yj+1
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for sufficiently small r* > 0 with v + € < A. Furthermore, z; and y; satisfy Zj zT; =
1LY j¥i = 1,25 > 0Vj, and y; > 0V. As a consequence, and using in addition independence
properties of the Bernoulli processes, taking r* > 0 sufficiently small we have

Pgi =1Ai = Anyi = 1) =) P(li = j,Inyi = jlAi = Anyi = 1)
J
= P(li = jlAi)PIn+i = jlAn+i)
J

=Y a; (3.73)
J

S pi;+c(1? 1)

@ .
< pA(la 1)

since, by the definition of p*, (3.32), z; and y; satisfy the conditions which p? . optimizes
over, and (a) follows from the fact that p} (1,1) is strictly monotonic increasing in A (see
Lemma 3.8.5).

Lemma 3.8.2. Under the conditions of Theorem 3.7.2,
P(Az = AN—i—z' = 1)

lim su su = 0. 3.74
i PEPT(I')y,r*) i P({A; > 1,Any; > 2} U{A; > 2, ANy > 1}) (3.74)
,
Proof. First, we establish the simpler limit
P(|4;] =1
lim sup sup M =00 (3.75)
10 pepr(yeey i P(lAil =7)
>0
if 7 > 1. Fix the sequence of probability vectors r¥) where rk) = (r§k),r§k),...,r%k)),

corresponding to the Bernoulli probabilities for window A; of length n, such that max; k)

7
0VE, and lim$® | max; r\*¥) = 0. Define

i = arg max r®), (3.76)

%
%
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Then

zn:rgk) H (1 —r{)

i DAL =1 e mA
> ey — o=

k—00 P(|A,| = ]) k—o0
T1s--5Tn =1

z;€{0,1}
Y Ti=j
k k
7"§<x3> [z, (1 — TT(n))
> lim *
k—00

n
Z H(T.Z(k))ivz(l _ T.Z(k))(l—mi)

TLly---3Tn g=1

CE@'E{O,I}
T m#*(l —Tm’)
> klim x -
—00 &) < k) (1—a;
Z (Tg(k)))] H(l _Tz( ))(1 )
T1,--esTp * i=1
z;€{0,1}
Ei Ti=J
k
| [ngi, (1 = i)
- Iclggo n
k) \j— B\ (1—z.
GOMDIN I (R ia
ne{o1}
Zi Ti=j
=oo (if j > 1),
which gives us (3.75), which in turn, applied to the decomposition
P({Ai >1,Anyi > 2} U{A; > 2, Ayy, > 1})
P(Az = AN—i—i = 1)
> P(A; = j1,An+i = J2)
_ (41,92)€{51>1,52>2}U{j1>2,j2>1}
P(Ai=Ani=1) (3.78)
B Z P(A; = j1, Anyi = jo)
B P(A;=Ani=1
(rietistisnutisapey 1A= AN =1)
_ Z P(A; = j1) . P(AN+i = j2)
a P(A;=1) PAy.; =1
(G1.42) (i1 >1,42>2} U{j1 >2,42>1} (4i=1)  PlAn+i=1)
establishes the lemma.
Lemma 3.8.3. IfY1,Ys,...,YN are i.i.d. Be(p;) where p1,po, ... satisfy
N
..o 1
l}vni)loréf N ;pi >c, (3.79)
then
| X
lim P | — X, >c— =1 .80
i (N; i >c 6) Ve > 0 (3.80)
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Proof. Since the Y;’s are bounded (see [14]),

N
) 1
ngr(l)oﬁigl(Y,—pz) =0 w.p.l (3.81)
Hence
1 o 1w
lim inf — Y; = liminf — ; > .p-1 .82
ity Y= miny 2z e we (552

Convergence in probability is then just a weaker implication of the above (almost sure)
convergence:

N
. 1
lim P(NZXiZC—e) =1 Ve>0. (3.83)

N—oo :
=1

Lemma 3.8.4. Consider a window of inhomogenous Bernoulli events of length 21 + 1,
X 4, X y41y, X11, X, where X; ~ Be(r(i)), and the X;’s are mutually independent. Sup-
pose in addition that r(t) satisfies

r(t)

r(t + 1)

IN

1
5 <yVI<t<T-1, supr(t) <r" (3.84)
t
As usual, we define
£:= min {7: X; =1
—llT%liI%l{IL i =1},

the location of the first spike, and
A := the pattern of spikes in the window .

Then for all =1 <i<I1-1,

1 (1-r \* _ Pre=iA) 1=\ A
AN\ < VT UY a2 .
Al (1—7“*/7> ~— P(t=1i+1]A) =7 ( 1 ) (3.85)

where |A| is the number of spikes in the window.

Proof. We will follow the convention that i € A refers to those positions in the pattern of
spikes A which contain spikes, and 7 € A° refers to those positions in the pattern of spikes
A which do not contain spikes (for example if A = 1011, then {i : 4 € A} = {1, 3,4}, and
{i:1€ A°} = {2}). Writing down definitions, a little algebra leads to

P(¢=1i|A) _l—r(n—l—l)H (1) H 1—r(%)
LA r(

Pl=i+14)  1-r(1) i+1) 25 1-r@+1)

€A
-1

B 1—7r() \ r(i) 1—7(3)

_]Hl (‘1 —r( + 1)) gr(i-l—l) g T—r(i+1) 56

_ 1—r(+1) H (%)
1—r(7) oA r(i+1)

icA
_H r(i) 1—r(i+1)
oy r(i+1) 1—r()
An elementary optimization argument then gives

1- 1—r*
max s - v (77"/’7) , (3.87)

{st:1<8<y,0<s <y T 1 —1 L=
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and analogously

1-— 1 1—7r*
min soT8_ 2 (7T) ) (3.88)
{stl<s<y0<sp<ry t L=ty \1—1*/y

Plugging (3.87) into (3.86) produces

Pt = i|A) r()) 1—r(i+1) r()) 1—r@+1)
Pll=it14) = max | | i+ 1=r() = Hmaxr(z'—l—l) 1- ()

_ 4 (M)
1—r* ’
and a similar application of (3.88), the other side of the inequality:

P(¢ =i|A) 1/ 1— A
Pl=i+1]A) = yA (ﬁ) : (3.90)

Lemma 3.8.5.

1 g 1 \?
“(1,1) = — 3.91
pa(1,1) (1_1_%_{_%4_____‘_#) Z(Azl) ( )

=1

and p\ (1,1) is strictly monotonically increasing in A, where n is the number of bins in a
window.

Proof. For simplicity, write the constraint set C™4

1
TL,A = n < — .
C {m €ER <z A, § z; = 1} (3.92)

which we will write as C when we assume that n and A are implicitly fixed. Following the
definition (3.32)

p*(1,1) = max szyz (3.93)
=1

The Cauchy-Schwarz inequality (C-S) implies that the maximum is attained when z = y:

n

max a: = max E Ty < max E T;Yi

zel zelC
=1 y=x =1 yec =1
Cc—§ n n

n n
2 2 2 2
< a2 o2 vt =y ma ) stmar )t 599
ol 1= 1=

The maximum maxgec Y 1y xf is attained because C is a convex set. Furthermore, any
z € C has a version ' € C such that z’ is monotonically decreasing and preserves the value
of the objective function: Y 1 | (z)? = Y | #?, since all permutations of (z1,z2, ..., Tn)
preserve the objective function 3 z?.

So it is sufficient to identify the maximum among monotonically decreasing elements
of C. We can show by contradiction that the optimal z* in this class has the extremal

form z}/xz} , = A,Vi, (which uniquely characterizes the solution). Assume not: z* =
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(x%, 25, ..., z3) is optimal, with 2} > 23 > --- > 27 and z* € C, but not of extremal form.

Then let
*
j::inf{i: > <A}
Tit1
x*

(3.95)
E::max{{iZj: :1Vj<k<i}U{j+1}}
Tgt1
Then defining
z;+e ifm=yj,
Tfﬁ) =qz;—€e ifm=k, (3.96)
zy, otherwise,

Je > 0 such that 7‘7(,? € C and is monotonic decreasing. Further,

Z (r <f>) > Z (3.97)

=1

since [(z} + €)% + (2} — )] — [(ac;‘)2 + (z})?] > 2€%, by monotonicity. But this contradicts
the optimality of z*, so * must be of extremal form. Now, using the relation z}/z} ; = A
and the constraint Y ; 7 = 1, we obtain

1

@} = 77917; : (3.98)
> A
=1

which upon substitution into Y7, (z})? establishes (3.91).

To show that p} is strictly monotonically increasing in A, fix arbitrary A; < Ay,
with z* € argmax A, the optimal solution for A; given by (3.98). Then consider a
perturbation y¢:

] +e m=1
Yn = Th—€ m=2 (3.99)

Ty, otherwise.

Clearly, 3¢ > 0 such that y¢ € C™? because A; > Ay. Further,

n

D @) — (z7)” > 262, (Ve > 0) (3.100)

=1

by monotonicity, again. So pj (1,1) < pj,(1,1).
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Chapter 4

Final Thoughts

The statistical methods which have been developed in this dissertation have been crafted
in the interest of questions which fundamentally belong to the domain of neuroscience:
questions involving, for example, the quantitative nature of the neural code, and the iden-
tification of regularities in neural responses. In that light, we have tried to apply them to
data sets drawn with the help of the modern tools developed by neuroscientists, such as in
vivo multi-electrode recordings in awake, behaving subjects. These tools offer the signifi-
cant hope of broadly expanding the types of questions which are practically amenable to
empirical investigation in neuroscience. We have tried, as well, to be careful to incorporate
into these methods phenomena unique to the fundamental problems of inference in neuro-
science, such as credibly-motivated models of variability, and biophysical knowledge such
as the existence of bursts and refractory periods, and to coherently identify limits to the
inferences which are available to us. These questions lie deep, however, and the light our
application of these methods can cast on them are certainly of a very preliminary nature.
The central problem, for example, of identifying functional causes from the statistical con-
clusions we can draw from these experiments, will probably require a great deal of work, and
the concerted efforts of scientists drawn from widely-varying domains of expertise, ranging
from biology to physics and mathematics. Many of these questions might be more fruitfully
explored if methods such as these are incorporated more directly and at the level of design
in neuroscientific experiments, rather that ex post facto, as was done here, to pre-existing
data sets which were perhaps collected with other purposes in mind. Certainly, at least,
these methods were developed with this idea in mind.
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