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Spike Count Reliability and the Poisson Hypothesis
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The variability of cortical activity in response to repeated presentations of a stimulus has been an area of controversy in the ongoing
debate regarding the evidence for fine temporal structure in nervous system activity. We present a new statistical technique for assessing
the significance of observed variability in the neural spike counts with respect to a minimal Poisson hypothesis, which avoids the
conventional but troubling assumption that the spiking process is identically distributed across trials. We apply the method to recordings
of inferotemporal cortical neurons of primates presented with complex visual stimuli. On this data, the minimal Poisson hypothesis is
rejected: the neuronal responses are too reliable to be fit by a typical firing-rate model, even allowing for sudden, time-varying, and
trial-dependent rate changes after stimulus onset. The statistical evidence favors a tightly regulated stimulus response in these neurons,
close to stimulus onset, although not further away.
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Introduction
The variability of spike trains bears on theories of neural coding.
A range of hypotheses have been offered. At one extreme, the
existence and precise temporal location of every spike is signifi-
cant. At another extreme, a spike train is a stochastic process
essentially characterized by a slowly changing rate. The latter hy-
pothesis leads naturally to modeling spikes as the events of a
slowly varying inhomogeneous Poisson process (the “Poisson
hypothesis”). Fine-temporal coding would be more likely to yield
highly regular spike counts from repeated trials, whereas ran-
domness in the Poisson hypothesis limits the degree of regularity
across trials.

A statistic commonly used to assay variability in spike trains is
the empirical variance/mean ratio of the spike counts (the Fano
factor) across trials (Tolhurst et al., 1983; Softky and Koch, 1993;
Shadlen and Newsome, 1998; Oram et al., 1999; Kara et al., 2000).
For example, the spike counts for the inhomogeneous Poisson
process are distributed as a discrete Poisson random variable, for
which the mean and variance are identical. By this measure, the
spike counts of in vivo cortical spike trains (in contrast perhaps to
subcortical structures) have generally been thought to be as vari-
able as Poisson processes and perhaps even more so (Shadlen and
Newsome, 1998; Koch, 1999). As Shadlen and Newsome (1998)
have written, “When an identical visual stimulus is presented for

several repetitions, the variance of the neural spike count has
been found to exceed the mean spike count by a factor of 1–1.5
wherever it has been measured.”

Inferring a lack of precision in the neural code from observa-
tions of variability is tricky. One line of reasoning is that the
existence of variability under identical conditions, when the neu-
ron is presumably signaling the same event, reflects noise (e.g.,
Poisson noise) in the signaling process itself. However, it is cer-
tainly plausible that a significant source of variability is the exper-
imenter’s own uncertainty about hidden contextual variables
that the neuron is encoding (and that may be, for example, inter-
nal to the brain), such as attention, or the states of other neurons.
Furthermore, the variability of overt behaviors that are difficult,
but not impossible, to measure, like precise eye position, have
been shown to contribute to at least some of the variability com-
monly reported in cortical responses (Gur et al., 1997). As Barlow
wrote about neural responses in 1972, “their apparently erratic
behavior was caused by our ignorance, not the neuron’s
incompetence.”

Regularity, in contrast, cannot be explained away so easily,
and in this light, evidence of finer temporal structure, particularly
in higher-order cortical areas, is intriguing. Recently, Muller et al.
(2001) have observed, from recordings of V1 cells in primates
presented with sinusoidal gratings, that near stimulus onset, the
empirical variance/mean ratio is strikingly smaller than unity (in
apparent contradiction to the Poisson hypothesis). This is in line
with other reports that suggest a greater reliability in cortical
responses than might be expected from a Poisson model (Gur et
al., 1997; Gershon et al., 1998; Kara et al., 2000).a

Our purpose in this paper is twofold. First, we derive a simple
and exact test for a “minimal Poisson hypothesis” that uses the
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aSome skepticism has been expressed regarding how widely these results would generalize in cortex. For example,
commenting on the report of Kara et al. (2000) of reliability in layer 4 V1 responses, Movshon (2000) writes that “one
may doubt that such high reliability will be found for most neurons lying outside thalamic recipient layers in cortex.”
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variability of spike counts across trials. The minimal Poisson hy-
pothesis includes Poisson processes that have rapidly (in fact ar-
bitrarily) changing spiking rates, possibly differing from trial to
trial. Second, we present evidence consistent with these previous
studies of low variance/mean ratios, particularly near stimulus
onset, gathered here in cells from anterior inferotemporal (IT)
cortex of primates presented with more complex visual stimuli.
Using this test on the IT recordings, we are able to reject the
minimal Poisson hypothesis, with a notably small amount of
data, predominantly near stimulus onset. We are able to argue,
furthermore, that these results are not likely to be attributable to
the effects of refractory period per se, but rather reflect regularity
in the neural response.

Materials and Methods
Subjects and materials. The basic behavioral and surgical methods used in
this study have been described previously (Sheinberg and Logothetis,
1997, 2001). In brief, after initial behavioral training, two rhesus mon-
keys underwent aseptic surgery for the placement of a head restraint and
a scleral search coil. All surgical procedures were performed in accor-
dance with the National Research Council Guide for the Care and Use of
Laboratory Animals. After surgery, the monkeys were trained to fixate on
a small yellow spot [0.25 degrees (deg)] appearing in the center of a
computer monitor. After acquiring the spot, between three and five vi-
sual images, 4 deg on a side, were flashed behind the spot for either 800 or
1100 ms. Interstimulus intervals (during which only the spot was visible)
were set to the same duration as the stimulus presentation duration (Fig.
1). Visual stimuli were selected from a set of commercially available stock
photographs of animals, natural scenes, and man-made objects (Corel,
Ottawa, Ontario, Canada).

During stimulus presentation, the monkeys were required to maintain
fixation within a virtual square region 2 deg on a side. During data
collection, the digitized eye position was stored to disk every 5 ms (200
Hz). In addition to keeping their gaze directed within the virtual window,
the monkeys learned to follow the spot as it jumped from the center of the
display to a new position. On refixation of the spot, they were rewarded
with a drop of apple juice.

Single cell recordings. Once the animals were trained in the fixation
task, a ball and socket chamber housing an 18 gauge guide tube was
placed directly above the anterior temporal lobes (anteroposterior, �18;
mediolateral, �19). Single unit recordings were made by lowering glass-
coated platinum–iridium electrodes by microdrive (Kopf Model 650;
David Kopf Instruments, Tujunga, CA) into the lower bank of the supe-
rior temporal sulcus and the lateral convexity of the inferior temporal
gyrus, just posterior to the anterior middle temporal sulcus. The neural
signal was amplified using a BAK Electronics (Germantown, MD) A-1
amplifier with remote head stage, and the conditioned signal was fed into

a time-amplitude window discriminator. Individual cells were isolated
while the animals performed the fixation task. Each cell was tested with at
least eight stimuli, but often with many more (�80). Note that a signif-
icant effort was made to subselect visual stimuli from the relatively large
test set that effectively elicited robust neuronal responses, as judged by
online rasters. Furthermore, we restricted the data analysis only to re-
cordings of neuronal activity characterized by high signal-to-noise ratios,
indicating high single-unit isolation quality (Fig. 2).

A statistical test for minimally Poisson spike trains. Consider a series of
spike trains from a single neuron obtained from n separate trials (each
involving, for example, presentation of the same stimulus): {t1

1, t2
1, t3

1,. . . ,
tm1

1 }, {t1
2, t2

2, t3
2, . . . , tm2

2 },. . . , {t1
n, t2

n, . . . , tmn

n }, where there are mj spikes in
trial j, and t i

j is the time of occurrence of the ith spike in the jth trial,
relative to a stimulus onset at time 0.

A homogeneous Poisson process of rate � is a statistical model of the
spike train that is characterized by two conditions: (1) the events in
nonoverlapping time intervals are independent, and (2) the expected
number of spikes in a time interval of length T is �T. An inhomogeneous
Poisson process is the nonstationary analog of this: events in nonover-
lapping time intervals are independent, but the expected number of
spikes is governed by a time-varying rate �(t). An implication of these
assumptions, for both homogeneous and inhomogeneous Poisson pro-
cesses, is that the total number of spikes in any time interval is distributed
as a Poisson random variable.

The mean � and variance � 2 of any Poisson random variable are
identical, and therefore, the variance/mean ratio � 2/�, called the Fano
factor, is equal to one. Perhaps for this reason, the Fano factor is used
frequently in neuroscience as a rate-controlled measure of the reliability
of spike counts of neural responses.

The mean � and variance � 2 must be estimated from data. Usually, the
empirical statistics are used:

�̂: �
1

n �
i�1

n

mi �̂2: �
1

n�1 �
i�1

n

�mi��̂�2 . (1)

[Here, we use �̂ to signify the estimate of �, et cetera; see Kass et al.
(2004), for an introductory overview of statistical concepts in the context
of neuroscience.] The estimates �̂ and �̂ 2 will converge in a sense of
probability to the correct distributional quantities, � and � 2, as the num-
ber of trials n increases, provided that m1,. . . , mn are independent and
identically distributed.

Typically the Fano factor and Poisson standards are evaluated by com-
paring the relationship between the empirical mean �̂ and the empirical
variance �̂ 2 of spike counts across a population of neurons and response
conditions. This is done visually with a scatter plot and/or analytically,
either by fitting a population of estimated mean and variance pairs (�̂,
�̂ 2) to a power law and examining the fitted coefficients, or by reporting
the average of empirical Fano factors �̂ 2/�̂ across a population [for some
representative examples, see McAdams and Maunsell (1999), Berry et al.
(1997), Buracas et al. (1998), Gur et al. (1997), and Muller et al. (2001)].
Thus, estimated quantities (i.e., the estimated mean �̂, estimated vari-
ance �̂ 2, and estimated Fano factor �̂ 2/�̂) are treated interchangeably

Figure 1. Basic fixation task performed by the monkeys. In a single observation period,
between three and five individual visual stimuli were flashed on and off as the monkey fixated
on a spot in front of the images. At the end of the trial, the monkey received a juice reward for
reacquiring the spot as it jumped from the center of the screen to one of four randomly selected
peripheral locations.

Figure 2. Analog voltage trace of neuronal activity from a single trial from one of the record-
ings used in the analysis. The high signal-to-noise ratio here is typical of the units used in this
study.
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with their associated distributional quantities (i.e., the mean �, variance
� 2, and Fano factor � 2/� of the distribution presumed to generate the
data). This poses fewer problems when these quantities are used solely for
comparative analysis [for example, to compare the responses of different
classes of neurons (Kara et al., 2000) or different stimulus conditions
(McAdams and Maunsell, 1999)], particularly when nonparametric
methods are used. As an evaluation of the Poisson model, however, ig-
noring the sampling variability of these estimators could potentially in-
troduce approximation error into the final conclusions. Standard de-
scriptions of methodology (Teich et al., 1997; Gabbiani and Koch, 1998;
Koch, 1999; Dayan and Abbott, 2001) do not discuss or account for this
source of error.

Such issues are moot if there are no such true distributional quantities,
as when the assumptions that postulate such quantities are not valid.
Thus, although we do address this aforementioned gap, the issue of sam-
pling variability is not our major concern here. Rather, we are concerned
with the assumption that, even under identical experimental conditions,
the responses of a neuron can be reasonably modeled as repeatable quan-
tities. Indeed, the bulk of statistical theory and methods applies to se-
quences of observations that can reasonably be modeled as identically
distributed. It is therefore not surprising that the bulk of applications of
statistics to neurophysiological data are made under the assumption,
sometimes implicit, that repeated measurements from the same neuron
or collection of neurons under the same experimental conditions pro-
duces a sequence of identically distributed observations. Thus, a large
value for the Fano factor (Shadlen and Newsome, 1998; Koch, 1999; Kara
et al., 2000, and references therein; Dayan and Abbott, 2001) is surprising
and meaningful only in proportion to our willingness to believe in the
proposition of trial-to-trial statistical stationarity. Similarly, sophisti-
cated point-process models of spike trains that accommodate inhomoge-
neous firing rates and/or spike-to-spike dependencies (Berry and Meister,
1998; Kass and Ventura, 2001) are useful in proportion to our ability to
estimate time-varying rates and other high-dimensional parameters. Yet, in
the absence of statistically repeatable observations, the estimation of such
quantities is difficult and even raises issues of identifiability.

Given the magnitude of unknown and unmeasurable internal and
external variables, assumptions of repeatability warrant concern. We de-
rive here an exact statistical test of the Poisson nature of the spike train
process, broadly defined, that makes no assumption about trial-to-trial
stationarity and even allows for some measure of trial-to-trial statistical
dependence (see Results, Derivation of the minimal Poisson variability
test). On these terms, one could hardly expect to find a test that gives
evidence for excess variability in the spike-generation process. However,
it is possible to reject a broad class of models in the direction of excess
regularity without appealing to an assumption of trial-to-trial stationar-
ity. Loosely speaking, allowing for additional variability in the form of
trial-to-trial variation does not make observations of regularity any less
surprising.

Our null hypothesis (H0) is that m1, m2,. . . , mn, are independent (but
not necessarily identically distributed) Poisson random variables. This is
a minimal Poisson hypothesis in the sense that it contains, as a special
case, the hypothesis that the recordings come from independent, possibly
inhomogeneous, and possibly differing from trial to trial, Poisson
processes.

Below, we will derive the following exact statistical test, the “Poisson
variability test,” for H0:

reject H0 at level � if �
i�1

n

mi
2 � f�n, �, �̂� . (2)

The critical value, f(n, �, �̂), can be explicitly computed and tabulated
(Amarasingham, 2004). However, in practice, the actual significance of a
given data set is more to the point: for each n (number of trials), N (total
number of spikes, n�̂), and S (the statistic, �i�1

n mi
2), we compute the p

value �(n, N, S), which is the lowest probability at which the Poisson
variability test rejects the null. p values can be computed exactly by dy-
namic programming or approximately by Monte Carlo sampling.b Dy-

namic programming is computationally feasible for smaller values of N
and S and was used in all of the experiments reported here. The Monte
Carlo approach is feasible in essentially any situation and has the virtue of
simplicity, as is evident from the code listing provided in Appendix A.
One needs to choose the number of Monte Carlo samples to be consistent
with the desired accuracy, but this requires only a simple application of
the binomial distribution. As a benchmark, 10,000 Monte Carlo samples
yield an � value with a 95% confidence interval no larger than � 0.01.
Matlab code for running either or both algorithms is available for down-
load at http://www.dam.brown.edu/ptg/REPORTS/amarasingham/
pvt.html, as is a copy of Amarasingham (2004), which contains a com-
plete discussion of both algorithms.

Under the constraint m1 � m2 �. . . � mn � n�̂, the sum of squares m1
2

� m2
2 � . . . � mn

2 is smallest when the counts m1, m2,. . . , mn are most
nearly equal. This is in fact a corollary of the more familiar statement that
the variance measures the “spread” of a distribution, because

1

n �
i�1

n

�mi��̂�2 � �1

n �
i�1

n mi
2���̂2 . (3)

Therefore, the test has power toward alternative hypotheses that would
predict more repeatable observations of spike counts than the minimal
Poisson hypothesis.

Results
Derivation of the minimal Poisson variability test
Recall that the null hypothesis (H0) is that m1, m2,. . . , mn are
independent Poisson random variables. Let us designate the (un-
known) means as �1, �2,. . . , �n. Define the empirical mean and
variance statistics as usual:

�̂: �
1

n �
i�1

n

mi �̂2: �
1

n�1 �
i�1

n

�mi��̂�2 . (4)

A hypothesis test specifies a region of the space of outcomes
(called the critical region), which is unlikely for all distributions
in the null hypothesis. The null hypothesis is “rejected” when
observations fall in the critical region. The power of a test with
respect to an alternative distribution is the probability that the
alternative distribution assigns to the critical region, i.e., the
probability that the null hypothesis is rejected when the alterna-
tive is true. We seek a hypothesis test under our null, which has
higher power for alternative distributions in which �̂ 2/�̂ (i.e., the
empirical Fano factor) tends to be small, or more to the point,
such that �̂ 2 is small, given �̂. It is equivalent to use �i�1

n mi
2 in

place of �̂ 2, because they preserve the same order when �̂ is fixed.
One way to proceed is to form a partition of the sample space

based on �̂. We seek f(n, �, �̂), such that

P � �
i�1

n

mi
2 � f�n, �, �̂�� �̂� � � (5)

for all �̂ and for all P � H0. Then, the event will be an �-level
hypothesis test, because

P� �
i�1

n

mi
2 � f�n, �, �̂�� �

�
�̂

P� �
i�1

n

mi
2 � f�n, �, �̂�� �̂� P��̂� � �

�̂

�P��̂� � �

(6)
bWe do not explore here a third approach, which is to approximate the multinomial probability that arises in Results,
Derivation of the minimum Poisson variability test, classically, with the �2 distribution.
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for all P � H0. To derive f(n, �, �̂), it is straightforward to apply the
following proposition.

Proposition
If m1, m2,. . . , mn are independent Poisson random variables with
means �1, �2,. . . , �n, respectively, then for all r, and for all �̂, we
have the following:

max
�1 ,�2 , . . . ,�n

P � �
i�1

n

mi
2 � r��̂� � P � �

i�1

n

Xi
2 � r� , (7)

where X1, X2,. . . , Xn are distributed multinomially with param-
eters {n�̂; 1/n, 1/n,. . . , 1/n}.

A multinomial distribution generalizes the binomial distribu-
tion to a many-sided die and has the following form:

P�X1 � m1, X2 � m2 , . . . , Xn � mn�

� � �m1 m2

N

. . . mn� �
i�1

n

pi
mi

0

if �
i�1

n

m
i
� N

otherwise,

(8)

where p1, p2,. . . , pn satisfy pi 	 0 and �i � 1
n pi � 1. In shorthand,

X1,. . . , Xn � M(N; p1, p2,. . . , pn). This proposition arises from
the following observation: conditioned on �̂, the average number
of spikes, the counts m1, m2,. . . , mn are distributed multinomi-
ally with the following parameters:

� n�̂;
�1

�
i�1

n
�i

,
�2

�
i�1

n
�i

, . . . ,
�n

�
i�1

n
�i
� . (9)

That is, if the firing rates �1, �2,. . . , �n and the total spike count
are known, one could sample from the minimal Poisson model
by assigning each of the n�̂ spikes to a trial based on the outcome
of an n-sided die on which each face is biased in proportion to the
firing rate (�i) of the trial to which it corresponds. This lends itself
to the conjecture that the empirical variance of the mi, condi-
tioned on �̂, is most likely to be large exactly when the n-sided die
is unbiased. (An unbiased die is one that produces all sides with
equal likelihood). We formalize this with the proposition, which
is not difficult to prove. The proof and other technical details are
contained in Amarasingham (2004).

Thus, if

f�n, �, �̂� : � max � k : P � �
i�1

n

Xi
2 � k� � �� , (10)

where X1,. . . , Xn � M(n�̂; 1/n, 1/n,. . . , 1/n), then, in light of
Equations 5, 6, and 7, {�i � 1

n mi
2 � f(n, �, �̂)} is an �-level

hypothesis test for H0.
In practice, the interest is in the p value, given an observed

value of �i � 1
n mi

2. For example, if, over four trials one observes
spike counts of {2, 3, 1, 4}, then �i � 1

n mi
2 � 2 2 � 3 2 � 1 2 � 4 2 �

30, and one needs to compute P(�i � 1
n Xi

2 � 30), where X1, X2, X3,
X4 � M(10; 1/4, 1/4, 1/4, 1/4). One straightforward way to do this
is by simulation (a so-called Monte Carlo approximation): sim-
ulate these multinomially distributed random variables several
times and count the proportion of times in which the sum of
squares of the simulated random variables is �30 to approximate

P(�i � 1
4 Xi

2 � 30). This simple algorithm is expressed in Matlab
code in Appendix A.

A careful reading of the derivation above indicates that the
Poisson variability test covers a somewhat more general null hy-
pothesis: m1, m2,. . . , mn are conditionally independent and Pois-
son distributed, given the Poisson means �1, �2,. . . , �n (see Ap-
pendix B). Thus, the null hypothesis includes the following: (1)
the standard model of inhomogeneous Poisson processes with a
fixed rate function across trials (this is the case �1 � �2 � . . . �
�n) and (2) trial-varying inhomogeneous Poisson processes (as
stated above), but also (3) processes in which a particular inho-
mogeneous rate function is chosen from an ensemble of possible
rate functions for each stimulus presentation, randomly, but not
necessarily independently.

Analysis of cell recordings
Our interest in the trial-to-trial variability of inferotemporal cells
emerged as a consequence of the simple impression that, given an
appropriate stimulus, neuronal responses at least seemed reliable,
especially near the onset of the stimulus (Fig. 3). Given the com-
mon view that cell firing patterns throughout cortex are invari-
ably irregular, we set out to more rigorously explore this issue.

To tease apart the effects on variability of time after stimulus
onset, we divided the neural response into epochs, consisting of
disjoint equal-length time intervals, beginning 100 ms after the
onset of presentation of a stimulus. We used intervals of 100 and
50 ms in the experiments described below. These choices were
made for empirical reasons and not because of limitations im-
posed by the test, which can be used for time periods of any
length. The pairing of a cell and a stimulus presented repeatedly
to the cell we labeled a cell–stimulus pair. For a fixed epoch,
associated with each particular cell–stimulus pair are the data
points m1, m2,. . . , mn of spike counts for each of the n presenta-
tions of the stimulus to that cell during the epoch. For each cell–
stimulus pair, m1, m2,. . . , mn, (in particular, the statistics �i � 1

n mi

and �i � 1
n mi

2), determine the p value, the minimal value of � that
the Poisson variability test will reject, which we compute as per
above.

We analyzed 328 cell–stimulus pairs, drawn from recordings
from a total of 27 cells (18 from the first monkey and 9 from the
second). These cells were selected on the basis of their clear visual
response to at least one visual stimulus and based on the quality of
the single unit isolation, which was as high as possible to prevent
the uncertainty introduced by a noisy signal from contaminating
our data. The number of presentations n varied with each cell–
stimulus pair, ranging from n � 2 to n � 14, with a median value
of 7.

Using 100 ms epochs, 47 of the 328 pairs were rejected by the
Poisson variability test at a significance level of 5% in the 100 –200
ms period after stimulus onset. In contrast, the number of re-
jected cell–stimulus pairs decreased rapidly and progressively at
subsequent epochs, further away from onset: 19 rejected pairs
between 200 and 300 ms, 11 rejected pairs between 300 and 400
ms, and fewer further on. Similar trends are evident for 50 ms
partitions, as illustrated in Figure 4.

Pooling of results
It would not be unexpected for a drug that has no effect to nev-
ertheless show a “significant benefit” in 3 of 100 separate trials, if,
say, � � 0.05. After all, even if the null hypothesis is true, we can
expect to reject it an average of 5 of 100 times when � � 0.05.
How surprising, then, are the number of rejections in each of the
tested epochs? One way to assess the significance of the pooled
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data, within an epoch, is to assume the validity of the null hypoth-
esis and the independence of the tests: the probability of any given
number of rejections is then governed by the binomial distribu-
tion with parameter p � �. However, in the case of the Poisson
variability test as applied here, this is too conservative. In fact,

because the statistic �i � 1
n mi

2 is an integer, and because of the
small numbers of samples involved in many of these tests, the
actual probability of rejecting the null, when the null is true, can
be substantially less than � (where � is used to determine the
critical value f), and in some cases even zero.

One possible approach to this problem is to include only data
with a high number of samples. For example, repeating the anal-
ysis described above, but including only the 45 cell–stimuli pairs
with at least 10 presentations (i.e., n 	 10), we obtain 15 rejec-
tions of 45 cell–stimulus pairs in the 100 –200 ms epoch, 2 re-
jected pairs in the 200 –300 ms epoch, 4 rejected pairs in the
300 – 400 ms epoch, and 0 rejected pairs for all subsequent ep-
ochs. This approach is conservative, too, however, as any selec-
tion of a minimal threshold for the number of samples will be
arbitrary: spike counts can still exhibit a surprising amount of
regularity even with a few samples.

A better approach is to account for the actual significance
values associated with individual tests as a function of sample
size. Code for computing the actual significance levels is available
at http://www.dam.brown.edu/ptg/REPORTS/amarasingham/
pvt.html. Taking this into account, we can compute exactly the
distribution on the number of rejections as a sum of Bernoulli
(reject/accept) variables with rejection probabilities given by the
actual significance levels (Amarasingham, 2004). This gives the
exact significance of the observed number of rejections. When
applied to the data, this pooling method reveals a consistent
trend: the significance of the number of rejections is very high for
the 100 –200 ms period (significance, 10�33) and decreases rap-
idly at subsequent epochs. This and a similar trend for the 50 ms
partitions are also illustrated in Figure 4.

Figure 3. Reliable response from a single cell, indicating that particular stimuli can elicit
highly regular trial-to-trial spike discharges from a neuron. a, Response to three of the stimuli
used during testing of this cell. Each plot includes the spike rasters aligned to the onset of the
stimulus (time indicated by the left vertical line). At the bottom of each plot is an estimate of the
instantaneous firing rate. b, Enlarged view of the aligned spike times for all responses to the
most effective stimulus shown in a (taken from two separate blocks). c, A temporally expanded
view of the spiking activity near stimulus onset, with the number of spikes occurring in the 50
ms shaded area indicated to the right of each trial. Note that the mean of the counts far exceeds
the variance (Var) of the counts (ratio, 7.6 times).

Figure 4. Summary of the rejections from the Poisson variability test across a total of 328
cell–stimulus pairs for each epoch. The 800 ms after stimulus onset were partitioned into
disjoint intervals of equal length called epochs. Epochs are labeled along the x-axis by the
starting time of the interval with which they are associated. The first row (a, b) summarizes the
results from the 100 ms epoch partition, and the second row (c, d) summarized the results from
the 50 ms epoch partition. The first column (a, c) illustrates the total number of rejections versus
epoch. The second column (b, d) graphs the epoch-by-epoch significance of the number of
rejections of the Poisson hypothesis, toward excess regularity, under the assumption that the
results of the individual cell–stimulus pair tests are independent. For the first three 100 ms
epochs (100, 200, and 300 ms; first 3 bars, first row, second column) the significances are
10 �33, 10 �9, and 10 �3, respectively. For the first four 50 ms epochs (100, 150, 200, and 250
ms; first 4 bars, second row, second column) the significances are 10 �15, 10 �23, 10 �10, and
0.0008, respectively.
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Refractory period
One of the most natural biophysical objec-
tions to Poisson models of neural activity
is the refractory period (Berry and Meis-
ter, 1998), which, among other things, in-
troduces strong short-term dependencies
in spike train structure (“absolute refrac-
tory period”). A statistical test that is sen-
sitive to reliability in the spike counts may
merely reflect such local structures (or
even not-so-local structures, as in the “rel-
ative refractory period”), particularly
among cell–stimuli pairs with relatively
high firing rates, because the effect of the
refractory period on reliability will in-
crease with the firing rate. Indeed, Kara et
al. (2000) argue that, in retina, lateral
geniculate nucleus, and V1, low spike
count variability relative to the Poisson
process is primarily explained by absolute
and relative refractory periods. One way to
examine this interpretation for our data is
to compare the results of the variability
test across epochs, among cell–stimuli
pairs that have the same mean spike
counts. If the observed (super-Poisson)
reliability is essentially attributable to the
refractory period or another interactive ef-
fect imposed on an “otherwise” Poisson
process [e.g., a Poisson-refractory process,
perhaps of the type proposed by Kass and
Ventura (2001)], then all other things be-
ing equal, one would expect the effect to be
independent of the time of occurrence rel-
ative to stimulus onset. Figure 5 provides a
scatter plot of firing rate versus p value, for
cell–stimulus pairs separated by epoch.
Although there is a potential refractory
period effect manifested by high firing
rates near stimulus onset (the proportion
of significant pairs grows along the x-axis
in the first epoch), this is not enough to
explain all of the trends in the data. For a
given window of firing rates (e.g., 40 – 60
Hz), the fraction of significant cell–stimu-
lus pairs is highest in the first epoch (100 –
200 ms) than in later ones. There is evi-
dently a systematic effect of epoch on
spike count reliability, which is indepen-
dent of firing rate and which cannot be explained by refractory
period alone.

Effect of eye position
In an attempt to more carefully characterize the variable response
observed in primary visual cortical cells, Gur et al. (1997) found
that the use of moving stimuli coupled with precise control of
stimulus position on the retina lowered the variance-to-mean
ratio compared with previously reported values. In the present
experiment, we did not reposition the stimulus in real time, but
we did record eye position throughout each trial. Figure 6 shows
one measure of the variability attributable to eye movements
during our task, by plotting the SD of the monkeys’ horizontal
and vertical eye position as a function of time. In general, the

variability at each time point was quite low (	0.25 deg), but there
is a notable increase in this variability starting �300 ms after the
stimulus appeared. Even during periods of controlled fixation,
eye movements are not completely abolished, and therefore, we
cannot rule out the possibility that increased positional uncer-
tainty contributed to higher variability in later temporal epochs.

Discussion
Interpreting reliability and variability in neuronal responses
There is an asymmetry in the implications of reliability versus
variability in neural responses. Reliability is the more revealing of
the two phenomena. For example, suppose that the outputs of a
neuron encode information by a temporally reliable spiking pro-
cess, which would, in turn, imply reliability in the spike counts.

Figure 5. A scatter plot of log10 p value versus firing rate in hertz, across all cell–stimulus pairs, separated in 100 ms epochs.
The horizontal dashed line is the line of 5% significance (log10(0.05) 
 �1.301). The firing rate dimension was partitioned into
subintervals of 20 Hz range (depicted by the vertical dotted lines), and the proportion of cell–stimulus pairs for which the minimal
Poisson hypothesis was rejected [rejection proportion (r.p.)] is provided. The data are plotted separately for the 100 –200 ms
epoch (a), the 300 – 400 ms epoch (b), and the 500 – 600 ms epoch (c), with respect to stimulus onset. (Note that no particular
meaning is attached here to the choice of 20 Hz partitions.)
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Then, provided that the variable being encoded is kept constant
or under control in repeated experimental trials, we would expect
to observe spike count reliability in observations of the output of
that neuron. If it is not held under control, however, we might
observe variability in the spike counts through the variation of
the unknown encoding variable alone. Thus, under a temporally
reliable coding hypothesis, an observation of spike count reliabil-
ity provides the experimentalist with an additional clue that the
neuron is actually encoding something that is being held under
experimental control. The clue of reliability can usefully operate
in addition to, or even separately from, that of elevated firing
rates, which is the chief means by which hypotheses concerning
encoded variables are evaluated in neurophysiology. Observa-
tions of variability, in contrast, are subject to multiple explana-
tions: either a reliable coding hypothesis is invalid, or the encoded
variable is not being held under experimental control. These lat-
ter two alternatives, in the case of observed variability, will be
quite difficult to distinguish.

This has implications for how we interpret observations of
reliability and variability in the neural records. At one extreme,
Poisson-like or super-Poisson variability in spike counts is simply
accepted as a general principle, and models have been developed
to explain this variability. For example, Shadlen and Newsome
(1998) postulate mechanisms of synaptic integration designed
specifically to preserve the response variability of neurons from
one processing stage to the next, motivating this as one of the key
features to be explained in cortical physiology.

Based on our data, we suggest that all cortical neurons should
not be characterized as a static, homogeneous population with
regard to variability of spike discharge. The rejection of the min-
imal Poisson hypothesis reported here does not imply that all
cortical cells exhibit high reliability, only that some apparently do
under some, particular, conditions. Many authors have remarked
on the potential utility of reliable responses, particularly in the
context of neural coding, and so identifying the conditions that
generate them suggests itself as an important research topic. One
interesting possible scenario is that the reliability of the discharge
of a cell is state dependent. Levels of attention or motivation, for
example, which are known to affect the firing rate of a cortical cell
(for review, see Reynolds and Chelazzi, 2004) and to alter levels of

neuronal synchronization (Fries et al., 2001), may also influence
the variability of neural response.

Behavioral relevance
The present data were collected under conditions in which the
recorded neural signal was in no obvious way related to the ani-
mals’ behavior. However, numerous previous studies have dem-
onstrated the importance of inferotemporal cortex in successful
execution of complex pattern recognition tasks (Logothetis and
Sheinberg, 1996). The speed with which monkeys can perform
these tasks is of special interest, because they give some hints as to
when, and for how long, neuronal signals emanating from IT
cortex may be integrated to drive recognition behaviors. Using
stimuli similar to those used in this study, for example, Vogels
(1999a) found that monkeys could accurately categorize tree and
nontree stimuli in 	300 ms. More recently, we found that highly
similar complex visual images could be discriminated by button
response in �425 ms but that clear evidence for stimulus identity
was evident in the monkeys oculomotor behavior �200 ms after
stimulus onset (D. L. Sheinberg, unpublished observations). This
upper bound of 200 ms is intriguing because it leaves little time
for extensive averaging of highly variable signals. Indeed, the av-
erage onset latency of selective neuronal responses in IT cortex
falls somewhere between 100 and 140 ms (Perrett et al., 1982;
Vogels, 1999b; Sheinberg and Logothetis, 2001). Thus, the tem-
poral epoch between initial IT cell activation and discriminatory
motor response is quite short, on the order of 100 ms or less.
Interestingly, it is precisely during this epoch where we find that
individual neurons are most likely to respond reliably to partic-
ular visual stimuli.

Models
Identifying models that usefully capture the variability of a corti-
cal spike train remains a central problem in the statistical model-
ing of neural data. A commonly invoked model is the slow-
varying inhomogeneous Poisson process, which follows in a
natural way from a rate-coding viewpoint (Shadlen and New-
some, 1998): the signal embedded in a neural spike train is an
underlying rate, varying on coarse time intervals on the order of
tens to hundreds of milliseconds, and hence, the precise place-
ment of spikes is random and irrelevant. Poisson processes argu-
ably underly a majority of the descriptive and analytic techniques
still being used in neural data analysis.

Nevertheless, several studies speak to the inappropriateness of
inhomogeneous Poisson models for spike trains (Kass et al.,
2004). One explicit reason for this involves short-term depen-
dencies between spikes, as imposed by biophysical phenomena
such as the refractory periods and bursting. However, non-
Poisson behavior on such fine timescales does not necessarily
imply that the spike counts on coarser timescales are not well
approximated by a Poisson process. At issue are conclusions of
the form exemplified in Koch (1999) (Dayan and Abbot, 2001):
“[These results] support the hypothesis that once the refractory
period is accounted for, a Poisson hypothesis constitutes a first-
order description of cortical spike trains.” Similarly, Kara et al.
(2000) argue that much of the super-Poisson reliability that they
report, via a Fano factor analysis, might be accounted for by
refractory effects, which are differentially affected by varying fir-
ing rates. In contrast, our rejection of the minimal Poisson hy-
pothesis is not easily explained by a simple (time-independent)
refractory period combined with an otherwise Poisson process, at
least in the absence of other forms of regularity in the firing rate,
because the rejection occurs near stimulus onset and not further

Figure 6. Eye position variability. The average SD of both horizontal and vertical eye position
for the 800 ms period after stimulus onset indicates that, although there was relatively little
positional uncertainty, the variability did increase later in the trial, and this may have contrib-
uted to variability later in the neuronal response.
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away even among populations of cell–stimulus pairs with similar
average firing rates.

Another objection to standard inhomogeneous Poisson mod-
els arises from the implicit assumption of statistical stationarity
across trials. The typical Fano factor analysis provides one exam-
ple of such an assumption. The relation of the Fano factor to
inhomogeneous Poisson processes, even as a heuristic, requires
that there be no variability across trials in the parameters of the
process being observed. Such an assumption is the norm in neu-
ral data analysis, yet in its absence the significance of many widely
used descriptive statistics, such as the peristimulus time histo-
gram, the coefficient of variation, and autocorrelograms and
cross-correlograms, is unclear, at best.

Avoiding assumptions of trial-to-trial stationarity requires a
more delicate approach. The Poisson variability test is one exam-
ple. Another example arises naturally in reconstruction para-
digms (Brown et al., 1998; Zhang et al., 1998; Brockwell et al.,
2004; Wu et al., 2004; Shoham et al., 2005), in which the relation-
ship between behavioral or external variables and the firing rate
are explicitly encoded in a model. Once fitted to data, such mod-
els can be used to predict, or reconstruct, the behavioral variables
from the spike times. However, evaluating the validity of Poisson
spike count models by model fitting (Brown et al., 1998, 2002;
Shoham et al., 2005) requires that the postulated firing rate mod-
els are valid and that their parameters have accurately been esti-
mated. Justifying such an assumption will often be difficult. In
particular, conclusions of excess variability (Brown et al., 1998;
Fenton and Muller, 1998) can perhaps always be attributed to the
effects of additional variables that have not been modeled.c

In this light, a rejection of the minimal Poisson null hypothe-
sis is unusual because it does not only demonstrate that a single
model is not a good fit to the data, but that an entire class of
models is inappropriate.

From a pedagogical point of view, the rejection of a null hy-
pothesis implies only that: the rejection of a hypothesis. It does
not identify an alternative. However, the form of the statistical
test and, in particular, the distribution of its power among the
space of alternative hypotheses, may shed light on the data-
generating process. The Poisson variability test is based on a mea-
sure of the reliability in the spike counts, and hence the rejection
of the minimal Poisson hypothesis suggests that the spike train
near stimulus onset may be a finely structured temporal process
with high precision on many or most of the spikes.

In any case, there is strong statistical evidence that neuronal
responses near the onset of a stimulus cannot in general be well
modeled by a simple Poisson process, even allowing for a rate
function that varies from trial to trial or exhibits transients and
other time-dependent activity.

Small samples
The statistical significance of the results is somewhat surprising in
light of the small sample sizes, ranging from 2 to 14 per cell–
stimulus pair. Indeed, as mentioned previously, some of the ob-
servations are so small that rejection of H0 at 5% significance is
mathematically impossible. For example, even if every 100 ms
poststimulus epoch had exactly two spikes (corresponding to the

most reliable outcome at 20 Hz), the Poisson variability test
would only achieve 5% significance with four or more trials. In
fact, to take one example, based on the numbers of trials and
numbers of observed spikes in the analysis of the 100 –200 ms
epoch, for 50% of the cell–stimulus pairs it was, a priori, impos-
sible to reject the null hypothesis.

Summary
To summarize, we have derived a method for testing the Poisson
nature of neural spike trains. Applying this method to data re-
corded from primate inferotemporal cortex shows that the neural
response is highly regular near stimulus onset of relevant visual
stimuli and not later on. These results provide a simple and rig-
orous test of a Poisson hypothesis, which avoids the assumption
of identical conditions across trials that is commonly made in
neuroscience.

Appendices
Appendix A
The following Matlab function computes the p value of the Pois-
son variability test �(n, N, S) by Monte Carlo approximation
(here using 10,000 Monte Carlo samples). For example, given a
vector of spike counts contained in counts, one could obtain an
approximate p value by calling pvtalpha_mc(length(counts),
sum(counts), sum(counts.*counts)). These approximations can
typically be computed in seconds.

function [pvalue] � pvtalpha_mc(n,N,S)
% Returns the p-value of the Poisson variability
% test by Monte Carlo approximation
% (here using 10,000 samples).
% n is the number of trials
% N is the total number of spikes (across trials)
% S is the sum of squares of the spike counts
% (see Materials and Methods)

% mc_iter specifies number of Monte Carlo samples
mc_iter � 10000;
% generate multinomial samples
h � hist(ceil(rand(N,mc_iter)*n),1:n);
% compute sum of squares
i � sum(h.*h);
% output p-value
pvalue � (sum(i	�S)�1)/(mc_iter�1);
return

Appendix B
Here, we demonstrate that the Poisson variability test remains
valid under the (more general) null hypothesis that m1, m2,. . . ,
mn are conditionally independent and Poisson distributed, given
the Poisson means �1, �2,. . . , �n.

Let us denote the critical region C � {�i � 1
n mi

2 � f(n, �, �̂)}.
We have shown that, for any fixed �1, �2,. . . , �n, P(C) � � if m1,
m2,. . . , mn are independent. As a consequence, P(C	�1, �2,. . . ,
�n) � �, for all �1, �2,. . . , �n, provided that m1, m2,. . . , mn are
conditionally independent given �1, �2,. . . , �n. Therefore, under
this assumption,

P�C� � �
�1, �2, . . . , �n

P�C	�1, �2, . . . , �n� P��1, �2, . . . , �n�

� �
�1, �2, . . . , �n

�P��1, �2, . . . , �n� � � , (11)

cTaking such a possibility to its logical conclusion, it could be that the critical variables are in fact unknown, or hidden.
Hidden variables effectively act randomly, and thus, accounting for them involves making the rate function �( t)
itself random (Ventura et al., 2005). A Poisson process equipped with a random rate function is a Cox process (Cox,
1955). Nevertheless, from our point of view, the important feature of Cox processes is that the spike counts are
Poisson noise, once the instantaneous firing rate has been specified. As a consequence, spike counts generated by a
Cox process are included in the minimal Poisson hypothesis here (see Results, Derivation of the minimum Poisson
variability test).
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independently of the joint distribution on (�1, �2,. . . , �n), which
thus may be of any form.
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