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Abstract

It is widely conjectured that the excellent ROC perfor-
mance of biological vision systems is due in large part
to the exploitation of context at each of many levels in a
part/whole hierarchy. We propose a mathematical frame-
work (a “composition machine”) for constructing prob-
abilistic hierarchical image models, designed to accom-
modate arbitrary contextual relationships, and we build
a demonstration system for reading Massachusetts license
plates in an image set collected at Logan Airport. The
demonstration system detects and correctly reads more than
98% of the plates, with a negligible rate of false detection.
Unlike a formal grammar, the architecture of a composition
machine does not exclude the sharing of sub-parts among
multiple entities, and does not limit interpretations to sin-
gle trees (e.g. a scene can have multiple license plates, or
no plates at all). In this sense, the architecture is more like
a general Bayesian network than a formal grammar. On
the other hand, unlike a Bayesian network, the distribution
is non-Markovian, and therefore more like a probabilistic
context-sensitive grammar. The conceptualization and con-
struction of a composition machine is facilitated by its for-
mulation as the result of a series of non-Markovian pertur-
bations of a “Markov backbone.”1

1. Introduction

By the theory of nonparametric inference, essentially
any classification or estimation problem can be solved,
more or less automatically, from a sufficiently rich and
sufficiently lengthy sequence of examples. This was al-
ready well known within the statistics community in the
early 1980’s, by which time several elegant approaches had
been explored, including, for example, kernal estimation
(e.g. [28]), k-nearest-neighbor classification (e.g. [10]), and
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Grenander’s method of sieves [22]. The problem of over-
fitting (a.k.a. controlling variance, model selection) was
already front and center, resulting in the development of
various analytic and practical methodologies (e.g. bounds
derived from the Vapnik-C̆ervonenkis dimensionality [42],
cross validation and generalized cross validation [35, 45],
and information-based measures of complexity [30]).

The availability of these remarkable tools invites a tab-
ula rasa approach to the problem of computer vision. In
principle, it is possible to formulate the object recognition
problem in terms of a search for one or more decision sur-
faces in a high-dimensional image representation, and in
principle it is possible to solve the problem, as well as it
can possibly be solved, by nonparametric estimation. In-
deed, recent advances in learning theory (e.g. Vapnik [43],
Freund & Schapire [14]), coupled with relentless advances
in computing technology, have rendered this approach prac-
tical for certain applications, such as the recognition of iso-
lated hand-written digits.

More ambitious vision problems require more in the way
of a priori structure, dictated by the need to control vari-
ance (over-fitting) and practical limitations in the size of
any manageable set of training data. Yet a priori structure
means a priori bias (cf. [18]), and the search for an appro-
priate class of models, embodying the right structure for
unconstrained vision problems, is therefore critically impor-
tant.

Here we propose a structure based upon the dual princi-
ples of hierarchy and reusability. Several observations argue
for this general approach:

Feature and Part Sharing. Reusability is a common theme
in computer vision. Indeed, the notion of a feature itself,
such as a Gabor filter, or a locally invariant Sift feature [27],
is already based upon the assumption that, from scene to
scene, the same feature will participate in the representa-
tion of any one of a multitude of different entities. Bie-
derman [4] and others have argued that a possibly small
number of reusable parts might be sufficient to compose
the large ensemble of shapes and objects that are in the
repertoire of human vision. Empirical evidence for sharing



comes from studies of the diminishing numbers of new parts
that are needed to represent objects in a sequential learning
task (Krempp et al. [24]), as well as from the successes
of multiple-object recognition systems built on a common
substrate of lower-level parts [2, 37].

Context. It is often observed that segmentation can be am-
biguous, if not impossible, in the absence of the contextual
information provided through recognition. Similarly, reli-
able edge and boundary detection is notoriously difficult
when attempted in a purely bottom-up framework, with-
out more global contextual constraints that help to disam-
biguate, for example, texture, shadow, and occlusion bound-
aries (cf. [7, 38]). By little more than their nature, hierarchi-
cal models (as in [15, 16, 21, 29, 33]), embody multi-level
contextual constraints.

Efficient Representation. Barlow [3] proposed suspicious
coincidences as a possible principle for discovering mean-
ingful groupings, such as the grouping of features into parts,
parts into objects, or objects into scenes. A new label,
“tree”, “telephone”, “desk”, makes for a more efficient rep-
resentation by virtue of “explaining” an otherwise “suspi-
cious coincidence” in the arrangement of features and parts.
Much earlier, Laplace [25] made a similar observation, ar-
guing that a likelihood principle was sufficient to provide
a gradient towards meaningful grouping. These notions of
grouping are closely related to the notion of efficient repre-
sentation, in that the introduction of a label for an otherwise
unlikely grouping of parts amounts to an enhanced encod-
ing and a shorter description length (as discussed for exam-
ple by Bienenstock et al. [5]). By this connection, hierar-
chical description is a close cousin of Rissanen’s Minimum
Description Length principle [30].

Biology. Fodor and Pylyshyn [12] have questioned the bi-
ological relevance of the (nonparametric-type) learning al-
gorithms employed in most neural network models. They
argue that these models lack a fundamental feature of hu-
man cognition – they are not compositional. The princi-
ple of compositionality holds that humans perceive and or-
ganize information as a syntactically constrained hierarchy
of reusable parts. The prototypical formulation was intro-
duced by Chomsky [8] as a system of formal grammars. In-
deed, language itself is the prototypical compositional sys-
tem, with evident hierarchy, syntax, and reusability. In the
visual world, physical objects and scenes decompose natu-
rally into a hierarchy of meaningful and generic parts, and
it is perhaps no coincidence that there is an apparent hierar-
chical structure in the ventral visual pathways of the more
highly evolved visual systems [32, 39, 41].

In §2, following the formulation proposed in [17], we de-
velop a prior probability model on hierarchically organized
image interpretations (“composition machine”). We begin
with a Markov structure, in the spirit of a Bayesian net-

work, and later perturb this distribution in order to achieve
greater selectivity. An application to licence-plate reading
is explored in §3, and some conclusions and speculation are
offered in §4.

2. Model: Composition Machine

Composition systems are generative, probabilistic, im-
age models that embody a hierarchy of part/whole relation-
ships. Generative probabilistic models include Bayesian
networks [13, 23, 34, 36], linear and nonlinear filtering [11],
Markov random fields [9, 31, 46], and probabilistic context-
free grammars [19]. Compositional systems are distinct
from these models in that they are non-Markovian. On the
one hand this makes computation substantially more diffi-
cult, but on the other hand, non-Markovian models are more
selective and thereby, in principle, capable of smaller type
II error probabilities (probabilities of false alarms).

Figure 1. Vertical slice through a “composition machine”. Each
row extends to a two-dimensional sheet of “bricks”. See text for
details.

Markov Backbone. Figure 1 depicts the ‘Markov back-
bone’, which is a generative, hierarchical model equipped
with a Markov structure on a directed acyclic graph. Start-
ing at the bottom, the image pixels are represented by a
one-dimensional string of nodes, corresponding to a one-
dimensional slice through the two-dimensional pixel ar-
ray. Hidden (model) variables are associated with two-
dimensional sheets of nodes that sit “above” the image ar-
ray; these variables are called bricks (as in Lego bricks)
to emphasize their re-usability across legitimate configura-
tions. The layer of bricks that sit immediately above the
image array are called terminal bricks, and as we shall see,
are associated with local image filters.

Bricks represent semantic variables, like edges, strokes,
junctions, shapes, and various parts and objects. Assign-
ments will vary from application to application; Figure 2
indicates the assignments for the application to license-plate



Figure 2. Semantic hierarchy for plate-reading application. All
told, there are about 500,000 bricks. See text for details.

reading. Each sheet of bricks comprises a regular sublatice
of each type of variable, so that the third layer above the im-
age, in Figure 2, is interspersed with “generic-letter bricks”,
“generic-number bricks”, and “L-junction bricks”.

A brick can be on or off. An on brick selects one sub-
set of “children bricks” from an allowed collection of such
subsets drawn from the layers below. The possible sets of
children are depicted with broken ovals in Figure 1.2 We
refer to these selections as “compositions”, which is ex-
actly what they are in the sense that the selected children
are composed, as “parts”, into the “object” represented by
the on brick. Put another way, the on brick is instantiated
by the selected children. An image interpretation, corre-
sponding to a semantic labeling of a scene, is a subgraph of
on bricks, each substantiated by an allowed set of children
bricks, which themselves must be on. Such subgraphs are
called complete. See Figure 1, where an example is high-
lighted with colored nodes and bold arrows. The set of all
interpretations is denoted I.

The state of a brick, say the brick β ∈ B, is a random
variable, xβ ∈ {0, 1, . . . , nβ}, with xβ = 0 representing
off, and xβ = 1, 2, . . . , nβ representing the selected set of
children in Figure 1. The pixels themselves (actually, their
grey levels) are represented by a vector of intensities, �y.

The Bayesian framework has two components: a prior
distribution, here on the set of interpretations, I, and a con-
ditional data model, meaning a probability distribution on
�y for each I ∈ I. As mentioned earlier, we start with a

2For simplicity of the figure, children are depicted as residing exclu-
sively in the layer immediately below. In fact, children can reside at any
level below a parent. As an example – see Figure 2 – a plate-boundary
brick from the third layer from the top composes with a license-number
brick from the second layer from the top to instantiate a license-plate brick
in the top layer.

Markovian distribution on I. Each brick β ∈ B is assigned
a probability vector (εβ

0 , εβ
1 , . . . , εβ

nβ ). In terms of these pa-
rameters, the probability P (I) of an interpretation (i.e. a
complete subgraph) I is

P (I) =

∏
β∈B(εβ

xβ )
∏

β∈B(I)(1 − εβ
0 )

(1)

where B is the set of all bricks and B(I), the “below set”,
is the set of all on bricks that are not roots of the (directed)
subgraph I . One way to verify that

∑
I∈I P (I) = 1 is by

a thought experiment: choose, independently and accord-
ing to the respective probability vectors, the states of the
bricks in the top layer. Next choose, also independently, the
states of the bricks in the penultimate layer, using again the
respective probability vectors, except that selected children
of on bricks are conditioned to themselves be on. Continue
downward, finally choosing the states of the terminal bricks.
The procedure selects a complete subgraph I ∈ I according
to the distribution P (I) and establishes the Markov prop-
erty with respect to the directed acyclic graph represented
by nodes and arrows in Figure 1.

Perturbation – the Compositional Distribution. One way
to assess a Bayesian model, in this case the “Markov back-
bone” defined in Equation 1, is to examine samples. The
upper panel in Figure 3 is a random sample from the set
of instantiations of a “4-digit-string” brick of the fourth
layer (counting from the bottom) of the composition ma-
chine for reading plates depicted in Figure 2. The black
and white pixels represent the filters associated with the
states of the selected terminal bricks in the instantiation.
(The filters themselves are reusable parts of characters –
see discussion of data models below.) The evident poor fit
of the subtrees (numerals and parts of numerals) is a sig-
nature of the Markov property. Whereas the distribution
accommodates the basic structures of interest, the cover-
age is too broad. This works against selectivity, and hence
ROC performance, in a recognition system. One approach
to the coverage problem is through expanded state spaces –
the state of a brick can be elaborated to include detailed
positional information about its instantiation. This solu-
tion, very much analogous to adopting attribute grammars
in computational linguistics, can be short-sighted since the
potential number of relevant and interacting attributes (po-
sition, size, stroke width, color, etc.) is potentially unman-
ageable in a Markov system.

We have chosen instead to treat each attribute with a
non-Markov perturbation, starting with the Markov back-
bone. Briefly, the derivation is as follows: Associate with
each brick β ∈ B a (possibly vector-valued) attribute func-
tion aβ(I), which measures the “fit” among the “parts” that
instantiate β, as it appears in the particular interpretation
I ∈ I. If β is a “4-digit-string” brick, specifically, then
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Figure 3. Samples from Markov backbone (upper panel, ‘4850’)
and compositional distribution (lower panel, ‘8502’).

aβ(I) returns the relative coordinates of the four numerals
that instantiate β in the interpretation I . Similarly, each
character brick, and each numeral in particular, has an as-
sociated attribute function that computes the relative coor-
dinates of the particular parts that are composed into that
character in a particular interpretation. A “compositional
distribution” is built from a Markov backbone (Equation 1)
and a pair of probability distributions, pc

β (“composed”) and
p0

β (“null”), on each attribute aβ . The former, composed
distribution, captures regularities of the arrangements (i.e.
instantiations) of the children bricks, given that they are
parts of the object represented by β; the latter, null distribu-
tion, is the attribute distribution in the absence of the non-
Markovian term. The set of relative coordinates of the three
parts that make up the ‘0’ in the upper panel of Figure 3 is
an example of an attribute, and the particular arrangement
of the parts in the figure is a sample from the corresponding
null distribution.

In a compositional distribution, the null attribute distri-
butions are compared to their composed counterparts: given
I ∈ I,

P (I) ∝
∏

β∈B(εβ
xβ )

∏
β∈B(I)(1 − εβ

0 )

∏

β∈A(I)

pc
β(aβ(I))

p0
β(aβ(I))

(2)

where A(I), the “above set”, is the set of non-terminal on

(active) bricks. The proportionality sign (∝) can be replaced
with equality (=) if, at the introduction of each attribute
function, aβ , care is taken to ensure that p0

β(aβ) is exactly
the current (“unperturbed”) conditional distribution on aβ

given xβ > 0. In general, it is not practical to compute an
exact null distribution and P must be re-normalized.

The effect on coverage of the perturbation can be seen
by comparing the upper and lower panels in Figure 3. For
each non-terminal brick β, the denominator, p0

β(aβ), was
approximated by assuming that in the absence of an explicit
constraint, the prior distribution on aβ is the one consis-
tent with independent instantiations of the children. The
numerator, pc

β(aβ), was constructed to encourage regularity
in the relative positions of character parts, and of charac-
ters, in composing characters and strings, respectively. The
upper panel is a sample instantiation from the Markov back-
bone; the lower panel is a sample instantiation from the full
compositional distribution. Samples from the full compo-
sitional distribution can be computed (at considerable com-
putational cost) through a variant of importance sampling.

Conditional Data Models. The data model connects in-
terpretations to the grey-level image, and completes the
Bayesian framework. In the license-plate-reading demon-
stration system, we have assumed that the data distribution,
conditioned on an interpretation, is a function only of the
states of the terminal bricks:

P (�y|I) = P (�y|{xβ : β ∈ T })

where T ⊆ B is the set of terminal, or bottom-row, bricks.
Good performance in most image analysis applications

requires some degree of photometric invariance. In the
context of a probability model, the notion of invariance is
closely connected to the statistical notion of sufficiency.
The following data model, employed in the demonstration
system, is an example of the application of sufficiency to
invariance. As remarked earlier, the terminal bricks in
the demonstration system represent reusable parts of alpha-
numeric characters. The states of the terminal bricks code
the local position of the represented part. Some of the parts
can be more-or-less clearly discerned from the upper-hand
(Markov) panel in Figure 3. The zero and the eight are each
made of three parts whereas the four and the five are each
made of two parts. The black portion of each “part filter”
represents image locations that are expected to be dark, rel-
ative to the locations represented by the white portion of the
filter. The rank sum R (cf. Lehmann [26]) of the intensities
of the corresponding “black” pixels, among the union of in-
tensities of black and white pixels, is a convenient statistic
that is demonstrably invariant to all monotone transforma-
tions of the image histogram. We model pixel grey levels
by assuming that their distribution depends only on R (R
is sufficient), and we model R with an exponential proba-
bility distribution, thereby promoting small rank sums cor-



responding to dark-on-light characters. Pixels that are not
referenced by any active terminal brick are modeled as uni-
formly and independently distributed. More details on this
data model can be found in [20].

Parsing. The a posteriori distribution on interpretations,
given a particular image as represented by �y, is

P (I|�y) =
P (�y|I)P (I)

P (�y)
∝ P (�y|I)P (I) (3)

The interpretation I corresponds to a full semantic analy-
sis of the scene – an explicit labeling of every pixel, either
as background or as participating in one or more particu-
lar hierarchies, each of which instantiates a brick of a spe-
cific type. From I one reads off the locations and iden-
tifications of license plates, strings of characters, charac-
ters, lines, parts of characters, etc., as they may be found
throughout the image. In short, I represents a semantic and
syntactic parsing of the scene with respect to the variables
embodied in the composition machine.

Ideally we would make exact computations under
P (I|�y). Perhaps we would compute the probability that a
scene contains a license plate along with the most likely
reading of the plate, or perhaps we would compute the most
likely parse of the entire scene. Unfortunately, these and
other functionals of the posterior distribution are intractable
(indeed, NP-hard). We are forced to explore the computa-
tionally feasible alternatives.

Motivated by the observation that the states of lower-
level bricks (e.g. terminal bricks) represent coarse hypothe-
ses in the set I (the set of all interpretations)3, and the
good computational performance of coarse-to-fine (ctf) vi-
sion systems [1, 40, 44], not to mention the optimality of ctf
search under some conditions [6], we have explored parsing
methodologies that start with a bottom-up pass for indexing
into a set of likely interpretations.

Consider again the license plate application and the com-
position machine depicted in Figure 2. In the bottom-up
pass the computation is launched by evaluating, via a local
likelihood ratio test, the evidence for every state of every
terminal brick. Each state signals a part at a particular loca-
tion. A threshold is adjusted so that very few, if any, actual
parts are missed, resulting in a large number of “false posi-
tive” detections of parts of characters and plate boundaries.

This same sequence of likelihood ratio tests and conser-
vative thresholds can then be used, in turn, to elicit possi-
ble activities among next-level bricks, this time based upon
the already-computed collection of possible terminal-brick
states. Recursive, bottom-to-top, application of the proce-
dure generates a large list of possible parts and objects, each
corresponding to a consistent subgraph within the compo-
sitional architecture, and each equipped with a measure of

3A given low-level brick participates (is active) in many more interpre-
tations than a given high-level brick.

fitness based on a likelihood ratio. The list includes local
interpretations that are largely redundant, differing only in
the fine detail of positioning, as well as others that are mu-
tually inconsistent. This is the index set, a set of candidate
parts and objects that we next employ in a simple greedy
algorithm to compute a full-blown parse.

The best candidate, as measured by likelihood ratio, is
selected to seed the parse. Conditioned on the selected can-
didate (which itself is a sub-graph in the compositional ar-
chitecture, and hence a parse), we choose next, from all con-
sistent candidates in the remaining index set, the one that
most increases the likelihood of the parse when combined
with the already-selected candidate. The pair of consistent
sub-graphs defines a new parse with higher likelihood. The
list optimization procedure continues until there are no fur-
ther additions from the index set that improve likelihood.
The process can be repeated, n times, by seeding the k’th
parse with the k’th best candidate from the index set, and
finally choosing the best (most likely) parse among the n.

3. Demonstration: Reading License Plates

The approach is Bayesian: given an image, and given a
composition machine with the semantic variables listed in
Figure 2 and the architecture outlined in §2, we look for
a high-likelihood interpretation, I ∈ I. The presence and
identity of license plates are then read off by visiting top-
layer active bricks (see Figure 2) and their instantiations
(subtrees) – which, in particular, include the license-plate
numbers.

Data. A set of 458 images (each containing 494×652 pix-
els) were collected and supplied by the Visics Corporation.
Some images contained plates from other states with other
fonts and syntaxes, and in some cases the entire plate was
not imaged. The experiments were confined to the 385 im-
ages that contained human-readable standard-syntax Mas-
sachusetts license plates. A typical image is shown in Fig-
ure 5, and a collage of plates from multiple images is shown
in Figure 4. There is only a small amount of rotation and
variation in scale across the image set.

Performance. Interpretations commonly include character
parts, characters, and even strings of characters, at multiple
locations throughout the scene. The bottom panel of Figure
5 shows the top 25 “objects” (complete subtrees) that par-
ticipate in a full-blown parse of the top-panel image. The
full parse includes hundreds to thousands of additional an-
notations. Nevertheless, the system, starting with its first
implementation and including the implementation reported
on here, has never produced a false detection at the license-
plate level. This is regardless of whether it is run on scenes
with multiple plates (as in Figure 6) or no plates at all. The
reading rate for characters contained in the license-plate
ID’s is about 99.5%, and above 98% for the ID’s themselves



(an ID is misread if any of its characters are misread).

Search Strategies. Bottom-up seeding, as described in §2
is slow, even if candidates are heavily pruned during the
bottom-up (indexing) pass. Although it is indeed a coarse-
to-fine exploration of I, the overwhelming majority of the
calculations of likelihood are unnecessary in that they could
be eliminated, before the fact, if the goal were to find in-
stances of a particular object (e.g. find and read license
plates).

These observations suggest a more efficient ctf strat-
egy: traverse the bricks associated with the objects of in-
terest (top-level bricks in the license-plate system). For
each brick, perform a depth-first search for an instantia-
tion. Lower-level bricks might be visited multiple times.
Hence, for each brick, a list of instantiations is maintained
and re-used every time that brick appears in the compu-
tation. Computation passes immediately to the terminal
bricks, and the search remains coarse-to-fine in the sense
discussed in §2. Yet many of the terminal bricks, indeed
the vast majority, are never visited. Furthermore, the algo-
rithm admits easily to multi-threading or implementation on
a multi-processor system.

A simplified version of depth-first search was imple-
mented. Top-level (license-plate) bricks are instantiated
by a pair of bricks: a license-plate number (chosen from
the penultimate layer) and a license-plate boundary (cho-
sen from the third layer from the top). For each top-layer
brick, the possible children among the license-plate bound-
aries were first explored. Although there were some false-
positive boundaries (one is seen in Figure 6), only a small
fraction of the image needed to be further explored for the
corresponding license number. The result was a many-fold
improvement in computation speed with no loss in per-
formance. It is likely that a fully implemented depth-first
search would further improve computational efficiency.

Observations. How important is the non-Markovian per-
turbation? It is straight-forward to run the composition ma-
chine with and without the perturbation term. What is more,
the states of intermediate bricks signal detections of inter-
mediate structures (such as characters, strings, and bound-
aries), and can therefore be assessed, in and of themselves,
by their recognition performance.

We consistently find a substantial drop in performance,
at all levels of recognition, from characters up to license
plates, when running the Markov backbone in place of the
full compositional (non-Markovian) system. For example,
although we have not run the full data set under the Markov
backbone, a random sample points to a substantial drop in
detection performance, from the current 98+% of correctly
read plates to something closer to 90%, as well as the ap-
pearance of some false detections at the license-plate level.

A different kind of experiment bears on the justification
of hierarchical structure, per se. As formulated in §2, an in-

terpretation amounts to an annotation of a scene in terms of
a multitude of parts and objects. (See Figure 5 for the top 25
parts and objects participating in a particular interpretation.)
Consider now a highly simplified version of the license-
plate composition machine, consisting of only the bottom
two layers. The system can be used to detect characters in
images. An alternative use of the character models embod-
ied in the compositional structure would be to test at each
location for the presence of a particular character, against
the alternative that neither the character nor any part of
the character is present. In other words, an all-or-none test
instead of a test for character against the compound alterna-
tive of background or part(s). (We restrict ourselves to the
character layer because the all-or-none test is nearly com-
putationally prohibitive.) We find that recognition perfor-
mance, as measured for example by the ROC curve, suffers
substantially when we force an all-or-none decision. We
will have more to say about this observation shortly.

Figure 4. Extracted plate region of sample images

4. Concluding Remarks

The machine was “built by hand,” but possibly some of
it could be inferred directly from data. For example, it is
not difficult to imagine parameter estimation schemes that
would employ labeled or unlabeled data to statistically ad-
just the brick-based probabilities (εβ

0 , εβ
1 , . . . , εβ

nβ – see §2),
or the relational distributions (pc

β and p0
β) that govern the

attribute likelihood ratios. On the other hand, learning the
architecture itself, including the selection of bricks, children
sets, and attribute functions, is an enormously challenging
problem. We have little to say on this matter except to spec-
ulate that such a system would probably have to be inferred
bottom-up, one layer at a time, perhaps based upon the prin-
ciple of “suspicious coincidences” articulated by Barlow in
his theory of unsupervised learning [3].

We believe that there is an important connection between
reusability and the persistent gap between human and ma-
chine performance in vision. As every practitioner knows,
the computer vision problem would be far easier if “back-
ground” could be reasonably modeled as some kind of sim-



Figure 6. Test image and its parse with license and boundary objects
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Figure 5. A typical image and a parse with its top 25 objects (Note:
the top object is the license plate, followed by L-junctions, lines
and false positive characters)

ple, stationary, stochastic process, such as white noise or a
simple Markov random field. Instead, real scenes are typi-
cally filled with structure, and structured backgrounds have
a way of conspiring to look surprisingly like the objects of
interest, at least as seen by artificial vision systems. We
would argue that this is a manifestation of the composi-
tional nature of the visual world, and that it is the source
of the poor performance of artificial vision systems, relative
to biological vision systems, when operating near the zero-
missed-detection end of the ROC curve. Backgrounds and

foregrounds are made of the same stuff – the same reusable
parts. This would suggest that false detections occur pre-
dominantly at locations that share parts with the objects
of interest, and it would argue strongly for compositional
scene interpretation, whereby these locations can be labeled
as parts without forcing an artificial distinction between ob-
ject and background.

Consistent with these observations, we have been careful
to define an interpretation as any complete subgraph (see
§2), including multiple trees rooted at multiple levels. As
mentioned earlier, experiments that artificially limit inter-
pretations to include, say, either a full character, on the one
hand, or no part of a character on the other, result in inferior
ROC performance. In essence, by building compositional
representations for the objects of interest, we equip these
same objects with effective background models, namely
their proper subtrees.

Acknowledgement. We wish to thank the Visics Cor-
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kins, President of Visics, for a great deal of information on
the state of the art in license-plate reading.
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