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Abstract

Pattern recognition systems that are invariant to shape, pose, lighting and texture

are never sufficiently selective; they suffer a high rate of “false alarms”. How are

biological vision systems both invariant and selective? Specifically, how are proper

arrangements of sub-patterns distinguished from the chance arrangements that defeat

selectivity in artificial systems? The answer may lie in the nonlinear dynamics that

characterize complex and other invariant cell types: these cells are temporarily more

receptive to some inputs than to others (functional connectivity). One consequence is

that pairs of such cells with overlapping receptive fields will possess a related property

that might be termed functional common input. Functional common input would

induce high correlation exactly when there is a match in the sub-patterns appearing

in the overlapping receptive fields. These correlations, possibly expressed as a partial

and highly local synchrony, would preserve the selectivity otherwise lost to invariance.

Keywords: correlation, synchrony, microcircuitry, nonlinearity, binding, vision

1 Introduction

Practical computer vision-systems answer practical questions: Is there a license plate

in the image? What is the license plate number? Is there a defect in the chip geometry?

How many faces are in the image? Who is in the image? Biological vision systems are

less oriented towards a single question or set of questions and more oriented towards an

ongoing process of image analysis. Indeed, real-world images have essentially infinite

detail, which can be perceived only by a process that is itself ongoing and essentially

infinite. The more you look, the more you see.

The implications of these remarks for biological vision systems are controversial.

One extreme viewpoint is that, when faced with a complex image, brains construct an

ever more elaborate data structure that simultaneously represents the richness of scene

constituents and their inter-relationships. Scene analysis is the process of building

something akin to a complex molecule whose atoms and bonds represent the multitude

of constituents and relationships, possibly at a multitude of resolutions, that we per-

ceive and reason about. This would be in the spirit of proposals by von der Malsbug

[58] and Bienenstock [10, 11], and consistent with Grenander’s proposition that pat-

terns, in general, are best formulated as a relational composition of parts (Grenander

[23], see also Fu [18]). At another extreme is the searchlight metaphor, whereby the
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primary visual cortex serves as a kind of high-resolution buffer, and whereby image

analysis is a process of selectively identifying parts in selected (attended) sub-regions.

The process yields an annotated scene, “tree here, car there”, through a highly directed

search involving sequential and selective attention. This is more like models suggested

by Treisman and Gelade [51], Marr [33], or Crick [13].

I propose to examine these fundamental biological questions from the perspective

of the science of computer vision. This might appear misguided, given the evident

shortcomings of artificial vision systems. But I would argue that the combination of

great effort and modest progress in computer vision has in fact produced an important

result: we know much more about what makes vision a hard problem than we did,

say, twenty years ago. What exactly are the limitations of engineered vision systems?

Where do they break down, and why? I contend that the basic limitations can be

well articulated and that they lead to well focused questions that should be asked of

biological vision systems.

As a preview, and as an introduction to the state of the art in computer vision,

consider the practical problem of reading the identifying characters used to track wafers

in semiconductor manufacturing. This is an example of the much-studied OCR (optical

character recognition) problem. The highly automated semiconductor industry is the

leading consumer of machine-vision products, with a broad range of applications where

a computer equipped with a camera performs repetitive functions that are essential

for a low-tolerance high-yield throughput. The OCR problem for wafer tracking is

evidently difficult: many equipment manufacturers compete for a performance edge,

yet the state of the art remains substantially short of human performance. This is

despite best efforts to use neural networks, the latest developments in learning theory,

or the latest techniques in pattern classification. Some years ago I worked on a team

that developed a state-of-the-art reader for this application. Although the reader has

been installed in over six thousand wafer-tracking machines, it is no exception to the

rule that computer vision, even for constrained problems in controlled environments,

is not yet competitive with human vision.

The difficulties begin with the patterned geometries that surround and often over-

lap with the identification markings (Figure 1), and they are compounded by other

variables of presentation, including specularity and fluctuating contrast. Humans ac-

commodate all of this effortlessly. In contrast, computer programs that can cope with

the variability of the presentations of the characters suffer from “false alarms” (false de-
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tections) between or overlapping the real characters, or in the structured backgrounds.

Conversely, programs that are more selective (few or no false alarms) inevitably miss

characters or make substitution errors. I propose that this dilemma of invariance

versus selectivity is a central challenge in computer vision, and that unraveling the

mechanism of its solution is a central challenge in understanding biological vision.

Figure 1: OCR for wafer tracking. Computer programs that accommodate the variability of
character presentations are prone to false detections in the structured backgrounds.

Indeed, invariance is ubiquitous in biological vision systems. By computer vision

standards, perception is astonishingly robust to coloring, texturing and contrast, as

well as to pose parameters which define a nearly infinite-dimensional manifold for

deformable objects. There is plenty of evidence for nearly invariant representations in

the nervous system, starting with retinal circuits that perform nearly contrast-invariant

calculations, through complex cells of V1 and V2 that exhibit some invariance to

position and/or size, and into IT where cells with 10-, 20-, or even 30-degree receptive

fields (cf. Sheinberg & Logothetis [46], Rolls & Tovee [42]) can be found to respond

to an object presentation over a substantial range of poses and renderings. But then

what of the imprecision that is the unavoidable companion to this invariance? What

happens for example to the pose information? Can objects be correctly composed into
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larger entities, at a later stage of processing, without taking into account their relative

positions?

This dilemma of invariance versus selectivity is apparently related to the “binding

problem”: how does the nervous system signal the proper association of pieces to make

a whole? Is it not the case that invariant representations, of evident value in and of

themselves, nonetheless make poor building blocks? It is hard to imagine that the rep-

resentations of complex, multi-part, deformable structures are not built out of invariant

representations of their pieces. How then do we verify that the pieces are properly ar-

ranged? Perhaps relationships are themselves represented, explicitly. Relational units

could then signal proper arrangements among constituents, but not unless there were

either an unimaginable number of these or they too are invariant. The former is not

biologically feasible, and the latter is not a solution, for how then is an invariant rela-

tional representation bound to an invariant representation of a constituent? We know

from machine vision that the “backgrounds” of images and the contexts of objects are

not anything like a noise process. They are instead made up of highly structured pieces

that will conspire to mimic an object, be it as simple as a character or as complex as

a face, if the pieces are allowed to come together without regard to sufficiently precise

rules of relationship. How is it that biological vision systems are both invariant and

selective?

I will argue that the answer lies in the microcircuitry of cortical neurons, which in

essence serves as the local structure of a temporary but stable and globally configured

representation. This point of view is in agreement with the molecule, but not the

searchlight, metaphor. I will argue further that the proposed local dynamics are the

natural, almost inevitable, consequence of the kinds of nonlinearities that are well-

established and ubiquitous in neuronal processes of the ventral visual pathway.

2 Observations from Computer Vision

Most scientists entering the field of computer vision begin with an unrealistic optimism.

What could be so hard? Build a detector for each entry in a library of objects of interest

and annotate a scene: “This is here, that is there.” In this section I will expand on the

theme that much of the difficulty can be assigned to the competing requirements of

invariance and selectivity, given the observation that what we call background is highly

structured and, inconveniently, made up of much of the same stuff as the regions and
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objects of real interest.

So far, machines cannot interpret images. There are practical successes, but these

are characterized by specific goals for constrained scenarios, and are perhaps not in the

direction of what we might call, loosely, image analysis. Just about nobody predicted

that the problem would be this hard. To the contrary, as early as the 1960’s, at which

point one could imagine connecting a camera to a computer and writing software to

interpret images, there was the feeling that a solution was within reach. Consider the

1966 “Summer Vision Project” of the MIT Artificial Intelligence Group (Papert [38]).

The goal is succinctly captured in the abstract:

“The summer vision project is an attempt to use our summer workers effec-

tively in the construction of a significant part of a visual system. The par-

ticular task was chosen partly because it can be segmented into sub-problems

which will allow individuals to work independently and yet participate in

the construction of a system complex enough to be a real landmark in the

development of ‘pattern recognition.’”

One of the things that went wrong was with a key “sub-problem”: segmentation. The

idea was to define meaningful clusterings of pixels into regions and pieces, which could

later be composed into meaningful objects. Nobody could have foreseen how hard

this is. It is true that a big part of perception is in the determining of what goes

with what, i.e. segmentation. But the rules of composition turn out to be subtle

and circumstantial, depending on, among other things, lighting and texturing, the

nature of the objects and surfaces that are being segmented, and the competing entities

surrounding the area of interest. These rules have steadfastly resisted efforts to be

systematically articulated, encapsulated, and turned into an if-then-style computer

program.

The suspicion now is that the “knowledge engineering” approach, from the early

days of AI, will not work; a vision system would require too much knowledge to articu-

late and organize. A more compelling approach, from a biological point of view, might

be to design systems that acquire vision knowledge from examples. This is also ap-

pealing since, in a strict mathematical sense, there are statistical inference algorithms

that can achieve provably optimal classification performance, given only a sequence of

examples (e.g. raw images) and a corresponding sequence of correct classifications (e.g.

“contains a face”, or even “contains a face at such and such location”). This is the the-
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ory of nonparametric inference (a.k.a. inductive inference or learning theory), whereby

an arbitrary input/output relation is learned from examples (cf. Vapnik [56], Stone

[48], Grenander [22], White [59], Geman et al. [21]). But convergence is asymptotic,

which is to say that it takes effect as the sample size (number of image/output pairs)

goes to infinity. So far, formulations of unconstrained vision problems in this manner

have led to prohibitively slow convergence, in the sense of needing prohibitively large

training sets in order to achieve interesting performance. As would be expected, this

approach fares better on simplified problems involving isolated objects. An example is

the problem of correctly classifying an image that consists only of one of the ten dig-

its, handwritten. Artificial neural networks, implementing a nonparametric inference

algorithm, and working from hundreds of thousands of examples, perform well on this

task.

In fact there have been many successes at solving practical and important machine

vision problems. Still, the state of the art for artificial vision systems solving generic

problems on generic scenes (say, “find all plants and animals in the following pictures”)

is very limited. Nothing approaches human performance.

This gap between human and machine performance on vision tasks brings to mind

Turing’s demanding test for artificial intelligence ([53]): a human, when interacting

with a system through an interface such as a keyboard or microphone, can not deter-

mine whether it is another human or, instead, a computer program that is behind the

interface. A version of the Turing Test, in this case administered by a machine, has

been put to practical use in recent efforts to defeat computer programs that surf the

web, masquerading as humans in order to gain access to email accounts, opinion polls,

credit card numbers, etc. Increasingly, vulnerable websites are protected by so-called

Human Interactive Proofs (HIP), which require the visitor to perform actions that are

presumed to be peculiarly human. These actions are good “Turing Tests”, in that

current computer programs fail them. It is interesting that these proofs generally take

the form of a vision task, such as identifying a string of characters embedded in a

textured and structured background, or positioning a mouse on a face embedded in a

field of face-like substructures (see for example Rui and Liu [43]). A pseudo-random

number generator and a clever synthesis algorithm assure that the task is different

with every visit. These HIP’s work exactly because a computer program that might

possess sufficient invariance to the variety of faces or characters will be defeated by a

multitude of false targets in the structured backgrounds.
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The dilemma of invariance versus selectivity is further illustrated, more concretely,

by examining the mechanisms of some state-of-the-art vision systems. The hierarchical

system proposed by Riesenhuber and Poggio ([40], [41], see also Tarr [49]) recognizes

rigid and partially deformable objects with a high degree of pose invariance, and makes

connections to specific biological structures and functions in the ventral visual pathway.

It is based on an architecture reminiscent of Fukushima’s Neocognitron [19], involv-

ing a feed-forward process through layers of units, with successively more invariance

emerging from one layer to the next. In the Riesenhuber-Poggio model, invariance

comes from the so-called MAX filter, whose output is the maximum of many precursor

filters, each of which is typically (but not necessarily) linear. To see the connection to

invariance, imagine that the precursor units represent simple matched filters for an ob-

ject or object part, or even just a local edge element, at each of many translations over

a limited receptive field (RF) area. The MAX filter will respond to the presentation

of the object (or part or edge) with invariance to translation over the chosen receptive

field. Obvious extensions can accommodate scale, rotation, and other pose parameters.

The layers of the Riesenhuber-Poggio model alternate between being made up of units

that compute MAX filters and units that compute linear filters, with each unit of each

layer responding to a “receptive field” of outputs from previous layers. At the highest

levels, units are responding invariantly to parts and objects.

Amit and (Donald) Geman ([6], [7]) also use MAX filters as a starting point for

pose invariance. Additionally, their algorithms employ various mechanisms for lighting

invariance, which is of course important for most practical applications. The work of

Amit and Geman is motivated less by biological considerations and more by practical

ones: what are the computationally most efficient strategies for detecting instances

of (possibly deformable) objects within an unconstrained scene? The solution to this

optimality problem can be approximated by a sequence of image-based calculations

that depend on the results of previous calculations in such a way as to maximally

reduce uncertainty. Thus the approach is sequential and not parallel. The image-

based calculations are exactly of the MAX-filter type: Is there an end-stop in this

vicinity? Is there a light-to-dark discontinuity in that vicinity? Many such queries

can be performed in a very small amount of time. The algorithm produces a kind of

map of queries, akin to a sequence of saccades, in which very little time is spent in the

background and a great deal more time is spent on and around target objects.

Both algorithms can be tuned to detect essentially all instances of the target object.
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This is their strength: invariance to pose, shape and other variables of presentation.

On the other hand, as might be expected from our discussion of the tradeoffs between

invariance and selectivity, the price for invariance is a loss of selectivity—multiple

“false alarms” in structured backgrounds. The authors, of course, are well aware of

the tradeoff. In D. Geman’s view ([20]), a more computationally intense context-based

algorithm, possibly cued by an earlier detection phase, would be needed to achieve high

selectivity. Riesenhuber and Poggio [40], on the other hand, propose that selectivity

might be achieved through a large repertoire of features and feature combinations. In

essence, the proposal is that the coincidence of many features in an area of an image

would be more-or-less diagnostic for a particular object. Mel [34] argues for a similar

mechanism. In any case, the fact remains that existing object recognition systems

based upon invariant features, or even feature conjunctions, are far less selective than

their biological counterparts.

Where, exactly, is selectivity lost? A simple arrangement of two MAX filters already

illustrates the problem. Suppose that each of these filters is tuned to detect a portion

of a vertical straight line. As observed earlier, the MAX operation affords a degree of

invariance whereby, in this example, horizontal shifts of a line within one of the RFs

will have little effect on the corresponding output. Imagine further that the RFs are

lined up vertically, so that a single extended vertical line passing through both RFs will

produce a strong response from both filters; see Figure 2. Due to the invariance of the

individual filters, their joint activation can be taken as evidence for the presence of an

extended vertical line within a range of positions. Lines are parts of many things, and

invariant line detectors therefore make useful components of a recognition system. The

problem with this line detector is that it lacks selectivity. Two fragments of vertical

lines, not necessarily collinear, will produce an output that is indistinguishable from

an extended vertical line. This spurious response will happen often, e.g. in textures,

across neighboring characters, and from other unexpected coincidences.

As pointed out earlier, the problem is generic: conjunctions of invariant represen-

tations of parts make for sloppy detectors of compositions. Some might argue that

the problem is even more fundamental, having to do with the very nature of an in-

terpretation of a visual scene. Many cognitive scientists hold that perception (indeed,

all of cognition) is more a matter of building an elaborate hierarchical structure of

relational compositions than one of merely labeling a blackboard or frame buffer with

a set of identifications (cf. Fodor and Pylyshyn [15]). From this point of view, our
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RF1

RF2 RF2

RF1

 (a) (b)

Figure 2: Invariance vs. Selectivity. Imagine two cells N1 and N2, with receptive fields RF1
and RF2, which signal vertical bars with invariance to horizontal position (“phase”). The situations
in panels (a) and (b) are indistinguishable, given only the individual activity levels of N1 and N2.

dilemma of invariance versus selectivity is part of a larger problem of focusing mostly

on objects, and not explicitly and equally on relationships. It is certainly true that the

machine-vision community has focused largely on objects, per se.

3 Biological Vision: Functional Connectivity and

Functional Common Input

MAX filters and other similar nonlinear combinations of linear filters have been pro-

posed as models of the complex cells of V1 and V2. This connection suggests a biolog-

ically plausible solution to the invariance/selectivity dilemma. To illustrate this in the

manner of a thought experiment, construct a MAX filter by starting with a single linear

filter and then reproducing the linear filter at many locations (shifts). The MAX-filter

output is then the maximum of the outputs of the linear filters, and its RF is the union

of the RFs of the shifted linear filters:

y = max
λ∈L

(~aλ · ~x)

where ~x = (x1, . . . , xn) is the input to the receptive field (e.g. a vector of pixel intensi-

ties, or a vector of outputs from presynaptic neurons), y is the MAX filter response, and

to each location λ ∈ L there corresponds a linear filter at λ given by ~aλ = (aλ
1 , . . . , aλ

n).

Consider now the sensitivity of the output, y, to the input from a particular pixel,

i, in the RF. One natural measure of this sensitivity is the derivative of the MAX filter
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output with respect to the input intensity, xi, at pixel i. If the MAX filter were in fact

a linear filter, then this derivative would be a constant, independent of the particular

image visible across the RF. But the MAX operation is nonlinear and therefore the

derivative (sensitivity) is a function of the image. What is the nature of this function?

For a given input ~x, denote by λ∗(~x) the location of the linear filter that achieves the

maximum

~aλ∗(~x) · ~x = max
λ∈L

(~aλ · ~x)

Notice that λ∗(~x) is piecewise constant, changing only at inputs ~x that produce ties.

If we stay away from ties, then λ∗(~x) is constant and

∂y

∂xi
= a

λ∗(~x)
i ,

which is zero if pixel i is not in the RF (support) of the filter located at λ∗(~x).1 The

MAX filter is thereby insensitive to intensity changes occuring outside of the RF of the

maximally responding linear filter. In other words, there is a strong sense in which the

MAX filter commits to a particular subset of inputs in its RF, and this commitment is

stimulus-dependent. The functional connectivity changes with the stimulus.

Functional connectivity may appear at first to be a somewhat exotic phenomenon,

resulting from the use of the MAX operation. But consider that any nonlinearity

produces a stimulus-dependent derivative. Admittedly, idealizations like the MAX

filter yield a particularly clean and easily interpreted form of this behavior, but the

fact remains that a neuron is likely to be “listening” more intently to some of its inputs

than others, and the distinguished inputs are likely to depend globally on the particular

vector of pre-synaptic signals. Indeed, the idea of Hubel and Wiesel [27] of modeling

a complex cell as a (nonlinear) pooling of simple cell outputs already points to this

kind of behavior. This is apparent, for example, in the “energy models” of Adelson

and Bergen [3]. An instance of these models, studied by Sakai and Tanaka [44], is the

sum-of-squares model in which the complex cell output, as measured by firing rate, is

the sum of squared outputs of two linear filters:

y = (~aλ · ~x)2 + (~aδ · ~x)2

The filters ~aλ and ~aδ might represent, for example, the same Gabor filter centered at

two spatial locations, one a shift of the other. And the dot products, ~aλ · ~x and ~aδ · ~x,

1The derivative will typically be undefined at exact ties.
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might represent the outputs of two classical simple cells, modeled as simple linear

filters. Suppose that ~aλ and ~aδ are localized with nearly non-overlapping supports.

Then a given pixel i in the receptive field of the complex cell is likely to be represented

in one of the filters (e.g. |aλ
i | > 0) and not the other (|aδ

i | ≈ 0). Now look at the

influence of xi on y:

∂y

∂xi
= 2aλ

i (~aλ · ~x) + 2aδ
i (~a

δ · ~x) ≈ 2aλ
i (~aλ · ~x) (1)

Thus the functional connectivity between the model complex cell and the activity at

pixel i is strong exactly when ~x matches the filter λ. The modeled cell selectively and

circumstantially attends to a subset of its inputs, in much the same way as the MAX

filter.

Most models of complex cells, and no doubt all biological complex cells, involve

important temporal effects as well as nonlinearities that are not so neatly captured

by a maximum operation or a sum of squares. But it is nevertheless the nature of

invariant receptive field properties, by virtue of their nonlinearity, that the sensitivity

of the cell output to the activity of a given input is a global function of the input

pattern. What is more, as is illustrated in these simple examples, it is reasonable

to conjecture that such cells focus their attention on a subset of their inputs that

corresponds to a region in space containing a maximally stimulating pattern. Without

much fuss, more sophisticated models of complex cell properties, such as “Nonlinear-

Nonliner-Poisson” (NNP) models (Harrison et al. [25]), or the quadratic forms that

arise from “Slow Feature Analysis” (Wiskott & Sejnowski [60]), can be tuned to just

this kind of behavior.

It is perhaps not a stretch to suggest that in fact we should expect a focus of sen-

sitivity, in exactly the manner demonstrated in these models, from any cell that we

would think of as invariant for a target within an extended receptive field. After all,

what do we mean by “invariant” if not, exactly, that the cell responds to a preferred

pattern independently of certain pose parameters, and indifferently to the details of

structure and noise elsewhere in the receptive field? The picture is complicated by

contextual effects, saturation, extended (“non-classical”) receptive fields (Vinje & Gal-

lant [57]), and an important and subtle time course to the building of a representation

(Lee et al. [30]). But the earlier responses, presumably reflecting more feed-forward

than feed-back computation, should be largely a function of the target and not its

background.
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If this were the case, if functional connectivity were to operate in something of

this manner, then it would provide a compelling biological mechanism for maintaining

selectivity in a hierarchy of invariant cell types. To make the connection to selectivity,

return to our thought experiment involving two complex cells, idealized as MAX filters,

each tuned to vertical line segments, and with overlapping RFs situated one above the

other as depicted in Figure 2. Anatomically, these filters have common inputs, but

functionally the extent of common input depends on the particulars of the stimulus—

see Figure 3. The size of the population of inputs that is functionally connected to both

MAX filters is circumstantial. What circumstances promote common input? MAX

filters functionally commit to the RFs of the particular linear filters that produce

maximum outputs. The functional common input is therefore proportional to the

overlap of the RFs of these selected linear filters, and in general these will overlap to

the extent that they represent parts of the same structure. Functional common input

is promoted by the two vertical line segments being part of a single extended line.

RF1

RF2

RF1

RF2

 (a) (b)

Figure 3: Functional Common Input. Same as previous Figure, with functional connectivity
outlined by broken lines. Anatomically, common input is fixed, and proportional to the area of
the intersection of the RFs. Functionally, common input depends on the stimulus. Area in black
represents the functional common input, which is zero in (a) and maximized in (b) by an extended
line segment.

This observation, that common input is likely to be signal-dependent and therefore

not just an anatomical property, is not special to the MAX-filter model of complex

cells, or for that matter to complex cells per se. Indeed, I have already pointed out

that the definition of invariance is suggestive of a functional and local connectivity.

This would mean that common input is circumstantial, rather than strictly anatomical,

and it would follow that two invariant cells, with common anatomical input, would be

functionally connected to many of the same pre-synaptic influences exactly when their
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respective targets “fit together”, or “agree”, at the intersection of the respective RFs.

In short, it is reasonable to speculate that the amount of functional common input to

invariant cells with overlapping RFs is circumstantial, and in fact maximized under

the particular circumstance that these cells are separately signaling patterns which are

part of a single larger structure.2

Is circumstantial common input a readable and usable variable? Indeed, could it

be that this variable, the functional common input, is readable and used to maintain

the very selectivity that appeared lost to invariance?

4 Illustration

It goes without saying that relationships among parts or features can help in dis-

tinguishing one object from another, or an object from background. But how are

relationships represented in neural systems? I have proposed a role for functional com-

mon input (fci), arising from the overlapping receptive fields of cells, or cell ensembles,

that are tuned with some invariance to particular features, parts, or objects. A simple

computer experiment, explored in this section, was devised to illustrate these ideas.

The next section (§5) takes up the issue of “read out”: how would fci be manifested in

neural dynamics, and to what effect?

In brief, in these experiments two position-invariant model cells (“complex cells”)

of the maximum-filter type were constructed, one which responds to right eyes, and

one which responds to left eyes. Multiple copies of these “complex cells” were situated

in such a way that their collective receptive fields cover an entire image. Many left-

right pairs of these position-invariant cells have overlapping receptive fields, as do

the static (“simple cell”) filters that feed them. Using an analytic measure of fci (see

below), it was shown that, among left-right pairs of “complex cells” with high activities,

those that have high fci tend to represent faces, whereas those with low fci tend to be

“false alarms”. In the presence of high activity in pairs of simulated “complex cells”

with overlapping receptive fields, functional common input is evidence for a correct

2I am using the notion of a receptive field loosely and with some intended ambiguity. We can think of

functional connectivity as establishing a temporary focus of sensitivity to a localized subset of the visual

field, but what I really have in mind is a focus of sensitivity to a subset of feed-forward presynaptic neurons.

Presumably, the two interpretations are related, and in fact one might argue that the former—commitment

to a visual area—would result from a cascade of the latter—commitment to selected presynaptic neurons.
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arrangement of parts.

Specifically, the experiments were performed on the photograph shown in the upper-

left panel of Figure 4. Two filters were generated from the pixel data on and around

the right and left eyes, respectively, of one of the women in the photograph (upper-

right panel). Pixels along the bridge of the nose contribute to both filters. Let ~̃r =

(r̃1, . . . , r̃n) be the pixel gray levels in the chosen rectangle surrounding the woman’s

right eye, and let ~̃
l = (l̃1, . . . , l̃m) be the pixel gray levels in the chosen rectangle

surrounding her left eye. The heavily lined rectangle surrounding the right eye has 20

rows and 35 columns, so n = 700. The lightly lined rectangle surrounding the left eye

has 20 rows and 26 columns, so m = 520. The utility of the filters are improved by

normalization: Let ~r = (r1, . . . , rn) and ~l = (l1, . . . , lm) be, respectively, the normalized

versions of ~̃r and ~̃
l ( 1

n

∑
rk = 1

m

∑
lk = 0 and 1

n

∑
r2
k = 1

m

∑
l2k = 1).

(a)
original image

(b)
right−eye and left−eye templates

(c)
filtered with right−eye template

(d)
filtered with left−eye template

Figure 4: Left-eye and Right-eye Filters. (a) Picture used in experiments (615× 795 pixels).
(b) Left-eye (20× 26) and right-eye (20× 35) templates chosen from one of the faces in the picture.
(c) Correlation of right-eye template at every location of the original image. (d) Correlation of
left-eye template at every location of the original image.
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Either filter can be applied at any location in the image. Let λ designate a location.

Imagine situating the heavily lined (right-eye) rectangle with its upper-left corner at

λ, and let ~̃xλ = (x̃λ
1 , . . . , x̃λ

n) be the gray-level image values within the rectangle that

correspond to the right-eye filter values r1, . . . , rn.3 Here again it is better to work

with the normalized data, ~xλ = (xλ
1 , . . . , xλ

n), having mean zero and mean square one.

The right-eye filter response at λ (call it yλ) is just the correlation coefficient between

~r and ~xλ:

yλ(~xλ) =
1
n

~r · ~x =
1
n

n∑

k=1

rkxk (2)

which is between −1 and 1, on account of ~r and ~x being normalized. The bottom-

left panel in Figure 4 shows the filter response at every location in the image. The

analogous display, for the left-eye filter, is in the bottom-right panel.

As discussed already in §2, a position-invariant right-eye filter (a highly idealized

“complex cell”) can be constructed by simply taking the maximum filter value over a

designated “receptive field”. (There are other methods, possibly more realistic in terms

of neural hardware, for nonlinearly combining filter values and accomplishing basically

the same thing.) In Figure 5, the large square containing part of the face of the center

person encloses a 70 × 70 image region. Thinking of this as a receptive field (RF), we

can define a model position-invariant cell (which we will call, loosely, a complex cell)

by maximizing the response over all right-eye filters with supports contained entirely

in this RF. The actual maximum is achieved at the heavily lined rectangle surrounding

the right eye. An example of a complex cell tuned to left eyes is illustrated in the

same figure. The large square containing part of the woman’s face also surrounds a

70 × 70 “receptive field”, with the maximizing left-eye filter indicated by the lightly

lined rectangle.

Consider now pairs of these right-eye/left-eye complex cells, with receptive fields

overlapping and situated side by side: the 70 × 70 RF of the right-eye cell on the left,

and the 70 × 70 RF of the left-eye cell on the right. The union of the two receptive

fields forms a rectangle that is 70 by 110 pixels—the RF of the right-eye cell occupies

the first 70 columns, the RF of the left-eye cell occupies the last 70 columns, and thirty

columns are common to both RFs. The large rectangle in Figure 5, on the face of

the second person from the left, is an example, and the locations of the maximizing

3In §3, it was convenient to “fix ~x” and “move the filter” by λ—hence the notation ~aλ; here it is more

convenient to fix the filter, ~r or ~l, and “move the image” by λ—hence the notation ~xλ.
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Figure 5: “Complex cells” and complex cells with overlapping receptive fields. Position-
invariant left-eye and right-eye detectors are built by maximizing filter response over square “re-
ceptive fields”. Smaller, lightly lined rectangle shows the position of the maximum left-eye filter
response within the square covering part of the women’s face (second from right). Smaller, heavily
lined rectangle shows the position of the maximum right-eye filter response within the square cov-
ering part of the man’s face (middle). Large rectangle over part of the man’s face (second from left)
outlines combined and overlapping right-eye and left-eye receptive fields, and shows the positions
of the maximum right-eye and left-eye filter responses.

right-eye and left-eye filters are indicated by the smaller heavily lined and lightly lined

rectangles, respectively. The model complex cells are responding to the man’s right

and left eyes.

Each panel in Figure 6 is an example of a combined RF of the type shown in Figure

5. Thus the rectangles are each 70 × 110 pixels, and include to the left and right the

70× 70 pixel receptive fields of complex cells tuned to right and left eyes respectively.

An ensemble of these combined RFs (1702 in all) was obtained by situating the upper-

left corner of a 70 × 110 pixel rectangle at all row addresses that are multiples of 15

and all column addresses that are multiples of 15. Each panel in Figure 6 shows the
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positions of the maximizing filters for the model complex cells—heavily lined rectangles

for the right-eye filters, and lightly lined rectangles for the left-eye filters.

cell R activity: 0.62
cell L activity: 0.73

fci: 0.76

cell R activity: 0.36
cell L activity: 0.44

fci: 0.27

cell R activity: 0.39
cell L activity: 0.48

fci: 0.98

cell R activity: 0.59
cell L activity: 0.52

fci: 0.95

cell R activity: 0.71
cell L activity: 0.63

fci: 0.00

cell R activity: 0.68
cell L activity: 0.67

fci: 0.00

cell R activity: 0.63
cell L activity: 0.57

fci: 0.31

cell R activity: 0.64
cell L activity: 0.68

fci: 0.53

cell R activity: 0.58
cell L activity: 0.72

fci: 0.68

Figure 6: Examples of combined receptive fields. Each panel from overlapping right-eye
and left-eye receptive fields. Heavily lined rectangle is the position of the maximizing right-eye
filter (with correlation labeled “cell R activity”) and lightly lined rectangle is the position of the
maximizing left-eye filter (with correlation labeled “cell L activity”). Agreement in the region of
overlap of the maximizing filters is partly captured by the functional common input (“fci”), as
described in text.

Underneath each panel are the corresponding response levels of the two complex

cells—“cell R” refers to the cell that is position invariant to right eyes, and “cell L”

refers to the cell that is position invariant to left eyes. In each case, the response

(“activity”) is just the output of the maximizing filter. And “fci” is a measure of

functional common input, derived as follows.

Fix a right-eye type complex cell, and fix λ = λ∗, the location of the maximum right-

eye filter response within the receptive field. Consider the functional connectivity of

this model cell to the input associated with location i in the cell’s RF. If i is not in the
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support of the right-eye filter located at λ∗, then by virtue of the maximum operation

the cell is functionally disconnected from the input: the output of this idealized complex

cell is unchanged by changes at i. If, on the other hand, i is in the support of the right-

eye filter located at λ∗, then there is a contribution of

rαxλ∗
α

to the overall cell activity, where α = α(λ∗, i) is the coordinate of the filter (~r) and

image (~xλ∗
) vectors corresponding to location i. One measure, then, of functional

connectivity to i would be rα, the multiplier of the normalized activity at i.

Define the functional connectivity of a left-eye type complex cell to input associated

with location i to be, by analogy, zero if i is not in the support of the maximizing left-

eye filter, and lβ if, otherwise, i is in the support, where β = β(γ∗, i) and γ∗ is the

location of the maximum filter response. The product of these connectivity measures

(namely

rα(λ∗,i)lβ(γ∗,i)

if i is in the support of both maximizing filters, and zero otherwise) is then a measure

of the degree to which input from location i is functionally common to both cells.

Whether both coefficients are large and positive (common excitatory influence) or large

and negative (common inhibitory influence), activity at location i can be expected to

promote statistical dependence between the activities of the two cells. Finally the sum

over i within the combined RF of these products is a measure of functional common

input, and is labeled “fci” in Figure 6. This amounts to the inner product, over

the intersection of the left- and right-eye maximizing filters, of the normalized filter

coefficients. For ease of interpretation, the value is rescaled so that the maximum fci,

over all combined RFs, is one.

By this construction, fci is a measure of both overlap and agreement between the

maximizing left-eye and right-eye filters. Compare the second panel (top row, middle

column) with the fourth panel (second row, first column), in Figure 6. Functional

common input is substantially larger in the fourth panel than in the second panel (.95

versus .27, respectively), but the area of overlap is essentially the same (152 versus 154

pixels, respectively). Evidently, in the second panel the left- and right-eye filters are not

well matched within their region of intersection, and evidently the quality of a match

varies with the spatial relationship between the maximizing filters. In the framework of

our model cells, the sensitivities of the left- and right-eye “complex cells,” to the inputs
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representing their combined receptive fields, do not match up for this particular image

- there is very little functional common input. Anatomically, there is a constant and

substantial common input, by virtue of the 70 × 30 pixels common to the overlapping

70 × 70 pixel receptive fields.

In a system designed to detect pairs of eyes belonging to a face, it is to be expected

that fci will improve selectivity—many combined RFs with strong responses to both

left-eye and right-eye filters violate the spatial relationship between the maximizing

filters that would be characteristic of a face. In these cases fci is likely to be small or

zero: either the filters are not well matched within their intersections, or there is no

intersection at all. One way to demonstrate the utility of fci is to compare performance

of a simple face detection system based, on the one hand, solely on the activities of

cells R and L, to one which is based, on the other hand, both on cell activities and fci.

Consider, for example, the two “Receiver Operating Characteristic” (ROC) curves for

face detection drawn in Figure 7. The dashed-line curve is derived from the combined

complex-cell activities, as measured by the product of the individual cell activities. A

face detection system is built from this combined activity by introducing a threshold,

T : when the combined activity is greater than T , we declare a face in the combined RF.

Otherwise, we declare no face. The ROC curve is the relationship between the detection

probability (Pr{face detected|face in combined RF}) and the false alarm probability

(Pr{face detected|no face in combined RF}), derived by varying the threshold from

−∞ (at which point every RF is declared to have a face) to +∞ (at which point no RF

is declared to have a face). The probabilities are estimated, empirically, by running

the detection algorithm on an ensemble of combined RFs, in this case the 1702 RFs

obtained by stepping through the image in increments of 15 rows and 15 columns.

Thresholding, instead, on the three-way product of activity in cell R, activity in

cell L, and fci4 produces the solid-line ROC curve in Figure 7. Evidently, and not

surprisingly, at any given detection probability the false alarm rate is dramatically

reduced by taking fci into account, as a proxy for relative positioning. (And bear

in mind that the overall false alarm rate is particularly sensitive to the false alarm

probability, since by far most RFs do not contain a face.) Indeed, fci alone gives

comparable performance to activity alone, as can be demonstrated by building an

ROC curve by thresholding directly on fci (Figure 7, dotted line).

4Products, rather than sums, produce ROC curves that are unaffected by arbitrary scaling of the activity

and fci variables.
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There is perhaps a danger that the simplicity of these experiments hides the com-

plexity of the vision task. Could a hierarchy of part-whole compositions of the type

built here form the basis for a state-of-the-art vision system? Not exactly, or at least

not without a great deal more invariance at the level of feature detection, a mechanism

for reversing incorrect local matches (“top-down processing”), and a mechanism for

resolving competing global interpretations. The intention, instead, is to illustrate the

importance of relational information, and the possibility that relational information is

captured, in part, by what would appear to be a meaningful physiological parameter—

functional common input.
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Figure 7: Receiver Operating Characteristic for three face-detection systems. Perfor-
mance based on activity levels from pairs of invariant right-eye-detecting and left-eye-detecting
units (dashed line), compared with performance based on activity levels and functional common
input (solid line). The dotted line depicts performance based solely on functional common input.
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5 Partial Synchrony

Although the role, and to an extent the very existence, of fine-temporal structure

in cortical activity is controversial, most physiologists would agree that, everything

else being equal, i.e., fixing the firing rates of two cells, the extent of synchronous

activity between these two cells will reflect the extent to which their presynaptic pop-

ulations overlap. In short, common input promotes synchrony. And most physiolo-

gists would also agree that, as a variable, synchrony is “readable” in that cells that

fire synchronously are more likely to promote super-threshold activity in a common

postsynaptic cell—“coincidence detection”, or what Abeles [2] termed, more precisely,

“coincidence advantage”. (See Azouz & Gray [8], Mikula & Niebur [35], and Tsodyks &

Markram [52] for models and experimental results that lead to this conclusion, at least

within certain ranges of parameters.) Indeed, precisely these effects have already been

demonstrated in vivo, for instance in retinal/LGN/striate cortical circuitry: More reti-

nal common input promotes more fine-temporal thalamic synchrony (Dan et al. [14]);

more thalamic synchrony promotes more activity in postsynaptic cells of the striate

cortex (Alonso et al. [4]). And within the sub-columnar microcircuitry of cortex, there

are tight divergent/convergent anatomical loops, which apparently produce precisely

timed postsynaptic events in layer 2/3 (see Yoshimura et al. [61]).

What sorts of global data structures are consistent with the local mechanisms of

functional common input, synchrony, and coincidence detection? Presumably, a cell

representing a piece of a larger whole would participate simultaneously in many of

these local circuits, by virtue of having different, and in some cases even disjoint,

functional common inputs with each of many other cells. A curve, for example, would

induce activities in a collection of complex cells, and these activities would reflect the

topology of the curve through a succession of local dependencies (partially synchronous

activities) that define neighbors in a one-dimensional representation—see Figure 8.

Next-layer recipient cells, activated by local synchronous activities, would inherit and

preserve this topology by the very same mechanism of functional common input. This

kind of neighborhood relationship is not transitive. Depending upon the stimulus, cells

‘A’ and ‘B’ might share a large population of inputs, as might cells ‘B’ and ‘C’, yet cells

‘A’ and ‘C’ might have little or no common input. This creates a temporary topology:

‘A’ and ‘B’ are neighbors; ‘B’ and ‘C’ are neighbors; ‘A’ and ‘C’ are not neighbors.

More generally, the picture that emerges is one of a temporary topological repre-
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Figure 8: Topological Representation of a Curve. Cartoon version of a temporary arrange-
ment of neurons and neuronal connections, held together by bottom-up and top-down loops of
functional common input, partial synchrony, and coincidence detection. The segments of the curve
passing through intersections of the layer 1 RFs (intersections of the dotted ovals) represent func-
tional common inputs to the layer 1 cells. More generally, the proposal is that perception amounts to
a construction of a temporary topological subgraph of a much richer and more permanent graph of
anatomical connections. Presumably, there are important lateral components as well (not shown),
perhaps tying together the representations within each level through similar loops of diverging and
converging temporary connections.

sentation, glued together by diverging and converging circumstantial connectivity pat-

terns, something like the correlation structure proposed by von der Malsburg [58] or

the braid structure proposed by Bienenstock [10]: divergence from inputs that are func-

tionally common to a collection of two or more cells rendered partially synchronous by

virtue of these shared inputs; convergence from a collection of partially synchronous pre-

synaptic cells to postsynaptic cells sensitive to well-timed cooperative inputs. Abeles

[1] seems to have been among the first to recognize the potential computational ad-

vantage of these loops of diverging and converging connections. (See also Izhikevich et

al. [28] for a recent computational theory based upon a similar principle). The picture

that I have in mind, however, is somewhat different from that of the cell assembly that

operates in phase with a more-or-less global rhythm, or by a lock-step synchronous

activity across an entire sub-population (as discussed for example by Abeles [1, 2],
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Bienenstock [10], Crick [13], and Shastri & Ajjanagadde [45]). The topology being

proposed here is local and hierarchical, defined at any one level by overlapping pieces

and across levels by part-whole relationships.

Of course the idea that the brain builds an accurate interpretation out of purely

feed-forward computations is too simple. Vision engineers know that accurate segmen-

tation, for example, is impossible without top-down calculations representing a feed-

back of contextual information and prior expectation. And neuro-anatomists know

that most visual areas receive more fibers from feed-back connections than they send

through feed-forward connections. But it is possible that the same dynamical principles

apply to the feed-back pathways, and that a particular pattern of activity is selected

and reinforced by virtue of highly circumstantial, functional, common inputs from the

top down. The picture of a temporary connectivity made up of divergent/convergent

loops would be the same whether viewed from the bottom up or the top down. This

opens the door to much the same mechanisms of functional common input, synchrony,

and coincidence detection in the feed-back pathway (Figure 8). Perhaps the two, the

feed-forward and feed-back pathways, work towards a consensus, whereby expectation

and context are resolved with otherwise ambiguous sensory signals. Carpenter & Gross-

berg [12], Mumford [36, 37], and Ullman [54] have proposed similar interpretations of

feed-forward/feed-back dynamics.

These ideas bring us back to the molecule metaphor, in which visual perception

is akin to a process of building an elaborate and extended representation out of neu-

ronal activities, with an image-dependent topology that is realized through explicit

and temporary connections. Functional common input would bind the pieces—the

atoms—through statistical dependence, most likely partial synchrony. In any one re-

alization the connectivity would be sparse, reflecting something of the topology of the

visual scene, albeit with a superimposed hierarchical structure, and perhaps elaborated

by abstract conjunctions—folds—that are not literally local (“same”, “parallel”, and

so-on). The remarkable connectivity of the brain (some estimate the graph-theoretic

“diameter” to be smaller than 10—“six degrees of separation”), as revealed for example

by the studies of van Essen et al. [55, 31], would facilitate this sort of representation

by providing a rich anatomical scaffolding that makes close functional pairings possible

even among physically distant cells.

This proposal, of representation through commitment to a subgraph of the anatom-

ical graph, raises more questions than it answers, including, especially:
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• What kinds of neuronal mechanisms could supply rapid and reversible changes in

connectivity, and in particular, a robust commitment to selected subsets of presy-

naptic cells? In other words, by what mechanisms is a connectivity “subgraph”

chosen from the presumably far richer graph of anatomical connections? Possi-

bly, this could arise from the nonlinear dynamics of the neurons themselves, as in

models discussed above, or possibly synaptic changes, on a very short time scale,

are involved. Indeed, there is now plenty of evidence for both. Recent experi-

ments by Polsky et al. [39] indicate that dendritic nonlinearities, by themselves,

could support the kind of subset selection process idealized in the MAX filter,

even without a precursory layer of “simple cells”. And experiments by Markram

et al. [32] reveal the rapid and reversible changes in synaptic plasticity antici-

pated by von der Malsburg in his Correlation Theory [58]. Either way, the effect

would be the same: functional connectivity leads to (circumstantial) functional

common input leads to partial synchrony.

• I have postulated that partial synchrony, i.e. near-synchronous spikes in response

to a temporary and partial sharing of inputs, signals a correct arrangement of

parts in the receptive fields of two invariant cells. How would the two signals, firing

rate and partial synchrony, interact to influence a postsynaptic cell’s activity, and

in particular, how sensitive might a cell be to partial synchrony, per se? A simple

product of “fci” (modeling synchrony) and filter outputs (modeling firing rates)

was enough to substantially improve selectivity in the experiments in §4. Are

there mechanisms, perhaps involving inhibitory inter-neurons, for sharpening this

effect (e.g. “synchrony by competition” as proposed by Tiesinga and Sejnowski

[50])? Two recent experiments demonstrate striking nonlinearities that bear on

the issue of signal to noise: The experiments of Azouz & Gray [8] and those of

Polsky et al. [39] both demonstrate a “super-additive” interaction, indicating

that the response to two well-timed events can be substantially greater than the

sum of individual responses.

What are the prospects for experimental exploration of these ideas? It is possible

that the foundation—functional common input inducing partial synchrony—can be

put to the test with available technologies. I have already remarked that this kind of

synchrony would be non-transitive, and in this sense, local. Compare this to the idea

of a synfire chain, in which every pair of a population of neurons is correlated. If these
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correlations are instead local, then we can hardly expect to see evidence for them in a

randomly selected pair of cells responding to a randomly selected image. On the other

hand, we might be able to exploit the notion of composition through overlapping and

matching representations (as in §4) to devise a more directed search in a challenging,

but perhaps feasible, experiment. In brief, the proposal would this:

1. Fit a suitable nonlinear model (e.g. an NNP-type model—see Harrison et al. [25])

to each of two simultaneously recorded complex cells with overlapping receptive

fields.

2. Record the time course of some analytic measure of the functional common input.

The input/output models built for the pair of complex cells would amount to two

explicit spike-activity functions, say f(~x) and g(~x), of the intensity image ~x,

as measured over the union of the receptive fields. (Possibly ~x would first be

normalized, or otherwise pre-processed, as in §4.) One natural analytic measure

of functional common input, similar to the one used for the experiments in §4,

would be the sum of the products of the partial derivatives, i.e. the inner product

of the gradients: ∇f(~x) · ∇g(~x).

3. Record, as well, the time course of the significance of synchronous events in, say,

the trailing one-hundred milliseconds5.

A correlation between the time courses of functional common input and synchrony

would be good evidence for a readable signal carrying information about the relative

phase (position) of target patterns in the cells’ receptive fields. And given that the

computations can probably be managed in real time, “on line”, it might be possible to

improve the efficiency of the endeavor by driving the cells in the direction of synchrony,

perhaps through a gradient procedure analogous to the ones suggested by Földiák [16]

and Földiák et al. [17], or perhaps “by hand” through patterns with pieces that excite

the respective cells and fit together coherently. In any case, the receptive-field patterns

that actually produce high measures of functional common input could be examined

for evidence of a properly aligned composition of individual target patterns.

5There is a dynamic programming algorithm, based on the method of “spike jitter” (see Hatsopoulos et

al. [26] or Amarasingham [5]), that is computable in real time and corrects for possible phasic inputs that

masquerade as significant synchrony (see Harrison & Geman [24]).
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6 Summary

The rich local connectivity of the brain, together with the largely topological inter-area

organization, suggests that assemblies of cells with a multitude of anatomically shared

inputs might be commonplace. Yet by virtue of the nonlinearity of neuronal dynamics,

a given cell at a given instant may or may not be sensitive to a given presynaptic in-

put. Sensitivity, or functional connectivity, depends globally on the entire presynaptic

activity pattern. It follows that the degree of functional common input, as opposed

to the degree of anatomical common input, is circumstantial, depending in particular

on the collective pattern of presynaptic activities. If common input promotes syn-

chronous events (“partial synchrony”), then synchrony is evidently also circumstantial

and therefore carries information about presynaptic activities.

What kind of information would be signaled by synchronous spikes, in say a pair of

neurons? If these neurons represent target patterns, with invariance to some param-

eters of pose, then by little more than the definition of invariance we should expect

these neurons to be functionally connected to inputs representing areas in and around

their respective stimulating target patterns. If this were the case, then two such cells,

sharing a significant population of common presynaptic neurons, would have a strong

functional common input exactly when the poses of the respective target patterns were

consistent, i.e. when the patterns were aligned and coherent. By these considerations,

synchronous spikes ought to signal local consistencies of arrangements, as argued for

by Singer [47] and others.

Horace Barlow [9] suggested that learning amounts to building a hierarchy of ac-

commodations of “suspicious coincidences”. A recognition device capable of signaling

the presence of parts (e.g. edge-type discontinuities, contours, strokes, arrangements

of strokes, hands, and so on), say invariantly to location or other pose parameters,

would be otherwise unprepared for the coincidences of arrangements of parts induced

by their participation in one or another compound entity (a stroke, a letter, an arm,

and so on). In the absence of a model for the composition, the arrangement of parts is

highly suspicious. More than a century before, Laplace [29], in an essay about probabil-

ities, contemplated some of these same matters, and concluded similarly that we group

pieces into a familiar whole precisely because the alternative represents an unlikely co-

incidence. Possibly, a departure from independence in the outputs of local collections

of cells, manifested explicitly by an abundance of near-synchronous spikes, signals the
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suspicious coincidences that drive both the learning of a hierarchy of reusable parts as

well as the construction of a temporary internal representation of this hierarchy.

In that these observations derive from basic physiological principles of cortical mi-

crocircuitry, they are not necessarily limited to vision per se. It is possible that these

same mechanisms of functional connectivity, functional common input, and partial syn-

chrony support highly dynamic and organized topological representation throughout

the cortex.

Maybe “binding by synchrony” is more mainstream than one might first think.

Maybe it is a logical conclusion from a chain of mainstream ideas. There is nothing

radical about the idea of common input producing synchrony, or for that matter the

idea that synchronous spikes make for a particularly effective stimulus (coincidence

detection). An apparent leap is the idea of functional connectivity, and its consequence,

functional common input. But functional connectivity amounts to little more than

nonlinearity. The real leap is in the proposition that invariant cells functionally connect

to their target patterns, and that the resulting functional common input creates a

strong and readable signal for composition.
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