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Abstract

This paper develops a theoretical framework for lossy source coding that treats it as
a statistical problem, in analogy to the approach to universal lossless coding suggested
by Rissanen’s Minimum Description Length (MDL) principle. Two methods for selecting
efficient compression algorithms are proposed, based on lossy variants of the Maximum
Likelihood and MDL principles. Their theoretical performance is analyzed, and it is
shown under appropriate assumptions that the MDL approach to universal lossy coding
identifies the optimal model class of lossy codes.
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1 Introduction

1.1 The Lossy Compression Problem and Its Formulation

Information theory, classically, has had two primary goals: source coding (efficient data com-
pression) and channel coding (communicating reliably over a noisy channel). In the approxi-
mately half century since Shannon’s fundamental work on both these subjects, a tremendous
amount of progress has been made in both areas, in terms of theory (“Shannon theory”) as
well as practice (“coding theory”). In particular, the fundamental theory for source coding
with a fidelity criterion (alternatively, “lossy” data compression) is well-developed and pleas-
ing, and there exist sophisticated algorithms to perform lossy compression of various kinds
of data (audio formats such as MP3, image formats such as JPEG, and so on). However, the
bond between the theoretical and practical work has not been as strong as one might expect.
In particular, the algorithms available today are based more on engineering intuition and
experimentation than on fundamental theoretical principles; they are extremely ingenious
and useful, but are still typically far from the optimal performance expected theoretically.

The objective of lossy source coding is to encode the data in such a way as to be maxi-
mally compressed (occupy the least amount of “space”) and yet enable recovery of the data
to within an allowable distortion level D. We will follow the traditional1practice of modelling
a source by a stochastic process {Xn}n≥1 (whose realization is the “data”). The optimal per-
formance that can be achieved was described by Shannon in 1959 through the rate-distortion
function R(D), which characterizes the optimal coding rate at a given distortion level. The
Blahut-Arimoto algorithm and its generalizations[21] allow fairly efficient computation of
rate-distortion functions for specific problems, but there is little indication today of any
principles that can be used to construct real codes that achieve it.

Shannon’s approach as well as subsequent work on the problem until the 1980’s, however,
was based on a key premise: that the probability distribution of the stochastic source was
known. In most real-life situations, such a premise would not hold. This suggests the prac-
tically important problem of universal data compression- where the objective is to select a
coding scheme in order to obtain good compression performance when the source distribution
is not completely known. The answer to this question is still very unclear. In this work,
we propose and develop a new theoretical framework for the problem of universal lossy data
compression.

More precisely, consider a source2 {Xn} with values in the alphabet A, which is to be
compressed with distortion no more than D ≥ 0 with respect to an arbitrary sequence of
distortion functions3ρn : An × Ân → [0,∞), where Â is the reproduction alphabet. Let
B(xn

1 ,D) denote the distortion-ball of radius D around the source string xn
1 ∈ An:

B(xn
1 ,D) = {yn

1 ∈ Ân : ρn(xn
1 , y

n
1 ) ≤ D}.

Recall from the theory of lossless coding that a prefix-free encoder is a lossless code whose
output can be uniquely decoded because no codeword is a prefix of any other codeword.

Definition 1. A D-semifaithful code or lossy code operating at distortion level D (or simply,
a lossy code) is a sequence of maps Cn : An → {0, 1}∗ satisfying the following conditions:

1Other modelling frameworks have been suggested, e.g., the Kolmogorov complexity approach, the “indi-
vidual sequence” approach pioneered by Ziv, and the grammar-based approach of Yang and Kieffer.

2 A source is just any discrete-time A-valued stochastic process; alternatively, a probability measure on the
sequence space of the alphabet A.

3In the information theory literature, a distortion function is often called a “distortion measure” or a
“fidelity criterion”.
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Figure 1: A D-semifaithful code quantizes the data to a point in the distortion ball around
the data, and then represents this point by a binary string.

(i) Cn is the composition ψn◦φn of a “quantizer” φn that maps An to a (finite or countably
infinite) codebook Bn ⊂ Ân, followed by a prefix-free encoder ψn : Bn → {0, 1}∗.

(ii) ρn(xn
1 , φn(xn

1 )) ≤ D for all xn
1 ∈ An.

We make some comments on the choice of the distortion functions ρn. Firstly, our results
share with most previous work in this area the feature that the distortion functions are
assumed to be given, somehow fixed a priori by the nature of the specific application. Since
we do not assume a particular form of the distortion functions, this makes the framework
flexible and general.4Secondly, we assume for ease of analysis that we are dealing with single-
letter distortion functions. This means that the ρn simply measure the average bitwise
distortion according to ρ1 = ρ:

ρn(xn
1 , y

n
1 ) =

1

n

n
∑

i=1

ρ(xi, yi).

Thirdly, when A = Â (which is a common situation), any “nice” distortion function has the
property that ρ(x, y) = 0 iff x = y. Thus, we should expect to recover results from the theory
of universal lossless compression when we consider the case D = 0.

Definition 2. The codelength function is the length of the code word used to encode a data
string:

lenn(xn
1 ) = length ofCn(xn

1 ), in bits.

Given the source distribution P on the sequence space of A, the rate of the code is

R′ = ess sup
ω

lim sup
n→∞

1

n
lenn(Xn

1 ).

The operational rate-distortion function of the stationary, ergodic source P is the smallest
rate that can be achieved by a D-semifaithful code in compressing the source:

R(P,D) = inf

{

R′ :
∃ lossy code {Cn} operating at level D,
which compresses source P at rate R′

}

.

4One may hope that the structure in the data itself could somehow suggest what the natural choice of
distortion function should be, but that is an open problem still.
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When P is i.i.d. with marginal distribution P , we write R(P,D) = R(P,D).

Remark 1. Lossy codes can be defined in two ways that are dual to each other in some
ways: as distortion-constrained codes or rate-constrained codes. Our framework is based on
distortion-constrained codes. Rate-constrained codes require the sequence of maps {Cn} to
have a rate ≤ R, and the goal is to minimize the distortion (typically, the expected distortion);
they are not treated in this work.

The definition of a lossy code here differs from the definition used by Shannon[27] and in
texts such as [7]. The difference lies in the fidelity requirement: whereas the classical approach
is to ask for Eρn(Xn

1 , Y
n
1 ) ≤ D, we demand the more stringent requirement that the distortion

between any string and its quantized version is not more than D. It is now well-known,
based on the work of Kieffer[14], that this does not change the first-order asymptotics of
the problem; in particular, Shannon’s rate-distortion function characterizes the fundamental
achievable limit for either of these fidelity constraints as long as the source is stationary and
ergodic. For simplicity, we only state the Rate-Distortion Theorem for i.i.d. sources.

Fact 1. [Rate-Distortion Theorem]The operational rate distortion function for an i.i.d.
source with marginal P is given by the solution of the nonlinear optimization problem:

R(P,D) = inf
W∈WP,D

I(X;Y ), (1)

where WP,D = {W ∈ P(A×Â) : first marginal W1 = P, and Eρ(X,Y ) ≤ D}. This function
is known as the rate-distortion function.

Let us make precise the notion of a universal lossy code. Since we want this to be optimal
irrespective of the source, we have the definition below.

Definition 3. Let C be a class of stationary, ergodic sources. A lossy code Cn is said to be
universal over the class C if

lim sup
n→∞

1

n
lenn(Xn

1 ) ≤ R(P,D) w.p.1 ∀P ∈ C,

when the true distribution of {Xn} is P ∈ C.

1.2 A Solution Paradigm: Codes and Measures

The fact that D = 0 corresponds to lossless compression suggests that one may try to take
inspiration from the well-developed theory of universal lossless data compression. The key
idea underlying this theory is the correspondence between codes and measures that was
already implicit in [26], and put on a firm foundation by Kraft[18] for prefix-free codes and
McMillan[22] for uniquely decodable codes. This is the fact that any uniquely decodable
lossless code (when, say, coding with blocks of length n) has codelength function bounded
below by − logQn(xn

1 ) for some probability distribution Qn on Ân; conversely, given any
Qn, one can find a prefix-free lossless code whose codelength function is bounded above by
− logQn(xn

1 ) + 1. See, e.g., [7] for details. Since the integer constraint is irrelevant when
coding with large blocks, the Kraft-McMillan inequality can be paraphrased as: “There is a
correspondence between lossless codes of block length n and probability distributions on An,
given by lenn(xn

1 ) = − logQn(xn
1 ).”

Kontoyiannis and Zhang [17] showed that this idea can be generalized to lossy compression
by identifying lossy compression algorithms with probability distributions on the reproduction
space.
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Fact 2. [Codes–Measures Correspondence] Suppose for given D ≥ 0, the Weak Quan-
tization Condition of [17] holds (i.e., there exists a sequence of measurable, D-semifaithful
quantizers with countable range). For any code Cn operating at distortion level D, there is a
probability measure Qn on Ân such that

lenn(xn
1 ) ≥ − logQn(B(xn

1 ,D)) bits, for all xn
1 ∈ An. (2)

Further, if {Qn} is an admissible sequence of probability measures in the sense that

lim sup
n→∞

− 1

n
logQn(B(Xn

1 ,D)) ≤ R <∞ w.p.1, (3)

then there is a sequence of codes {Cn} operating at distortion level D whose length functions
satisfy

lenn(Xn
1 ) ≤ − logQn(B(Xn

1 ,D)) + log n+O(log log n) bits, eventually w.p.1. (4)

A similar result holds in expectation.

Remark 2. Fact 2 is very general, and holds for any sequence of distortion functions. However,
our study crucially depends on the single-letter assumption.

Remark 3. Note that when A is finite and A = Â, the Weak Quantization Condition of [17]
is trivially satisfied for any D ≥ 0 since the identity quantizer is measurable and has zero
distortion.

Fact 2 outlines precisely the nature of the correspondence between lossy compression al-
gorithms using a block length of n and probability distributions Qn on Ân. The first part
is proved using Kraft’s inequality. The second direct coding part was proved by [17] using a
random coding argument– one estimates the waiting time for a match of Xn

1 within distortion
D, looking through a codebook {Y n

1 (i)}i∈N whose code words are generated independently
from the probability distribution Qn. Note that this random coding procedure is not practi-
cally constructive– since the waiting times in order to identify the code word corresponding
to the data is exponential in the data size.

In the lossless case, the codes–measures correspondence suggested a correspondence of
codelengths with − logQn(xn

1 ). In the lossy case, codelengths correspond to quantities of the
form

Ln(Qn, x
n
1 ) = − logQn(B(xn

1 ,D)) bits. (5)

Unlike in the lossless case, the correspondence between lossy codes of block length n and
probability measures on the n-th order product of the reproduction space is only valid when
coding with large blocks.

Given a lossy code, how does one evaluate how good it is? The figure of merit is naturally
the codelength per symbol, and thanks to the codes–measures correspondence, this is asymp-
totically equivalent to the rate of exponential growth of the probabilities Qn(B(Xn

1 ,D)). For
ease of analysis, we will only consider lossy codes corresponding to product distributions on
Ân; thus Qn = Qn. The asymptotic performance of such codes is described by the General-
ized or Lossy AEP (so called because it is a generalization of the Asymptotic Equipartition
Property, or AEP, known to information theorists and statistical physicists).
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Fact 3. [Generalized or Lossy AEP] Let {Xn} be an i.i.d. source. For any D ≥ 0,

lim inf
n→∞

− 1

n
logQn(B(Xn

1 ,D)) = R(P,Q,D) w.p.1, (6)

where R(P,Q,D) is a function, lower semicontinuous in Q and non-increasing in D, that
is defined in the next section. Furthermore, the limit exists for all D 6= Dmin(P,Q), where
Dmin(P,Q) is defined in the next section.

Remark 4. The Lossy AEP holds in great generality. In fact, necessary and sufficient con-
ditions for the limit to exist are derived in [12], for single-letter distortion functions on ab-
stract (Borel space) alphabets, provided the source is stationary and ergodic, and the coding
distributions {Qn} form a stationary process that is sufficiently strongly mixing. Only for
D = Dmin > 0 is there sometimes a problem. These considerations will not bother us because
all the cases we deal with have Dmin = 0.

Note that the lossy AEP proves the admissibility of all reasonable probability distributions
on sequence space (including all i.i.d. distributions, and all stationary, ergodic distributions
satisfying certain mixing conditions), so that the codes–measures correspondence is true in
wide generality.

For convenience of discussion, we henceforth restrict our consideration to i.i.d. source
and reproduction distributions. The principles proposed in Section 2 can be stated in the
much more general setting of stationary and ergodic distributions, but the task of verifying
that the principles work in general is formidable and not attempted here.

The lossy AEP identifies R(P,Q,D) as the figure of merit when doing lossy coding with
large blocks, suggesting that the best codes may correspond to minimizers of this rate func-
tion. We write

Q∗ = Q∗
P,D = arg min

Q
R(P,Q,D),

when a minimizer exists and is unique, and call it the optimal reproduction or coding distri-
bution. As expected from the rate-distortion theorem,

R(P,D) = R(P,Q∗,D) = min
Q

R(P,Q,D)

is the best achievable lossy compression rate.
The connection of Q∗ with optimal codes for a finite but large block length n was made

precise in [16] and [17]. Recall that for D = 0, the problem of optimal lossless compression
using block length n is, theoretically at least, equivalent to finding a probability distribution
Qn that minimizes the average codelength E[− logQn(Xn

1 )] = H(Pn) + D(Pn‖Qn). Thus
the optimal choice is simply to take Qn to be the n-th order marginal Pn of the true source
distribution P. When the source is i.i.d., this choice of codelength– − logP (x) for each
symbol– has a special name, the idealized Shannon codelength. In [3], Barron proved the
celebrated lemma on its competitive optimality properties. Thus, the problem of finding the
optimal lossless codelength function (and hence the optimal code5) is identical to the problem
of finding the distribution of a data source, which is where statistics comes in. How does this
development carry over to the lossy case, when D > 0?

[16] shows that the sequence of probability distributions Q̃n which achieve the infima
in the definitions of Kn(D) = infQn E[− logQn(B(Xn

1 ,D))] corresponds to an optimal lossy

5When A is finite, there is a simple constructive procedure to build a lossless code whose codelength is
within 1 bit of the idealized Shannon codelength. See, e.g., [7][pg.123].
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Lossless coding Lossy coding

Any code has codelength close to
− logQn(xn

1 ) for some Qn

Any code has codelength close to
− logQn(B(xn

1 ,D)) for some Qn

AEP:
− 1

n logQn(Xn
1 ) → H(P ) +D(P‖Q)

Lossy AEP:
− 1

n logQn(B(Xn
1 ,D)) → R(P,Q,D)

Want code based on the Q∗ that mini-
mizes H(P ) +D(P‖Q)

Want code based on “the” Q∗ that min-
imizes R(P,Q,D)

Optimal Q∗ is true source distribution
P

For D > 0, optimal Q∗(6= P ) achieves
Shannon’s r.d.f. R(P,D)

Selecting a good code is like estimating
a source distribution from data

Selecting a good code is an indirect es-
timation problem

Table 1: How to select good codes?

code. In particular, the codelength − log Q̃n(B(Xn
1 ,D)) has competitive optimality properties

as for lossless compression. Furthermore, when the source is i.i.d., it suffices to consider the
lossy code corresponding to powers of the optimal reproduction distribution Q∗ on Â, i.e., the
optimal output distribution that achieves the infimum in the definition of the rate-distortion
function. More precisely, the difference in performance between Q̃n and (Q∗)n is O(log n)
and the per-symbol difference asymptotically vanishes. Thus, when the source is memoryless
with marginal P , our goal is to do statistical inference with the hope that we can somehow
estimate the distribution Q∗ = Q∗

P,D, and not the true source distribution P , from the data.
In analogy with the lossless terminology, we call − log(Q∗)n(B(Xn

1 ,D)) the idealized lossy
Shannon codelength.6

In statistical estimation, the key conceptual simplification of considering parametric mod-
els (families of probability distributions, typically parametrized by a subset of Euclidean
space) made early advances in the field possible. The consideration of parametric models
is justified in two ways: firstly, it is often reasonable to assume that our distributions have
some structure (e.g., the observed data is generated by a deterministic process perturbed by
Gaussian noise of unknown mean and variance), and secondly, the non-parametric infinite-
dimensional problem can be nearly intractable to solve and parametric families may give
practically useful if not completely ideal results. For the same reasons, we also choose to
focus on parametric models of coding distributions. In order to make this more realistic, we
also allow for a nested sequence of parametric models of increasing “complexity”.

Motivated by the codes–measures correspondence and the above remarks, we pose the
problem of selecting a good code among a given family as the statistical estimation problem
of selecting one of the available probability distributions {Qθ; θ ∈ Θ} on the reproduction
space7. Specifically, we want to choose the one whose limiting coding rate R(P,Qθ,D) is as
small as possible.

If Q∗ = Qθ∗ happens to be in the above class, then of course R(P,Q∗,D) is simply

6As a matter of fact, Shannon’s proof of the rate-distortion theorem used a particular random codebook– the
best possible random codebook generated by (Q∗)n. The implications of using sub-optimal random codebooks
Qn for some Q 6= Q∗ remained unexplored till various authors (see, e.g., [20][30][15]) began exploring the issue
in the 1990’s. The primary motivation for these works was the analysis of the universal lossy coding algorithms
(e.g., [28][15]) inspired by the success of the Lempel-Ziv algorithms in lossless compression.

7Θ itself may contain a hierarchy of subsets, that we identify as models of decreasing complexity.
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the rate-distortion function of the source. But in general we do not always require that
to be the case, and we think of our target distribution Qθ∗ as that corresponding to θ∗ =
arg minθ R(P,Qθ,D). Intuitively, we think of Qθ∗ as the simplest measure in the class of
measures parametrized by Θ that can describe all the regularity in the data with accuracy no
worse than D.

1.3 Outline

The search for a good universal lossy code can, based on the above discussion, be viewed as
the search for a good estimator for the optimal reproduction distribution, since the latter
will yield the former at least for large data sizes. Recall that a similar connection held in the
lossless case, and in that case, two of the prime methods used are the mixture method and
the MDL (Minimum Description Length) method. Mixture coding for lossy compression was
investigated in [17]. We investigate an MDL approach in this work.

The principles underlying our approach are described in Section 2. In Section 3, second-
order properties of the lossy likelihood are studied for the setting of universal coding. Sections
4 and 5 explore the dichotomy in the behavior of lossy maximum likelihood and MDL esti-
mators for i.i.d. sources and coding distributions. While Section 4 motivates the study using
examples of Gaussian and Bernoulli codes, Section 5 proves a general result in the case of
finite alphabets. Section 6 offers some suggestions for future work.

2 Principles and Main Results

2.1 Conventions and Notation

The data {Xn}n∈N are drawn from an i.i.d. source with marginal distribution P on an
alphabet A. Although the distribution P is not known in general, we will typically assume
that it lies in some well-behaved subset of P(A), so that the existence and uniqueness of the
optimal reproduction distribution Q∗

P,D is assured for some range of D. Most of our main
results and analysis will assume that A is finite; however since we consider two examples with
A = R in Section 4, we allow for this more general situation in our discussion of notation
below. We always assume that the reproduction alphabet Â is the same as the source alphabet
A, retaining the two different symbols for conceptual clarity.

The single-letter distortion function ρ : A×Â→ [0,∞) is arbitrary. By Pinkston’s lemma
(see, e.g., [7][Chapter 13]), we can assume without loss of generality that miny∈Â ρ(a, y) = 0
for each a ∈ A.

We only consider lossy codes corresponding to probability measures on Ân that are i.i.d.
Indeed, the class of marginal distributions on Â (“random coding distributions” or “repro-
duction distributions”) that we allow is a parametric model with parameter space Θ, where
Θ is a compact subset of Euclidean space. A generic probability distribution from this model
is denoted Qθ. The optimal coding distribution is denoted Q∗ or Qθ∗ , since Q∗ lies in our
paremetric model. Call the parametrization sensible, if one of the following conditionshold:

1. θm → θ implies that Qθm → Qθ in the τ -topology8, or

2. A and Â are Polish spaces with the Borel σ-algebra, ρ(·, ·) is continuous, and θm → θ
implies weak convergence.

The first condition is satisfied when Â is finite and the canonical parametrization or any
homeomorphic reparametrization of it is used, whereas many reasonable distortion functions
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for continuous alphabets (such as squared error for the real line) would satisfy the second
condition.

We always denote a A-valued random variable by X, and a Â-valued random variable
by Y , indicating which distributions they came from by subscripts on expectations when
necessary. The value of D above which R(P,D) is 0 is given by

Dmax(P ) = min
y∈Â

EP [ρ(X, y)] (7)

The argument P may be dropped when obvious from context. Clearly, if D > Dmax(P ), the
data can simply be represented by a string consisting only of the minimizing y ∈ Â while
staying within mean distortion D.

It is well-known (see, e.g., [9],[11]) that the rate function in (6) is the convex dual of the
averaged cumulant generating function of the distortion:

R(P,Q,D) = Λ∗(P,Q,D) = sup
λ<0

[λD − Λ(P,Q, λ)] (8)

where

Λ(P,Q, λ) = EP

[

logEQ[eλρ(X,Y )]
]

. (9)

Further, as shown by these authors, the rate function can alternatively be characterized as

R(P,Q,D) = inf
W∈WP,D

[I(X;Y ) +D(QY ‖Q)] (10)

where the infimum is taken over the same class WP,D = {W ∈ P(A×Â) : first marginal W1 =
P, and Eρ(X,Y ) ≤ D} of joint distributions that appears in the rate-distortion theorem, and
QY denotes the second marginal of W .

The quantity Dmin, which represents the infimum of distortion levels D at which the rate
function is finite, is given by

Dmin(P,Q) = EP [ess inf
ω

ρ(·, Y (ω))]. (11)

When P is understood to be fixed, we abuse notation and write Dmin(θ) = Dmin(P,Qθ) and

D
(n)
min(θ) = Dmin(P̂Xn

1
, Qθ), where P̂Xn

1
is the empirical distribution of the data.

Let λ∗(P,Q,D) denote the unique achieving λ in the definition (8) of the rate function
R(P,Q,D). Then, if Λ′ and Λ′′ denote the first and second derivatives of Λ with respect to
λ, the following hold:

R(P,Q,D) = λ∗D − Λ(P,Q, λ∗)

Λ′(P,Q, λ∗) = D

Λ′′(P,Q, λ∗) > 0

(12)

Note that this is meaningful only when Dmin(P,Q) < D. When P is fixed, we define

λθ = λ∗(P,Qθ,D) (13)

8The τ -topology is the topology corresponding to convergence of expectations of all bounded, measurable
functions; thus it is stronger than the topology of weak convergence.
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and

gθ(a) ≡ Λ(P,Qθ, λθ) − Λa(Qθ, λθ), (14)

where Λa(Q,λ) = logEQ[eλρ(a,Y )].
The following sequence of constants (when finite) provide constraints on the source and

coding distributions that are used in the literature:

dk(P,Q) ≡ E[ρk(X,Y )], (15)

where we take X ∼ P and Y ∼ Q to be independent. Note that d1(P,Q) has variously
appeared in the literature as Dmax(P,Q) (eg: [16],[17]) and as Dav(P,Q) (eg: [9]).

For most of this chapter, A = Â is finite. In this case, we make use of the canonical
parametrization, which parametrizes a probability distribution on A = {1, . . . ,m} by the
masses of the first m− 1 symbols. Clearly, this is a sensible parametrization in the sense elu-
cidated above. Let Σ ⊂ Rm−1 denote the parameter space for the canonical parametrization
of the simplex P(A). A generic probability distribution from the simplex is denoted Pσ, and
the true source distribution by P = Pσ∗ . The empirical distribution P̂Xn

1
= P̂Xn

1
of the data

Xn
1 also belongs to the simplex, and is parametrized by σ̂n. For each D ≥ 0, the collection

of source distributions

S(D) = {P : D < Dmax(P ), Q∗is unique, supp(P ) = A, and supp(Q∗) = Â} (16)

is important, and we will call it the admissible class of sources. We denote by Σ0 ⊂ Σ the
set parametrizing the S(D) ⊂ P(A). Since the distortion function is bounded when A = Â
is finite, dk <∞ for all k ∈ N and Dmin(P,Q) = 0 as long as Q has full support.

2.2 Likelihood-based lossy coding principles

In [17], Kontoyiannis and Zhang proved the universality of i.i.d. mixtures (i.e., of Bayesian
codebooks).

Fact 4. [Lossy Mixture Codes are Universal] Let {Xn
1 } be an i.i.d. source with

distribution P on A. For D ∈ (0,Dmax), let Q∗ denote the optimal reproduction distribution of
P at distortion D. If a prior π has a density with respect to Lebesgue measure on the simplex
that is strictly positive in a neighborhood of Q∗, and if we define the mixture distribution

Mn(yn
1 ) =

∫

P(Â)
Qn(yn

1 )dπ(Q), (17)

then:

− logMn(B(Xn
1 ,D)) ≤ − log(Q∗)n(B(Xn

1 ,D)) + o(n) w.p.1, as n→ ∞ (18)

In this chapter, it is shown that not only are “lossy MDL codes” universal, but they have
a remarkable model selection property that is not shared by the codes corresponding to either
mixtures or to lossy maximum likelihood estimates. We expand on this statement below.

A natural way to estimate the optimal θ∗ empirically is to try and minimize the idealized
codelengths (5), or equivalently to maximize the probabilities Qn

θ (B(Xn
1 ,D)).

Definition 4. The lossy likelihood function (or simply, the lossy likelihood) is Qn
θ (B(Xn

1 ,D)),
viewed as a function of θ. The lossy log likelihood is Ln(Qn

θ ,X
n
1 ) = − logQn

θ (B(Xn
1 ,D)),

viewed as a function of θ.

11



Lossy Compression Statistical Interpretation

Code (Ln) Probability distribution (Qn)

Class of codes Statistical model {Qθ : θ ∈ Θ}
Code selection Estimation : find optimal θ∗ ∈

Θ (i.e., one which minimizes
R(P,Qθ,D))

Minimizing the codelength per
symbol

Lossy analog of Maximum Likeli-
hood Estimation

Minimizing codelength of a 2-part
code

Lossy analog of MDL

Table 2: Developing the statistical approach to lossy compression.

We define the Lossy Maximum Likelihood Estimate as the parameter corresponding to
the reproduction distribution which maximizes the lossy likelihood.

Definition 5. The Lossy Maximum Likelihood (LML) Estimate is defined as

θ̂LML

n = arg min
θ∈Θ

[− logQn
θ (B(Xn

1 ,D))],

when the minimizer exists and is unique.

In [10], it is shown that under very general conditions this estimate is consistent as n→ ∞,
in that it converges to θ∗ with probability one.

Fact 5. [Consistency of LML Estimator] Suppose the parametrization of the class of
coding distributions is sensible (in the sense defined earlier). If θ̂n is a sequence of possibly
non-unique maximizers of the lossy likelihood which is relatively compact in Θ w.p.1, then
θ̂n → Θ∗, the set of minimizers of R(P,Qθ,D).

Remark 5. This also holds under the general conditions mentioned in Remark 4.

But as with the classical (lossless) MLE, this θ̂LML
n also has several undesirable properties.

First, the infimum in the definition of θ̂LML
n is not really a codelength; if we choose one of the

θ’s based on the data, we should also describe the chosen θ itself. Indeed, there are examples
[10] where the θ̂LML

n is not consistent, but it becomes consistent when appropriately modified
to correspond to an actual two-part code.

Second, the MLE estimate tends to “overfit” the data: For example, if in the classical
(lossless) setting we try to estimate the distribution of a binary Markov chain, then, even if
the data turns out to be i.i.d., the MLE will be a Markov (non-i.i.d.) distribution for most n.

To rectify these problems, we consider “penalized” versions of the MLE, similar to those
considered in the lossless case. This is an instance of the Minimum Description Length
(MDL) principle proposed and developed initially by Rissanen (see, e.g., [24][25]). For a
comprehensive recent review of the applications of the MDL principle (in particular, for
lossless coding), see [4].

Definition 6. Let ℓn(θ) be a given “penalty function” such that ℓn(θ) = o(1). The Lossy
Minimum Description Length (LMDL) Estimate is defined as

θ̂LMDL

n = arg min
θ∈Θ

[

− 1

n
logQn

θ (B(Xn
1 ,D)) + ℓn(θ)

]

,

12



when the minimizer exists and is unique.

By [10][13], the LMDL estimator is also consistent. Moreover, in Section 5 we present
some simple examples illustrating how the LMDL estimator avoids the common problems of
the LML estimator mentioned above.

However, both the LML estimator and the LMDL estimator share a severe disadvantage–
they are very hard to determine in any specific situation. This is because both involve the
minimization of a functional– the probability of a ball– a complicated integral that becomes
exponentially harder to compute as the dimension grows. This motivates the usage of ap-
proximations of this integral that are easier to compute: we call these pseudo-estimators.
The pseudo-estimators are only valid when the class of coding distributions being considered
is i.i.d.; furthermore they too are not easy to calculate in general, but can be computed when
the form of the rate function is known.

The approximation that suggests pseudo-estimators for the i.i.d. case is one originally
suggested by Yang and Kieffer in [30], and subsequently refined and generalized in [31], [8],
etc. In fact, Theorem 2 proved in this chapter is a further refinement of this result. However,
for the purposes of motivating our pseudo-estimators, we only need the following fact: that
for abstract alphabets and arbitrary distortion functions,

logQn(B(Xn
1 ,D)) = O(1) − 1

2 log n− nR(P̂Xn
1
, Q,D) eventually w.p.1. (19)

This suggests that for large n, we can replace the idealized lossy Shannon codelengths
Ln(Qn,Xn

1 ) = − logQn(B(Xn
1 ,D)) by

L̃n(Q,Xn
1 ) = nR(P̂Xn

1
, Q,D). (20)

In the case of memoryless sources and coding distributions, this length function is completely
functionally equivalent to the idealized lossy Shannon codelength. This fact is the content of
Theorem 1, which is a simple observation based on [31] and [16].

Theorem 1. For any code Cn operating at distortion level D, there is a probability measure
Q on Â such that

lenn(Xn
1 ) ≥ nR(P̂Xn

1
, Q,D) − 3

2
log n+O(log log n) bits, eventually w.p.1 (21)

Conversely, suppose the Weak Quantization Condition of [17] holds at a distortion level D,
and the probability measure Q on Â satisfies R(P,Q,D) < ∞. Then there is a code {Cn}
operating at distortion level D whose length functions satisfy

lenn(Xn
1 ) ≤ nR(P̂Xn

1
, Q,D) +

3

2
log n+O(log log n) bits, eventually w.p.1 (22)

Proof. By [16][Corollary 1], for any code Cn operating at distortion level D, lenn(xn
1 ) ≥

− log(Q∗)n(B(Xn
1 ,D)) − 2 log n eventually w.p.1, where Q∗ is an optimal reproduction dis-

tribution. Combining with (19) gives the first part.
For the second part, note that the sequence of product measures {Qn} is admissible

because lim supn→∞− 1
n logQn(B(Xn

1 ,D)) = R(P,Q,D) < ∞. Thus Fact 2 implies the
existence of a lossy code {Cn} operating at distortion level D with length functions satisfying

lenn(Xn
1 ) ≤ − logQn(B(Xn

1 ,D)) + log n+O(log log n)

≤ nR(P̂Xn
1
, Q,D) +

3

2
log n+O(log log n) bits, eventually w.p.1

(23)

The second inequality follows from (19). �
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In other words, for i.i.d. sources, just as we have the asymptotic equivalence lenn(Xn
1 ) ≈

Ln(Qn,Xn
1 ) where Qn is the distribution on Ân corresponding to Cn, so also we have

lenn(Xn
1 ) ≈ L̃n(Q,Xn

1 ). This asymptotic equivalence suggests the following definition.

Definition 7. The pseudo-lossy log likelihood function (or simply, the pseudo-lossy log like-
lihood) is L̃n(Qθ,X

n
1 ) = nR(P̂Xn

1
, Qθ,D), viewed as a function of θ.

We can now define “pseudo-estimators” that maximize the pseudo-lossy likelihood in
order to estimate θ∗.

Definition 8. The pseudo-Lossy Maximum Likelihood (pseudo-LML) Estimate is defined as

θ̃LML

n = arg min
θ∈Θ

L̃n(Qθ,X
n
1 ) = arg min

θ∈Θ
R(P̂Xn

1
, Qθ,D), (24)

when the minimizer exists and is unique.

Note that the lower semicontinuity of R(P,Q,D) in Q implies that the existence of a
minimizer is assured whenever Θ is be compact.

Definition 9. Let ℓn(θ) be a given “penalty function” such that ℓn(θ) = o(1). The pseudo-
Lossy Minimum Description Length (pseudo-LMDL) Estimate is defined as

θ̃LMDL

n = arg min
θ∈Θ

[R(P̂Xn
1
, Qθ,D) + ℓn(θ)], (25)

when the minimizer exists and is unique.

We note that in the literature on lossless data compression, two kinds of penalties have
been considered– general penalties satisfying Kraft’s inequality for a lossless code on a count-
able parameter space Θ (so that the MDL estimate then corresponds to a “real” two-part
code), and dimension-based penalties. The latter is often motivated via the former using ap-
propriate discretizations and limiting procedures. Barron [3] obtained path-breaking results
of the former style, followed by further seminal results motivated by density estimation in
[5]. Unfortunately we could not find an easy generalization of these elegant results to the
case of lossy compression. One way to interpret the difficulty in generalizing the universality
of two-part codes involving a code on the parameter space lies in the fact that the dichotomy
theorem for likelihood ratios involving stationary ergodic distributions does not carry over
to a dichotomy theorem for “lossy likelihood ratios” because the distortion balls do not just
contain “typical strings” for a particular ergodic probability measure.

In this work, for simplicity, we will only consider penalties of the form

ℓn(θ) = k(θ)c(n) (26)

where k : Θ → Z+. Thus the pseudo-LMDL estimator is

θ̃LMDL
n = arg min

θ∈Θ

[

R(P̂Xn
1
, Qθ,D) + k(θ)c(n)

]

, (27)

with the LMDL estimator given analogously. Both the complexity coefficient k(θ) and the
penalty decay rate c(n) can be chosen in a variety of ways; the canonical choice for k(θ) is
the “dimension” of θ, in a sense that will be clarified later, and the canonical choice of c(n)
is log n

n .
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2.3 Main Results

The key to analysis of the lossy estimators is the lossy likelihood function. The first-order
behavior of the lossy likelihood is captured by the “lossy AEP” (Fact 3), so-called since it
is the lossy analogue of the traditional asymptotic equipartition property. It says that the
probability of a distortion ball around the data is, w.p.1, approximately equal to e−nR(P,Q,D).
This result is refined in [9] by computing the nature of the second order term, which is of
course a polynomial factor. However, that analysis is for the situation when the source P is
known. In order to adapt the power of the second-order lossy AEP for universal coding, a
generalization is necessary. Our first two theorems proceed in this direction.

The following assumption is key.

(⋆) Let the data {Xn} come from an i.i.d. source with marginal P on a finite
alphabet A, and let P ∈ S(D) (the admissible class of sources defined earlier).

We call S(D) the admissible class of sources because P ∈ S(D) ensures that there is a
unique Q∗ in the interior of the simplex P(Â). The restriction to the admissible class of
sources is also used in [17], which also contains comments about how strong a restriction this
is.

Theorem 2. [Lossy Likelihood and Empirical Rate] Suppose Assumption (⋆) holds.
Let Θ0 be a compact subset of the interior of Θ, where Θ provides the canonical parametriza-
tion of the set of reproduction distributions on Â = A. Set d1(P,Θ0) ≡ infθ∈Θ0 d1(P,Qθ).
Then, for 0 < D < d1(P,Θ0),

sup
θ∈Θ0

∣

∣

∣− logQn
θ (B(Xn

1 ,D)) − nR(P̂Xn
1
, Qθ,D) − 1

2 log n
∣

∣

∣ = O(1) eventually w.p.1. (28)

The next result connects this with the rate function evaluated at the source distribution
by an appropriate expansion of R(P̂Xn

1
, Qθ,D).

Theorem 3. [True and Empirical Rates] Suppose Assumption (⋆) holds. Consider the
class of i.i.d. reproduction distributions on the reproduction alphabet Â = A, with Θ providing
the canonical parametrization. Then for each D > 0, there exists δ′ > 0 such that

sup
θ∈B(θ∗,δ′)

∣

∣

∣

∣

∣

R(P̂Xn
1
, Qθ,D) −R(P,Qθ,D) − 1

n

n
∑

i=1

gθ(Xi)

∣

∣

∣

∣

∣

= O

(

log log n

n

)

eventually w.p.1.(29)

These uniform approximations of the lossy likelihood and pseudo-lossy likelihood are
proved in Section 3. Some consequences are also discussed there.

The next three theorems analyze the behavior of the various lossy and pseudo-lossy estima-
tors in the i.i.d., finite-alphabet context. The assumptions below are labelled for convenience.

(⋆⋆) Let L1 ⊂ L2 ⊂ . . . ⊂ Ls ⊂ Θ be any nested sequence of sets in the parameter
space Θ for the simplex P(A) according to the canonical parametrization. Define
the complexity coefficient k(·) by

k(θ) = min{1 ≤ i ≤ s : θ ∈ Li}. (30)

(⋆⋆⋆) Suppose the (true) dimension of Ls∗ , where s∗ ≡ k(θ∗), is strictly less than
|Â| − 1.
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Assumption (⋆⋆) is our way of formulating the problem of model selection in the context of
the lossy compression problem. The nested sequence L1 ⊂ L2 ⊂ . . . ⊂ Ls ⊂ Θ is to be thought
of as a sequence of increasingly complex parametric models for the optimal reproduction
distribution Q∗ that we are trying to estimate. The preference for simpler models (arising
from the fact that codes based on distributions from simpler models are more easily described)
is expressed by making the penalty coefficient k(θ) strictly increasing in the order of the
nesting. Thus what k essentially does is to partition the parameter space Θ– each set of the
partition being the pre-image of a value in the discrete range of k. The specific values of k
are unimportant but the ordering is crucial. However, for convenience and without loss of
generality, we define k(θ) as in (30), where the values in the range of k are successive integers.
If a form for the decay rate c(n) is also given, that specification completes the definition of
the penalty function k(θ)c(n), as well as of the LMDL and pseudo-LMDL estimators (as per
(27)).

Our first result on lossy estimators is a negative result for the pseudo-LML estimator.

Theorem 4. [Behavior of Pseudo-LML Estimator] Suppose Assumptions (⋆), (⋆⋆)
and (⋆⋆⋆) hold, and in addition, η : Σ0 → Θ that yields the optimal reproduction distribution
is such that the derivative matrix Dη(σ∗) is non-singular. Then θ̃LML

n /∈ Ls∗ i.o. w.p.1.

Recall that consistency of the LML and LMDL estimators is already guaranteed under
these assumptions due to [10]. Theorem 4 is therefore saying something about the behavior
of θ̃LML

n as it approaches θ∗, namely that it never stops overestimating the complexity of θ∗.

Theorem 5. [Behavior of Pseudo-LMDL Estimator] Suppose Assumptions (⋆) and
(⋆⋆) hold, and assume that the decay rate c(n) in the penalty function ℓn(θ) = k(θ)c(n) is
such that log log n = o(nc(n)) and c(n) = o(1). Then θ̃LMDL

n ∈ Ls∗ eventually w.p.1.

Thus, the pseudo-LMDL estimator approaches Q∗ eventually through codes in Ls∗. In
other words, if there is a “nice” subset of Θ and we express our desire to know if θ∗ is in
the “nice” subset by choosing it as a model in the model sequence that is used to define
the penalty function, then the pseudo-LMDL estimator finds the “nice” subset in finite time
whenever θ∗ does indeed belong to it. The pseudo-LML estimator, on the other hand, cannot
display this behavior– it must make excursions outside of Ls∗ infinitely often.

The most natural choice of the nested sequence of sets would be a sequence of hyper-
surfaces Li (for instance, truncated affine subspaces) of varying dimension, where Li has
dimension i. This is the picture we had in mind when formulating the model selection prob-
lem for lossy compression, and it is in this sense that the complexity coefficient k(θ) can
represent the “dimension” of θ. This picture and the associated behaviors mandated by our
results are illustrated in Figure 2.

To reiterate, there may be a difference between the true Euclidean dimension of a model
and its complexity coefficient assigned by k. However, the canonical example we have in
mind for a class of models is a class of hypersurfaces as depicted in Figure 2, and in this
case the two measures of model complexity are the same. Even in that case, θ in itself is
just a vector in an (|Â − 1|)-dimensional space and the complexity coefficient really invokes
an implicit hierarchy of sets in which we would like θ∗ to be as far up as possible (because
we can perform the lossy coding in an increasingly efficient manner along the hierarchy for
whatever reason). The theorems stated only depend on this idea, and therefore hold for any
nested sequence of models.
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L3

L1

L2

Figure 2: In this schematic figure, θ∗ ∈ L2, the blue line represents the pseudo-LML estimator,
the orange line represents the pseudo-LMDL estimator, and all points where either trajectory
intersects with L2 are marked green.

Next, the above analysis of the simpler pseudo-lossy estimators is used to study the lossy
estimators themselves. It is proved in Section 5. It says that the LMDL estimator approaches
Q∗ eventually through codes in Ls∗ .

Theorem 6. [Behavior of LMDL Estimator] Suppose Assumptions (⋆) and (⋆⋆) hold,
and assume that the decay rate c(n) in the penalty function ℓn(θ) = k(θ)c(n) is such that
log log n = o(nc(n)) and c(n) = o(1). Then θ̂LMDL

n ∈ Ls∗ eventually w.p.1.

Remark 6. The freedom in the choice of the decay rate c(n) in the penalty function is
remarkable. It tells us, for example, that the exact values of the complexity coefficient k(θ)
are quite irrelevant, as long as they are strictly increasing in the order of the nesting of the
{Li}. To be precise, we only need that there exists ǫ > 0 such that for each 2 ≤ i ≤ s− 1,

sup
θ∈Li\Li−1

k(θ) + ǫ < sup
θ∈Li+1\Li

k(θ). (31)

Furthermore, while penalties of order log n
n work fine, so do– for instance– penalties of order

(log log n)2

n or 1√
n
. This may be useful for potential practical applications, since it allows

for tuning the estimator in a particular situation depending on the relative importance of
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overfitting and underfitting. See, e.g., [2], for a discussion of such aspects in the context of
statistical inference.

Remark 7. We have not addressed the problem of how to choose an appropriate sequence of
models here. That is a question that would naturally follow a study of how the theoretical
framework developed by [17] and this work can be applied to build constructive (non-random)
codes.

3 Second-order properties of the lossy likelihood

3.1 Uniform Approximations of the Lossy Likelihood

The second-order lossy AEP emerges as a consequence of [31][Theorem 3] and [9][Theorem 16].
In order to prove the uniform version, we adopt a brute-force approach and prove stronger,
uniform versions of these two results in Theorems 2 and 3. There is another possible proof
approach using the method of types, and a sketch of this approach is outlined in Appendix B.

Proof of Theorem 2. We wish to apply the expansion of the distortion ball probabilities
proved by Yang and Zhang, [31][Theorem 3], to the random string Xn

1 . Since d3(P̂Xn
1
, Qθ) <

∞ and Dmin(P̂Xn
1
, Qθ) = 0 for all θ ∈ Θ0 (owing to the finite alphabet assumption and the

fact that Qθ is in the interior of the simplex respectively), the conditions of that theorem are
satisfied and we have for any θ ∈ Θ0 and any c > 0,

Ln(c, θ) ≤ Qn
θ (B(Xn

1 ,D))

exp(−nR(P̂Xn
1
, Qθ,D) − 1

2 log n)
≤ Un(θ), (32)

for D ∈ (0, d1(P̂Xn
1
, Qθ)). Here,

Ln(c, θ) = eλ
(n)
θ c

[

cS
1/2
n,θ√
2π

e−
c2Sn,θ

2n − 16S
3/2
n,θ d

(n)
3

]

,

Un(θ) =
1

1 − eλ
(n)
θ

[

16S
3/2
n,θ d

(n)
3 +

S
1/2
n,θ√
2π

]

,

d
(n)
3 = d3(P̂Xn

1
, Qθ)

and Sn,θ =
∂2

∂D2
R(P̂Xn

1
, Qθ,D)

(33)

are all random variables depending on n and θ.
The first step is to note that a uniform strong law of large numbers guarantees that as

n → ∞, d1(P̂Xn
1
, Qθ) → d1(P,Qθ) and d3(P̂Xn

1
, Qθ) → d3(P,Qθ) uniformly over Θ0. This

tells us that for n large enough and any θ ∈ Θ0,

d1(P̂Xn
1
, Qθ) ≥ inf

θ∈Θ0

d1(P,Qθ) − ǫ (34)

for arbitrarily small ǫ > 0, so that (32) holds for all θ ∈ Θ0 and all D ∈ d1(P,Θ0) (which
is the range of D specified in the statement of our theorem). Of the various criteria that
can be used to obtain a uniform law of large numbers (such as the method of Vapnik and
Chervonenkis[29], or the econometric approaches of [1] and [23]), the criterion of Pötscher
and Prucha [23] seems most convenient to verify in this case. In particular, the compactness
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of Θ0 and the joint continuity of EQθ
[ρ(x, Y )] in x and θ imply that the criterion is satisfied.

Note that the continuity of EQθ
[ρ(x, Y )] in θ is a consequence of the assumption that the

parametrization by Θ is sensible: when θm → θ, Qθm converges weakly to Qθ, and since ρ is
automatically bounded and continuous on a finite alphabet, the expectations converge and
continuity is verified.

It remains to show that, eventually w.p.1, supθ∈Θ0
Un(θ) < ∞ and infθ∈Θ0 Ln(c, θ) > 0

for some c > 0. This would imply that

log

[

Qn
θ (B(Xn

1 ,D))

exp(−nR(P̂Xn
1
, Qθ,D) − 1

2 log n)

]

= O(1) eventually w.p.1, (35)

which is the conclusion of the theorem. First note that Un(θ) and Ln(c, θ) are continuous in
θ; this follows from the smoothness of λθ and R(P,Qθ,D) implied by [17] and from repeating
the continuity argument in the previous paragraph for d3. Now Un(θ) is a continuous function
over the compact set Θ0 and hence achieves a maximum that is finite. For the lower bound,
note that by similar arguments as before, [23] can be used to show that Ln(c, θ) converges
uniformly to L(c, θ) over Θ0, where

L(c, θ) = eλθc

[

cS
1/2
θ√
2π

− 16S
3/2
θ d3

]

, (36)

where

Sθ =
∂2

∂D2
R(P,Qθ,D) (37)

and d3 = d3(P,Qθ). Since L(c, θ) can be made arbitrarily large by choosing c large enough,
and since it is a continuous function over a compact set, the minimum of Ln(c, θ) over Θ0 is
bounded away from 0 for large enough n and we are done.

�

Is the lossy likelihood expressible not merely in terms of the rate function at the empirical
source distribution but also in terms of the rate function at the true source distribution? The
answer to this question is provided by Theorem 3. The proof is lengthy and involved, and
requires the use of ideas from the Vapnik-Chervonenkis theory for uniform limit laws. It is
given in Appendix A.

3.2 Implications

Corollary 1. [Uniform 2nd-order lossy AEP] Suppose {Xn} is an i.i.d. process with
marginal distribution P on a finite alphabet A, and {Qθ : θ ∈ Θ} is a family of i.i.d. proba-
bility measures on the finite reproduction alphabet Â. For an arbitrary measurable distortion
function ρ, let R(P,Qθ,D) and gθ(·) be defined as in (10) and (14). Suppose the optimal θ∗

lies in the interior of the simplex of probability measures on Â. Then there exists a neighbor-
hood of θ∗ in Θ such that for any D > 0:

− logQn
θ (B(Xn

1 ,D)) = nR(P,Qθ,D) +

n
∑

i=1

gθ(Xi) + 1
2 log n+ αn(P, θ,D) (38)

holds for a.s.-ω in the probability space underlying X∞
1 , and |αn(P, θ,D)| ≤ CP,D log log n for

every n > N(ω), where N(ω) is finite and independent of θ.

Proof. Combine Theorems 2 and 3. �
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A “central limit theorem” for the lossy likelihood Ln follows from the pointwise second-
order generalized AEP that was proved in [9]. These pointwise results are extended to the
locally uniform (in θ) case in Corollary 2.

Corollary 2. Under the assumptions of Corollary 1, we have:

1. Locally Uniform “CLT”: For ǫ > 0 sufficiently small,

sup
θ∈B(θ∗,ǫ)

− logQn
θ (B(Xn

1 ,D)) − nR(P,Qθ,D)

Var[gθ′(X)]
√
n

⇒ N(0, 1) (39)

for some θ′ in the closure of the ball B(θ∗, ǫ). In fact, θ′ is the maximizer of
∑n

i=1 gθ(Xi)
viewed as a function of θ over the closed ball.

2. Locally Uniform “LIL”: For ǫ > 0 sufficiently small,

lim sup
n→∞

sup
θ∈B(θ∗,ǫ)

− logQn
θ (B(Xn

1 ,D)) − nR(P,Qθ,D)
√

2Var[gθ′(X)]n log log n
= 1 w.p.1 (40)

for some θ′ in the closure of the ball B(θ∗, ǫ). In fact, θ′ is the maximizer of
∑n

i=1 gθ(Xi)
viewed as a function of θ over the closed ball.

Proof. We only need to note that since
∑n

i=1 gθ(Xi) is a continuous function of θ over the
closed ball, at least one maximizer θ′ exists, at which the supremum of the function over the
open ball is achieved. �

4 Three Examples: Lossy MDL vs. Lossy Maximum Likeli-
hood

The examples in this section are contrived and somewhat artificial, since they all involve
choosing between only 2 models, with the simpler model being a singleton. However, not
only do they provide a sanity check and some concrete simulation-based illustrations, but
they also contain the basic proof ingredients that are utilized in the full-fledged result for
finite alphabets in the next section.

4.1 Gaussian codes

Let us denote the normal distribution with mean µ and variance σ2 by N(µ, σ2). Suppose
the source distribution P is N(µ, σ2), whereas the coding distribution is N(ν, τ2). If X is
drawn from P and Y from Q, and for the squared-error distortion function ρ(x, y) = (x−y)2,

EQ[eλρ(x,Y )] =

√

π

−λφν,τ2 ∗ φ0,−(2λ)−1(x) =

√

π

−λφν,τ2−(2λ)−1(x),

where φ is the density function of the normal with the subscripted mean and variance. Thus,

Λ(P,Q, λ) = −1
2 log(1 − 2λτ2) − σ2 + (µ− ν)2

2τ2 − 1
λ

.

Setting Λ′(P,Q, λ) = D yields a quadratic equation for λ, solving which gives

λ∗ = −(v −D)

2Dτ2
, where v = 1

2 [τ2 +
√

τ4 + 4D{σ2 + (µ− ν)2} ]. (41)
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Recalling that R(P,Q,D) = Λ∗(P,Q,D) = λ∗D − Λ(P,Q, λ∗), we have

R(P,Q,D) = 1
2 log(

v

D
) − (v −D)(v − V )

2τ2v
where V = σ2 + (µ− ν)2. (42)

Such an explicit calculation of the rate function, though very difficult to obtain for more
general source and coding distributions, will turn out to be extremely useful in specific cases
as we shall see. In particular, since the parameter space (for fixed P ) is just two-dimensional
here (for the mean and variance of Q), we can use simple calculus to minimize the rate
function with respect to Q.

This yields the optimal rate

R(P,D) = 1
2 log

(

V

D

)

(43)

with the optimal distribution Q∗ of the encoded data being parametrized by

ν∗(µ, σ,D) = µ and τ∗(µ, σ,D) =
√
V −D (44)

Example 1. Dichotomy for class of coding distributions with varying means.
Suppose that the source {Xn} is a real-valued, stationary and ergodic, with zero mean and
finite variance. Consider a parametric family of i.i.d. coding distributions {Qθ : θ ∈ Θ = R}
where Qθ is N(θ, 1), and let the single-letter distortion function ρn be mean-squared error
(that is, ρn(xn

1 , y
n
1 ) = 1

n

∑n
i=1(xi − yi)

2). According to (44), θ∗ = 0. We show below that

θ̂LML
n is simply the empirical average of the data points Xn

1 .
The LML estimator is the maximizer of Qn

θ (B(Xn
1 ,D)), which depends only on the Eu-

clidean distance between the point Xn
1 ∈ Rn and the mean of the distribution Qn

θ , due to
the spherical symmetry of the multivariate normal and the fact that the distortion function
is simply Euclidean distance. The mean of Qn

θ is the point (θ, θ, . . . , θ) on the main diagonal
in Rn, and its distance to (X1,X2, . . . ,Xn) is minimized (hence the probability of the ball
around Xn

1 maximized) by simple calculus:

∂

∂θ

[ n
∑

i=1

(Xi − θ)2
]

= 0 ⇐⇒
n
∑

i=1

(2θ − 2Xi) = 0 ⇐⇒
n
∑

i=1

Xi = nθ

so that the LML estimator as a function of the data is the same as the (classical, lossless)
maximum likelihood estimator! That is,

θ̂LML
n =

1

n

n
∑

i=1

Xi. (45)

Thus the consistency and asymptotic normality of this estimator trivially follow from the
corresponding results for the lossless maximum likelihood estimator. (Note that θ∗ = 0
for all D ≥ 0 by (44).) Furthermore, as in the lossless case, this estimator will forever
fluctuate around θ∗, by an application of the Law of the Iterated Logarithm. In other words,
θ̂LML
n 6= θ∗ = 0 infinitely often, w.p.1.

Now consider a penalty function such that the k(θ) is equal to 1 for all θ 6= 0 and zero
otherwise, and c(n) = log n

n . This means that we are expressing a preference for the simpler
0-dimensional set {0} within the real line, and we would like it to be selected when θ∗ is
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Figure 3: The dashed line denotes the pseudo-LML estimator and the solid line is the pseudo-
LMDL estimator. Here θ∗ = 0.

in deed 0. With the fixing of a penalty function, the pseudo-LMDL and LMDL estimators
are well-defined. The fact that θ̂LMDL

n = 0 eventually w.p.1 is implied by the classical model
selection theory in statistics, since this is just the classical MDL estimator.

Figure 3 shows an explicit numerical example illustrating the behavior of the two pseudo-
estimators, which suggests that the pseudo-LMDL estimator not only converges to the correct
value, but also “finds” θ∗ in finite time and then stays there.

Example 2. Dichotomy for class of coding distributions with varying variances, through anal-
ysis of pseudo-estimators.

Similar conclusions hold for the case when we take the coding distributions Qθ to be i.i.d.
N(0, θ) with θ ∈ [0,∞).

To see this analytically, we use a very different approach from that used for Example 1.
This is because when the variance is the parameter, it is very difficult to analytically (or even
through simulation) determine the LML and LMDL estimators. The root of the problem is
the difficulty of computing many instances of Q-integrals (distortion ball probabilities), and
then following this difficult computation, to maximize the result over the parameter space.
In Example 1, the geometric symmetry of the problem caused the result to be independent
of the distortion level D, and enabled the direct computation of the LML estimator. This is
obviously an exceptional circumstance.

Thus, the approach we use here is to focus on the pseudo-estimators. Since the pseudo-
LML estimator is just the minimizer of R(P̂Xn

1
, Qθ,D), (44) implies

θ̃LML
n = τ∗(µn, σn,D) =

√

Vn −D (46)

where µn = 1
n

∑n
i=1Xi and σ2

n = 1
n

∑n
i=1X

2
i are the mean and the variance of the empirical

distribution, and Vn = σ2
n + µ2

n. Further, using (43) and (42),
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R(P̂Xn
1
,D) = R(P̂Xn

1
, θ̃LML

n ,D) = 1
2 log

Vn

D

R(P̂Xn
1
, θ∗,D) = 1

2 log
v

D
− (v −D)(v − Vn)

2τ2v

(47)

Now suppose we choose a penalty function that simply adds a penalty of log n for every
θ 6= θ∗, so that the lower-dimensional subset L containing θ∗ that we are considering here is
just the singleton. Then,

θ̃LMDL
n = arg min

θ∈Θ

[

R(P̂Xn
1
, Qθ,D) + 1c

θ∗
log n

n

]

= arg min{R1, R2} (48)

where R1 = arg min
θ∈Θ−{θ∗}

[

R(P̂Xn
1
, Qθ,D) +

log n

2n

]

= R(P̂Xn
1
,D) +

log n

n
(49)

and R2 = R(P̂Xn
1
, θ∗,D) (50)

Noting that the argument for R1 is exactly θ̃LML
n and the minimizing argument in (48) is

exactly θ̃LMDL
n , we see that the behavioral differences between the pseudo-LML and pseudo-

LMDL estimators must be completely captured by the relationship between R1 and R2 (or
equivalently, by the relationship between the two rates in (47) above). This is the key insight
which allows us to unravel the dichotomy in this example.

From (41) and (44), observe that

v = V a+Db

where a = 1
2

[

1 +

{

1 +
4D

(V +D)2
(Vn − V )

} 1

2

]

and b = 1
2

[

{

1 +
4D

(V +D)2
(Vn − V )

} 1

2

− 1

]

(51)

Expanding a and b as series in terms of Vn − V , we have

b = a− 1 =
D

(V +D)2
(Vn − V ) − D2

(V +D)4
(Vn − V )2 +O(Vn − V )3 (52)

which yields

v − Vn = V − Vn + b(V +D)

= (V − Vn)

[

V

V +D

]

− (V − Vn)2
[

D2

(V +D)3

]

+O(V − Vn)3
(53)

the first line following from (51) and the fact that a = 1 + b, while the second following from
(52).

Using the fact that log(1 + x) = x+O(x2) for small x,
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log

(

v

Vn

)

= log

[

1 +
v − Vn

Vn

]

= (V − Vn)

[

V

Vn(V +D)

]

+O(V − Vn)2
(54)

so that

R(P̂Xn
1
, θ∗,D) −R(P̂Xn

1
, θ̃LML

n ,D) = 1
2 log

v

Vn
− (v −D)(v − Vn)

2τ2v

= (V − Vn)χ+O(V − Vn)2

where χ =
V

2(V +D)Vn(V −D)(V a+Db)
χ̄

and χ̄ = [(V −D)(V a+Db) − Vn(V a+Db−D)]

(55)

However,

χ̄ = (V − Vn)[V a+Db] +D(Vn −Db− V a)

= (V − Vn)

[

V a+Db−D

(

V

V +D

)]

+O(V − Vn)2

= O(V − Vn)

(56)

where the second line of the display followed from (51) and (53), and plugging this back into
(55) yields

R2 −R(P̂Xn
1
,D) = O(Vn − V )2 (57)

In other words, the first order term in the expansion of the difference (55) vanishes! Since
Vn − V is a sum of zero-mean random variables, the Law of the Iterated Logarithm tells us

that the difference of rates above is of order O( log log n
n ) (not O(

√

log log n
n ) )! In particular,

the difference is o( log n
n ). Consequently R2 is eventually strictly less than R1, implying that

θ̃LMDL
n = θ∗ eventually w.p.1. Further, by using the complementary part of the Law of the

Iterated Logarithm for (Vn−V ), which says that the sum makes excursions outside an interval
of O( log log n

n ) infinitely often with probability 1, we have that θ̃LML
n fluctuates forever around

θ∗ even as it approaches it.
Figure 4 contains a simulation comparing the behavior of the lossy pseudo-estimators.

4.2 Bernoulli case

Consider an i.i.d. Bernoulli source with parameter p = Pr(X = 1). The class of reproduction
distributions we consider is the class of i.i.d. Bernoulli distributions (with parameter θ ∈
[0, 1]).

Just as we did in the case of Gaussian codes, we can explicitly compute the rate function
in this case using its characterization as the Legendre-Fenchel transform of the mean of the
log moment generating function. This yields

µθ ≡ expλθ =
−{(1 − 2D)θ2 − 2(p −D)θ + (p −D)} ±

√
∆

2θ(1 −D)(1 − θ)
(58)

where ∆ = [(p−D)(1 − θ)2 + (1 − p−D)θ2]2 + 4D(1 −D)θ2(1 − θ)2 (59)
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Figure 4: The dashed line denotes the pseudo-LML estimator and the solid line is the pseudo-
LMDL estimator. In this example, source variance=1, D = 0.1 and θ∗ = 0.949.

and

R(p, θ,D) = D log µθ − p log[θ + (1 − θ)µθ] − (1 − p) log[θµθ + 1 − θ] (60)

It is messy but straightforward to verify that θ∗ = p−D
1−2D for D < min p, 1 − p, and that

R(p,D) = HB(p) −HB(D), as we expect from the direct computation of the rate-distortion
function (see, e.g., [7]). This rate distortion function is plotted in Figure 5 (separately for
fixed p and fixed D), while Figure 6 plots θ∗ versus p. Note that for fixed D > 0, there
is a symmetric middle region where R(D) is positive (and lies below the Bernoulli entropy
function which represents the lossless rate), and this region shrinks as D increases.

Figure 6 reveals an interesting insight: as intuition would suggest, lossy compression typ-
ically involves producing encoded strings whose distribution is less random (has less entropy
or smaller lossless compression rate). In the Bernoulli context, this means that the optimal
reproduction parameter is closer to the nearer periphery (0 or 1) than the source parameter.
However, the gap between the source parameter and the optimal reproduction parameter
decreases as we approach p = 0.5 from either side, in such a way that θ∗ = 0.5 for p = 0.5.
Yet this does not mean that data from a Bernoulli(1

2 ) source cannot be compressed; indeed,
Figure 5 indicates that for a distortion level of 0.1, such a source has optimal compression
rate of 0.36 bits/symbol, which is significantly less than the optimal lossless compression rate
of 1 bit/symbol. This fact (of the gap vanishing) is what is responsible for the fact that θ∗

remains unique even for p = 0.5, since a gap would have implied two minimizers by symmetry.

Let us now investigate the behavior of the various lossy estimators for θ∗. As in the
second part of Example 1, we penalize outside the singleton set containing θ∗. Thus (48),
(49) and (50), which determine θ̃LMDL

n using just two real numbers, hold.

Using the formula (60) for rate obtained above, we have
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Figure 5: On the left is plotted the Bernoulli rate-distortion function for fixed source dis-
tribution p = 0.4 as the distortion level D varies. On the right is plotted the Bernoulli
rate-distortion function for fixed distortion level D = 0.1 as the source distribution p varies.

R(P̂Xn
1
, θ∗,D) = D log

(

D

1 −D

)

− p̂n log

(

p

1 −D

)

− (1 − p̂n) log

(

1 − p

1 −D

)

= HB(p̂n) −HB(D) +D(p̂n‖p)
(61)

which implies

R(P̂Xn
1
, θ∗,D) −R(P̂Xn

1
,D) = D(p̂n‖p) = O

(

log log n

n

)

eventually w.p.1 (62)

As in the second part of Example 1, the law of the iterated logarithm then yields the
dichotomy for the pseudo-estimators.

Figure 7 illustrates the behavior of the pseudo-LML and pseudo-LMDL estimators, when
the “preferred” set L is simply the singleton {θ∗} containing the R(D)-achieving output
distribution θ∗ = (p −D)/(1 − 2D). It is clear from repeated simulations that the pseudo-
LMDL estimator “hits and stays at” θ∗ quite fast (unlike the pseudo-LML estimator which
bounces around forever).

5 The LML/LMDL Dichotomy for i.i.d. finite-alphabet code-
books

5.1 The admissible class of sources

Suppose that the source data {Xn} taking values in a finite alphabet A of size m is generated
i.i.d. from a probability distribution on A. Let Σ = Θ parametrize the simplex of all
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Figure 6: The solid line denotes the optimal θ∗ for fixed distortion D = 0.1, while the dashed
line denotes the optimal θ∗ for fixed distortion D = 0 (which is just the parameter for the
source distribution).

i.i.d. probability measures on A = Â via the canonical parametrization that uses the first
m− 1 coordinates. Suppose the ρn are single-letter distortion functions, so that ρn(xn

1 , y
n
1 ) =

1
n

∑n
i=1 ρ(xi, yi). For clarity, we use Σ to denote the class of source distributions, and Θ

to denote the class of reproduction distributions, though they are the same class. Without
loss of generality, denote the m symbols in A by 1, 2, . . . ,m. A nested sequence of models
L1 ⊂ L2 ⊂ . . . ⊂ Ls ⊂ Θ and the associated complexity coefficient k(·) and penalty k(θ)c(n)
are set up as described in Section 2.3.

By the discussion in Example 4.3.1 in [10], we know that the LML estimator is consistent
in this setup, because the simplex of i.i.d. distributions is a Polish space. Further, the
discussions of Examples 4.3.5 and 4.3.6 in [10] show that the pseudo-LML estimator, the
pseudo-LMDL estimator and the LMDL estimator are all consistent estimators. We wish
to investigate the behaviour of these four estimators more closely and compare the LML
estimator (pseudo-LML estimator) against the LMDL estimator (pseudo-LMDL estimator).

The key to comparing the various estimators is to investigate the function that takes a
source distribution to its optimal reproduction distribution (assuming the latter is unique).
Let ηD be a function on the class of source distributions that takes each source distribution
to the optimal reproduction distribution. For convenience, first set R(Pσ, Qθ,D) = f(σ, θ),
so that η(σ) = arg minθ f(σ, θ) parametrizes ηD(Pσ). Note that we are using ηD to refer to
a map between spaces of probability distributions, while η refers to the corresponding map
between the parameter spaces. Since we are dealing with finite alphabets, Θ is compact, and
the continuity of f implies that a minimizer of f exists. Thus η is non-empty, though it can be
many-valued for some values of σ. The restriction of sources to the class S(D) in this section
is precisely to eliminate undesirable possibilities like a many-valued η. To set down what
restrictions on the source distribution are needed, we introduce the following Proposition.

Proposition 1. Let Σ0 ⊂ Σ be the set that parametrizes the class S(D) of sources. The func-
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Figure 7: The dashed line represents the pseudo-LML estimator, and the solid line is the
pseudo-LMDL estimator. Here p = .4, D = .1 and θ∗ = .375.

tion η : Σ0 → Θ given by η(σ) = arg minθ f(σ, θ) is well-defined and is C∞ in a neighborhood
of σ∗.

In order to prove Theorem 1, we need the following lemmas, which are an extension of
[17][Lemma 4].

Lemma 1. Let D > 0 and σ∗ ∈ Σ0. Then, the function ℓ(σ, θ) ≡ λ∗(Pσ , Qθ,D) is smooth
(or C∞) in both of its arguments, in a neighborhood of (σ∗, θ∗).

Proof. First, note that for finite alphabets and any λ < 0, Λ(Pσ , Qθ, λ) can be written out in
terms of the components of θ and σ using finite sums, and is clearly differentiable in λ and
θ an arbitrary number of times. Being linear in σ, it is also smooth in σ, though second and
higher derivatives are 0.

Define the function Ψ1 : Σ0 × int(Θ) × (−∞, 0) → R by

Ψ1(σ, θ, λ) = Λ′(Pσ , Qθ, λ) −D (63)

By the definition of ℓ(σ, θ) and setting ℓ∗ = ℓ(σ∗, θ∗), we have

Ψ1(σ, θ, ℓ(σ, θ)) = Ψ1(σ
∗, θ∗, ℓ∗) = 0 (64)

The smoothness of Λ noted above implies that Ψ1 is smooth in each of its arguments.
Also, Lemma 1 in [16] implies that Λ′′(P,Q, λ) > 0 provided Dmin(P,Q) < d1(P,Q). We

need to check whether this is true in our case. Since σ∗ ∈ Σ0 and Σ0 is open, there exists a
neighborhood of σ∗ in Σ0 on which Pσ has full support. Qθ has full support since it lies in
the interior of the simplex. This means that for σ in a neighborhood of σ∗, Dmin(Pσ, Qθ) = 0,
while d1(Pσ , Qθ) > 0 since ρ ≡ 0 is ruled out. Thus

Ψ′
1(σ, θ, λ) = Λ′′(Pσ , Qθ, λ) > 0 (65)

so that the Implicit Function Theorem can be invoked not only to show that ℓ(σ, θ) is well-
defined but that it is smooth in a neighborhood of (σ∗, θ∗) (by the smoothness of Ψ1). �
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Lemma 2. Let D > 0 and σ∗ ∈ Σ0. Then, the function f(σ, θ) ≡ R(Pσ, Qθ,D) is smooth
(or C∞) in both of its arguments, in a neighborhood of (σ∗, θ∗).

Proof. Define the function Ψ2 : Σ0 × int(Θ) × (0,∞) → R by

Ψ2(σ, θ,R) = R− ℓ(σ, θ)D + Λ(Pσ , Qθ, ℓ(σ, θ)) (66)

By the definition of the rate function R(P,Q,D), we have

Ψ2(σ, θ, f(σ, θ)) = Ψ2(σ
∗, θ∗, R(P,D)) = 0 (67)

Note that the local smoothness of ℓ(σ, θ) implies that Λx(Qθ, ℓ(σ, θ)) and consequently Λ(Pσ , Qθ, ℓ(σ, θ))
are locally smooth in σ and θ. Thus Ψ2 is smooth in a neighborhood of (σ∗, θ∗, R(P,D)) and
furthermore,

∂Ψ2(σ, θ,R)

∂R
= 1 6= 0 (68)

Hence by the Implicit Function Theorem, f(σ, θ) is not just well-defined but also smooth in
a neighborhood of (σ∗, θ∗) (by the smoothness of Ψ2). �

Proof of Proposition 1. The Proposition follows from repeated applications of the Implicit
Function Theorem starting with the basic fact of smoothness of Λ, and based on the obser-
vation that θ = η(σ) solves ∇θf(σ, θ) = 0.

Let W ⊂ Σ × Θ be a neighborhood of (σ∗, θ∗) on which f(σ, θ) is smooth. Consider the

function F : W → R|Â|−1 defined by

F (σ, θ) = ∇θf(σ, θ) (69)

Clearly F is smooth on W , and by definition of η and the fact that σ∗ ∈ Σ0 ensures that W
is an open subset of Σ × Θ (hence does not contain any boundary points), we have

F (σ, η(σ)) = F (σ∗, θ∗) = 0 (70)

Furthermore, since η(σ) minimizes f(σ, ·),

∇θF (σ∗, θ∗) = Hessθf(σ∗, θ∗) > 0 (71)

so that the Implicit Function Theorem not only assures us that η(σ) is well-defined but also
that is smooth in a neighborhood of σ∗ (by the smoothness of F ). �

In the rest of this section, we use this theorem to describe the behavior of various lossy
estimators.

5.2 Behavior of the pseudo-LML estimator

5.2.1 Parameters

Let P and P̂Xn
1

be parametrized by σ∗ and σ̂n respectively. Denoting by pk the probability

of the symbol k under P , we have pk = σ∗k for k = 1, . . . ,m− 1, and pm = 1 −∑m−1
i=1 pi.
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Lemma 3. For any probability distribution P on A, define the matrix

Ξ ≡ Ξ(m−1) =











p1(1 − p1) −p1p2 −p1p3 . . . −p1pm−1

−p1p2 p2(1 − p2) −p2p3 . . . −p2pm−1
...

...
. . .

...
−p1pm−1 −p2pm−1 . . . pm−1(1 − pm−1)











. (72)

If P is in the interior of the simplex P(A), then Ξ is non-singular.

Proof. Suppose pj 6= 0 for each j = 1, . . . ,m− 1, and also that 1−
∑

j pj 6= 0. Let us assume
Ξ is singular, i.e., Ξv = 0 for some v 6= 0, and then obtain a contradiction. For every i,

∑

j

Ξijvj = 0 ⇐⇒
∑

j 6=i

−pipjvj + (pi − p2
i )vi = 0

⇐⇒ pivi = pi

∑

j

pjvj

⇐⇒ vi =
∑

j

pjvj

(73)

where we used the fact that pi 6= 0 to obtain the last statement. Since the right-hand side
is a constant independent of the index, the eigenvector v must be a multiple of the constant
vector (1, . . . , 1). Using again the last display, this implies

∑

j pj = 1, which contradicts our
assumption. �

Remark 8. We conjecture that for the (m− 1)-dimensional matrix Ξ,

det(Ξ) = (1 −
m−1
∑

j=1

pj)
m−1
∏

j=1

pj =
m
∏

j=1

pj (74)

This is hard to prove by induction, and we have not been able to prove it by softer arguments.

For n large enough so that σ̂n is in a sufficiently small neighborhood of σ∗,

θ̃LML
n ≡ η(σ̂n) = η(σ∗) + (σ̂n − σ∗) · Γ +O(‖σ̂n − σ∗‖2) (75)

where we have denoted the matrix Dη(σ∗) by Γ for convenience.
Now

σ̂n − σ∗ =
1

n

n
∑

i=1

ζ(Xi) (76)

where the components of the function ζ : A→ [−1, 1]m−1 are defined by

ζk(x) = 1{x=k} − pk (k = 1, . . . ,m− 1) (77)

It is easy to check the following: E[ζk(X)] = 0 and E[ζk(X)]2 = pk(1 − pk) for each k =
1, . . . ,m − 1, and E[ζk(X)ζj(X)] = −pkpj for k 6= j. Thus, for each i = 1, . . . , n, the
covariance matrix of ζ(Xi) is the (m− 1) × (m− 1) matrix Ξ specified by (72).

To analyze the detailed almost-sure behavior of the first-order term σ̂n − σ∗, we use
Berning’s multivariate version of the Law of the Iterated Logarithm. This is restated below,
with slight notational changes for convenience.
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Fact 6. [6]If {Zn} are independent random vectors in Rp with EZn = 0 and Cov[Zn] = Ξn, if
for some positive constants {s2n}, s2n ↑ ∞, s2n+1/s

2
n → 1, ess sup |Zn| ≤ ǫnsn(log log s2n)−

1

2 for
some sequence ǫn → 0, and 1

s2
n
Σn

j=1Ξj → Ξ, then the a.s. limit set D of {(2s2n log log s2n)−
1

2 Σn
j=1Zj}

is KΞ, where KΞ is the unit ball of the space HΞ = {xΞ : x ∈ Rn} with respect to the norm
‖ · ‖Ξ defined by ‖xΞ‖Ξ = (xΞxt)

1

2 .

Recall that the source distribution is in the interior of the simplex, and so Ξ is non-
singular. Applying Fact 6 with s2n = n, noting that the boundedness and other conditions are

trivially satisfied, we arrive at the conclusion that the a.s. limit set of

{

(2n log log n)−
1

2 Σn
j=1Zj

}

,

where Zj = ζ(Xj), is the unit ball KΞ. Consequently, the a.s. limit set of

{
√

n

2 log log n
(σ̂n − σ∗) · Γ}

is the ellipsoid E = {u ∈ Rm−1 : u = v · Γ, v ∈ KΞ}.
The ellipsoid E has dimension less that m− 1 if and only if Γ is singular. In either case,

however, the boundary of E intersects the j-th coordinate axis in Rm−1 in exactly two points
±Ej (where Ej may equal 0 for the deficient dimensions). Equation (75) now implies

|[η(σ̂n) − η(σ∗)]j | ≤
√

2 log log n

n
Ej +O

(

log log n

n

)

eventually w.p.1 (78)

for each coordinate j.
If Γ is non-singular, we see below that the ellipsoid E must have full dimension. By the

definition of KΞ, ‖v‖2
Ξ = vΞ−1vt ≤ 1 since ‖v‖Ξ = ‖vΞ−1 · Ξ‖Ξ = (vΞ−1 · Ξ · (Ξ−1)tvt)

1

2 =
(vΞ−1vt)

1

2 using the fact that Ξ is non-singular and symmetric. Rewriting in terms of u
with v = u · Γ−1 yields uΓ−1Ξ−1(Γ−1)tut ≤ 1 as the defining condition of the required limit
set. Since P = Pσ∗ is in the interior of the simplex, the limit set of the sequence of vectors

{
√

n
2 log log n(σ̂n − σ∗) · Γ} is, w.p.1, the solid (m − 1)-dimensional ellipsoid E in Rm−1 given

by {u : uΦut ≤ 1}, where Φ = Γ−1Ξ−1(Γ−1)t. Since E is of full (that is, m − 1) dimension,
its boundary intersects the j-th coordinate axis in Rm−1 in exactly two points ±Ej (where
Ej 6= 0). Equation (75) now implies

|[η(σ̂n) − η(σ∗)]j | ≥
√

2 log log n

n
(Ej − ǫ) i.o. w.p.1 (79)

for each coordinate j.

5.2.2 Fluctuations

Let {Li} be a nested sequence of subsets of Θ. Suppose for some fixed q, the dimension of Lq

is strictly less than (m − 1) and Lq contains θ∗. This means that any ball around θ∗ in the
simplex will contain directions not in L (more precisely, if VΘ is the tangent space of Θ at θ∗

and VL is the tangent space of L at θ∗, then V c
L ∩ VΘ 6= φ). Then, if we change coordinates

in Θ so that one of the missing directions is along the first coordinate axis, we can use (79)
to get (with an obvious abuse of notation)

|(θ̃LML
n − θ∗)1| ≥

√

2 log log n

n
(E1 − ǫ) i.o. w.p.1 (80)

Thus the pseudo-LML estimator must forever make excursions outside of Lq. Of course,
this is true for Ls∗ in particular, which proves Theorem 4.
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5.2.3 Rates

It is instructive to compare not just the parameter values of Q∗ and the LML estimator but
also the associated rates.

Proposition 2. If l1(θ) = R(P̂Xn
1
, Qθ,D), then

l1(θ
∗) − l1(θ̃

LML

n ) ≤ C∗ log log n

n
eventually w.p.1 (81)

Remark 9. In fact, l1(θ
∗)− l1(θ̃

LML
n ) = Ω( log log n

n ), as can be seen from the first proof below.

First Proof. We will prove that there exist positive constants C1 and C2 such that

C1‖θ̃LML
n − θ∗‖2 ≤ R(P̂Xn

1
, Q∗,D) −R(P̂Xn

1
,D) ≤ C2‖θ̃LML

n − θ∗‖2. (82)

Then, the upper bound in (78) implies Proposition 2.
From Theorem 1, we know that f is C2 in θ if Pσ ∈ S(D). Hence expanding f in a Taylor

series in its second argument about η(σ̂n) = θ̃LML
n yields

f(σ̂n, θ
∗) =f(σ̂n, θ̃

LML
n ) + ∇θf(σ̂n, θ̃

LML
n ) · (θ∗ − θ̃LML

n )

+ 1
2(θ∗ − θ̃LML

n )TJ2(σ̂n)(θ∗ − θ̃LML
n ) +O(‖θ∗ − θ̃LML

n ‖)3
(83)

where the subscript denotes the variable with respect to which the derivatives are taken, and
J2(σ̂n) = Hessθ(f(σ̂n, θ̃

LML
n )).

θ̃LML
n lies in the interior of Θ for high enough n because consistency of the pseudo-

LML estimator implies that it is close to θ∗, and we know Q∗ is in the interior of the
simplex from the definition of S(D). Since θ̃LML

n also minimizes f(σ̂n, ·), ∇θf(σ̂n, θ̃
LML
n ) = 0.

Further, since Pσ ∈ S(D), we know that J2(σ̂n) is a positive-definite matrix and hence
invertible. Consequently, the quadratic form (θ∗− θ̃LML

n )TJ2(σ̂n)(θ∗− θ̃LML
n ) which represents

the J2(σ̂n)-induced Euclidean norm is equivalent to the canonical Euclidean norm (induced
by the identity matrix), and

4C1‖θ̃LML
n − θ∗‖2

≤ (θ∗ − θ̃LML
n )TJ2(σ̂n)(θ∗ − θ̃LML

n ) = ‖θ∗ − θ̃LML
n ‖2

J2(σ̂n)

≤ C2‖θ̃LML
n − θ∗‖2

(84)

for some positive constants C1 (the factor 4 is chosen for convenience) and C2.
Using (83) and (84), we now have

C1‖θ̃LML
n − θ∗‖2 ≤ 1

4
‖θ∗ − θ̃LML

n ‖2
J2(σ̂n)

≤ f(σ̂n, θ
∗) − f(σ̂n, θ̃

LML
n )

= R(P̂Xn
1
, Q∗,D) −R(P̂Xn

1
,D)

(85)

and

R(P̂Xn
1
, Q∗,D) −R(P̂Xn

1
,D) ≤ ‖θ∗ − θ̃LML

n ‖2
J2(σ̂n)

≤ C2‖θ̃LML
n − θ∗‖2

(86)

provided n is large enough so that the second-order term in (83) dominates over the higher-
order terms. �
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Second Proof. This alternative proof of Proposition 2 uses an important inequality relating
R(P,Q,D) and the rate-distortion function. Recall that the rate function can be written in
the form

R(P,Q,D) = inf
W

[I(X;Y ) +D(QY ‖Q)]

By choosing W to be the optimal joint distribution, we have I(X;Y ) = R(P,D) and QY =
Q∗. Thus, for any Q,

R(P,Q,D) ≤ R(P,D) +D(Q∗‖Q) (87)

This implies the following for the sequence of empirical source distributions (with Q in the
above set to Q∗ = ηD(P )):

R(P̂Xn
1
, Q∗,D) ≤ R(P̂Xn

1
,D) +D(ηD(P̂Xn

1
)‖ηD(P )) (88)

where the second term on the right is a measure of how different the optimal reproduction
distributions corresponding to the real and empirical source distributions are.

Recall that the relative entropy between two nearby distributions belonging to a paramet-
ric family of probability measures on an alphabet can be expanded in a Taylor series in which
the leading term is quadratic with a coefficient that depends on the Fisher information:

D(Pσ‖P ) = 1
2(σ − σ∗)TJ(σ∗)(σ − σ∗) +O(‖σ − σ∗‖3) (89)

This implies, for n large enough,

D(ηD(P̂Xn
1
)‖ηD(P )) ≤ (η(σ̂n) − η(σ∗))TJ(η(σ∗))(η(σ̂n) − η(σ∗))

≤ C5‖η(σ̂n) − η(σ∗)‖2
(90)

by the equivalence of Euclidean norms generated by quadratic forms involving non-singular
matrices, and using the fact that J(θ∗) is invertible since P ∈ S(D). By (75) and the fact
that |Ax| ≤ ‖A‖|x|, there exists a constant C4 such that

‖η(σ̂n) − η(σ∗)‖ ≤ C4‖σ̂n − σ∗‖ (91)

for n large enough. Plugging this into (88) and (90) gives

R(P̂Xn
1
, Q∗,D) −R(P̂Xn

1
,D) ≤ C5C4‖σ̂n − σ∗‖2 (92)

which provides an alternative demonstration of (81) and hence of the pseudo-LMDL part of
Theorem 2, since the squared norm is the sum of squares of the components and hence obeys
a scalar LIL. �

Remark 10. The second proof emphasizes the role of the multivariate LIL in proving The-
orem 4. Neither a scalar LIL nor a multivariate LIL which merely gave information about
specific limit points rather than specified the entire limit set would have sufficed to analyze
the pseudo-LML estimator satisfactorily, though as we saw above Proposition 2 (and hence
the pseudo-LMDL estimator) can be studied in a simple way not involving Berning’s LIL.
Indeed, suppose Γ = Dη(σ∗) is non-singular, then |Γ−1y| ≤ ‖Γ−1‖|y| ⇒ |Γx| ≥ 1

‖Γ−1‖ |x|, so

that (75) implies

C3‖σ̂n − σ∗‖ ≤ ‖η(σ̂n) − η(σ∗)‖ (93)

33



for n large enough. This can be combined with the lower bound of (85) to get

R(P̂Xn
1
, Q∗,D) −R(P̂Xn

1
,D) ≥ C1‖θ̃LML

n − θ∗‖2

≥ C1C3‖σ̂n − σ∗‖2
(94)

which, using a scalar LIL, would yield

R(P̂Xn
1
, Q∗,D) −R(P̂Xn

1
,D) ≥ C∗

log log n

n
> 0 i.o. w.p.1 (95)

for some C∗ > 0. In other words, this only proves the fluctuation property of the pseudo-LML
estimator when the simplest set Ls∗ containing θ∗ is exactly {θ∗}. It does indicate that θ̃LML

n

fluctuates around θ∗ for ever, but does not show that this never-ending fluctuation happens
in every possible direction, which is necessary to prove Theorem 5.

5.3 Behavior of the pseudo-LMDL estimator

Set

l1(θ) = R(P̂Xn
1
, Qθ,D),

l2(θ) = k(θ)c(n),

l(θ) = l1(θ) + l2(θ),

(96)

where the complexity coefficient k(θ) is defined as k(θ) = min{1 ≤ i ≤ s : θ ∈ Li} in terms
of the nested sequence of models. Recall that the pseudo-LMDL estimator is defined as
θ̃LMDL
n = arg minθ∈Θ l(θ). By Proposition 2, we have for any δ > 0,

l1(θ
∗) < l1(θ̃

LML
n ) + δc(n) eventually w.p.1. (97)

Since we will use a sample-path argument, let us fix δ ∈ (0, 1) and then fix our attention
on any realization for which (97) holds. For this realization, define the sequence of integers
{αn} by

αn = k(θ̃LML
n ) − k(θ∗). (98)

The sequence {αn} is the union of the subsequences defined by the index sets I− = {n : αn ≤
0} and I+ = {n : αn > 0}. When n ∈ I−, k(θ̃LML

n ) ≤ k(θ∗), and hence

k(θ̃LMDL
n ) ≤ k(θ∗), (99)

because the only way the LMDL estimator can improve on the LML estimator is through the
penalty function.

However, from the previous section, k(θ̃LML
n ) = m − 1 i.o. for almost every realization.

For the fixed realization of interest, this indicates that the index set I+ is non-empty, and this
is the case for which something remains to be proved. When n ∈ I+, we obtain a relationship
between l(θ∗) and l(θ̃LML

n ) using (97):

l(θ∗) = l1(θ
∗) + c(n)k(θ∗)

< l1(θ̃
LML
n ) + c(n)[k(θ∗) + δ]

=

[

l1(θ̃
LML
n ) + c(n)k(θ̃LML

n )

]

− c(n)[αn − δ]

⇒ l(θ∗) < l(θ̃LML
n ) − c(n)[αn − δ]

(100)
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Since, by definition, l(θ̃LMDL
n ) ≤ l(θ) for all θ ∈ Θ, we have, in fact, a relationship between

l(θ̃LMDL
n ) and l(θ̃LML

n ):

l(θ̃LMDL
n ) ≤ l(θ∗) < l(θ̃LML

n ) − c(n)[αn − δ] (101)

Now,

l2(θ̃
LMDL
n ) − l2(θ̃

LML
n ) = c(n)[k(θ̃LMDL

n ) − k(θ̃LML
n )]

<
[

l1(θ̃
LML
n ) − l1(θ̃

LML
n )

]

− c(n)[αn − δ]

≤ −c(n)[αn − δ]

(102)

using the fact that l1(θ̃
LML
n ) ≤ l1(θ) for all θ ∈ Θ. Thus

k(θ̃LMDL
n ) < k(θ̃LML

n ) − [αn − δ]. (103)

Since δ < 1 and k(·) must be an integer, we have shown that

k(θ̃LMDL
n ) ≤ k(θ̃LML

n ) − αn = k(θ∗). (104)

Combining (99) and (104), we have that k(θ̃LMDL
n ) ≤ k(θ∗) eventually along the fixed real-

ization, and hence along almost every realization.

Finally by the definition of k(·) and the fact that the sequence of sets is nested, we have

θ̃LMDL
n ∈ Lk(θ̃LMDL

n ) ⊂ Lk(θ∗). (105)

Hence, θ̃LMDL
n lies in Ls∗ , which proves Theorem 5.

5.4 The LMDL estimator

Observe that by Theorem 2,

1

n
|Ln(Q∗,Xn

1 )−Ln(Qθ̂LML
n

,Xn
1 )| = |R(P̂Xn

1
, Q∗,D) −R(P̂Xn

1
, Qθ̂LML

n
,D) +O

(

1

n

)

|

≤ |R(P̂Xn
1
, Q∗,D) −R(P̂Xn

1
, Qθ̃LML

n
,D)|+

|R(P̂Xn
1
, Qθ̃LML

n
,D) −R(P̂Xn

1
, Qθ̂LML

n
,D)| +O

(

1

n

)

≤ O

(

log log n

n

)

+D(Qθ̃LML
n

‖Qθ̂LML
n

) +O

(

1

n

)

(106)

where we used (81) to estimate the first term, and (87) to obtain the relative entropy bound.
To estimate the second term, we need the following lemma.

Lemma 4. Let g1(θ) and g2(θ) be two real-valued functions on Θ = Rm. Suppose g1 has a
unique minimizer denoted by θ1, and that supθ |g1 − g2| < ∆. If ∆ is small enough so that
g1(θ

′)− g1(θ1) > 2∆ for any local minimizer θ′ 6= θ1 of g1, and if g1 is C2 with non-singular
Hessian, then

‖θ1 − θ2‖2 ≤ (const.)∆ (107)
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Proof. Since g1 and g2 are at most ∆ apart, we have that the minimum value of g2 satisfies

g2(θ2) ≤ g2(θ1) ≤ g1(θ1) + ∆, (108)

where θ2 is any minimizer of g2. Note that

θ2 ∈ {θ : g2(θ) ≤ g1(θ1) + ∆}
⊂ {θ : g1(θ) − ∆ ≤ g1(θ1) + ∆}
= {θ : g1(θ) ≤ g1(θ1) + 2∆}
= Θallowed, say.

(109)

Since g1(θ
′) > g1(θ1) + 2∆ for every local minimizer θ′ 6= θ1, θ

′ /∈ Θallowed and the
continuity of g1 implies that g2 must achieve its minimum in a neighborhood of θ1 (because
if no local non-global minimum of g1 is close enough to g2(θ2), then neither is any point
between two adjacent local, non-global minima). It remains only to determine the size of
this neighborhood. We observe that for θ2 ∈ (θ1 − δ, θ1 + δ), g1 when Taylor expanded has a
quadratic leading term since its first derivative vanishes at the minimum:

g1(θ2) − g1(θ1) = 1
2 (θ2 − θ1)

T Hess(g1(θ1))(θ2 − θ1) +O(θ2 − θ1)
3. (110)

Since θ2 ∈ Θallowed, we need to choose δ small enough so that |g1(θ2) − g1(θ1)| < 2∆, which
can be done because g1 is continuous. Then,

2∆ ≥ 1
2 (θ2 − θ1)

T Hess(g1(θ1))(θ2 − θ1) ≥ C‖θ2 − θ1‖2 (111)

since in Euclidean space, a norm generated by a quadratic form involving a symmetric (in-
vertible) matrix is equivalent to the original norm with bounds given by the smallest and
largest eigenvalues. �

Let us apply Lemma 4 to the functions g1(θ) = 1
nL̃n(Qθ,X

n
1 ) = R(P̂Xn

1
, Qθ,D) + 1

2 log n

and g2(θ) = 1
nLn(Qθ,X

n
1 ). By Theorem 2, there exists C <∞ such that

sup
θ

|g1(θ) − g2(θ)| ≤
C

n
eventually w.p.1. (112)

Since P ∈ S(D), we also have P̂Xn
1
∈ S(D) for large enough n, and Lemma 2 tells us that

Hess(g1(θ1)) is not only well-defined but is positive-definite because g1 is minimized at θ1.
Furthermore the unique minimizer of g1 is θ̃LML

n . Thus, the conditions of Lemma 4 are
verified, and for any minimizer θ̂LML

n of g2 we have

‖θ̃LML
n − θ̂LML

n ‖2 = O

(

1

n

)

w.p.1. (113)

Combining this with (89) leads to

D(ηD(P̂Xn
1
)‖Qθ̂LML

n
) = O

(

1

n

)

w.p.1. (114)

Therefore, going back to (106), we have

1

n
|Ln(Q∗,Xn

1 ) − Ln(Qθ̂LML
n

,Xn
1 )| = O

(

log log n

n

)

eventually w.p.1. (115)

This is the equivalent of Proposition 2 for the LML estimator. Repeating the argument of
the previous section with the pseudo-lossy likelihood l1(θ) replaced by the lossy likelihood
l′1(θ) = Ln(Qθ,X

n
1 ) completes the proof of Theorem 6.
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6 Conclusion

We have used three kinds of length functions to characterize the performance of lossy codes.
These are:

1. the actual length of the codeword lenn(Xn
1 );

2. the idealized lossy codelength of the data given the coding distribution, or the lossy
likelihood of a coding distribution given the data, namely − logQn(B(Xn

1 ,D));

3. the idealized pseudo-lossy codelength of the data given the coding distribution, or the
pseudo-lossy likelihood of a coding distribution given the data, namely nR(P̂Xn

1
, Q,D).

In essence, much of the work is devoted to understanding the links between these various
notions of codelength and how we can use these links along with the successively greater
tractability of the last two notions to shed light on the problem of universal lossy coding.
The main contribution is the result that even for lossy compression, appropriately defined
MDL codes work better than codes corresponding to maximum likelihood estimators in the
sense that they choose the optimal model eventually. More generally, this work extends the
emerging statistically-motivated theoretical framework for lossy coding suggested by [17].

There are many problems that this work leaves open. This ranges from problems of
generalization, such as to non-finite alphabets or beyond the i.i.d. case (all of which involve
dealing with daunting technicalities), to conceptual problems, such as the question of whether
there is an analog of the Cramer-Rao bound for “lossy” estimators. The most important
open area, though, is the question of whether and how the principles discussed can be used
to construct practical codes.

A Proof of Theorem 3

Unlike for Theorem 2, we cannot just use the non-uniform version of Theorem 3 to prove
the uniform version, since we do not have explicit tractable bounds on the error term. How-
ever, the structure of the proof is similar to the non-uniform case, though some additional
ingredients like a uniform law of the iterated logarithm are required. A significantly more
intricate use of tools from the Vapnik-Chervonenkis theory should yield the theorem for
compact source alphabets (this would involve performing a series of increasingly fine finite
discretizations of the alphabet, using the finite alphabet result proved here, and justifying
the approximation via discretization using smoothness arguments); however we do not detail
that proof. It is not clear how to extend this to general alphabets like the real numbers.

The structure of the proof is as follows:

1. First we will show that for n large enough,

R(P,Qθ,D) −R(P̂Xn
1
, Qθ,D) +

1

n

n
∑

i=1

gθ(Xi) = inf
|κ|<δ

[

1

n

n
∑

i=1

{f(θ, κ,Xi) − f(θ, 0,Xi)}
]

(116)

where

f(θ, κ, a) ≡ Λa(Qθ, λθ + κ) − (λθ + κ)D (117)

2. We will then perform a Taylor expansion and a sequence of manipulations to reduce
Theorem 3 to a pair of propositions.

3. We will then prove these propositions, using a uniform law of the iterated logarithm.
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A.1 Part 1

We need the following lemmas.

Lemma A.1: If Qθ0 lies in the interior of the simplex P(Â) of i.i.d. probability measures on
finite alphabet Â, then:

(1) Dmin(θ0) = 0

(2) There exists δ > 0 such that D
(n)
min(θ) → Dmin(θ) uniformly w.p.1 for θ ∈ B(θ0, δ).

(3) If D > 0, then there exists δ > 0 such that λ
(n)
θ → λθ uniformly w.p.1 for θ ∈ B(θ0, δ).

Proof: Let

mθ(a) ≡ ess inf
Y ∼Qθ

ρ(a, Y ) = min
y∈supp(Qθ)

ρ(a, y) (118)

so that Dmin(θ) = EP [mθ(X)]. Since Qθ0 lies in the interior of P(A), supp(Qθ0) = A which
implies mθ0(a) = 0 for each a ∈ A. Thus, irrespective of what P is, we have Dmin(θ0) = 0.

If we choose δ so that the neighborhood B(θ0, δ) lies in the interior of the simplex, then

by the above, we have D
(n)
min(θ) = Dmin(θ) = 0 for every n and every θ in this neighborhood.

Thus the uniform convergence in (2) is trivial.
It is evident that we can pick δ > 0 so that D > Dmin(θ) = 0 for all θ in the neighborhood

B(θ0, δ). Thus the definitions of λ
(n)
θ and λθ make sense. Now suppose

lim sup
n→∞

sup
θ∈B(θ0,δ)

(λ
(n)
θ − λθ) ≥ ǫ (119)

Then there exists a subsequence nk along which supθ∈B(θ0,δ)(λ
(n)
θ − λθ) ≥ ǫ

2 Focussing on

this subsequence, we choose θ so that (λ
(n)
θ − λθ) ≥ ǫ

4 . Now,

D = lim inf
n→∞

Λ′(P̂Xn
1
, Qθ, λ

(n)
θ )

≤ lim sup
n→∞

Λ′(P̂Xn
1
, Qθ, λθ −

ǫ

4
)

= lim
n→∞

1

n

n
∑

i=1

Λ′
Xi

(Qθ, λθ −
ǫ

4
)

= Λ′(Qθ, λθ −
ǫ

4
)

< Λ′(Qθ, λθ) = D

which shows that (119) leads to a contradiction. Similarly, the assumption

lim inf
n→∞

inf
θ∈B(θ0,δ)

(λ
(n)
θ − λθ) ≤ ǫ (120)

also leads to a contradiction. Together, these prove the lemma.

ChooseN = N(X∞
1 , δ) such that |λ(n)

θ −λθ| < δ for every n > N and for every θ ∈ B(θ0, δ).
By Lemma A.1, we know that N <∞ w.p.1. Using the definitions of R and gθ, we can rewrite
the LHS of (116) for n > N as
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[Λ∗(P,Qθ,D) − Λ∗(P̂Xn
1
, Qθ,D)] + [Λ(P,Qθ, λθ) − Λ(P̂Xn

1
, Qθ, λθ)]

=(a) λθD − Λ(P,Qθ, λθ) − sup
κ∈(−δ,δ)

[(λθ + κ)D − Λ(P̂Xn
1
, Qθ, λθ + κ)]

+ Λ(P,Qθ, λθ) − Λ(P̂Xn
1
, Qθ, λθ)

= inf
|κ|<δ

−[(λθ + κ)D − Λ(P̂Xn
1
, Qθ, λθ + κ)] + λθD − Λ(P̂Xn

1
, Qθ, λθ)

= inf
|κ|<δ

[

1

n

n
∑

i=1

{f(θ, κ,Xi) − f(θ, 0,Xi)}
]

(121)

which proves (116). Note that in the equality (a), the restriction of the supremum in the
definition of R(P̂Xn

1
, Qθ,D) to the small interval is valid for n > N(ω) for a.s-ω. We are also

using the fact here that Λ(P̂Xn
1
, Qθ, λθ) = 1

n

∑n
i=1 ΛXi(Qθ, λθ), which is a consequence of the

definitions.

A.2 Part 2

Now, by Taylor’s theorem, for some ψn(θ, κ) between −κ and κ,
[

1

n

n
∑

i=1

{f(θ, κ,Xi) − f(θ, 0,Xi)}
]

= κAn(θ) +
κ2

2
Bn(θ, ψn(θ, κ)) (122)

where, if we use ′ to denote differentiation with respect to λ,

An(θ) ≡ 1

n

n
∑

i=1

ζ(θ,Xi) (123)

ζ(θ, a) ≡ ∂

∂κ

∣

∣

∣

∣

κ=0

f(θ, κ, a) = Λ′
a(Qθ, λθ) −D (124)

Bn(θ, γ) ≡ 1

n

n
∑

i=1

∂2

∂κ2

∣

∣

∣

∣

κ=γ

f(θ, κ, a) =
1

n

n
∑

i=1

Λ′′
a(Qθ, λθ + γ) (125)

By combining (116) and (122), it is clear that to prove Proposition 2, it suffices to show
that

sup
θ

∣

∣

∣

∣

inf
|κ|<δ

[

κAn(θ) +
κ2

2
Bn(θ, ψn(θ, κ))

] ∣

∣

∣

∣

= O(
log log n

n
) (126)

Note that since the expression in square brackets is 0 for κ = 0, the infimum must necessarily
be non-positive. In other words, we only need to prove a one-sided version of (126).

The following simple estimate using completion-by-squares is useful:

κAn(θ) +
κ2

2
Bn(θ, ψn(θ, κ))

=

(
√

Bn(θ, ψn(θ, κ))

2
κ+

An
√

2Bn(θ, ψn(θ, κ))

)2

− A2
n

2Bn(θ, ψn(θ, κ))

≥ − A2
n

2Bn(θ, ψn(θ, κ))

(127)
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This estimate implies

inf
|κ|<δ

[

κAn(θ) +
κ2

2
Bn(θ, ψn(θ, κ))

]

≥ − A2
n

2 inf |κ|<δ Bn(θ, κ)
(128)

since we know that |ψn(θ, κ)| < δ.

Combining (126) and (128) and noting the comment after the former, we see that to prove
Proposition 2, it is enough to show that for n large enough and for some constant C < ∞
independent of θ,

sup
θ∈B(θ∗,δ′)

A2
n

2 inf |κ|<δ Bn(θ, κ)
≤ C log log n

n
(129)

or equivalently

sup
θ∈B(θ∗,δ′)

( nA2
n

log log n)

2(inf |κ|<δ Bn(θ, κ))
≤ C (130)

To show this, it is sufficient to prove the following 2 statements:

Proposition A.1:

lim sup
n→∞

sup
θ∈B(θ∗,δ′)

nA2
n

log log n
<∞ w.p.1 (131)

Proposition A.2:

lim inf
n→∞

inf
θ∈B(θ∗,δ′)

inf
|κ|<δ

Bn(θ, κ) > 0 w.p.1 (132)

A.3 Part 3

We need the following lemmas.

Lemma A.2: (Properties of ζ(·, ·)) If Â is finite and the distortion measure ρ is bounded,

1. The collection of functions F = {ζ(θ, ·) : θ ∈ B(θ∗, δ′)} is a class of measurable functions
from A to R. Also, ζ(θ,X) is a real-valued random variable with mean 0 for any θ.

2. For fixed x ∈ A, ζ(θ, x) is a continuous function of θ.

3. F forms a bounded separable subset of L2(A,P ).

4. Define S(x) = supθ∈B(θ∗,δ′) |ζ(θ, x)| and L(z) = log(max(z, e)). If A is finite, then S(X)
is a bounded random variable, and

E

[

S2(X)

LLS(X)

]

<∞ (133)

Proof:
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1. Recall

ζ(θ, a) =
∂

∂λ
|λθ

(logEθ[e
λρ(a,Y )]) −D =

Eθ[ρ(a, Y )eλθρ(a,Y )]

Eθ[eλθρ(a,Y )]
−D (134)

where the interchange of derivative and expectation was permissible because the finite-
ness of the alphabet causes Eθ to be just a weighted sum. Since ρ is bounded, all the
summands in the numerator are finite, while those in the denominator are positive.
Hence ζ is a finite-valued function.

For ζ(θ,X) to be a random variable, we need ζ(θ, ·) to be a measurable function.

To see that ζ(θ,X) has mean zero, we merely note that as before we can interchange
derivative and expectation, so

EP [ζ(θ,X)] =
∂

∂λ
EP [ΛX(Qθ, λθ)] −D =

∂

∂λ
Λ(P,Qθ, λθ) −D = 0

2. h(λ, θ) = ∂
∂λΛx(Qθ, λ) is a continuous function of both θ and λ. Noting that ζ(θ, x) =

h(λθ, θ) −D, it only remains to observe:

|h(λθ, θ) − h(λθ′ , θ
′)| ≤ |h(λθ, θ) − h(λθ′ , θ)| + |h(λθ′ , θ) − h(λθ′ , θ

′)|

Q.E.D.

3. The bounded distortion function implies that dk(P,Q) is bounded for any P and Q.
Consequently,

d̄2 ≡ sup
θ∈B(θ∗,δ′)

EP [ζ(θ,X)]2 <∞

and thus F is bounded in L2(A,P ). F is also a separable subset since continuity of
ζ(θ, x) in θ implies that considering only rational θ yields a dense subclass.

4. Note that

ζ(θ, a) = Λ′
a(Qθ, λθ) −D ∈ [Dmin(a, θ) −D,Dav(a, θ) −D]

if we define Dmin(a, θ) = Dmin(1a, Qθ) and Dav(a, θ) = Dav(1a, Qθ), and so ζ(·, a)
is bounded. Further, by continuity of the bounds in θ, and the fact that S(·) is the
supremum of ζ(θ, ·) over a ball of θ’s that is contained in a compact set in Euclidean
space, it is clear that S(a) is a finite number for each a. Finiteness of A implies that
S(·) is a bounded function. This, together with the fact that LLS(x) ≥ 1 by definition,
yields (43).

Lemma A.3: If A is finite, F is a countably determined Vapnik-Chervonenkis graph class.

Proof. Consider the set of subgraphs of F. Each subgraph is a point-subset of a set of |A| = m
lines, namely A × R. We need to show that for some j, NO j-element subset of A × R is
shattered by the subgraph class of F.

First we note that by the continuity of ζ (Lemma A.2), the extremal points of the sub-
graphs on each of the m lines are continuous in θ; thus they populate an interval on the
real line. Let j = m+ 1, so that at least one line has two points of the set to be shattered.
Consider this line. If the 2 points lie on the same side of 0, then the one farther away cannot
be isolated by any subgraph. If they lie on opposite sides of 0, the pair set cannot be isolated
by any subgraph. �
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Proof of Proposition A.1: From Lemmas A.2 and A.3, we see that F satisfies the conditions
of Alexander and Talagrand, and thus a uniform law of the iterated logarithm holds for the
i.i.d.variables ζ(θ,X). �

Proof of Proposition A.2:

lim inf
n→∞

inf
θ∈B(θ∗,δ′)

inf
|κ|<δ

Bn(θ, κ) ≥ lim inf
n→∞

1

n

n
∑

i=1

{

inf
θ∈B(θ∗,δ′)

inf
|κ|<δ

Λ′′
Xi

(Qθ, λθ + κ)

}

= EP

[

inf
θ∈B(θ∗,δ′)

inf
|κ|<δ

Λ′′
Xi

(Qθ, λθ + κ)

]

w.p.1

(135)

where we used Birkhoff’s ergodic theorem. We want to show that this is positive if we make
δ and δ′ small enough. But this follows from continuity of Λ′′

Xi
(Qθ, λθ + κ) in θ and κ (see

Lemma A.2). �

B Connections to the Method of Types

B.1 Background

In a series of papers ([35], [32], [33]), Yang, Zhang and Wei pursued the use of the method of
types to study lossy data compression with known and unknown statistics (the latter referring
to the analysis of universal lossy codes). This appendix uses their comprehensive framework
to make some comments on second-order properties of the lossy likelihood (cf., Section 3).

First, we outline the notation needed for the rest of this section. If M = {e1, ..., em}, then
t ∈ P(M) is an n-type if t(e) ∈ {0, 1

n ,
2
n , ..., 1} for each e ∈M . The set of all n-types of M is

denoted Tn(M).
The type of a string zn

1 ∈Mn is t(zn
1 ) = (t(zn

1 , e1), t(z
n
1 , e2), ..., t(z

n
1 , em)), where t(zn

1 , ei) =
1
n |{j : zj = ei}| is the fraction of entries in zn

1 at which ei occurs. The type class of a type
t ∈ Tn(M) is the set of strings

T n
M (t) = {zn

1 ∈Mn : t(zn
1 ) = t} (136)

If t(ei) > 0 for every ei ∈M , the following facts hold:

log |T n
M (t)| = nH(t) − m− 1

2
log n+O(1)

− log pn(T n
M (t)) = nD(t‖p) +

m− 1

2
log n+O(1)

(137)

where the O(1) term in both expressions can be uniformly bounded over a set of types whose
components are uniformly bounded away from 0.

With these basic notions, the theory of lossy data compression for finite alphabets can
be cast in the language of types. Recall that the source alphabet is denoted A and the
reproduction alphabet by Â, and that for any xn

1 ∈ An, we defined B(xn
1 ,D) = {yn

1 ∈ Ân :
ρn(xn

1 , y
n
1 ) ≤ D}. The main point of difference between the papers cited above and the way in

which we use types is that we study distortion balls consisting of strings on the reproduction
alphabet, whereas [35], [32] and [33] study distortion balls consisting of strings on the source
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alphabet. In the rest of this appendix, we use t to denote a probability distribution on A,
r to denote a probability distribution on Â, and s to denote a probability distribution on
A× Â.

For r ∈ Tn(Â), define

B(xn
1 , r,D) = B(xn

1 ,D) ∩ T n
Y (r) (138)

Since we are using a single-letter distortion function, symmetry implies that the cardinality
of this set of strings depends only on t(xn

1 ); thus we define

Fn(t, r,D) = |B(xn
1 , r,D)|, where xn

1 ∈ T n
X(t) (139)

As in [35], let the “upper joint entropy” and the “lower mutual information” be defined by

Hu(t, r,D) = sup
s∈S(t,r,D)

H(s) (140)

and

Iℓ(t, r,D) = inf
s∈S(t,r,D)

I(t; r) = H(t) +H(r) −Hu(t, r,D) (141)

where

S(t, r,D) = {s ∈ P(A× Â) : Esρ(X,Y ) ≤ D, and s has t and r as its marginals } (142)

Then, following the computations done in [35] and the refinements of the same in [36], it is
easy to see the following result.

Theorem B.1: If K = |Â|, then for sufficiently large n, and for all (t, r,D) in a neighborhood
of (t0, r0,D0) such that t and r are n-types,

logFn(t, r,D) = nHu(t, r,D) − nH(t) − K

2
log n+O(1) (143)

Also,

− log qn(B(xn
1 , r,D)) = nD(r‖q) + nIℓ(t, r,D) +

K

2
log n+O(1) (144)

where xn
1 ∈ T n

X(t), and the O(1) error term depends on r and t but not on q.

B.2 The second-order generalized AEP using types

Having stated Theorem B.1, we can now use rough heuristic arguments to obtain the second-
order generalized AEP. While these arguments can be made rigorous, we do not describe the
laborious computations that would entail since this section merely provides an alternative
proof for a result that has already been rigorously proven in Section 3.

According to Theorem B.1, qn(B(Xn
1 , r,D)) = e−nf(r), where

f(r) = D(r‖q) + Iℓ(P̂Xn
1
, r,D) +

K log n

2n
+O

(

1

n

)

(145)
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Thus we have

qn(B(xn
1 ,D)) = Σr∈Tn(Â)e

−nf(r)

≈ nK−1

∫

r∈P(Â)
e−nf(r)dr

≈ nK−1e−nf(r̂)

(146)

where we approximated the sum by an integral, and then used Laplace’s method of integration
to estimate the value of the integral. Here, r̂ is the minimizer of f(r), which is O( 1

n) close to
what is known as the “favorite type” (assuming f is differentiable and using Proposition 4).
Since the error is irrelevant for our approximate computation, we simply use r̂ to denote the
favorite type itself henceforth. The favorite type- which represents the empirical probability
distribution of the first codeword in the random codebook that matches the data- is defined
and studied in [34]. It is a fascinating object, since iteratively finding favorite types results
in identifying the optimal Q∗ because of Blahut-Arimoto-type convexity considerations. It
is thus satisfying to see the favorite type make an appearance in these computations. Note
that r̂ depends on q, since it is the minimizer of a functional in which q is a parameter.

Now,

− log qn(B(Xn
1 ,D)) ≈ nf(r̂) − (K − 1) log n

= nD(r̂‖q) + nIℓ(P̂Xn
1
, r̂,D) +

(

1 − K

2

)

log n+O(1)
(147)

But from [34],

D(r̂‖q) + Iℓ(p, r̂,D) = R(p, q,D) (148)

so that (147) can be rewritten as

− log qn(B(Xn
1 ,D)) ≈ R(P̂Xn

1
, q,D) +

(

1 − K

2

)

log n+O(1) (149)

which would be precisely the same as Proposition 1 if the coefficient of the log n term were
1
2 instead of (1 − K

2 )! Note that the error arose because of the rough approximation made
in (146). If that calculation were done very carefully, one ought to get an exponent of K−1

2
there and consequently recover Proposition 1 exactly here.

To obtain the full second-order generalized AEP using the method of types, one needs
to carry out a Taylor expansion of Iℓ(P̂Xn

1
, r̂,D) in its first variable about p. (This can be

performed since Lemma 2 in [35] indicates that Iℓ is at least second-order differentiable.)
Then a simple observation based on (148) yields the second-order generalized AEP.

C Remarks on Asymptotic Normality

In the usual setting of parametric estimation, a large variety of estimators are asymptoti-
cally normally distributed about the true value of the parameter. Indeed, under regularity
conditions, the maximum likelihood estimator (MLE) is not only asymptotically normal but
efficient, in the sense that the limiting variance is given by the inverse Fisher information
and is optimal according to the Cramér-Rao bound. A natural, interesting question in our
framework for lossy compression is whether the LML estimator has any such properties, and
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what they mean. In this Appendix, the classical approach to proving asymptotic normality
of the MLE, (see, e.g., [19]) is examined in the context of lossy estimators; this indicates the
kind of problems that crop up in extending the analogy.

The classical method is based on Taylor’s theorem assuming smoothness of the likelihood
function. Suppose l(θ) = l(θ|Xn

1 ) denotes either the lossy likelihood function or the pseudo-
lossy likelihood function. Let θn denote the maximizer of l(θ)– this is θ̂LML

n when l is the
lossy likelihood and θ̃LML

n when l is the pseudo-lossy likelihood.
Expanding ∇θl(θn) in a Taylor series about the optimal parameter θ∗ yields

∇θl(θn) = ∇θl(θ
∗) + Hessθl(θ

∗) · (θn − θ∗) + 1
2 (θn − θ∗)T · ∂

3l(θ̄n)

∂θ3
· (θn − θ∗), (150)

where θ̄n lies between θn and θ∗. Assuming that the optimal θ∗ is in the interior of Θ, the
derivative of l(θ) at the point where it achieves its maximum (namely, θn) must be 0. Thus
we can write:

√
n(θn − θ∗) =

[

− 1

n
Hessθl(θ

∗) − 1

2n
(θn − θ∗)T · ∂

3l(θ̃n)

∂θ3

]−1

·
[

1√
n
∇θl(θ

∗)

]

. (151)

Guided by the proof for the lossless MLE, we would hope to prove that each of these
terms converges in an appropriate sense, by using the second-order properties of l(θ), and
the consistency results for the lossy estimators. If Q∗ = Qθ∗ is in the interior of the simplex,
and if (1) can be validly differentiated term-by-term with respect to θ, with the error terms
remaining asymptotically insignificant,

1√
n
∇θl(θ

∗) =
√
n∇θ

∣

∣

∣

∣

θ∗

{

− 1

n
logQn

θ (B(Xn
1 ,D))

}

=
1√
n

n
∑

i=1

∇θ gθ∗(Xi) +
log n

2
√
n

+O

(

log log n√
n

) (152)

The first term on the right is a normalized sum of i.i.d.random vectors, which have mean
0 since the finiteness of A justifies the interchange of derivative and expectation. It there-
fore converges weakly to a multivariate normal with covariance matrix J1(θ) given by the
covariance matrix of ∇θ|θ∗gθ(X):

J1(θ) = CovP

[

∂

∂θi
gθ(X),

∂

∂θj
gθ(X)

]

. (153)

The other terms are lower order and converge to 0 w.p.1, so that

1√
n
∇θl(θ

∗) → N
(

0, J1(θ
)

. (154)

(The above is valid when l(θ) is the lossy likelihood, but the result is unchanged when it is
the pseudo-lossy likelihood, since only the less significant terms that converge to 0 w.p.1 are
different.)

Formally differentiating the second-order lossy AEP again,

1

n
Hessθl(θ

∗) = Hessθ

∣

∣

∣

∣

θ∗

[

R(P,Qθ,D) +
1

n

n
∑

i=1

gθ(Xi) + o(1)

]

→ Hessθ R(P,Qθ∗ ,D)

=: J2(θ
∗)

(155)
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where the convergence is w.p.1. The boundedness in probability of the norm of the third
derivative tensor term in (151) would follow similarly.

Thus, under the assumption that the expansion (1) can be differentiated thrice term-by-
term in such a way that the error term remains o( log n

n ), the LML estimator is asymptotically
normal around the optimal θ∗, and furthermore the covariance matrix of the limiting normal is
J−1

2 J1(J
−1
2 )T (with a similar result for the pseudo-LML estimator). However, this assumption

is a major problem, since we know very little about the error term. Although the left-hand
side of (126) in Appendix A is an explicit expression for the error term, it is opaque and
it is unclear how to differentiate it. All that is explicitly known about the error term is its
order, which does not say anything about the order of its derivatives. To see this, consider
the sequence of functions fn(x) = sinnx log log n

n which is O( log log n
n ) (and hence converges to

0 quite rapidly) but whose derivatives are unbounded as n increases.
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