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1 Introduction

A neuron can be conceptualized as performing a function on its inputs. This stimulus-
response function characterizes “what the neuron does” and is the main object of interest
for cellular-level neuroscience. Automated methods for discovering certain properties of
stimulus-response functions have many advantages over traditional methods [5]. They
can perform more exhaustive searches, use less-biased inputs and have tighter feedback
loops for online, adaptive analysis. However, automated methods require many stimulus
presentations, often many more than are feasible for a given physiology experiment.
Finding ways to reduce the number of stimulus presentations is crucial for increasing the
power and scope of these important techniques. We believe that one way to do this is to
take advantage of the statistics of natural images.

Neurons in V1 appear to be tuned to the specific statistical properties of natural
images. For example, a variety of techniques like sparse coding [13, 7], independent com-
ponent analysis (ICA) [1, 8] and slow feature analysis (SFA) [17, 2], when applied to
natural images, yield response properties strikingly similar to both simple and complex
cells in V1. That neurons are tuned to natural inputs makes sense from both an evolu-
tionary perspective and from a developmental perspective. We can use this knowledge
to more efficiently probe the response properties of visual neurons.

A simple thought experiment partially illustrates our idea. Natural images can be
significantly compressed using algorithms like JPEG without suffering any noticeable
loss in quality. This suggests that neurons in the visual cortex ignore certain types of
variation in images. If we want to somehow search for the stimulus that makes a neuron
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respond the strongest, then it seems reasonable to ignore these same types of variation.
This constrains our search and makes it more efficient.

Here we focus on two particular types of analysis. The first is designed to identify
the optimal stimuli for a neuron, that is, to find the maximizers of a neuron’s stimulus-
response function. The second attempts to approximate the entire stimulus-response
function by using an appropriate parametric model, like linear or quadratic. We briefly
describe each method and present some preliminary simulation results.

2 Stimulus Optimization

The goal is to find the input that maximizes the response of a given neuron using an
adaptive, online search algorithm. Two basic methods are described in Földiák (2001;
area V1, anesthetized monkey) [5] and Földiák et al. (2003; area STSa, awake monkey)
[6]. In both cases they demonstrate the feasibility of these techniques in physiology ex-
periments. We propose to increase the efficiency and thereby the utility of these methods.
Here we will focus on the method in Földiák (2001).

2.1 Gradient ascent

The basic idea is to do gradient ascent (“hill-climbing”) on the stimulus-response function.
A stimulus x(t) is presented on trial t and the neural response y(t) is recorded. Now we
update the stimulus by moving it in the direction of the response gradient. This gives a
new stimulus x(t + 1), based on the previous, that should yield a higher response from
the neuron. Repeatedly updating in this way allows us to climb the stimulus-response
function until we find the optimal stimulus.

Of course, there are many caveats. The main problem is how to find the response
gradient. We conceptualize the response y to the stimulus x as a noisy version of some
ideal or mean response f(x). The function f is the stimulus-response function of the
neuron. We want to discover the gradient vector ∇f(x) of f at x. This can be done
using a block of stimulus presentations, each of which is the original x plus noise. The
gradient is (to a first approximation) proportional to the covariance of the noise and the
response [5]. More details can be found in the Appendix.

The basic experimental design is thus a series of blocks of trials. Within each block
the baseline stimulus is held constant and the animal is presented noisy versions of it.
At the end of a block, the neural response gradient is estimated. Then the baseline
stimulus is updated in the direction of the gradient before moving to the next block of
trials. Because a block of trials are needed for each update of the stimulus, this method
requires a large number of total trials for a given experiment. The computations can be
carried out more or less instantaneously with a modern desktop computer and should
add no further constraints on the time course of an experiment.

2.2 Dimensionality reduction

We can reduce the number of trials by reducing the dimensionality of the stimulus space.
An arbitrary dimensionality reduction will strongly bias our search for the optimal stim-
ulus. By using the properties of natural images to reduce the dimensionality in an
intelligent way, however, we should be able to bias the search toward the optimum and
not away from it.
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One of the simplest types of dimensionality reduction is principal component analysis
(PCA). Using a collection of natural image patches (16 × 16 pixels), we estimated the
first 10 principal components. The gradient ascent method can be applied in this 10-
dimensional subspace of principal components or in the original 256-dimensional pixel
space. We compared the two methods in a simulation study.

In the first experiment we simulated the response of a V1 complex cell as a quadratic
function of the pixel input, followed by a monotonic nonlinearity, followed by Poisson
noise with this rate. That is, the mean of the Poisson observation was f(xT Ax+xT B+C),
where f(z) = 10 exp(z/2)/(1 + exp(z/2)). The parameters A, B and C of the quadratic
were fit using slow feature analysis (SFA) trained on natural images. SFA produces
cells with many of the properties of V1 complex cells including phase invariance, active
inhibition and direction selectivity [2]. The form and parameters of f were chosen by
hand.

Figure 1 shows three different full-dimensional searches for the optimal stimulus. This
is the search that was used in Földiák (2001). Each graph shows the mean response of
the neuron to the baseline image over 50 blocks. The response is normalized between 0
and 1 where 0 is the minimum possible mean response and 1 is the maximum possible
mean response. (These values were obtained numerically using A, B and C.) The first
graph uses 10 trials per block to estimate the response gradient. The second uses 25
and the third uses 50. In each case the search was started from the same random image
patch. Beside each graph is the final estimate of the optimal stimulus.

For comparison, Figure 2 shows three different reduced-dimensional searches. The
starting point and block structures are identical. Notice that the reduced-dimensional
search performs better, especially when using only a few trials per block. Notice also
that the three different estimates of the optimal response vary somewhat even though
the response has been nearly maximized. This is because the complex cell shows some
invariance.

The main quantities for comparison in Figures 1 and 2 are how quickly and how close
the responses approach the maximal response. The images of the maximizing stimuli
are somewhat misleading. Projecting the noisy stimuli for the full-dimensional search
onto 10-dimensional PCA space will produce smooth, edge-like stimuli. In the case of 50
trials per block, where the full-dimensional search closely approached the maximum, the
10-dimensional projection of the final estimate looks similar to the estimates from the
reduced-dimensional search.

To further illustrate how this method behaves with invariance, we created an artifi-
cial neuron that responds to a T-junction and is invariant to rotation. The cell returns
the maximum of 8 linear filters, each of which looks like a T-junction but at a different
rotation. (As before, this is followed by a non-linearity and Poisson noise.) Applying the
method using 3 different random starting points shows some of the different maximizing
stimuli. Figure 3 shows the method using all 256 pixel dimensions. Figure 4 shows the
same thing using the first 25 principal components. In each case we used 100 trials per
block. This cell responds in a complicated way to fine features in the input. Because
of this, we needed more principal components and more trials per block to get good
performance. Unlike the previous example, projecting the stimuli found by the full di-
mensional search onto the first 25 principal components does not typically show anything
resembling a T.
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2.3 Research directions

These methods open up several exciting areas of research. One line of research focuses on
further efficiency improvements. PCA is perhaps the simplest dimensionality reduction
technique. Other bases like wavelets or curvelets [3] may work better in practice. The
hierarchical nature of these bases opens up the possibility of coarse-to-fine searches which
have the potential of dramatically improving efficiency. There may also be room for
improvement in the gradient ascent method itself. For example, adjusting the step size
and the number of trials per block in an adaptive way seem like useful ways to hone in
on the optimal stimuli.

Another line of research focuses on modifications of the technique. These methods
can be easily altered to search for stimuli other than the optimal one. For example, in a
cell that shows baseline firing, we can search for the least-optimal stimulus, that is, the
stimulus that inhibits the cell the most. We can also add time as an input dimension
and look for optimal spatio-temporal stimuli. One experiment that particularly interests
us involves invariance. We would first use gradient ascent to find the optimal stimulus.
A simple modification of the method would then allow us to vary the baseline stimulus
in the direction of least response variation. This would map out what might be called an
invariance ridge for the cell. Other invariance properties could be explored in a similar
manner.

A further avenue for investigation is where the methods are applied. V1 is an obvious
choice, but the methods should be applicable to higher levels of visual cortex, like infe-
rior temporal cortex (IT). Földiák et al. (2003) have demonstrated that online, adaptive
stimulus presentation is possible even in higher levels of visual cortex. It should also
be possible to apply these methods in auditory cortex, using auditory stimuli. These
methods are even applicable for computational vision. Already algorithms like SFA are
producing “neurons” whose response characteristics are difficult to determine and vi-
sualize. These methods can be immediately applied to the cells produced by complex
computational vision algorithms in order to gain understanding about how these algo-
rithms perform.

3 Stimulus-Response Function Approximation

The goal of our second approach is to find not just the maxima, but the entire stimulus-
response function. This is impossible for arbitrary functions, but perhaps we can find a
good fit of the true stimulus-response function within some restricted parametric class.

A simple example is the linear-nonlinear-Poisson (LNP) model class, where a neuron’s
response function is characterized as a linear function of its inputs, followed by a nonlinear
function. The output of the nonlinear function becomes the instantaneous firing rate of
the neuron, where the neuron’s firing is modeled as an inhomogeneous Poisson process.
The goal is to estimate the linear function and the nonlinear function given the input
stimulus and the output spiking process. A variety of techniques have been developed to
address this problem. See for example, Simoncelli et al. (2004) [16].

Certain cells in V1 (simple cells) appear to be well approximated by the LNP model
(although see [14]). Other cells in V1 (complex cells) and most cells in higher visual areas
do not fit the LNP model. One way to extend the LNP model is called multidimensional
LNP. In these models, the initial stage involves many linear filters. The Poisson firing
rate is now a nonlinear combination of all of these filters. The techniques used for the
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simple LNP model can also be extended to handle the multidimensional LNP model,
however, the analysis becomes more delicate and the number of stimulus presentations
required increases dramatically [16].

Another way to extend the LNP model is to first transform the stimuli using a fixed,
known collection of (nonlinear) functions and then apply the LNP model. This is a com-
mon technique for approaching nonlinear problems with linear methods, and is somewhat
related to the Poisson regression used here and described in the Appendix. Again, the
analysis becomes much more delicate. See Nykamp (2003) [11] for more details and
for some interesting examples using more powerful models to quantify receptive field
structure.

We believe that most, if not all of the current techniques used for neural response
fitting can benefit from dimensionality reduction techniques like the ones demonstrated
in the previous section. The extensions are obvious and we do not go into them here.
Instead, we will describe another way to use the statistics of natural images that opens
up exciting new possibilities for neural response fitting.

3.1 Filter response distributions

One of the difficulties of the LNP model is that both the linearity and the nonlinearity
are unknown. Current techniques either try to estimate them simultaneously [12] or try
to estimate the linearity (or linearities) first and then use this to infer the nonlinearity
[16]. Not surprisingly, estimating the linearity in the presence of an unknown nonlinearity
is difficult. Estimating more complicated models becomes even more difficult or perhaps
impossible.

On the other hand, if somehow we had a good estimate of the nonlinearity, then the
whole situation would be changed. Not only would it be straightforward to estimate
linear models, but more complicated models would also be accessible. For example, the
quadratic-nonlinear-Poisson (QNP) model used earlier could be estimated. In this hypo-
thetical situation, only the quadratic part is unknown and can be easily fit using standard
regression techniques. This is a very difficult model to estimate if the nonlinearity is not
known. At first glance, it might seem impossible to estimate the nonlinearity first, but
we think a surprising property of natural images will actually make this straightforward.

When a linear filter is applied to a random collection of natural image patches, the
resulting distribution of filter responses often looks sparse, that is, it looks qualitatively
similar to a double exponential distribution – symmetric, with a sharp peak and heavy
tails [4]. This seems to be true for all zero-mean, local, linear filters. The reasons
underlying this characteristic shape are not completely understood, but the phenomenon
is remarkably robust.

A V1 simple cell is often approximated by an LNP model where the linear part is
zero-mean and local. Thus, when presented with a collection of natural images, the
output of the linear part (before the nonlinearity and the Poisson spike generation) will
have a distribution that looks like a double-exponential, irrespective of the particular
filter. We can use this to estimate the nonlinearity before estimating the linearity.

In fact, the method that we will propose does not rely on linearity in any way. The
initial linear filter can be replaced by any (nonlinear) function of the input whose response
to natural images shows this same characteristic double exponential distribution. In our
experience, this includes several other models of visual neurons. It includes all linear
models, as we mentioned, including overcomplete basis models like sparse coding and
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adaptive wavelets which seem linear but are actually nonlinear because of competition
among units. It also includes units discovered by more modern techniques like slow
feature analysis (SFA). Figure 5 shows the response distributions from two different
types of functions applied to natural images. The second plot is the quadratic SFA cell
used previously.

3.2 Estimating the (second) nonlinearity (first)

We want to generalize the LNP model to an NNP model – nonlinear-nonlinear-Poisson.
We will call the first nonlinearity the response function and the second nonlinearity the
rectifier. This reflects the intuitive notion that the response function characterizes how
the neuron ideally responds to input and that the rectifier maps this ideal response into
physiologically appropriate units, perhaps via a sigmoidal function. Of course, both
functions are important for understanding the entire behavior of the neuron. Nonlinear
rectification can drastically alter the properties of the response function.

The NNP model seems rather ill-defined. How do we distinguish between the two
different types of nonlinearities? What is even the point of two nonlinearities? One will
suffice. We can constrain things somewhat by requiring that the response nonlinearity has
a specific distribution when presented with natural stimuli – namely, that the distribution
is a double exponential. Without loss of generality, we can further assume that the
distribution is mean 0 and variance 1, because centering and scaling constants can be
incorporated into the rectifier. As we discussed earlier, several ideal models of response
functions show distributions that are double-exponential like.

The NNP model is now constrained enough to estimate the rectifier using standard
statistical techniques. We present a neuron with a random collection of natural im-
ages and use the expectation-maximization (EM) algorithm to approximate a maximum-
likelihood estimate (MLE) of the entire nonlinear rectifier. Details can be found in the
Appendix. Figure 6 shows the results of this estimating procedure applied to a simulated
neuron. Each of the three plots shows a different number of stimulus presentations used
for the estimation. The middle plot shows 1000 stimulus presentations and seems like a
reasonable trade-off between goodness of fit and experimental duration.

The simulated neuron was the same quadratic SFA function used previously. Figure
7 shows the method applied to an LNP neuron with the same linear filter that was used
for Figure 5. Note that the method is agnostic to the form of the response function,
as long as its distribution looks double exponential on natural images. As shown in
Figure 5 the distributions of these two cells are actually only approximately double
exponential, but the method still works. One possible explanation for this robustness is
that a sigmoidal-like rectifier, which seems physiologically reasonable, helps to mitigate
the effects of outliers in the tails of the distributions. Another possible explanation is
implicit smoothing in our approximation of the MLE. The true MLE of the rectifier is
probably much less regular than the estimates we found.

3.3 Fitting the response function

Once the rectifier has been estimated, fitting a model to the remaining response function
is conceptually simple. Theoretically, any model can be estimated (at least in the range
over which the rectifier is not constant). Practically, the dimensionality of the model
needs to be small enough to obtain a meaningful estimate. The same dimensionality
reduction techniques that we advocated earlier can be used here.
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For example, consider the simulated quadratic SFA cell used throughout. In the pre-
vious section we used natural stimuli to estimate the nonlinear rectifier. Now we present
the cell with (artificial, noisy) stimuli and use standard Poisson regression techniques to
estimate the parameters of the quadratic function. The Poisson regression techniques
rely explicitly on our estimate of the nonlinear rectifier and cannot be used when the
rectifier is not specified. Details can be found in the Appendix.

Figure 8 shows two examples of fitting the QNP model. The left example corresponds
to the quadratic SFA unit used throughout. The right is another quadratic SFA unit.
The parameters were estimated in 10-dimensional PCA space and the figures show the
true parameters projected into this space. Figure 8 clearly shows that the qualitative
properties of the parameters in the QNP model can be estimated, at least in these
simulations. Quantitatively, the fit is not bad. The (normalized) inner products of the
true and fitted parameter vectors are 0.9821 and 0.9409 for the left and right examples,
respectively. More training examples (10000) improves the estimates until the inner
product is essentially 1.

Figure 9 compares the true QNP model to the fitted QNP model on natural image
data (not the training data). The fitted QNP model includes both the estimated rectifier
and the estimated quadratic parameters. On natural images, the true and fitted cells
behave quite similarly. Again, more training examples makes this fit almost perfect.
Note that Figure 9 compares the mean response of the cells. Since this is only observed
in practice through a Poisson process, which is quite noisy, these true and fitted units
would be nearly indistinguishable with limited data.

3.4 Research directions

These preliminary simulations are promising and suggest several methods of possible
improvement. The nonparametric rectifier estimation can probably be improved dra-
matically by switching to a parametric model. Not only will fewer training examples be
required, but physiological experiments and biophysical theories may be able to provide
insights into the form of the model. As far as fitting the response function, we have only
used the simplest of methods. Regression is well understood and there are undoubtedly
better methods for experimental design, estimation and validation.

The double exponential is only a crude approximation of the response distributions of
linear and quadratic filters. Furthermore, other functions, like classical energy models of
complex cells, have one-sided distributions that are better approximated by a (one-sided)
exponential. Better models of the response distribution would improve our estimation of
the rectifier and can easily be incorporated into the methods used here. It may even be
possible to simultaneously estimate the rectifier and the response distribution if each is
restricted to a small parametric class.

Modeling the entire stimulus / response function of a neuron provides a wealth of
information about how the neuron behaves. This information can be used to investigate
things like functional connectivity, which are crucial for understanding the computational
strategies used by the brain. If this modeling program is successful, it will certainly create
many more questions and directions for further research.
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A Mathematical Appendix

A.1 Response gradient approximation

Let x be an n-dimensional vector and let g : R
n → R be any real-valued function of x.

We want to approximate the gradient ∇g at a fixed point x̃. We do not know g or ∇g,
but for any point x we can observe independent realizations of a random variable Y (x)
with mean g(x). For example, x is an image patch, g(x) is the (unobservable) average
response of a neuron to that image patch and Y (x) is the observed spike count in some
window after a single presentation of the stimulus x.

Let ∆X be an n-dimensional random vector (noise) with mean 0 and nonsingular
covariance matrix Σ. Let ∆Y = Y (x̃+∆X)−E[Y (x̃+∆X)] be the response to x̃+∆X,
shifted to have 0 mean. (E is expected value and in this case is taken over both ∆X and
Y .) We claim that to a first order approximation

∇g(x̃) ≈ Σ−1E[∆X∆Y ]. (A.1)

The covariance E[∆X∆Y ] is an n-dimensional vector because ∆X is a vector and ∆Y
is a scalar.

In practice, we create a sequence of independent realizations of ∆X, say ∆X1, . . . ,
∆XS. We add this noise to the baseline stimulus x̃ and collect the sequence of responses
Y (x̃ + ∆X1), . . . , Y (x̃ + ∆XS). We subtract the empirical mean

∆Ys = Y (x̃ + ∆Xs) − 〈Y (x̃ + ∆Xt)〉t
and use (A.1) to approximate

∇g(x̃) ≈ Σ−1 〈∆Xs∆Ys〉s .

(The empirical mean is 〈cs〉s = S−1
∑S

s=1 cs.) In the context of gradient ascent, we would
then update the baseline stimulus x̃ by

x̃ �→ x̃ + εΣ−1 〈∆Xs∆Ys〉s
for some small positive constant ε. (If we take ε < 0, then this is gradient descent.) In
the simulations in the text we take ε = .1 and Σ = .25I, where I is the identity matrix.

In many situations is makes more sense to perform an online search subject to some
constraint. In this case we follow each gradient ascent by a projection back into the
constrain space [15]. For example, in the simulations in the text we did gradient ascent
subject to a constant norm (intensity) constraint on the stimulus. So we updated the
baseline stimulus as before but then projected back to the appropriate norm:

x̃ �→ x̃ + εΣ−1 〈∆Xs∆Ys〉s
x̃ �→ C

x̃

‖x̃‖ .

The norm constraint was C = 2.0030, which was the average norm from the (centered)
PCA training data.

Proof of (A.1). This calculation is outlined in [5]. The formula is based on the first
order, linear approximation of g as

g(x + ∆x) ≈ g(x) + ∆xT∇g(x), (A.2)
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where ·T denotes transpose. Throughout x is fixed and known.
Using this we first approximate

E[Y (x + ∆X)] = E[E[Y (x + ∆X)|∆X]] = E[g(x + ∆X)]

≈ E[g(x) + ∆XT∇g(x)] = g(x) + E[∆XT ]∇g(x) = g(x), (A.3)

since ∆X has mean 0. Now we have

E[∆X∆Y ] = E[E[∆X∆Y |∆X]] = E[∆XE[∆Y |∆X]]

≈ E[∆XE[Y (x + ∆X) − g(x)|∆X]] = E[∆X(g(x + ∆X) − g(x))]

≈ E[∆X∆XT∇g(x)] = Σ∇g(x),

where the first approximation comes from (A.3) and the second from (A.2). Multiplying
by Σ−1 gives (A.1).

A.2 Rectifier estimation

Let X be a random n-dimensional vector with unknown distribution and r : R → R be an
unknown function. Suppose however that Z = r(X) has a known distribution, say with
density pZ . In the text we take this distribution to be double exponential distribution
with mean 0 and variance 1, that is

pZ(z) =
1√
2
e−

√
2|z|, −∞ < z < ∞,

but here the specific form of pZ is not important. We are given a sequence of i.i.d. r.v.’s
X1, . . . , XS with the same distribution as X. We also get to observe Poisson counts from
an NNP model, namely Y1, . . . , YS where Ys is a Poisson random variable with mean
f(r(Xs). We want to estimate the (rectifier) function f : R → [0,∞), which is unknown.
As we mentioned, we do not know r, but we know the distribution of Z = r(X).

Let Zs = r(Xs). We will completely ignore our knowledge of the Xs (this is obscured
by r anyway) and use only the fact that Zs has known density pZ . The model becomes:
Y1, . . . , YS are independent Poisson random variables and Ys has mean f(Zs) for unknown
f and unobserved Z1, . . . , ZS. Since we know the distribution of the Zs we can use
maximum likelihood estimation to estimate f . The log likelihood is

log p(Y1, . . . , YS|f) =
S∑

s=1

log p(Ys|f) =
S∑

s=1

log

∫
R

p(Ys|Zs = z; f)pZ(z)dz

=

S∑
s=1

log

∫
R

e−f(z)f(z)Ys

Ys!
pZ(z)dz. (A.4)

It is not clear that this can be maximized analytically.
Instead, we frame this as a missing data problem – the Zs are missing – and use

the expectation maximization (EM) algorithm (see McLachlan and Krishnan, 1997, for
details and references [9]). The EM update equation is

fk+1(z) =

∑S
s=1 YspZ(z|Ys; fk)∑S

s=1 pZ(z|Ys; fk)
. (A.5)
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This calculation is detailed below. The functions pZ(z|Ys; fk) can be determined using
Bayes’ Rule

pZ(z|Ys; fk) =
p(Ys|Zs = z; fk)pZ(z)∫

R
p(Ys|Zs = z̃; fk)pZ(z̃)dz̃

=
e−fk(z)fk(z)YspZ(z)∫

R
e−fk(z̃)fk(z̃)YspZ(z̃)dz̃

. (A.6)

All of these calculations can be carried out on a grid (in z) over the effective range of
pZ , which is known. The computations can be sped up significantly by taking advantage
of the multiplicities of the Ys which are Poisson counts. For example, the integrals in
the denominator of (A.6) need only be evaluated for each distinct value of the Ys. If
the distinct values of the Ys are Y(1), . . . , Y(M), with multiplicities N1, . . . , NM , then (A.5)
becomes

fk+1(z) =

∑M
m=1 NmY(m)pZ(z|Y(m); fk)∑M

m=1 NmpZ(z|Y(m); fk)
.

For the simulations in the text, we take pZ to be a double exponential and we initialize
the EM algorithm with

f1(z) =




α if z ≤ −10

(β − α)(z + 10)/20 + α if −10 < z < 10

β if z ≥ 10

,

which is linear over the effective range of pZ and then held constant outside of that range.
α and β are determined from the data. We take α to be the 5th percentile of the Ys and
β to be the 95th percentile. We estimate f on a .1 grid from −10 to 10.

The EM algorithm is run until the successive estimates of f are not changing much
at any point on the grid, specifically, until maxz |fk+1(z)− fk(z)| < .01 or 100 iterations,
which ever comes first (usually the former). The entire process typically takes under
1/2 second on a desktop PC. The stopping criterion for the EM algorithm appears to be
crucial in this context. The MLE estimate of f is probably not very smooth. Stopping
the EM algorithm earlier than computationally necessary effectively introduces some
smoothing into the estimate. This is what we did in the text. Allowing the EM algorithm
to iterate longer generates worse estimates of f . It is likely that an explicit regularization
term or a parameterized model of f would help to create better and more robust estimates
than those used here.

In our experience, a single large value for one of the Ys can raise the far right side of the
estimated f much higher than the true rectifier. This is easy to spot visually because of a
discontinuity and can be remedied by removing the outlier from the data. Outlier removal
could be automated, but may not be necessary in practice because of physiological upper
limits on the number of spikes that can occur in a given time window. These are the
sorts of issues that cannot be adequately addressed by simulation experiments.

Proof of (A.5). The complete data log likelihood is

log p(Y1, Z1, . . . , YS, ZS|f) =
S∑

s=1

log p(Ys, Zs|f) =
S∑

s=1

log

[
e−f(Zs)f(Zs)

Ys

Ys!
pZ(Zs)

]

=
S∑

s=1

[−f(Zs) + Ys log f(Zs) − log Ys! + log pZ(Zs)
]
. (A.7)
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The EM algorithm creates a sequence of estimates f1, f2, . . . that increase the likelihood
in (A.4). Given fk we find fk+1 by maximizing over f the expected value of (A.7) given
the observations Y1, . . . , YS and using fk. This conditional expectation is

E
[
log p(Y1, Z1, . . . , YS, ZS|f)

∣∣Y1, . . . , YS; fk

]

=

S∑
s=1

E
[−f(Zs) + Ys log f(Zs) − log Ys! + log pZ(Zs)

∣∣Ys; fk

]

=

S∑
s=1

∫
R

[−f(z) + Ys log f(z) − log Ys! + log pZ(z)
]
pZ(z|Ys; fk)dz.

To maximize this over f we can ignore the parts that do not depend on f and choose

fk+1 = arg max
f

S∑
s=1

∫
R

[−f(z) + Ys log f(z)
]
pZ(z|Ys; fk)dz. (A.8)

The argument of (A.8) is concave in f because of the concavity of the logarithm, so
any critical point of the (functional) derivative will be a global maximizer. Perturbing f
by f + εη for an arbitrary function η, taking the derivative w.r.t. ε, evaluating at ε = 0
and setting the result equal to zero gives the following equation for critical points:

S∑
s=1

∫
R

pZ(z|Ys; fk)

[
−η(z) + Ys

η(z)

fk+1(z)

]
dz = 0 for all functions η,

or equivalently,

∫
R

η(z)
S∑

s=1

pZ(z|Ys; fk)

[
Ys

fk+1(z)
− 1

]
dz = 0 for all functions η. (A.9)

Since η is arbitrary, we must have

S∑
s=1

pZ(z|Ys; fk)

[
Ys

fk+1(z)
− 1

]
= 0 for all z,

which has the unique solution given in (A.5) (except for a few pathological cases like
when all the pZ(z|Ys; fk) are 0 for some z and then fk+1(z) can be anything).

A.3 Poisson regression

Poisson regression is well studied [10]. The simplest form is that the observations Ys are
independent Poisson random variables with mean f(βTh(Xs)), where βT = (β0, β1, . . . , βn)
is the vector of parameters to be estimated, Xs is the sth stimulus and

h(Xs) = (h0(Xs), h1(Xs), . . . , hn(Xs))
T

is the vector of predictor variables for the sth stimulus. The functions f and h are known.
Typically h0 ≡ 1 and allows a constant term to enter the model. If Xs is a vector (like

pixels in a receptive field), then hj can be Xsj, the jth element of Xs. This corresponds
to the LNP model. Often, there will be many more predictor variables than stimulus
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dimensions. For example, in the QNP model Ys has mean f(XT
s AXs + XT

s B + C) for
matrix A, vector B and constant C. We can write this as f(βTh(Xs)) by including not
only the elements of Xs in h but also all of the interaction terms like h�(Xs) = XsjXsk.
The entries in β will thus correspond to certain elements of A, B or C.

Since h is known and Xs is observed, we can write Zs = h(Xs), where Zs is a vector,
and forget about h and Xs. Ys has mean f(βT Zs). The log likelihood equation is

log p(Y1, . . . , YS|β) =
S∑

s=1

log p(Ys|β) =
S∑

s=1

log
e−f(βT Zs)f(βTZs)

Ys

Ys!

=
S∑

s=1

[−f(βT Zs) + Ys log f(βTZs) − log Ys!
]
.

Since f , the Ys and the Zs are known, this can be maximized with standard nonlinear
optimization tools. The gradient vector is easy to calculate and this can be used to speed
the convergence. The gradient vector requires an estimate of the derivative of the rectifier
f . For this we just approximated f ′(z) ≈ (f(z + ∆) − f(z − ∆))/(2∆) at grid points z,
where ∆ is the grid resolution. We took both f and f ′ to be linear between grid points.

For the simulations in the text, we initialized the optimization at βT = (1, 0, . . . , 0),
that is, only a constant term. Using Matlab’s unconstrained nonlinear optimization
typically took under 2 minutes for the 65-parameter QNP problem.

For stimuli, we first chose standard Gaussian (white) noise in the 10-dimensional PCA
parameter space. To get a better sampling of the input space, we self-normalized each
noise vector and then scaled by a random amount (Gaussian, mean 0, standard deviation
3). Fitting with white noise or with natural stimuli seemed to work, but not quite as
well as with this method. There are probably much better experimental design methods
in the literature, but we did not investigate this possibility.
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Figure 1: Full-dimensional search.
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Figure 2: Reduced-dimensional search.
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Figure 3: Full-dimensional search.
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Figure 4: Reduced-dimensional search.
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Figure 5: Solid line: filter distributions over natural images normalized to mean 0 and variance
1. Dotted line: double exponential distribution.
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Figure 6: Quadratic SFA unit. Solid line: fitted rectifier. Dotted line: true rectifier.

−8 −6 −4 −2 0 2 4 6 8
0

5

10 1000 stimulus presentations

Figure 7: Linear Unit. Solid line: fitted rectifier. Dotted line: true rectifier.
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Figure 8: Fitted versus true parameters in the quadratic model. The upper, square images
show the A matrices in the quadratic form. The lower, rectangular images show the B vectors.
The left two plots are from the SFA unit used in the text. The right two are from another
quadratic SFA unit. The true parameters have been projected into the 10-dimensional PCA
space for easy comparison with the fitted parameters.
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Figure 9: Comparison of true and fitted models on natural images. The left and right models
are the same as in Figure 8. If the models were identical, all the points would lie on the
diagonal dotted line because these plots show the mean (ideal) response, not the noisy Poisson
observations. The estimated rectifier in the model on the right was wavy, unlike the true
rectifier.
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