Multi-Implicit Discontinuous Galerkin Method for Low Mach Number Combustion

Will Pazner & Per-Olof Persson
Division of Applied Mathematics, Brown University
Department of Mathematics, University of California, Berkeley
Collaboration with Andy Nonaka, John Bell, Marc Day, Michael Minion
Center for Computational Sciences and Engineering,
Lawrence Berkeley National Laboratory

SIAM Conference on Computational Science and Engineering
February 27, 2017
Outline

1. Introduction and Motivation
2. Spectral Deferred Correction (SDC) Method
3. Finite Volume Discretization
4. Extensions to DG
5. Preliminary Results
Outline

1. Introduction and Motivation
2. Spectral Deferred Correction (SDC) Method
3. Finite Volume Discretization
4. Extensions to DG
5. Preliminary Results
Introduction

- Interested in modeling coupled dynamics
- Reacting (low Mach number) fluid flow
- Detailed chemical kinetics
- Vastly different time scales for physical processes:
 - Advection, diffusion, reaction
Low Mach Number Formulation

[Majda, Sethian, (1985)]

- Acoustic propagation typically has negligible impact on the system state
- Sound waves are analytically removed from the system
- The set of conservation laws takes the form of a coupled differential-algebraic system
Governing Equations

Thermodynamic variables: \(\rho \) density, \(Y_j \) mass fractions, \(h \) enthalpy

\[
\frac{\partial \rho}{\partial t} = -\nabla \cdot (U \rho) \\
\frac{\partial (\rho Y_j)}{\partial t} = -\nabla \cdot (U \rho Y_j) + \nabla \cdot \rho D_j \nabla Y_j + \dot{\omega}_j, \\
\frac{\partial (\rho h)}{\partial t} = -\nabla \cdot (U \rho h) + \nabla \cdot \left(\frac{\lambda}{c_p} \nabla h + \sum_j \nabla \cdot h_j \left(\rho D_j - \frac{\lambda}{c_p} \right) \right) \nabla Y_j,
\]

\(\dot{\omega}_j \) production rate, \(D_j \) diffusion coefficient, \(T \) temperate, \(c_p \) specific heat at constant pressure, \(U \) velocity
Equation of state:

\[p_0 = \rho R T \sum_j \frac{Y_j}{W_j}, \]

Taking Lagrangian derivative and enforcing constant pressure implies

\[
\nabla \cdot U = \frac{1}{\rho c_p T} \left(\nabla \cdot \lambda \nabla T + \sum_j \Gamma_j \cdot \nabla h_j \right) \\
+ \frac{1}{\rho} \sum_j \frac{W}{W_j} \nabla \cdot \Gamma_j + \frac{1}{\rho} \sum_j \left(\frac{W}{W_j} - \frac{h_j}{c_p T} \right) \dot{\omega}_j =: S
\]
Want to integrate this system in time at advective time scale
For stability, need to treat diffusion and reaction implicitly
Multi-implicit splitting \(\Rightarrow\) weakly couple components of the equation
Outline

1. Introduction and Motivation
2. Spectral Deferred Correction (SDC) Method
3. Finite Volume Discretization
4. Extensions to DG
5. Preliminary Results
Spectral Deferred Correction (SDC) Method

Arbitrary order method for integrating ODEs, e.g.:

\[
\phi_t(t) = F(t, \phi(t)), \quad t \in [t^n, t^n + \Delta t]; \\
\phi(t^n) = \phi^n,
\]

Subdivide time step \([t^n, t^{n+1}]\) into \(m\) time substeps, e.g. according to Gauss-Lobatto rule.
Consider associated integral equation

$$\phi(t) = \phi^n + \int_{t_n}^{t} F(\tau, \phi(\tau)) \ d\tau.$$

Update equation:

$$\phi^{(k+1)}(t) = \phi^n + \int_{t_n}^{t} \left[F(\phi^{(k+1)}) - F(\phi^{(k)}) \right] \ d\tau + \int_{t_n}^{t} F(\phi^{(k)}) \ d\tau,$$
\[
\phi^{(k+1)}(t) = \phi^n + \int_{t^n}^{t} \left[F(\phi^{(k+1)}) - F(\phi^{(k)}) \right] d\tau + \int_{t^n}^{t} F(\phi^{(k)}) \, d\tau,
\]

Discretize two integrals on RHS with **two** quadrature rules:

- First quadrature rule has order of accuracy \(p \)
- Second quadrature rule has order of accuracy \(q > p \)
- Each iteration increases order of accuracy of solution by \(p \) up to maximum of \(q \)
\[
\phi^{(k+1)}(t) = \phi^n + \int_{t^n}^{t} \left[F(\phi^{(k+1)}) - F(\phi^{(k)}) \right] d\tau + \int_{t^n}^{t} F(\phi^{(k)}) d\tau,
\]

Discretize two integrals on RHS with \textbf{two} quadrature rules:

- First quadrature rule has order of accuracy \(p \)
- Second quadrature rule has order of accuracy \(q > p \)
- Each iteration increases order of accuracy of solution by \(p \) up to maximum of \(q \)

For example:

- First term: forward or backward Euler (implicit or explicit method)
- Second term: highly accurate Gauss-Lobatto rule
\[
\phi^{(k+1)}(t) = \phi^n + \int_{t_n}^t \left[F(\phi^{(k+1)}) - F(\phi^k) \right] d\tau + \int_{t_n}^t F(\phi^k) d\tau,
\]

Discretize two integrals on RHS with \textbf{two} quadrature rules:

- First quadrature rule has order of accuracy \(p \)
- Second quadrature rule has order of accuracy \(q > p \)
- Each iteration increases order of accuracy of solution by \(p \) up to maximum of \(q \)

For example:

- First term: forward or backward Euler (implicit or explicit method)
- Second term: highly accurate Gauss-Lobatto rule
- (Formally equivalent to certain RK/DIRK methods)
Multi-implicit SDC

\[
\phi_{m+1,(k+1)}^A = \phi_{m,(k+1)}^A \\
+ \int_{t^m}^{t^{m+1}} \left[F_A(\phi_{\text{AAD}}^{(k+1)}) - F_A(\phi^{(k)}) \right] dt + \int_{t^m}^{t^{m+1}} F(\phi^{(k)}) dt \\
\phi_{m+1,(k+1)}^{\text{AD}} = \phi_{m,(k+1)}^{\text{AD}} \\
+ \int_{t^m}^{t^{m+1}} \left[F_A(\phi_{\text{AAD}}^{(k+1)}) - F_A(\phi^{(k)}) + F_D(\phi_{\text{AAD}}^{(k+1)}) - F_D(\phi^{(k)}) \right] dt \\
+ \int_{t^m}^{t^{m+1}} F(\phi^{(k)}) dt, \\
\phi_{m+1,(k+1)} = \phi_{m,(k+1)} \\
+ \int_{t^m}^{t^{m+1}} \left[F_A(\phi_{\text{AAD}}^{(k+1)}) - F_A(\phi^{(k)}) + F_D(\phi_{\text{AAD}}^{(k+1)}) - F_D(\phi^{(k)}) + F_R(\phi^{(k+1)}) - F_R(\phi^{(k)}) \right] dt + \int_{t^m}^{t^{m+1}} F(\phi^{(k)}) dt.
\]
Multi-implicit SDC

- Explicit advection \implies discretize update with forward Euler
- Implicit diffusion, reaction \implies discretize update with backward Euler

\[
\phi_{AD}^{m+1,(k+1)} = \phi_{m,(k+1)} + \Delta t \phi_{AD}^{m,(k)} + \Delta t \left[F_A(\phi_{m,(k+1)}) - F_A(\phi_{m,(k)}) \right] \\
+ F_D(\phi_{AD}^{m+1,(k+1)}) - F_D(\phi_{m+1,(k)}) + I_m^{m+1} \left[F(\phi(k)) \right]
\]

\[
\phi^{m+1,(k+1)} = \phi^{m,(k+1)} + \Delta t \phi^{m+1,(k+1)} + \Delta t \left[F_A(\phi_{m+1,(k+1)}) - F_A(\phi_{m,(k)}) \right] \\
+ F_D(\phi_{AD}^{m+1,(k+1)}) - F_D(\phi_{m+1,(k)}) + F_R(\phi_{m+1,(k+1)}) - F_R(\phi_{m+1,(k)}) + I_m^{m+1} \left[F(\phi(k)) \right]
\]
Volume Discrepancy Constrained Evolution

Recall velocity constraint: \(\nabla \cdot U = S \),

Linearization \(\implies \) pressure no longer constant

Continuity equation \(\implies \)

\[
\nabla \cdot U = \frac{1}{\rho p} \left(-\frac{Dp}{Dt} \right) + S
\]

Define **correction** \(\delta_x = \frac{Dp}{Dt} \), discretize as

\[
\delta_x \approx \frac{1}{p_0} \left(\frac{p_0 - p_{EOS}}{\Delta t} \right)
\]

Solve **corrected** constraint for velocity:

\[
\nabla \cdot U = S + \delta_x
\]

Each MISDC iteration drives the solution to EOS
Outline

1 Introduction and Motivation

2 Spectral Deferred Correction (SDC) Method

3 Finite Volume Discretization

4 Extensions to DG

5 Preliminary Results
Solution represented by cell-averages:

$$\langle \phi \rangle_i \equiv \frac{1}{\Delta x} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} \phi(x) \, dx$$

Reconstruct polynomial to 4th order obtain gradients, point values, etc.

$$\hat{\phi}_i = \langle \phi \rangle_i - \frac{1}{24}(\langle \phi \rangle_{i-1} - 2\langle \phi \rangle_i + \langle \phi \rangle_{i+1})$$

$$\tilde{\phi}_{i+\frac{1}{2}} = \frac{-\hat{\phi}_{i-1} + 9\hat{\phi}_i + 9\hat{\phi}_{i+1} - \hat{\phi}_{i+2}}{16}$$

$$\nabla \hat{\phi}_{i+\frac{1}{2}} = \frac{\langle \phi \rangle_{i-1} - 15\langle \phi \rangle_i + 15\langle \phi \rangle_{i+1} - \langle \phi \rangle_{i+2}}{12\Delta x}$$
Numerical Results (Finite Volume)

![Graph showing numerical results for different methods.](image)

- **L^1 error for Y_{HO_2}**

- **Axes:**
 - n (horizontal axis)
 - L^1 error (vertical axis)

- **Methods shown:**
 - Strang splitting
 - Previous MISDC method
 - New MISDC method

- **Key notes:**
 - Strang splitting is marked by orange dots.
 - Previous MISDC method is marked by blue squares.
 - New MISDC method is marked by orange triangles.

- **Legend:**
 - Orange dots: Strang splitting
 - Blue squares: Previous MISDC method
 - Orange triangles: New MISDC method

- **Orders of accuracy:**
 - < 1st order
 - 2nd order
 - 4th order
Premixed Hydrogen Flame

(9 chemical species, 27 reactions)

<table>
<thead>
<tr>
<th>Variable</th>
<th>L_{128}^1</th>
<th>$r_{128/256}$</th>
<th>L_{256}^1</th>
<th>$r_{256/512}$</th>
<th>L_{512}^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y(H_2)$</td>
<td>5.91E-08</td>
<td>4.01</td>
<td>3.67E-09</td>
<td>3.98</td>
<td>2.33E-10</td>
</tr>
<tr>
<td>$Y(O_2)$</td>
<td>1.10E-06</td>
<td>4.00</td>
<td>6.83E-08</td>
<td>4.05</td>
<td>4.14E-09</td>
</tr>
<tr>
<td>$Y(H_2O)$</td>
<td>1.01E-06</td>
<td>4.01</td>
<td>6.25E-08</td>
<td>4.05</td>
<td>3.76E-09</td>
</tr>
<tr>
<td>$Y(H)$</td>
<td>1.17E-09</td>
<td>3.70</td>
<td>9.00E-11</td>
<td>3.91</td>
<td>5.97E-12</td>
</tr>
<tr>
<td>$Y(O)$</td>
<td>2.70E-08</td>
<td>3.93</td>
<td>1.77E-09</td>
<td>4.01</td>
<td>1.10E-10</td>
</tr>
<tr>
<td>$Y(OH)$</td>
<td>3.17E-08</td>
<td>4.01</td>
<td>1.97E-09</td>
<td>4.06</td>
<td>1.18E-10</td>
</tr>
<tr>
<td>$Y(HO_2)$</td>
<td>3.56E-08</td>
<td>3.71</td>
<td>2.72E-09</td>
<td>3.88</td>
<td>1.86E-10</td>
</tr>
<tr>
<td>$Y(H_2O_2)$</td>
<td>1.41E-08</td>
<td>3.70</td>
<td>1.09E-09</td>
<td>3.84</td>
<td>7.58E-11</td>
</tr>
<tr>
<td>$Y(N_2)$</td>
<td>1.77E-07</td>
<td>3.95</td>
<td>1.15E-08</td>
<td>4.07</td>
<td>6.85E-10</td>
</tr>
<tr>
<td>ρ</td>
<td>5.00E-09</td>
<td>4.01</td>
<td>3.10E-10</td>
<td>4.09</td>
<td>1.82E-11</td>
</tr>
<tr>
<td>T</td>
<td>1.21E-02</td>
<td>4.02</td>
<td>7.44E-04</td>
<td>4.05</td>
<td>4.48E-05</td>
</tr>
<tr>
<td>ρh</td>
<td>6.77E+00</td>
<td>3.99</td>
<td>4.26E-01</td>
<td>4.07</td>
<td>2.54E-02</td>
</tr>
</tbody>
</table>
Premixed Methane Flame

(53 species, 325-step chemical reaction network)

<table>
<thead>
<tr>
<th>Variable</th>
<th>L_{128}^1</th>
<th>$r_{128/256}$</th>
<th>L_{256}^1</th>
<th>$r_{256/512}^2$</th>
<th>L_{512}^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y(\text{CH}_4)$</td>
<td>1.11E-06</td>
<td>4.00</td>
<td>6.97E-08</td>
<td>3.98</td>
<td>4.42E-09</td>
</tr>
<tr>
<td>$Y(\text{O}_2)$</td>
<td>3.77E-06</td>
<td>3.96</td>
<td>2.42E-07</td>
<td>4.07</td>
<td>1.44E-08</td>
</tr>
<tr>
<td>$Y(\text{H}_2\text{O})$</td>
<td>2.30E-06</td>
<td>4.02</td>
<td>1.42E-07</td>
<td>4.05</td>
<td>8.53E-09</td>
</tr>
<tr>
<td>$Y(\text{CO}_2)$</td>
<td>1.87E-06</td>
<td>4.02</td>
<td>1.15E-07</td>
<td>4.07</td>
<td>6.87E-09</td>
</tr>
<tr>
<td>$Y(\text{CH}_3)$</td>
<td>3.11E-08</td>
<td>2.48</td>
<td>5.59E-09</td>
<td>3.75</td>
<td>4.16E-10</td>
</tr>
<tr>
<td>$Y(\text{CH}_2(\text{S}))$</td>
<td>8.01E-11</td>
<td>4.14</td>
<td>4.54E-12</td>
<td>3.85</td>
<td>3.15E-13</td>
</tr>
<tr>
<td>$Y(\text{O})$</td>
<td>1.05E-07</td>
<td>4.08</td>
<td>6.20E-09</td>
<td>3.90</td>
<td>4.16E-10</td>
</tr>
<tr>
<td>$Y(\text{H})$</td>
<td>3.48E-09</td>
<td>3.83</td>
<td>2.45E-10</td>
<td>3.81</td>
<td>1.75E-11</td>
</tr>
<tr>
<td>$Y(\text{N}_2)$</td>
<td>3.58E-07</td>
<td>3.74</td>
<td>2.68E-08</td>
<td>4.00</td>
<td>1.67E-09</td>
</tr>
<tr>
<td>ρ</td>
<td>1.25E-08</td>
<td>4.03</td>
<td>7.64E-10</td>
<td>4.05</td>
<td>4.61E-11</td>
</tr>
<tr>
<td>T</td>
<td>3.52E-02</td>
<td>4.01</td>
<td>2.18E-03</td>
<td>4.06</td>
<td>1.31E-04</td>
</tr>
<tr>
<td>ρh</td>
<td>4.09E+01</td>
<td>3.97</td>
<td>2.60E+00</td>
<td>4.00</td>
<td>1.62E-01</td>
</tr>
</tbody>
</table>
Dimethyl Ether Flame

(39 species, 175 reactions)

<table>
<thead>
<tr>
<th>Variable</th>
<th>L_{128}^1</th>
<th>$r_{128/256}^1$</th>
<th>L_{256}^1</th>
<th>$r_{256/512}^1$</th>
<th>L_{512}^1</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Y(\text{CH}_3\text{OCH}_3)$</td>
<td>2.29E-06</td>
<td>3.83</td>
<td>1.62E-07</td>
<td>3.93</td>
<td>1.06E-08</td>
</tr>
<tr>
<td>$Y(\text{O}_2)$</td>
<td>2.99E-06</td>
<td>3.63</td>
<td>2.42E-07</td>
<td>4.02</td>
<td>1.49E-08</td>
</tr>
<tr>
<td>$Y(\text{CO}_2)$</td>
<td>2.51E-06</td>
<td>3.83</td>
<td>1.76E-07</td>
<td>4.04</td>
<td>1.07E-08</td>
</tr>
<tr>
<td>$Y(\text{H}_2\text{O})$</td>
<td>1.62E-06</td>
<td>3.51</td>
<td>1.42E-07</td>
<td>4.01</td>
<td>8.85E-09</td>
</tr>
<tr>
<td>$Y(\text{CH}_3\text{OCH}_2\text{O}_2)$</td>
<td>1.55E-10</td>
<td>4.51</td>
<td>6.76E-12</td>
<td>3.88</td>
<td>4.61E-13</td>
</tr>
<tr>
<td>$Y(\text{OH})$</td>
<td>3.24E-07</td>
<td>3.80</td>
<td>2.32E-08</td>
<td>4.02</td>
<td>1.43E-09</td>
</tr>
<tr>
<td>$Y(\text{HO}_2)$</td>
<td>1.46E-07</td>
<td>3.80</td>
<td>1.05E-08</td>
<td>3.95</td>
<td>6.77E-10</td>
</tr>
<tr>
<td>$Y(\text{O})$</td>
<td>1.70E-07</td>
<td>3.55</td>
<td>1.46E-08</td>
<td>3.92</td>
<td>9.66E-10</td>
</tr>
<tr>
<td>$Y(\text{H})$</td>
<td>8.35E-09</td>
<td>3.68</td>
<td>6.52E-10</td>
<td>3.96</td>
<td>4.20E-11</td>
</tr>
<tr>
<td>$Y(\text{N}_2)$</td>
<td>1.09E-06</td>
<td>3.76</td>
<td>8.01E-08</td>
<td>3.93</td>
<td>5.25E-09</td>
</tr>
<tr>
<td>ρ</td>
<td>9.44E-09</td>
<td>3.67</td>
<td>7.42E-10</td>
<td>4.02</td>
<td>4.58E-11</td>
</tr>
<tr>
<td>T</td>
<td>2.54E-02</td>
<td>3.59</td>
<td>2.11E-03</td>
<td>4.01</td>
<td>1.31E-04</td>
</tr>
<tr>
<td>ρh</td>
<td>5.89E+01</td>
<td>3.83</td>
<td>4.15E+00</td>
<td>4.02</td>
<td>2.56E-01</td>
</tr>
</tbody>
</table>
Outline

1. Introduction and Motivation
2. Spectral Deferred Correction (SDC) Method
3. Finite Volume Discretization
4. Extensions to DG
5. Preliminary Results
Advantages of DG

- Arbitrary order of accuracy
- Unstructured and complex geometries
- Straightforward generalization to multiple dimensions
- Amenable to parallelization
Weak Form

\[\int_K \frac{\partial \rho}{\partial t} v \, dx = \int_K \rho U \cdot \nabla v \, dx - \int_{\partial K} \hat{\rho U}(n) v \, dA \]

\[\int_K \frac{\partial (\rho Y_j)}{\partial t} v \, dx = \int_K (\rho Y_j U + \Gamma_j) \cdot \nabla v \, dx + \int_K \dot{\omega}_j v \, dx \]

\[\quad \quad \quad - \int_{\partial K} \left(\hat{\rho Y_j U}(n) + \hat{\Gamma}_j(n) \right) v \, dA \]

\[\int_K \frac{\partial (\rho h)}{\partial t} v \, dx = \int_K \rho h U \cdot v \, dx - \int_{\partial K} \hat{\rho h U}(n) v \, dA \]

\[\quad \quad \quad - \int_K \frac{\lambda}{c_p} \nabla h \cdot \nabla v \, dx + \int_{\partial K} \frac{\lambda}{c_p} \nabla h + \ldots \]
General approach

- Transform second-order equations into system of first-order equations and use LDG method (Cf. Cockburn and Shu)
- Solve weak form of reaction equations \Rightarrow reaction solve couples all nodes within each element (expensive!)

\[
\int_K \frac{u^{(k+1),m+1} - u^{(k+1),m}}{\Delta t_m} \, dx = \int_K r^{(k+1),m+1}_{AD} + \dot{\omega}(u^{(k+1),m+1}) \, dx
\]

- Oscillatory second derivatives \Rightarrow filter S for stability
Outline

1. Introduction and Motivation
2. Spectral Deferred Correction (SDC) Method
3. Finite Volume Discretization
4. Extensions to DG
5. Preliminary Results
Numerical Results (Hydrogen Flame)
Numerical Results (Hydrogen Flame)

Error in total concentration of O_2 after 1 ms simulation

<table>
<thead>
<tr>
<th>n_x</th>
<th>$p = 1$</th>
<th>Rate</th>
<th>$p = 2$</th>
<th>Rate</th>
<th>$p = 3$</th>
<th>Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>1.80×10^{-8}</td>
<td>-</td>
<td>6.40×10^{-10}</td>
<td>-</td>
<td>7.58×10^{-10}</td>
<td>-</td>
</tr>
<tr>
<td>128</td>
<td>4.48×10^{-9}</td>
<td>2.01</td>
<td>3.56×10^{-11}</td>
<td>4.17</td>
<td>2.64×10^{-11}</td>
<td>4.84</td>
</tr>
<tr>
<td>256</td>
<td>1.14×10^{-9}</td>
<td>1.97</td>
<td>2.65×10^{-12}</td>
<td>3.74</td>
<td>1.64×10^{-12}</td>
<td>4.01</td>
</tr>
<tr>
<td>512</td>
<td>2.89×10^{-10}</td>
<td>1.98</td>
<td>2.85×10^{-13}</td>
<td>3.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td>7.28×10^{-11}</td>
<td>1.99</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Thanks!
Volume Discrepancy
Volume Discrepancy (Refinement in Space)