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AN A PRIORI ERROR ANALYSIS OF THE LOCAL 
DISCONTINUOUS GALERKIN METHOD FOR ELLIPTIC 

PROBLEMS* 

PAUL CASTILLOt, BERNARDO COCKBURNt, ILARIA PERUGIAt, AND 

DOMINIK SCHOTZAUt 

Abstract. In this paper, we present the first a priori error analysis for the local discontinuous 
Galerkin (LDG) method for a model elliptic problem. For arbitrary meshes with hanging nodes and 
elements of various shapes, we show that, for stabilization parameters of order one, the L2-norm 
of the gradient and the L2-norm of the potential are of order k and k + 1/2, respectively, when 

polynomials of total degree at least k are used; if stabilization parameters of order h-1 are taken, 
the order of convergence of the potential increases to k + 1. The optimality of these theoretical results 
is tested in a series of numerical experiments on two dimensional domains. 
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1. Introduction. In this paper, we present the first a priori error analysis of the 
local discontinuous Galerkin (LDG) method for the following classical model elliptic 
problem: 

-Au= f in Q, 

(1.1) U g=D orrD, 
Ou 
O n = g; ' n on rj, 

where Q is a bounded domain of Rd and n is the outward unit normal to its boundary 
rD U Frv; for the sake of simplicity, we assume that the (d - 1)-dimensional measure 
of rD is nonzero. 

The LDG method was introduced by Cockburn and Shu in [25] as an extension 
to general convection-diffusion problems of the numerical scheme for the compress- 
ible Navier-Stokes equations proposed by Bassi and Rebay in [6]. This scheme was 
in turn an extension of the Runge-Kutta discontinuous Galerkin (RKDG) method 
developed by Cockburn and Shu [19], [22], [23], [24], [26] for nonlinear hyperbolic 
systems. The LDG method is one of several discontinuous Galerkin methods which 
are being vigorously studied, especially as applied to convection-diffusion problems, 
because of their applicability to a wide range of problems and their properties of local 
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conservativity and high degree of locality. The application of the LDG method to 
purely elliptic problems is quite recent and might be advantageous because of the 
ease with which the method handles hanging nodes, elements of general shapes, and 
local spaces of different types; these properties render the LDG method ideally suited 
for adaptive hp-refinement. The state of the art of the development of discontinuous 
Galerkin methods can be found in the volume [21] edited by Cockburn, Karniadakis, 
and Shu. Let us give the reader familiar with (classical and stabilized) mixed and 
mortar finite element methods for elliptic problems an idea of what kind of method 
the LDG method is. 

* The LDG is obtained by using a space discretization that was originally applied 
to first-order hyperbolic systems. Hence, to define the method, we rewrite our elliptic 
model problem as a system of first-order equations and then we discretize it. Thus, 
we introduce the auxiliary variable q = Vu and obtain the equations 

(1.2) q = Vu in Q, 

(1.3) -V q= f in Q, 

(1.4) u = g on FD, 

(1.5) q n = gnr n on Fr. 

Since these are nothing but the equations used to define classical mixed finite ele- 
ment methods, the LDG method can be considered as a mixed finite element method. 
However, the auxiliary variable q can be eliminated from the equations, which is 
usually not the case for classical mixed methods. 

* In the LDG method, local conservativity holds because the conservation laws 

(1.2) and (1.3) are weakly enforced element by element. In order to do that, suitable 
discrete approximations of the traces of the fluxes on the boundary of the elements 
are needed which are provided by the so-called numerical fluxes; these are widely 
used in the numerical approximation of nonlinear hyperbolic conservation laws and 
are nothing but the so-called approximate Riemann solvers; see Cockburn [17]. As in 
the case of nonlinear hyperbolic conservation laws, these numerical fluxes enhance the 
stability of the method, and hence, the quality of its approximation. This is why the 
LDG method is strongly related to stabilized mixed finite element methods; indeed, 
the stabilization is associated with the jumps of the approximate solution across the 
element boundaries. 

* The LDG method allows for an easy handling of general meshes with hanging 
nodes and elements of several shapes since no interelement continuity is required. 
This is also a key property of the mortar finite element method. However, in the LDG 
method there are no Lagrange multipliers associated with the continuity constraint; 
instead, the Lagrange multiplier is replaced by fixed functions of the unknowns which 
are nothing but the above mentioned numerical fluxes. This renders the LDG method 
particularly well suited for hp-adaptivity. 

* In the LDG method considered in this paper, on each element, both the ap- 
proximation to u as well as the approximations to each of the components of q belong 
to the same space. The coding of the LDG method is thus much simpler than that 
of standard mixed methods, especially for high-degree polynomial approximations. 

Now let us briefly describe the recent work on error analysis of discontinuous 
Galerkin (DG) methods in order to put our results into perspective. Analyses of 
the LDG method in the context of transient convection-diffusion problems have been 
carried out by Cockburn and Shu [25], Cockburn and Dawson [18], Castillo [14], and 
more recently by Castillo, Cockburn, Sch6tzau, and Schwab [15]. 
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TABLE 1.1 
Orders of convergence for k > 1. 

Method Penalization I|u - uNlo llq - qNllO 

LDG 0(1) k+ 1/2 k 
LDG O(h-1) k+ 1 k 

interior penalty O(h-1) k + 1 k 
Brezzi et al. [13] ((h-1) k + 1 k 

The DG method of Baumann and Oden [8, 9, 32] (see also [7]) has also been 

analyzed by several authors. Oden, Babuska, and Baumann [31] studied this method 
for one dimensional elliptic problems and later Wihler and Schwab [41] proved robust 

exponential rates of convergence of the Oden and Baumann DG method for stationary 
convection-diffusion problems also in one space dimension. Riviere, Wheeler, and Gi- 
rault [35] and Riviere and Wheeler [34] analyzed several variations of the DG method 
of Baumann and Oden (involving interior penalty techniques) as applied to nonlinear 
convection-diffusion problems and, finally, Siili, Schwab, and Houston [38] synthesized 
the self-adjoint elliptic, parabolic, and hyperbolic theory by extending the analysis of 
these DG methods to general second-order linear partial differential equations with 

nonnegative characteristic form. 
As applied to purely elliptic problems, the LDG method and the method of Bau- 

mann and Oden are strongly related to the so-called interior penalty (IP) methods 

explored mainly by Babuska and Zlamal [3], Douglas and Dupont [27], Baker [4], 
Wheeler [39], Arnold [1], and later by Baker, Jureidini, and Karakashian [5], Rusten, 
Vassilevski, and Winther [36], and Becker and Hansbo [10]. All of these DG methods 
for elliptic problems can be recast within a single framework as shown by Arnold, 
Brezzi, Cockburn, and Marini [2]; this framework should provide a basis for a better 

understanding of the connections among them and lead to a unified error analysis of 
these methods. As a contribution to this effort, we present in this paper an a priori 
error analysis of the LDG method for purely elliptic problems; it is valid for meshes 
with hanging nodes and elements of various shapes. 

We show that if polynomials of degree at least k are used in all the elements, the 
rate of convergence of the LDG method in the L2-norm of u and q are of order k + 1/2 
and k, respectively, when the stabilization or penalization parameter C11 is taken to 
be of order one. When the stabilization parameter C11 is taken to be of order h-1, 
the order of convergence of u is proven to be k + 1, as expected. Indeed, this is what 

happens for the interior penalty methods and for the modifications of the method of 
Bassi and Rebay [6] studied by Brezzi, Manzini, Marini, Pietra, and Russo [13]; the 

penalization parameters of these methods are also of order h-1. These results are 
summarized in the Table 1.1. 

Finally, let us point out that the order of convergence of u for the DG method 
for purely convective problems is k + 1/2. This order of convergence was proven 
by Johnson and Pitkiranta [30] and later confirmed by Peterson [33] to be sharp. 
Whether or not a similar phenomenon is actually taking place for the LDG method, 
with the stabilization parameter C1l of order one, as applied to elliptic problems 
remains to be investigated. Our numerical experiments for the LDG method have all 
been performed on structured and unstructured triangulations without hanging nodes 
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and give the optimal orders of convergence of k + 1 and k for u and q, respectively, 
with Cl, of order h-1 and, remarkably, with C'l of order one. 

The organization of the paper is as follows. In section 2, we present the LDG 
methods and state and discuss our main a priori error estimates. We also give a brief 
sketch of the proofs in order to display the ideas of our analysis. The analysis is 
carried out in full detail in section 3 and several possible extensions are indicated in 
section 4. In section 5, we present several numerical experiments testing the sharpness 
of our theoretical results. We end in section 6 with some concluding remarks. 

2. The main results. In this section, we formulate the LDG method and show 
that it possesses a well-defined solution. We then state and discuss our main result 

and, finally, we display the main ideas of our error analysis. 
We assume, to avoid unnecessary technicalities, that the exact solution u of our 

model problem (1.1) belongs to H2(Q) and that the solution of the so-called adjoint 
problem satisfies the standard ellipticity regularity property. Extensions to more 

general situations are discussed in section 4. 

2.1. The LDG method. To introduce our LDG method, we consider a general 
DG method of which the LDG method is a particular but important case. We consider 
a general triangulation T with hanging nodes whose elements K are of various shapes. 
To obtain the weak formulation with which our DG method is defined, we multiply 
(1.2) and (1.3) by arbitrary, smooth test functions r and v, respectively, and integrate 
by parts over the element K c T to obtain 

qr dx=- uV- rdx + J ur-nKds, 
JK ~K AK 

q Vdx = fvdx + j vq nK ds, 

where nK is the outward unit normal to OK. Note that the above equations are well 
defined for any functions (q, u) and (r, v) in M x V where 

M:={q C (L2(Q))d : qK E H1(K)d VK C T}, 

V :={u E L2(Q) : uK C H1(K) VK C T}. 

Next we seek to approximate the exact solution (q, u) with functions (qN, UN) in 

the finite element space MN x VN C M x V, where 

MN:={q E (L 2(Q))d : q[K E S(K)d VK E T}, 

VN :={u e L2(Q) : UIK E S(K) VK C T}, 

and the local finite element space S(K) typically consists of polynomials. Note that 
for a given element K, the restrictions to K of UN and of each of the components of 

qN belong to the same local space; this renders the coding of these methods consid- 

erably simpler than that of the standard mixed methods, especially for high-degree 
polynomial local spaces. 

As we shall see, the existence of the approximate solution of the DG method is 

guaranteed if the following local and quite mild condition is satisfied: 

(2.1) v S(K): J v . r dx = 0 Vr E S(K)d implies Vv _ 0 on K. 
JK 
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This condition is satisfied whenever we have the following inclusion: 

VS(K) c S(K)d, 

which holds, for example, if S(K) is the space Pk(K) of polynomials of degree at 
most k on K, or the space Qk(K) of polynomials of degree at most k in each variable 
on K. Moreover, if the above inclusion does not hold, the condition (2.1) might not 
be satisfied. To see this, consider the case in which S(K) = Pk(K) ? span{b}, where 
b is a bubble function L2-orthogonal to P k(K). For each r in S(K)d, we can find 
p C Pk(K)d and a E pO(K)d such that r = p + ba and so 

Vb - rdx - bV . r dx = - bV . p dx - - a V7b2 dx = 0. 
I IK rK JK 2 JK 

A similar phenomenon takes place if S(K) = Qk(K) E span{b}, where b is a 
bubble function orthogonal to Qk(K). This is why, in this paper, we assume that the 
above inclusion property holds. Otherwise, there is complete freedom in the choice of 
the local spaces since no interelement continuity is required at all. 

The approximate solution (qN, UN) is then defined by using the above weak for- 
mulation; that is, by imposing that for all K C T, for all (r, v) E S(K)d x S(K), 

(2.2) qN 'rdx - UN V rdx+j u Nr'nK ds, 
JK JK A~K 

(2.3) J/N VvdxZ= fvdx + vqN . rnKds, 
K JK A~K 

where the numerical fluxes U^N and qN have to be suitably defined in order to ensure 
the stability of the method and in order to enhance its accuracy. 

As pointed out in the introduction, the numerical fluxes UN and qN are nothing 
but discrete approximations to the traces of u and q on the boundary of the elements. 
To define these numerical fluxes, let us first introduce some notation. Let K+ and K- 
be two adjacent elements of T; let x be an arbitrary point of the set e = AK+ n K-, 
which is assumed to have a nonzero (d - 1)-dimensional measure, and let n+ and n- 
be the corresponding outward unit normals at that point. Let (q, u) be a function 
smooth inside each element K? and let us denote by (q?, u?) the traces of (q, u) on e 
from the interior of K?. Then we define the mean values {[} and jumps [-] at x E e 
as follows: 

~u} := (u+ + u-)/2, {qJ := (q+ + q-)/2, 

] = u+n+ + u-n-, [q :== q+ . n+ + q- n-. 

Note that the jump in u is a vector and the jump in q is a scalar which only 
involves the normal component of q. 

We are now ready to introduce the expressions that define the numerical fluxes 
in (2.2) and (2.3). If the set e is inside the domain Q, we take 

q := q - C1 -C12q], 

(2.4) 
u := U + C12 UD - C22MqD=, 

where the auxiliary parameters C11, C12, and C22 depend on x E e and are still at 
our disposal. The boundary conditions are imposed through a suitable definition of 
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(, 2), namely, 

A^ r on Ar, 

and 

J{ D on rF, 

u+ - C22(q+ ? n+ +- 9a n-) on FrV, 

where the superscript + denotes quantities related to the element the edge we are 

considering belongs to, and n - -n+. We remark that the definition of (q, u) on 
the boundary aQ is still of the form (2.4) if the exterior traces (q-, u-) are taken to 
be 

(2.5) (q-, u-) = (q+, gD) on FP, (q-, u-) = (g, u+) on F^, 

and C12 is chosen such that C12 * n- = 1/2 on F-P and C12 ? n+ = 1/2 on rF. 
Let us stress once more that the numerical fluxes we just defined are nothing 

but a particular case of the so-called approximate Riemann solvers widely used in 
numerical schemes for nonlinear hyperbolic conservation laws. 

This completes the definition of our DG methods. The LDG method is obtained 
when C22 - 0, that is, when the numerical flux UN does not depend on qN. In this 

case, the auxiliary variable qN can be locally solved in terms of UN by using (2.2) 
and then easily eliminated from (2.3); the resulting problem has only UN as unknown. 
This unusual local solvability property gives its name to the LDG method. That this 
DG method actually defines a unique approximate solution depends in a crucial way 
on the coefficients C1l and C22. Indeed, we have the following result. 

PROPOSITION 2.1 (well posedness of the DG method). Consider the DG method 

defined by the weak formulation (2.2) and (2.3), and by the numerical fluxes in (2.4) 
and (2.5). If the coefficients Cll are positive and the coefficients C22 are nonnegative, 
the DG method defines a unique approximate solution (qN, UN) E MN x VN. 

Notice that the above result, which we prove in the next subsection, is independent 
of the auxiliary vector parameter C12. The form of the numerical fluxes in (2.4) 
ensures symmetry and stability of the DG method. Finally, let us point out that the 
role of the auxiliary parameters Cll and C22 is to enhance the stability and hence the 

accuracy of the method. 

2.2. The classical mixed setting. The study of our DG method is greatly 
facilitated if we recast its formulation in a classical mixed finite element setting. To 
do that, we need to introduce some notation. We denote by ?i the union of all interior 
faces of the triangulation T, by ?p the union of faces on FD, and by ?gv the union of 
faces on rFr; we assume that FD = Ueccve and FAr = UecENg. 

Now we sum (2.2) and (2.3) over all elements and obtain 

J qN. r dx + UNV r dx - UN r ds - juNr nds = 0 

and 

E / qN Vvdx -j q * vds - qN 'nds = / 
fv dx. 

K ETK i fQ 
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Then we insert the definition of the numerical fluxes, and get, after a simple 
rearrangement of terms, 

( qN rdx + C22qNlDr d+s + / C22(qN n) (r n) ds) 
IR J?si Ar 

+ ( UN V -rdx- (tUN} + C12 'UN) r] ds- UNr nds) 

= gD r nds + J C22 (9g n)(r . n) ds 

and 

-( ( +I Vv -qd (qN 12 ]) q s v qN nds) 
KET 'D ^~,~,,1016???i 7) 

+ ( C C 11UN v ds- + CllUN v ds 

= jfvdx + Cll gDvds+ j vg . nds. 

It is now easy to rewrite the above equations in the familiar mixed setting, by 
defining the bilinear forms 

a(q,r):= j q-rdx+ j C22[qIrddsj+ C22(q n)(r n)ds, 
QJ^t JEi Af 

b(u,r) - / JuV 'rdx- j ({u- + C12 [u ) Tr] ds - ur nds, 

c(, v) := C11u[ - v] ds+ j Cl uv ds, 

the linear forms 

F(r) : D gDr nds + C22 (gN n)(r . n)ds, 
'D 

G(v) := fvdx+|I COl gDvdsr+j vgA- nds, 

and by noting that, after integration by parts, the form b(., ) can be rewritten as 

(2.6) b(u, r) =-Z I Vu rdx+ ({r} -Cl2T) u ds+ ur nds. 
KE Ti eD 

Thus, the DG approximation (qN, UN) can be characterized as the unique solution 
of the following variational problem: Find (qN, UN) E MN x VN such that 

(2.7) a(qN, r) + b(UN,r) = F(r), 

(2.8) -b(v, qN) + C(UN,V) = G(v), 

for all (r,v) E MN x VN. Note that the two linear forms F and G on the right- 
hand side contain all the data of the problem. In particular, they contain both the 
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Dirichlet and Neumann data, which is not the case for the classical mixed finite 
element methods. 

Equations (2.7) and (2.8) can be rewritten in a more compact form as follows: 

(2.9) A(qN, UN; r, v) = Y(r, v), 

by setting 

(2.10) A(q, u; r, v) := a(q, r) + b(u, r) - b(v, q) + c(u, v), 

(2.11) .F(r, v) := F(r) + G(v). 

We end this section by proving Proposition 2.1. 
Proof of Proposition 2.1. Due to the linearity and finite dimensionality of the 

problem, it is enough to show that the only solution to (2.7) and (2.8) with f = 0, 
g9 = 0, and gg = 0 is qN = 0 and UN = 0. Indeed, taking r = qN, v = UN, and 
adding the two equations, we get 

a(qN, qN) + C(UN, UN) = 0, 

which implies qN = 0, since C22 > 0, and [UN = 0 on i, UN = 0 on Ep, since 

Cl, > 0. As a consequence, (2.7) becomes 

b(uN,r) = 0 Vr E MN 

From (2.6) we get 

b(uN,r) = VUN rdx 0 Vr MN. 
KEET 

Hence, owing to (2.1), VUN = 0 on every K E T; that is, UN is piecewise-constant. 
Since [UN] = 0 on ?i and uN = 0 on ?D, we conclude that UN 

- 
O. This completes 

the proof of Proposition 2.1. D 

2.3. A priori error estimates. In this section we state and discuss our a priori 
error bounds for the DG method. As pointed out at the beginning of this section, 
we restrict our analysis to domains Q such that, for smooth data, the solution u of 
problem (1.1) belongs to H2(Q). We also assume that when f is in L2(Q) and the 
boundary data are zero, we have the elliptic regularity result l u 112 < C 11 f lo; see 
Grisvard [28] or [29]. 

We assume that every element K of the triangulation T is affine equivalent (see 
[16, section 2.3]) to one of several reference elements in an arbitrary but fixed set; 
this allows us to use elements of various shapes with possibly curved boundaries. For 
each K c T, we denote by hK the diameter of K and by PK the diameter of the 
biggest ball included in K; we set, as usual, h := maxKET hK. The triangulations 
we consider can have hanging nodes but have to be regular; that is, there exists a 
positive constant a such that 

(2.12) < K E T; 
PK 

see [16, section 3.1]. Moreover, we restrict the ratio of the sizes of neighbor element 
domains. To formally state this property, we need to introduce the set (K, K') defined 
as follows: 

(K KK ' 0 if meas(d_l) (OK n OK') = 0, 
interior of OK n OK' otherwise. 
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Thus, we assume that there exists a positive constant 6 < 1 such that, for each 
element K E T, 

hK' 
(2.13) 6 < hK -< 6 VK': (K,K') 0. 

- hK 

This assumption forbids the situation where the mesh is indefinitely refined in 
only one of two adjacent subdomains. Nevertheless, the above three hypotheses on 
the meshes are not restrictive in practice and allow for quite general triangulations. 
For the local space S(K), we require the following inclusions to hold: 

(2.14) VS(K) C S(K)d, S(K) D k(K). 

Note that, as discussed before, the first inclusion ensures the validity of the condi- 
tion (2.1) which guarantees the existence and uniqueness of the approximate solution. 
The second inclusion is a standard approximation constraint. 

Next we introduce a seminorm that appears in a natural way in the analysis of 
these methods. We denote by Hk(D), D being a domain in Rd, the Sobolev spaces of 
integer orders, and by 1 * Ilk,D and I Ik,D the usual norms and seminorms in Hk(D) 
and Hk(D)d; we omit the dependence on the domain in the norms whenever D = Q. 
We define I (q, u) 1 := A(q, u; q, u); that is, 

(2.15) (q, u) = qll +02 (q, ), 

where 

(2.16) 

e2(q,u) := C22 Iq2 ds + C22 (q -n)2 ds + jCI ufds+j Cl u2 ds. 
?i Jj Si 7D 

We assume that the stabilization coefficients Cll and C22 defining the numerical 
fluxes in (2.4) and (2.5) are defined as follows: 

( mi (^ min{h^, _hif xC E(K+, K-), 
(2.17) Cl(x (K+, K ), 

(hc[ ifx oK+n Fv, 

21 minC IPKV K-} if x CZ(K+ IK-), 
(2.18) C22(x) - 

{m{ if a K+ nr 7hTV if x E OK+ n rA, 

with ~ > 0, r > 0, -1 < a < 0 < 3 < 1 independent of the mesh-size and IC121 
of order one. Our main result will be written in terms of the parameters /* and /I* 
defined as follows: 

* = max{-a,}, } , = min{-a, }, 

where / = 1 if r = 0 and 3 = 3 otherwise. 
We are now ready to state our main result. 
THEOREM 2.2. Let (q, u) be the solution of (1.2)-(1.5) and let (qN, UN) be the 

approximate solution given by the DG method (2.2) and (2.3). Assume that the in- 
clusion properties (2.14) of the local spaces hold and that the stabilization parameters 
are as described above. Finally, assume that the triangulations satisfy the hypothesis 
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(2.12) and that, if a :A 0 or /3 7 0, the hypothesis (2.13) is satisfied. Then we have 
that, for (q,u) E Hs+l(Q)d x HS+2(Q) with s > 0, 

IIU - UN + hD I (q - qN - UN) hA < C h+ IU s+2, 

where C solely depends on Q, s, a, 6 (not when a = p = 0), T, k, and d; and 

P=min s+ (1 + ),k+ (1 - , D= (1 + /) if > 1. 
2 

When k = O, we have P = D = (1 - -*). 

Let us briefly discuss the above result. 
* We begin by noting that the orders of convergence depend on the size of the 

stabilization parameters Cll and C22 only through the quantities ,* and ,ui. This 
fact has several important consequences: 

o The same orders of convergence are obtained with either C22 = 0 or C22 of 
order h. This means that there is no loss in the orders of convergence if 
instead of penalizing the jumps of the normal component of qN with a C22 
or order h, no penalization at all (the LDG method) is used. 

o The same orders of convergence are obtained with either the LDG method 
(C22 = 0) with Cll of order one or Cll of order h-1 and C22 of order one. 

o In general, the same orders of convergence are obtained by taking (a, 3) 
(-a, b) or by taking (a, 3) = (-b, a). 

o The most remarkable cases occur when -, /3 E {O, 1} since it is for those val- 
ues that /* and p* achieve their maximum and minimum. The corresponding 
orders of convergence are displayed in Table 2.1 for k > 1. 

TABLE 2.1 
Orders of convergence for u E HS+2(2) for s > 0 and k > 1. 

C22 C11 (q - qN,U-UN) IA IIU -UNlIO 

0, O(h) 0(1) min{s + 1/2, k} min{s + 1/2, k} + 1/2 
0, O(h) O(l/h) min{s + 1, k} min{s + 1, k} + 1 

O(1) 0(1) min{s, k} + 1/2 min{s, k} + 1 
0(1) (l/h) min{s + 1/2, k} min{s + 1/2, k} + 1/2 

* In the case 1 < k < s, that is, when the degree of the polynomial approximation 
is less than needed to fit the smoothness of the exact solution, we see in Table 2.2 
that the best orders of convergence for I (q - q, u - UN) \A and Ilu - UNI o, k + 1/2 
and k + 1, respectively, are obtained for both Cll and C22 of order one. When C22 
is taken to be of order h or equal to zero, the stability of the method is weakened 
and, as a consequence, a loss in the orders of convergence of 1/2 takes place. If 
now Cll is taken to be of order h-1, the full order of convergence in the error of 
the potential is recovered. The numerical experiments of section 5 show that these 
orders of convergence are actually achieved. However, the expected loss in the orders 
of convergence when Cll is taken of order one is not observed, which shows that 
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TABLE 2.2 
Orders of convergence for u E HS+2(Q) for s > k and k > 1. 

C22 Cll I (q - qNU- UN) IA Iu - UNO10 

0, 0(h) (1) k k + 1/2 
0, 0(h) O(l/h) k k + 1 

0(1) 0(1) k+ 1/2 k + 1 
0(1) O(l/h) k k + 1 

TABLE 2.3 
Orders of convergence for u E HS+2(t) for s > 0 and k > s + 1. 

C22 Cl I (q -qN,U- UN) A IIU -UN\lO 

0, 0(h) 0(1) s + 1/2 s+ 1 
0, 0(h) O(l/h) s + 1 s+2 

0(1) 0(1) s+ 1/2 s+ 1 
0(1) 0(l/h) s+ 1/2 s+ 

in practice the LDG method is essentially insensitive to the size of the stabilization 
parameter Cl. 

* The influence of the choice of the coefficients C12 on the accuracy has not 
been explored in this paper; we only assume those to be of order one. In [20] it is 
shown that the LDG method, with a suitable choice of the coefficients C12, gives the 
orders of convergence of k + 1/2 and k + 1 for (q - qN, u - 

UN) IA and Ilu - UNllo, 

respectively, if Cartesian grids and tensor product polynomials of degree k in each 
variable are used. 

* For the case k > s +1, that is, when the degree of the polynomial approximation 
is more than needed to fit the smoothness of the exact solution, we see in Table 2.3 
that the LDG method performs at least as well as all the other methods; it performs 
better if Cl0 is of order h-1. 

* In the case k = 0, the DG method converges provided C22 :7 0; in particular, for 
constant coefficients Cni and C22, we obtain estimates of order one for IlU- UN lo, and 

1/2 for (q - qN, U - UN) IA. This is one of the few finite element methods for second- 
order elliptic problems that actually converges for piecewise-constant approximations. 
When C22 = 0, that is, for the LDG method, our numerical results, which we do not 
report in this paper, show that there is no positive order of convergence in this case, 
as predicted by Theorem 2.2. 

* Finally, let us point out that the hypothesis (2.13) on the ratio of the diameters 
of two neighbor elements is superfluous when a = 3 = 0. To see why this is so, we 
have to recall that the size of the stabilization parameters C11 and C22 depends on 
the diameters of the two neighbor elements only when a l7 0 and /3 7 0. As can 
be seen in the proof of Corollary 3.7, the price we have to pay for the additional 
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stability these parameters provide is that approximation errors in the interior of both 
elements get multiplied by the factors 1/C11 and 1/C22. This introduces the ratio of 
the diameters of two neighbor elements. The best results are obtained when this ratio 
remains bounded, above and below, as required by hypothesis (2.13). 

2.4. The idea of the proof. The proof of Theorem 2.2 will be carried out in 
section 3. The purpose of this section is to display as clearly as possible the basic 
ingredients and the main steps of our error analysis. As usual, we express the error 
(eq, e,) = (q - qN, u- UN) as the following sum: 

(eq, eu) = (q - lq, u - Ilu) + (neq, Ieu), 

where II and II are projections from M and V onto the finite element spaces MN 
and VN, respectively. 

a. The basic ingredients. The basic ingredients of our error analysis are two. 
The first one is, as it is classical in finite element error analysis, the so-called Galerkin 
orthogonality property, namely, 

(2.19) A(eq, eu; r, v) =0 V(r, v) E MN x VN. 

This property is a straightforward consequence of the consistency of the numerical 
fluxes. 

The second ingredient is a couple of inequalities that reflect the approximation 
properties of the projections II and II, namely, 

(2.20) 1 A(q - IIq, u - Iu; b - IIM, qp - Hp) I < KA (q, u; k, (p) 

for any (q, u), (4, vp) E M x V, and 

(2.21) 1 A(r, v; q - Iq, u - Hu) < | (r, v) IA KB(q, u) 

for any (r, v) E MN x VN and (q,u) E M x V. 
As we show next, all the error estimates we are interested in can be obtained 

solely in terms of functionals KA and K8. 
b. The estimate of the error in the A-seminorm. We have the following 

result. 
LEMMA 2.3. We have 

(eq, e) IA < K/(q, u; q, u) + KB(q, U). 

Proof. Since I (, ) IA is a seminorm, 

e,eu) (, - nq, u- Hu) IA + | (Heq, Heu) IA, 

and since 

I (neq, Hen) 1A =A(Heq, neu; IIeq, HIe) 

=A(Hq - q, nu - u; Ileq, IIeu) by Galerkin orthogonality (2.19), 

=A(-HIeq, Ieu; q - nq, Ilu - u) by the definition of A, (2.10), 

<I (IIeq, lie) IA K3(q,u) by assumption (2.21), 
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we have that 

(2.22) 1 (neq, neu) IA < KB(q, u). 

This implies that 

I (eq, eu) IA < I (q - nq, u - Ilu) IA + K3(q, u). 

The estimate now follows from a simple application of the assumption (2.20). This 

completes the proof. 0 
c. Estimate of the error in u in nonpositive order norms. To obtain 

an estimate of 11 eu 1l-t,D, where t is a natural number and D is a subdomain of Q, 
we have to obtain only an estimate of the error in the approximation of the linear 
functional A(u) = (A, u), where (-, .) denotes the L2-inner product, by A(uN) since 

l eu -t,D s= SUp A(eu 
AECo(D) II AIt,D 

In this paper, we are only interested in the case t = 0, but we give here the 

general argument to stress the fact that it is essentially the same for all natural 
numbers t. Error estimates in negative order norms are very important, as we point 
out in section 4 of this paper. 

To obtain our estimate, we need to introduce the solution %? of the so-called adjoint 
problem, namely, 

(2.23) -Aop = A in Q, 

(2.24) p = 0 on Fp, 

(2.25) = 0 on Ar. On 

LEMMA 2.4. Let t be a natural number. Then we have 

(2.26) e -t,D sp K(q,u;,p) + K(q, u) sup 
K 

XeC II() l A t,D AeCo(D) l It,D 

with (p denoting the solution of (2.23)-(2.25) and 1 = -V(p. 
Proof. Since %p is the solution of the adjoint equation, it is easy to verify that if 

we set 4 = -V%0, we have 

A(-t, ; -s, w) = A(w), 

for all (s, w) E M x V; indeed, note that problem (1.1) can be rewritten as in (2.9). 
Taking (s, w) = (eq, eu), we get 

A(eu) =A(eq, eu; I, p) by the definition of A, (2.10) 

=A(eq, eu; 4 - IIn, %0 - II0) by Galerkin orthogonality (2.19) 

=A(Heq, Heu; 4, - nH4, ( - n) + A(q - nq, u - nu; ,I - n1, - ni(). 

Since (Heq, IIeu) C MN x VN, by the assumption (2.21) and the estimate (2.22), we 
obtain 

I A(IIeq, leu; cI 
- I,, ,o - nIp) I < KB(q, u) KB(I, %p), 
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and hence, 

A(eu) I < Ks(q, u) K3(, P) 

+ I A(q - Hlq, u - IIu; I - H4n, (p - HF) [. 

The estimate now follows from a simple application of assumption (2.20), and 
from the definition of a nonpositive order norm. This completes the proof. [ 

d. Conclusion. Thus, in order to prove our a priori estimates, all we need to do 
is to obtain the functionals KA and K3; this will be carried out in the next section. 
Then Theorem 2.2 will immediately follow after a simple application of Lemmas 2.3 
and 2.4. 

3. Proofs. In this section, we prove our main results. We proceed as follows. 
First we obtain the functional KA for general projection operators II and II. To 
obtain the functional KB, the projections II and H are taken to be the standard L2- 
projections, just as done by Cockburn and Shu [25] in their study of the LDG method 
for transient convection-diffusion problems. 

3.1. Preliminaries. The following two lemmas contain all the information we 
actually use about our finite elements. The first one is a standard approximation result 
for any linear continuous operator HI from Hrl (K) onto S(K) satisfying Hw = w for 
any w C Pk(K); it can be easily obtained by using the techniques of [16]. The second 
one is a standard inverse inequality. 

LEMMA 3.1 (cf. [16]). Let w E Hr+l(K), r > 0. Let II be a linear continuous 
operator from Hr+1(K) onto S(K) such that Hw = w for all w C Pk(K). Then for 
m =0,1 we have 

IW - nHw m,K < ChKin{r,k}l+-m llWr+1,K, 
min mnr,klk+ 1W - HWlO0,&K < ChK in{rk llr+,K, 

for some constant C that solely depends on a in inequality (2.12), k, d, and r. 
LEMMA 3.2 (cf. [16]). There exists a positive constant Cinv that solely depends 

on a in inequality (2.12), k, and d, such that for all s E S(K)d we have 

_1 

|ISl o,aK < CinvhK 2IlSO,K, 

for all K E T. 
We are now ready to prove our main result. 

3.2. The functional KA4. In this subsection we determine the functional KA 
in (2.20), up to a multiplicative constant independent of the mesh-size. We start by 
giving an expression for KA which is valid for coefficients C11 and C22 that vary from 
face to face, for k = 0 and for any regularity of the solution. Then we write KA for 
the particular choice (2.17), (2.18) of C11 and C22 in Theorem 2.2. 

Let II and II be arbitrary projections onto VN and MN, respectively, satisfying 
(componentwise) the assumptions in Lemma 3.1. 

LEMMA 3.3. Assume (q,u) C Hs+1(Q)2 x HS+2(Q) and (4,I () e Ht+l(Q)2 x 
Ht+2(Q), s,t > 0. Then the approximation property (2.20) holds true with 

5 

KA(q, u; P, 0) = Si(q, u; ', )0), 
i=1 
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where 

S1 .= C / E h(min{sk}+211qll2 ) 

S2 .C ( h 2mins&K h2 min{s,k}+ 112 
?KET K 

/ \KE 

S2= C CT K h2 2min{s+l,k}l 12 )2 S =0 2 11 11K 5 s+2 ,+ 

KET 

/ \ 2 

S4 = C h - h2mmin{s,k}+2i| ||2 
) 

KS 
s+2,K 

KET 

C -C ( K 'TF7Kh2min{s+l2k}+ll 
2 

KET KET~~ 

h2 min{t,k}+211, ,12 

KET 

E C22K h2 min{t,k}+l 1n |2 1 

KET 

hK: 22 K l, lt+, (E5 
h2 min{tk}+2I)+l2K) 

KET 

/ \ 2 
E h2 min{t+l,ck} n+1 2 ) 2K K t 11K+2,K 

KET 

-2,K) ( ECK h2 min{t+lk}+l I}+li(PI2 -2,K j11 'K 't+2,K 
7 \KErT7 

hK = sup{hK' : (K,K') $ 0}, CK := sup{Cii(x) : x E OK}, i = 1,2. The 
positive constant C is independent of the mesh-size but depends on the approximation 
constants in Lemma 3.1 and on the coefficients C12. 

Furthermore, in the case where (, o) = (q, u), we have 

KA(q, u; q, u) = S1 (q, u; q, u) + S2(q, u; q, u) + S5(q, u; q, u). 

Proof. We set, for convenience, Sq := q - Iq, u := u - lu, ~ := - I, 
J := (p - I(. We start by writing 

A(q, iu; i, &9) = a(Gq, t) + b(u , t) - b(p, Iq) + c(~u, (), 

and then proceed by estimating each of the forms on the right-hand side separately. 
The form a(., .) can be written as 

a(q, )-,= YE (/ Kq' dx-+ I 

KET K JKnrA 

+ a C22 (0q ' nK)((I ' nK) ds 
aK\9Q 

C22 (q. n)( -n)ds 

- C22 (qUt * nK)( f nK) ds) , 
K\aQ 

where the superscript "out" denotes quantities taken on OK \ 9Q from outside K. By 
repeated applications of the Cauchy-Schwarz inequality, we obtain that la(qq, q )l 
is bounded by 

E (IqlIIO,K 11, |||O,K + II222 q ' 
n^O,aKnrfllC222 * njlo,aKnr^ 

KET 

+(lIC22 q *l nKIIO,aK\a + IIC22 qt * nKIlo,aK\a) 22 nK|O,K\aQ) 

( ) ^i,1 ' 1 11) 
KET KEq 07,K K c-T Kc- 
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+2 2 
K 

? n 112 
K I n l,112 +2 C21 2 2q nKII,C 0 o,9 K 

Now a straightforward application of Lemma 3.1 to both the K and OK terms yields 

la(q, ,) <_ Sl.(q, u; Q,, ; ) + S2(q, u; ', 0). 

To deal with the second term, we first note that 

b(EU, ) )= 
- 

E (: V,u -pdx+ / u (o n)ds 
KET K KnrD 

+ 1K\0 6 (4{(1I - C12 [2 ) ds ) 
K\9Q 

and obtain, after repeated applications of the Cauchy-Schwarz inequality with suit- 
ably chosen weights, that Ib(u, ,ip)1 is bounded by 

S (I[UI1,K 11 |JO,K + IlhK2 u\lo,0KnrF \\h, 
* nllo,oKnrr 

KET 

+1lhK2 ullo,9aK\oQ lh(2 + - C12 *nK + C12 l nK ) IO,aK\O) 

E ( (u,K+ h IllullaK)) (E ( IIO, K +hK I , ' nllo,&KnrP 

+4hK I| ( - C2 2* nK) o,K\2) )2 

(<zE (l ( - 1 ,K (+ hK + hK I l ) ) , 
\K 

2 
vK \< / /Q Ur / 

where C = 1 + 2 sup{I C12(x) . n : ax E K} and hK = sup{hK' (K,K') t 0}. 
Once again, a straightforward application of Lemma 3.1 gives that 

Ib(5,, ,i) < S3(q, u; O, (). 

For the third term, we use the same arguments to get 

Ib({,, q)l 54(q, u; S ,, c). 

Finally, proceeding as above, we get 

2 2 

Ic(u;) < 2( (S CKll lllllO,OaK C OK 
KET KENT 

< S5(q, u; lb, (). 

This proves the first assertion. The second one immediately follows by taking into 
account that 

A(Eq, ~u; q, u) = a(qq, ,q) + c(u, u), 
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and the proof of the lemma is complete. D 
The following result is a straightforward consequence of the estimates in Lemma 3.3. 
COROLLARY 3.4. Let (q, u) E Hs+l(Q)2 x Hs+2(Q), s > 0 be the exact solution of 

(1.2)-(1.5); let p E Ht+2(Q) , t > O, be the solution of the dual problem (2.23)-(2.25), 
and ? = -V(p. Assume that coefficients C11 and C22 satisfy (2.17), (2.18). Then 
there exist a constant C that solely depends on s, t, , , T, k, and d such that 

KA(q, u; u, p) = C hQA IIulls+2IPllt+2, 

where QA = min{s + 1 + min{t + /, k}, k + 1 + min{t, k + a}}, which reduces to 

QA = 1 + a for k = 0. Moreover, 

KA(q, u; q, u) - C h2 PA ullU2+2 

where PA = min{s+ (1 +/), k+ (1 +a)} for k > 1 and PA = (1+a) for k 0. 

Proof. From Lemma 3.3, we get 

KA(q, u; P, ,) =C[hmin{s,k}+l(hmin{t,k}+l + Thmin{t,k}+/ + hmin{t+l,k) 

_hmin{s+l,k}+l (hmin{t,k} +_ 
(hmin{t+l,k}+a)] |IUI s+211Pll t+2 

and 

KA(q, u; q, U) = C [h2 min{s'k}+l(h + ThO) + h2 min{s+l,k}+l(ha] Ilull2+ 

Note that the above results hold for arbitrary a and 3. If now we restrict ourselves 
to the case of Theorem 2.2, that is, if we assume that -1 < a < 0 </ < 1, the result 
follows after simple algebraic manipulations. 1 

3.3. The functional KB. In this subsection we determine the functional KB 

satisfying (2.21), up to a multiplicative constant independent of the mesh-size. Here 
we take II to be L2-projection and II= (II,..., 11). Again, we start by determining 
expressions which are valid for varying coefficients C11 and C22, and we conclude by 
considering the particular case of Theorem 2.2. We proceed as follows. We show that 
there exists a form I (, ') 13, which is a seminorm in both variables, such that for any 

(r,v) E MN x VN and (q,u) E M x V, 

(3.1) 1 A(r, v; q - IIq, u - lu) I < C I (r, v) 4A I (q - IIq, u - nu) 13, 

with C independent of the mesh-size. Then it is enough to determine Kt3 such that 

(3.2) (q - nq, u - lu) 1B < KB(q, u) 

for any (q, u) E M x V. In the following lemma we prove that (3.1) is satisfied by 
defining the seminorm I (, ) lB as 

I(q,u) 2 = = ( (q. n)2 + Clu2) ds + (C22(q n)2 ds 

Cl]I 
(3.3) + X (c qq2 + C IqJ - Cl2q2 + ({} + 012 . u)2 + c M2 ) ds, 

where for each internal or Neumann boundary face e we set 

min{hK,hK,hK for x E (K,K'), hK for x C FA if C22(x)=O, 
XC22(X ) otherwise. 
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Note that only the function values along faces enter the 1 (., .) ls seminorm. As 
can be inferred from the proof of Lemma 3.5 below, this is due to the particular choice 
of I and II as L2-projections. 

LEMMA 3.5. Let II and I be the L2(Q)-projection and L2(Q)d-projection onto 
VN and MN, respectively, and I (., .) 1 be defined by (3.3). Then (3.1) holds true, 
with a constant C that solely depends on a, k, and d. 

Proof. Setting tq := q - nq and (u = u - Iu, we have, by the definition of the 
form A in (2.10), 

\A(r,v; q, E)I < la(r, )q)l + [b(v,)q)l + Ib(U, r)l + c(v, u) 
=: T + T2 + T3 + T4. 

Using Cauchy-Schwarz's inequality and the fact that H is the L2(Q)d-projection, 
we obtain 

T1 ( C22 lr]2 ds + C22 (r . n)2 ds) 2 [q ]2 ds + C22 (q n)2 ds) 
Ei \Ji J En 

< I(r, V)1 A I(\q, u)l\B 

Furthermore, since fK Vv d q dx = 0 by the inclusion property (2.14), we have 

T2= J Iv (9q -C12Eqd) ds+ vq. nds 

Multiplying and dividing by C2l and then applying Cauchy-Schwarz's inequality, we 
obtain 

T2 < (J C 2[vf2ds 
+ J Cll ds) 

?i J > 

?(J j1 LfIqJ - 
C121qll Ids + I i (q n)2 ds 

< ](r, V)IA I (Sq, W 1 3. 

Analogously, since fK V. r ru dx = 0 by the inclusion property (2.14), we get 

T3= j (u +Ci2 u)rdsj+ ur.nds 
?i N 

< ( X xr] ds + x (r. n)2 ds 

\j?i22 
2 

'(J (?(u + C12 D)2 ds + J I ds) 
\Ji X X 

The first factor can be estimated as follows: 

X r2 ds + X X (r * n)2 ds < c2C2 r2 ds + C22 (r n)2 ds 

J~~?~i A?j r?i (r n)2ds +J ?rDX ds+ j X(r *n)2 ds 
?i . N' 
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? (r, v)?' + j 1r 2dsA-jY(r.- n)2 ds, 

where -(x) - min{hK, hK'} if x E (K, K'), and -(x) - hK if x E FAg. By the inverse 
inequality in Lemma 3.2, 

iYHr[2 ds+J (r n)2ds< ZZ I2) rK - nK 12 
ds 

? Z: 2X' IrIK fnK o,aK 
KEET 

-OK 

112 < 2 Cinv sup l rI 
KE-r hK 

< 2 Cinvllr 112 < 20Cinv I (r, V) 12 

where XOK sup{-(x): x E 9K}. Thus, combining the above estimates, we get 

T3< I (r, v) IAI (Q, , W 113 

Finally, 

- j C11Hv[ -Rulds+jC, Civ 1 ds 

2 2 

<(j Cul Iv?2 ds + JD l v2 ds)S (j Cl, Oj2 ds + j ii 0 62 ds) 

? l(r,v) A V(Sq4 u)IS. 

To complete the proof, we simply have to gather the estimates of the terms Ti, 
i 1, 2, 3, 4, and apply once again the Cauchy-Schwarz inequality. 5 

The function K8 can be easily defined by applying the estimates in Lemma 3.1 
to (., -)I defined in (3.3). 

LEMMA 3.6. For any (q,u) c Hsl( Q)2 x Hs+2(Q), s > 0, the approximation 
property (3.2) holds true with 

K2 (q, u) =C (h 2minmins,k (jI + C292K) q11+1K) 
5 K CaK 1 s+I,K 

0 +C h 2 min{s+1,kj+1 (CK + I812 ) 
KET 

where C,9K = inf{Cii(x) x E OK}, OK = inf{X(x) x C OK}, and C is a 
constant independent of the mesh-size and solely depending on the approximation and 
inverse inequality constants (ef. Lemmas 3.1 and 3.2). 

From this lemma, we immediately obtain the following result. 
COROLLARY 3.7. Let (q,u) E Hs+'l(Q)2 x HS+2(Q), s > 0. Assume that the 

coefficients Cil and 022 satisfy (2.17), (2.18). The triangulations are assumed to 

satisfy the hypothesis (2.12); if a f 0 or 3 0 0, we also assume that hypothesis (2.13) 
is satisfied. 

Then there exists a constant C that solely depends on s, u, 8, (, T, k, and d such 
that 

K2 (q,u) Ch22PIHul1?2 B\~U s+21 
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where P = (1- ) if k = 0 and P = min{s + (1 + p/*), k + 2 (1 - L*)), ifk > 1. 

If a = = 0 the constant C is independent of 6. 

Proof. If we take the coefficients C1l and C22 as in Theorem 2.2, we get, after a 

simple computation, 

n+C1 T22) 
- 

+ 

and 

hK (c K + AK) < ?h+ + h-/61-', 

where the parameter 6 is defined in (2.13), and F = 1 if r = 0, 7 = T otherwise. 
Note that the left-hand sides of the above inequalities are trivially uniformly bounded 
when a = 3 = 0; otherwise, we must invoke the hypothesis (2.13) to ensure the 
boundedness of these quantities. We emphasize that this is the only instance in which 
this hypothesis is used. 

Hence we obtain 

K2(q, u) = C [h2 min{sk}+l ((-lhc + ) + h + h2min{s+l,k+l(h (a + -1h-3)] |Iul2| 

where C is independent of the mesh-size but depends on 6 and on the approximation 
and inverse inequality constants. The result follows after simple algebraic manipula- 
tions. D 

3.4. The proof of Theorem 2.2. From Lemma 2.3 and Corollaries 3.4 and 3.7, 
we get 

I (q - qN, - UN) |A < Chmin{PA,P} I U IIs+2 

and since min{PA, P} = P the estimate 

(q - qN, U - UN)A < ChP I u 11s+2 

follows. 
Next consider the L2-norm of the error u - UN. Take t = 0 and D = Q in 

Lemma 2.4. From the elliptic regularity of the adjoint problem (2.23)-(2.25), we 
have |11(112 < CIIAllo and II1|11 < CjlAllo. The estimates of |Iu - UNllo directly follow 
from substituting the expression of K.A(q, u; 4, qo) given by Corollary 3.4, and the 

expressions of KS(q, u), KB(, ,o) given by Corollary 3.7 in (2.26), and bounding 
IIll 1 and 11|112 by IAllAo. Indeed, we get 

IU 
- 

UNIlo < C hmin{QAlt=,P+Pls=o} 1 U 11+2, 

and since min{QA1t=o, P + Pls=o} = P + Pls=o, the estimate Ilu - UNlo < ChP+D 
follows with D = P\s=o. 

This completes the proof of Theorem 2.2. 

4. Extensions. In this section, we indicate how to extend our main result in 
several possible directions. 
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TABLE 4.1 
Orders of convergence for u E HS+2(Q) for s > 0 and k > 1. 

C22 C11 I (q - qN,- UN) A II|| - UNII 

0, 0(h) 0(1) min{s + 1/2, k} min{s + 1/2, k} + y - 1/2 
0, (h) 0(1/h) min{s + 1, k} min{s + 1, k} + y 

0(1) 0(1) min{s,k} + 1/2 min{s, k} + 7 - 1/2 
0(1) O(l/h) min{s + 1/2, k} min{s + 1/2, k} + y - 1/2 

4.1. The case of polygonal domains. In the case of a nonconvex polygonal 
domain in two dimensions, our assumptions on the smoothness of the solution u of 
our model problem (1.1) and on the elliptic regularity inequality are no longer true. 

Indeed, if, for instance, the Neumann boundary is empty, the Dirichlet data is 
smooth, and f is in L2(Q), we have (see Grisvard [28]), that u E HS+2(Q) with 
s = - 1 e (-1/2,0), where 

Y = 7r/W, 

and w is the maximum interior angle of 9Q. Moreover, if the Dirichlet data is zero, 
we have 

11 U s+2-, < C(?) 11 f HIo VE > 0; 

see (1.7) in Schatz and Wahlbin [37] and the references therein. This is the elliptic 
regularity result that we must use. 

To prove our error estimates in this case, we proceed as follows. First we note 
that our main result Theorem 2.2 can be easily extended to this case; indeed, a simple 
density argument shows that Lemmas 3.3 and 3.6 remain valid for s,t E (-1/2,0). 
Now we proceed as in subsection 3.4 and obtain the desired estimates by using the 
above mentioned lemmas and the above described elliptic regularity inequality. The 
estimate of the error in the I(., .)lA-seminorm remains the same but the estimate of 
the L2-norm of the potential has to be suitably modified. 

For k = 0, it turns out that only for a = 3 = 0 we obtain nonzero orders of 
convergence for | (q -qN, - UN) 1A and Ilu-UNI O, namely, -y-1/2 - and 2-y-1-E 
for all E > 0, respectively. The results for k > 1 are displayed in Table 4.1 for 
smooth solutions (u E Hs+2(Q), s > 0) and in Table 4.2 for nonsmooth solutions 

(u E HS+2(Q), s -= - 1). (We simply write y instead of 7y - E Ve > 0.) 

4.2. Estimates of the error in negative-order norms. It is very well known 
that the error in linear functionals can be estimated in terms of the error in negative- 
order norms. Moreover, Bramble and Schatz [11] showed how to exploit the oscillatory 
nature of finite element approximations, captured in estimates of the error in negative- 
order norms, to enhance the quality of the approximation by using a simple post- 
processing on regions in which the exact solution is very smooth and the mesh is 
locally translation invariant. 

Error estimates of negative-order norms can be easily obtained for our general DG 
method by following the argument described in subsection 2.4 and the technicalities 
displayed in section 3. 
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TABLE 4.2 
Orders of convergence for u E HS+2(Q) for s = y - 1 E (-1/2, 0) and k > 1. 

C22 C1 I (q - qN, U -UN) IA IU - UN llO 

0, (h) 9(1) 7- 1/2 27-1 
0, 0(h) O(l/h) 7 27 

0(1) O(1) - 1/2 2-1 
O(1) (l/h) - 1/2 2- 1 

4.3. Curvilinear elements. The analysis in section 3 covers the case of triangu- 
lations of curvilinear elements affine-equivalent to fixed curvilinear reference elements. 
The aim of this subsection is to show how our main result can be extended to the more 
general case where such an affine equivalence cannot be established anymore. This 
is, for instance, the case when the problem domain has a boundary with a generic 
curvature. 

There are two distinctive possibilities to do that. The first one is to keep the 
finite element spaces described in the introduction; in this case, the local space S(K) 
could be taken to be simply pk (K), for example. For our main result to hold in this 
case, only Lemmas 3.1 and 3.2 would have to be proven for these elements and for 
the case in which II is the L2-projection. 

The other possibility is to consider elements obtained through the so-called Piola 
transformation [12, section III.1.3]. This transformation associates the function (q, u) 
defined on K with the function (q, u) defined on K by 

-( det DFK u-ul, 
1 

where FK denotes the mapping from K to K. With the above notation, our finite 
element spaces are given by 

MN:={q E (L2(Q))d qlK E S(K)d VK E T}, 

VN :={u E L2() : uIK E S(K) VK e T}. 

It is easy to verify that the following properties are satisfied on each element K 
of our triangulation: 

/ qVvdx= qVvdxN, 

IV qvdx = V q vdx, 

J j'nKvdx=- q'-nKvdx. 
K K 

This implies that with this choice of finite element spaces, our main result holds 
if Lemmas 3.1 and 3.2 hold for the reference element K and for the standard L2- 
projection, provided the mappings FK are sufficiently smooth; see [12] and the refer- 
ences therein. Indeed, the proof of section 3 holds in this case if we use the projections 
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]I and II defined by 

Hq := Iq, Iu-u II, 

where H is the L2-projection into the space S(K) and fi = (II,... ,i). The only 
slight modification of the proof occurs in section 3.3 in the definition of I (, ')|^, (3.3), 
to which we have to add the term 11 q Il2. This implies that an extra term in the upper 
bound of the term T1 in the proof of Lemma 3.5 appears which is easily dealt with. 
No other modification of the proof is required at all. 

4.4. General elliptic problems. The extension of our main result to more 
general elliptic problems which include lower order terms can be done in a straight- 
forward way by applying our techniques to the formulation used by Cockburn and 
Dawson [18]. 

4.5. Exponential convergence of hp-approximations. In the analysis of 
the DG methods considered in this paper, we have derived only error estimates with 
respect to the mesh-size h and we have not exploited the dependence of our estimates 
on the approximation order k. However, this can be done by modifying Lemmas 3.3 
and 3.6 accordingly; see also the work of Houston, Schwab, and Siili [38] and the refer- 
ences there. In addition, by using the proper mesh design principles and by obtaining 
suitable approximation error estimates in the elements abutting at solution singular- 
ities, exponential convergence of the DG method can be proved. See, for example, 
the recent work of Wihler and Schwab [40] who showed exponential convergence for 
a model elliptic problem on a polygonal domain Q for the DG method of Baumann 
and Oden with interior penalties. 

5. Numerical results for the LDG method. The purpose of this section is 
to validate our a priori error estimates for the LDG method (i.e., C22 0) and to 
assess how the quality of its approximations depends on the size of the stabilization 
parameters C11. Since C22 = 0, the function qN can be expressed locally in terms of 
UN and hence can be eliminated from the equations. In our examples we solve the 
resulting linear system for UN by using the standard conjugate gradient algorithm; in 
order to obtain as much precision as possible, the stopping criterion is such that the 
absolute residual norm is less than 10-12. The approximation qN is then recovered 
in a post-processing step by using the local expression of qN in terms of UN. 

We present numerical results using sequences of structured as well as unstructured 
triangular meshes {7T}, i = 1,2,..., where the mesh-size parameter of T+1 is half 
the one of Ti. The numerical orders of convergence of the errors are computed for 
polynomials of degree 1 to 6 in the L2-norm and A-seminorm. These orders are 
defined as follows. If e(TR) denotes the error on mesh T7 (in the corresponding norm), 
then the numerical order of convergence ri is 

log ( (;) ) 
log(0.5) 

In all our computations, we take C12 normal to the edges and of modulus 1/2. 
The stabilization coefficient C11 is chosen to be of order h-1. We emphasize, however, 
that for all our experiments no significant difference has been observed in the errors 
of the approximations when C1l is of order one. We also remark that results for k = 0 
are not included either, since no positive orders of convergence have been obtained, 
as predicted in Theorem 2.2. 
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Unstructured mesh 2 L-shaped mesh 2 

x x 

FIG. 5.1. Unstructured meshes used in the numerical experiments: Nonnested meshes with 88 
and 312 elements on the square Q = (-1, 1) x (-1, 1) (left), and nested meshes with 88 and 352 
elements on an L-shaped domain (right). 

5.1. Smooth solutions. In our first example, we investigate the order of conver- 
gence for smooth solutions. We solve the model problem (1.1) in Q = (-1,1) x (-1,1) 
with homogeneous Dirichlet boundary conditions and empty Neumann boundary. The 
right-hand side f is chosen such that the exact solution is given by 

u(x,y) = cos 
(2X CO 

(j2y 

The sequence of structured meshes used in this example is created from consecu- 
tive global refinement of an initial coarse structured mesh; at each refinement, every 
triangle is divided into four similar triangles. The number of triangles of the meshes 
are 16, 64, 256, 1024, and 4096. Since our analysis is valid for arbitrary meshes, we 
also perform some tests with a sequence of unstructured meshes. It consists of a set 
of meshes such that the maximum edge length is less than a certain value. This value 
is reduced by a factor of two, from one mesh to the next. In this way, if we take 
two consecutive meshes, one is not the global refinement of the other. The number of 
elements of the meshes are 22, 88, 312, 1368, and 5404. The second and third meshes 
are displayed in Figure 5.1, left. 

We show the orders of convergence in the L2-norm of the error in the gradient 
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TABLE 5.1 
Smooth solution; order of convergence of the L 2 error i'n the gradient q. 

k Order of convergence 
Structured meshes Unstructured meshes 

1 0.7075 0.9424 0.9809 0.9932 0.9585 0.7681 1.1016 0.9505 
2 1.9701 1.9764 1.9864 1.9925 2.0364 1.6525 2.0644 1.9843 
3 2.7216 2.9488 2.9924 3.0008 2.9303 2.4986 3.2825 2.9120 
4 3.9171 3.9723 3.9853 3.9920 4.2473 3.3587 4.2419 3.9563 
5 4.7384 4.9438 4.9897 5.0114 4.8836 4.2077 5.5068 4.8490 
6 5.8878 5.9683 5.9820 6.4090 5.0744 6.4362 

TABLE 5.2 
Smooth solution; order of convergence of the A-semi'normn of the error i'n (q, u). 

k Order of convergence 
Structured meshes Unstructured meshes 

1 0.8703 0.9762 0.9942 0.9996 1.0346 0.8469 1.1349 0.9692 
2 2.0661 2.0068 1.9995 1.9988 2.1175 1.7205 2.0926 1.9949 
3 2.8380 2.9745 3.0018 3.0052 3.0120 2.5618 3.2984 2.9233 
4 4.0002 3.9938 3.9943 3.9963 4.3158 3.4195 4.2588 3.9632 
5 4.8276 4.9634 4.9965 5.0144 4.9972 4.2627 5.5138 4.8575 
6 5.9582 5.9844 5.9885 6.4724 5.1322 6.4472 

TABLE 5.3 
Smooth solution; order of convergence of the L2 error in the potential u. 

k Order of convergence 
Structured meshes Unstructured meshes 

1 1.7916 1.9471 1.9855 1.9956 1.8655 1.7322 2.1761 1.9562 
2 2.9241 2.9872 2.9868 2.9915 2.9656 2.7066 3.1625 2.9828 
3 4.0140 3.9837 3.9891 3.9942 3.8730 3.5958 4.2955 3.9421 
4 4.9796 4.9830 4.9866 4.9922 5.1529 4.5272 5.3216 4.9585 
5 6.0358 5.9949 5.9910 5.9589 5.9806 5.4050 6.4370 5.7302 
6 7.0129 6.9889 6.8763 7.3003 6.3641 6.8498 

q = Vu, in the A-seminorm of the error of (q, ut) and in the L 2-norm of the error in u 
in Tables 5.1, 5.2, and 5.3, respectively. For both types of meshes, we observe that the 
optimal order of convergence predicted by our theory (see Table 2.2) is achieved. Note 
that since machine precision is achieved for very fine grids and high polynomials, the 
corresponding orders of convergence are meaningless and are replaced by a horizontal 
line. 

To give the reader a better idea of this phenomenon, in Figure 5.2, we display the 
actual L2 errors in the potential u whose orders of convergence appear in the left side 
of Table 5.3. Note how the very last part of the curve corresponding to polynomials 
of degree k =6 bends as a consequence of having reached machine accuracy. 

5.2. An exact solution in HI (Q) but not in H 5+,e(Q) VE > 0. We solve 
the model problem (1.1) with exact Dirichlet boundary conditions in the convex do- 
main Q =(- 1,1) x (- 1, 1). The right-hand side is chosen such that the exact solution 
of the problem is the function u0 defined by 

uc, ( I f Cos( y) a0 
x,y=~cos(,y) +x0, 

in (-1, 0) x (-1, 1), 
in (0, 1) x (-1, 1). 

This function belongs to H0+1 (Q) but does not belong to Ha?+ 2&(Q) for all 
e > 0. In this test, a =4.5 and so a0 E H5 (Q). The predicted orders of convergence 
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FIG. 5.2. Smooth solution; the L2 error in the potential u for the structured meshes. 

TABLE 5.4 

H5-solution; order of convergence of the L2 error in the gradient q. 

k Order of convergence 
1 0.9198 0.8929 0.9598 0.9872 
2 1.3322 1.7872 1.9288 1.9756 
3 2.1363 2.8375 2.9531 2.9844 
4 3.7141 3.8566 3.9005 3.9213 
5 3.8198 3.9270 3.9659 3.9835 
6 3.8556 3.9387 3.9710 3.9860 

TABLE 5.5 

H5-solution; order of convergence of the A-seminorm of the error in (q, u). 

k Order of convergence 
1 1.1492 0.9841 0.9905 0.9993 
2 1.7717 1.8698 1.9498 1.9828 
3 2.5591 2.8822 2.9641 2.9882 
4 3.7747 3.8689 3.9042 3.9227 
5 3.9220 3.9483 3.9710 3.9848 
6 3.9801 3.9664 3.9776 3.9876 

of the L2-norm of the error in the gradient and that of the A-seminorm of the error 
are both 5, and the predicted order of convergence of the L2-norm of the error in 
the potential is 4; see Tables 2.2 and 2.3. These are precisely the orders observed in 
Tables 5.4, 5.5, and 5.6, respectively. We use the sequence of structured meshes from 
the previous test. Similar results not reported here are obtained using unstructured 
meshes. 

3 

o= 
0 

tr 

O 
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TABLE 5.6 
H5-solution; order of convergence of the L2 error in the potential u. 

k Order of convergence 
1 2.1062 2.0203 2.0035 2.0017 
2 2.8861 2.9474 2.9686 2.9810 
3 3.8682 3.9669 3.9877 3.9945 
4 4.8685 4.8948 4.9095 4.9167 
5 5.0664 5.0310 5.0246 5.0088 
6 5.1626 5.0583 5.1051 5.0252 

TABLE 5.7 
H5-solution on L-shaped domain; order of convergence of the L2 error in the gradient q. 

k Order of convergence 
1 0.8494 0.8581 0.9148 0.9530 
2 1.7966 1.8441 1.9136 1.9550 
3 2.6595 2.8369 2.9260 2.9644 
4 2.6559 3.7667 3.8908 3.9571 
5 2.7630 3.7978 3.8723 3.8912 
6 3.0742 3.9120 4.0307 4.1347 

TABLE 5.8 
H5-solution on L-shaped domain; order of convergence of the A-seminorm of the error in (q, u). 

k Order of convergence 
1 1.0085 0.9079 0.9315 0.9593 
2 1.9217 1.8908 1.9295 1.9609 
3 2.7984 2.8763 2.9379 2.9688 
4 3.2364 3.7850 3.8960 3.9589 
5 3.7948 3.8105 3.8749 3.8918 
6 4.0916 3.9158 4.0313 4.1347 

TABLE 5.9 
H5-solution on L-shaped domain; order of convergence of the L2 error in the potential u. 

k Order of convergence 
1 2.0435 1.9542 1.9552 1.9714 
2 3.0471 2.9694 2.9740 2.9844 
3 4.0360 3.9693 3.9831 3.9916 
4 5.0226 4.8793 4.9274 4.9528 
5 5.9726 4.8779 4.8875 4.8739 
6 6.3544 4.9983 5.0609 5.0898 

5.3. Smooth solution on an L-shaped domain. We solve the model problem 
(1.1) in an L-shaped domain with Dirichlet boundary conditions. The exact solution 
is the function u, described above, with a = 4.5. For this test we use a sequence 
of unstructured meshes, created from a global refinement of an unstructured coarse 
mesh. The number of elements of the meshes are 22, 88, 352, 1408, and 5632. The 
second and third meshes are displayed in Figure 5.1, right. 

In Tables 5.7, 5.8, and 5.9, we can see that we obtain the same order of convergence 
as in the convex case even though the standard elliptic regularity result guarantees 
an order of convergence for the L2-error of the potential smaller by 1 - 27 = , as 
indicated in Table 4.1. 

A similar phenomenon takes place with the very smooth solution from the first 
test. 
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TABLE 5.10 
Nonsmooth solution on L-shaped domain; L2 error in the gradient q. 

k Order of convergence 
1 0.7818 0.6298 0.6420 0.6513 
2 0.7794 0.6662 0.6665 0.6666 
3 0.7362 0.6665 0.6666 0.6666 
4 0.7139 0.6666 0.6666 0.6667 
5 0.7016 0.6666 0.6666 0.6667 
6 0.6941 0.6666 0.6666 0.6667 

TABLE 5.11 
Nonsmooth solution on L-shaped domain; A-seminorm of the error in (q, u). 

k Order of convergence 
1 0.8043 0.6529 0.6538 0.6572 
2 0.7918 0.6766 0.6718 0.6693 
3 0.7448 0.6725 0.6696 0.6682 
4 0.7200 0.6705 0.6686 0.6676 
5 0.7062 0.6694 0.6681 0.6674 
6 0.6977 0.6688 0.6677 0.6672 

TABLE 5.12 
Nonsmooth solution on L-shaped domain; L2 error in the potential u. 

k Order of convergence 
1 1.6098 1.5694 1.5793 1.5760 
2 1.5610 1.5383 1.5014 1.4639 
3 1.5015 1.4810 1.4449 1.4137 
4 1.4715 1.4543 1.4215 1.3950 
5 1.4535 1.4383 1.4083 1.3849 
6 1.4408 1.4277 1.3998 1.3786 

5.4. Nonsmooth solution on an L-shaped domain. Finally, we present nu- 
merical results for the classical L-shaped domain test with a singularity at the reen- 
trant corner. We consider the model problem (1.1) in an L-shaped domain with zero 

right-hand side and Dirichlet boundary conditions such that the exact solution is given 
by 

u(r, 0) = r7 sin (7y), = 2/3. 

For conforming finite element methods, it has been shown that the orders of 
convergence in the H1 and L2 norms are - E and 4 - for all E > 0, respectively. 
The numerical results for the LDG method on the sequence of unstructured meshes 
described in the previous experiment are reported in Tables 5.10, 5.11, and 5.12. They 
show that the rates of convergence predicted by Table 4.2 are achieved by the LDG 
method. Observe that the same rates of convergence as in the conforming case are 
achieved. 

6. Concluding remarks. In this paper, we present the first a priori error anal- 
ysis for a general DG method that includes the LDG method and allows for triangu- 
lations with hanging nodes and elements of several shapes. 

We have proven that the orders of convergence of the approximations given by 
the LDG method with the stabilization parameter C1l of order h-1 are optimal; these 
results have been confirmed by our numerical experiments which also indicate that 
the quality of the approximation does not deteriorate when C1l is taken to be of 
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order one. Theoretically, a loss of 1/2 in the orders of convergence can take place but 
this phenomenon was not observed in the particular test problems we considered; as 
a consequence, the sharpness of our error estimates in this case remains to be stud- 
ied. We have also theoretically shown that the effect of taking nonzero stabilization 
parameters C22 does not significantly improve the orders of convergence of the LDG 
method. An exception is, of course, the piecewise-constant case in which the LDG 
method has an order of convergence of 0, whereas the DG method with Cl0 and C22 
of order one does converge with orders of at least 1/2 and 1 in the error of the gradient 
and potential, respectively. 

In this paper, nothing has been said about how to choose the parameters C12. 
In a forthcoming paper [20], it will be shown that, in the case of Cartesian grids 
and tensor product polynomials, the orders of convergence of the LDG method can 
actually increase if C12 is suitably chosen. 

Let us end by pointing out that the implementation of codes for hp-adaptive 
versions of the LDG method for general elliptic and transient convection-diffusion- 
reaction problems is the subject of ongoing work. 
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