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CROSS DIFFUSION SYSTEMS

Toan Trong Nguyen, M.S.
The University of Texas at San Antonio, 2006

Supervising Professor: Dung Le, Ph.D.

In this thesis we investigate regularity properties and long-time dynamics of nonnegative

solutions to a class of cross diffusion (strongly coupled) parabolic systems which occur in population

dynamics where the studied species are assumed to diffuse and interact with one another. One of

such models which greatly interests us to obtain certain understanding is the Shigesada-Kawasaki-

Teramoto (SKT) model. Briefly, our results are to address the following questions:

Global existence of classical solutions. It has been well known that one can obtain the global

existence result for a general class of regular cross diffusion parabolic systems if he shows that the

Hölder-norms of solutions do not blow up in finite time (see [2]). We establish the result for certain

cross diffusion systems of two equations.

Existence of global attractors. These sets describe all possible long-time dynamics that the

semiflow associated with the given system can produce. The results shall be proven under the as-

sumption on the Hölder continuity of solutions. Moreover, uniform estimates of Cµ norms, µ > 1, of

solutions are also established. For quasi-linear regular parabolic equations, such estimates are derived

by the work of Ladyzenskaja, Solonnikov, and Ural’tseva in [22] . We encompass these results for a

general class of cross diffusion regular parabolic systems of m equations, m ≥ 1.

Uniform persistence property. Mathematically speaking, the result gives the positive lower

bound of solutions which eventually does not depend on the initial data. On the other hand, biolog-

ically speaking, it asserts that no species is completely invaded or wiped out by the others so that

they coexist in time. The result is derived for the generalized SKT model of two competitive species.

Everywhere regularity for degenerate systems. Besides the above questions addressed for a class

of regular cross diffusion parabolic systems, we are also concerned everywhere regularity of bounded

weak solutions for degenerate ones. The general theory will be stated and then applied to a generalized

porous media type SKT model in population dynamics.
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Chapter 1

INTRODUCTION

What we know is not much. What we do not know is immense.

de Laplace, Pierre-Simon.

In the most general circumstance we would like to investigate a vector function

u(x, t) = (u1(x, t), ..., um(x, t)), ∀x ∈ Ω, t ≥ 0,

to describe densities (concentrations, population densities, temperatures, charged particle densities,

etc.). Here Ω is a bounded open smooth subset of IRn, n ≥ 1. Given any smooth subset B of Ω,

the integral over B of ui, 1 ≤ i ≤ m, represents the total amount of the quantity of the component

ui within B at time t. Let ~Ji be a flux vector of density which controls the rate loss or increase of

component ui through ∂B, and fi be the production/death/reaction rate for component ui in the

domain B. In general, functions ~Ji and fi may depend on the location x, the time t, the density

of uj , as well as the vector ∇uj , which accounts for the movement (diffusion) of uj . Here for each

i ∈ {1, 2, ...,m}, j may vary from 1 to m. This various dependence has driven the abundance of

mathematical models. Let us briefly explain how general systems are interpreted (see [7]).

First, conservation laws assert that the rate of change of total amount of the quantity of

ui within B is equal to the negative of the flux vector ~Ji through ∂B and the total amount of

production/death/reaction of ui, that is,

d

dt

∫
B
ui(x, t) dx = −

∫
∂B

~Ji.νdσ +
∫
B
fi dx

in which ν denotes the outward unit normal along B. In addition, by a view of the Gauss-Green

Theorem, we deduce from the above equality

∫
B
uit(x, t) dx = −

∫
B

div ~Ji dx+
∫
B
fi dx.
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As the domain B is arbitrary, we can choose B = B(y,R), a ball centered at any fixed y in

Ω with radius R > 0. Dividing by |B(y,R)|, the Lebesgue measure of B, we derive from the above

system
1

|B(y,R)|

∫
B(y,R)

(uit + div ~Ji − fi) dx = 0.

According to the Lebesgue theorem, letting R go to zero in the above equality gives us

uit + div ~Ji = fi, (1.0.1)

in Ω, for any 1 ≤ i ≤ m.

In many situations, due to the Fick’s law of diffusion (Fourier’s law of heat conduction, Ohm’s

law of electrical conduction, etc.), it is assumed that the flux vectors are of the form

~Ji = −ai(x, t, ui)∇ui + bi(x, t, u), (1.0.2)

in which ai’s and bi’s are the real-valued known functions. ai’s account for the diffusion rate of ui,

and bi’s describe drifts in their directions. The minus sign in (1.0.2) is due to the fact that the flux is

from regions of higher to lower concentration. Meanwhile, the production/death/reaction rate fi can

generally be assumed to depend on the location x, the time t, and the density of u = (u1, ..., um). In

such cases, system (1.0.1) is the well known standard reaction diffusion system (or classical reaction

diffusion, or weakly coupled) which has been very much thoroughly investigated in literature (e.g., see

[24]). In many applications, reaction terms are assumed to be of competition models of Lotka-Volterra

type.

However, in the above reaction diffusion models, motilities of the species are determined solely

by their own characteristics in question, and therefore, hardly surprisingly, these models are not to

describe many other cases of phenomena in population dynamics. For instance, by phenomenological

laws, the movements of the species can be physically affected by the population pressures due to

the mutual interference between the individuals, that is, the function ai may depend also on u =

(u1, ..., um); and in such case, we will denote ai(x, t, ~u) by aii(x, t, ~u). In application, one may assume

that aii(x, t, ~u) = ai0(x, t)+
∑

j a
j
ii(x, t, u

j). For this reason, we refer ai0(x, t) as the diffusion rate of the

2



species ui; aiii(x, t, u
i) as the self-diffusion pressures, which account for the effect of the population

pressures on the diffusion of its own species; and ajii(x, t, u
j), i 6= j, as the density cross-diffusion

pressures, which account for the movement of ui affected by the density of uj .

In addition, one can assume that the motilities of the species uj may affect the direction of

the species ui, which means the flux vector ~Ji also depends on ∇uj , for some or any j 6= i. For

convenience, the coefficient of ∇uj , j 6= i, in ~Ji which is denoted by aij(x, t, ~u), is the so-called

gradient (or motility) cross diffusion pressures. Biologically speaking, the species ui tends to be

attracted by (or attacking) the species uj (if aij(x, t, ~u) > 0), or to be repelled (or avoiding) by one

another (if aij(x, t, ~u) < 0). Occasionally, we use cross diffusions to refer the gradient cross diffusion

terms aij(x, t, ~u), j 6= i, and self diffusion to refer the terms aii(x, t, ~u).

Consequently, the flux vector ~Ji is reasonably specified as follows

~Ji = −
∑
j

aij(x, t, u)∇uj + bi(x, t, u), (1.0.3)

in which aij ’s are real-valued functions (or even n×nmatrices of real-valued functions), and bi(x, t, u)’s

are n-vector-valued functions.

The system (1.0.1) with (1.0.3) is the so-called cross diffusion (or strongly coupled) system.

An interesting feature of such a system is that the motilities of the species are affected by pressures on

itself population aiii and the population and movement of the others due to the mutual interference

between the individuals and the species. Finally, needless to say, the standard reaction diffusion

system is a special case of cross diffusion systems as aij ≡ 0 with i 6= j.

The introduction of cross diffusion terms into classical diffusion systems allows the mathemat-

ical models to capture much more important features of many phenomena in physics, biology, ecology,

and engineering sciences. For instance, the following SKT model in population dynamics is a special

case of cross diffusion systems (1.0.1).

The SKT model. In paper [45] of 1979, Shigesada, Kawasaki and Teramoto proposed the
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following strongly coupled parabolic system


∂u

∂t
= ∆[(d1 + α11u+ α12v)u] + u(a1 − b1u− c1v),

∂v

∂t
= ∆[(d2 + α21u+ α22v)v] + v(a2 − b2u− c2v),

(1.0.4)

on a bounded smooth domain Ω in Rn, n ≥ 1. The Neumann boundary conditions were considered.

This mathematical model describes spatial segregation of interacting species, where u and v represent

the densities of two competing species. It becomes the well known Lotka-Volterra competition-

diffusion system when αij = 0, which has been thoroughly investigated. For nonzero αij 6= 0, model

(1.0.4) is a cross diffusion parabolic system and has received a lot of great attention in literature ever

since its birth (e.g., see [53, 46, 27, 36, 31, 33, 37, 29, 34, 35] for recent developments) .

Main problem. Being inspired with the above mathematical model (1.0.4), we came to

introduce in [29] a more general model of the form


∂u

∂t
= ∇(P u(u, v)∇u+ P v(u, v)∇v) + f(u, v),

∂v

∂t
= ∇(Qu(u, v)∇u+Qv(u, v)∇v) + g(u, v).

(1.0.5)

Apparently, the model (1.0.4) is just a special case of (1.0.5) when P u, P v, Qu, Qv are simply

the partial derivatives of P = d1+α11u
2+α12uv,Q = d2+α21uv+α22v

2 with respect to u, v. In many

situations where we establish general theories for system (1.0.5), we shall consider P u, P v, Qu, Qv, f, g

as continuous functions in u, v. As an illumination, we always confine ourself with the following case

P u = d1 + a11u+ a12v, P v = b11u,

Qv = d2 + a21u+ a22v, Qu = b22v,
(1.0.6)

which generalizes (1.0.4) when a12 = b11 and a21 = b22. Here we recall that a12 and a21 are the

density cross diffusions; and b11 and b22 are the gradient cross diffusions. Throughout this work, we

call system (1.0.5) with (1.0.6) generalized SKT model.

The thesis is organized as follows.
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In Chapter 2, we shall recall some standard notations, definitions of functional spaces, and

some well known imbedding results that will be used throughout the thesis.

In Chapters 3 and 4, we shall establish the Global existence and further obtain uniform a priori

estimates of solutions, which are respectively proven for a class of triangular cross diffusion systems

(the diffusion matrix is triangular) in Chapter 3 and for full cross diffusion systems (the diffusion

matrix is full) in Chapter 4. The fundamental theory to investigate the global existence for such

strongly coupled systems was studied in [2]. There was pointed out that solutions to (1.0.5) exist

globally in time if one has controls on both of their L∞ and Hölder norms.

In particular, for triangular cross diffusion systems (Qu = 0 in (1.0.5)), he also proved that it

is sufficient to obtain the global existence if one can control the L∞ norms of every components of the

solution. Under certain assumptions, we shall give estimates of L∞ norms by exploiting two different

methods: Lp bootstrapping and semigroup techniques (see Section 3.1) and Lyapunov functional

approach (see Section 3.3). More importantly, our estimates of L∞ norms are ultimately uniformly

bounded with respect to the initial data (see Definition 3.1.1). So are estimates of Hölder norms

thanks to the result of [25, Theorem 6] for triangular systems (See also Theorem 3.1.3). Such a priori

uniform estimates are key issues in studying long time dynamics of solutions, namely, the existence

of a global attractor set. This type of the result is well known for reaction diffusion systems (e.g., see

[24, 23]).

For full cross diffusion systems, one needs to control both the L∞ and Hölder norms of solutions

(counterexamples in [16] confirmed that they are necessary). In a recent work, Le established sufficient

conditions on the parameters of (1.0.5) to obtain the global existence result (see [29]). Roughly

speaking, his approach is to find a suitable function H(u, v), being defined along the solution (u, v),

which links the structures of the two equations in a way that he can derive certain boundedness and

regularity of H(u, v), as a function in (x, t). Such boundedness and regularity of H are used to study

those of u and v. In Chapter 4, we shall recall his technical assumptions on the existence of function

H and then give a proof of the uniform boundedness of H. This actually gives us the a priori uniform

estimates of solutions to system (1.0.5) (see Theorem 4.1.2).

In Chapter 5, we prove the existence of global attractors for a general class of cross diffusion

regular parabolic systems of m equations, m ≥ 1, under the assumption on the Hölder estimates of
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solutions which we assure for the case of two certain equations in Chapters 3 and 4. Of course, the

preceding step is to obtain a priori estimates of weak solutions that allow us to define the dynamical

semiflow on W 1,p for some p > n. In addition, we prove that such a priori estimates are ultimately

uniform with respect to the initial data, and therefore, obtain the existence of an absorbing ball in

which all the orbits eventually enter. At the same time, we actually prove the uniform compactness

of the semiflow and therefore the existence of the global attractor set ([48]). Moreover, by together

employing (with a minor modification) the result of Schauder estimates in [44] and using the semi-

group theory developed in [8], we obtain the uniform estimates of Cν norms, ν > 1, of solutions.

In Chapter 6, we study the uniform persistence property for regular cross diffusion systems of

the form (1.0.5) and (1.0.6). Loosely speaking, in the context of biology, this property asserts that

no species is completely invaded or wiped out by the other so that they coexist in time. On the other

hand, it mathematically addresses the existence of an positive equilibrium of the evolution semiflow

associated with solutions of the system. We shall encompass the result under assumptions on the

principal eigenvalues of linearized problems at steady states. In addition, explicit conditions on the

parameters of the system are given to guarantee the positivity of such principal eigenvalues.

Besides the results for a class of regular cross diffusion parabolic systems, we are also concerned

everywhere regularity of bounded weak solutions for degenerate ones. The last chapter is devoted to

address this concern. There are a number of sophisticated technicalities in the execution. Loosely

speaking, the proof relies heavily on the following main ideas, which are interesting in themselves,

to employing a recent result of partial regularity of D. Le in [30]; to constructing a function H

whose regularity can give us that of solution u (see [29]); to exploiting the technique of the auxiliary

logarithmic function ω whose boundedness can imply the Hölder continuity of H (see [26, 25]); and

importantly to making use of the scaled parabolic cylinders that locally transform the degenerate

systems into ones that can be approximated by regular systems in suitably scaled cylinders (see [32]).

In addition, we shall find sufficient conditions which allow us to apply our general theory of

everywhere regularity to a generalized porous media type SKT model in population dynamics.

Finally, the results I present in this thesis are jointly obtained by my advisor D. Le and myself.

Chapters 3 and 4, where address the first question, global existence, are found in our published papers:

[27, 36, 31] for triangular cross diffusion systems and [29] for full cases. The existence of a global

6



attractor set is also addressed in [27, 36, 34] for triangular cases of two equations and in [35] where

the result is obtained for a general class of cross diffusion systems. The third question about uniform

persistence property is addressed in [34] for triangular cases and in [35] for full cases. Finally, the

result in [32] addresses the last question, which is everywhere regularity of weak bounded solutions

for a class of cross diffusion degenerate systems.

7



Chapter 2

PRELIMINARIES

2.1 General notations and definitions

The purpose of this section is to introduce some general notations and definitions that will be

used throughout the thesis. Most of them are generally concerned with tensor notation and definitions

of different spaces of functions.

Superscripts denote coordinates of points in IRn, that is, x = (x1, x2, ..., xn) ∈ IRn. Also,

subscripts denote differentiation with respect to x. In particular, for sufficiently smooth function u,

Diu =
∂u

∂xi
, Diju =

∂2u

∂xi∂xj
.

We also write ∇u (or occasionally Du) for (D1u, ...,Dnu), ∆u for
∑

iDiiu, and D2u for the Hessian

matrix (Diju). On the other hand, we write ut (or occasionally Dtu) for
∂u

∂t
, and Dβu denotes

Dβ1
1 ...Dβn

n u. Here β = (β1, ..., β2) with βi are nonnegative integers. We also denote |β| =
∑

i βi.

In the case of a vector-valued function u = (u1, ..., um), for m ≥ 1, ∇u and ∆u stand for

(∇u1, ...,∇um) and (∆u1, ...,∆um), respectively. Also, denote
∑m

i=1Diui by div(u).

Let x = (x1, ..., xn) ∈ IRn and p = (pij) ∈ Mm×n, a space of m × n matrices. Norms on IRn

and Mm×n are given by

|x| =
n∑
i=1

|xi| and |p| =
m∑
j=1

n∑
i=1

|pij |,

respectively.

We always use Ω to denote a bounded open connected subset of IRn, n ≥ 1, with boundary

∂Ω. Here the boundary is smooth enough to alow us to apply the imbedding theorems.

Denote Q = Ω × [0, T ] for some T > 0. For a fixed point (x, t) ∈ Q, let BR(x) denote

a ball centered at x with radius R in IRn and QR(x, t) = ΩR(x) × [t − R2, t] denote a parabolic

cylinder. Here ΩR(x) = Ω
⋂
BR(x). As far as no ambiguity can arise, we write BR,ΩR, QR instead

of BR(x),ΩR(x), QR(x, t).

8



In addition, Ω will be assumed to be ”of type A”, that is, there exists a positive constant A

such that for any R > 0 and x0 ∈ Ω we have

meas(ΩR(x0)) ≥ ARn.

Finally we shall use the following notation

∫∫
A
f(x, t) dz =

1
|A|

∫∫
A
f(x, t) dz

where |A| = meas(A) for any A ⊂ Q. In particular, if A = QR, we use

uz0,R =
∫∫

QR

u dz

for any z0 ∈ QT and R > 0.

We recall the definitions of some well-known function spaces (see [10, 22]).

We shall denote by Ck(Ω), k = 0, 1, ..., the space of functions that have continuous derivatives

up to the order k; and by C∞(Ω) the space of infinitely differentiable functions in Ω; and by Ck(Ω)

the space of functions in Ck(Ω) whose derivatives up to the order k can be extended to continuous

functions up to the boundary ∂Ω; and by Ck0 (Ω) the subspace of Ck(Ω) of the functions with compact

support contained in Ω.

The spaces Ck(Ω) are Banach spaces with the norm

‖u‖Ck =
∑
|β|≤k

sup
x∈Ω

|Dβu(x)|.

If 0 < α < 1, we shall denote by Cα(Ω) the space of α-Hölder continuous functions in Ω, that

is, continuous functions satisfying

[u]α := sup
x 6=y∈Ω

|u(x)− u(y)|
|x− y|α

< +∞.

More generally, we shall denote Ck+α(Ω), k = 0, 1, ..., the space of functions whose derivatives

9



of order k are α-Hölder continuous in Ω. The spaces Ck+α(Ω) are Banach spaces with the norm

‖u‖Ck+α = ‖u‖Ck +
∑
|β|=k

[Dβu]α.

We shall denote by Lp(Ω), p ≥ 1, the space of all measurable functions in Ω. Lp(Ω) is the

Banach space with the norm

‖u‖p,Ω =
(∫

Ω
|u(x)|p dx

)1/p

and ‖u‖∞,Ω = sup
Ω
|u|.

W k,p(Ω) for integral k is a Banach space of all elements of Lp(Ω) such that generalized deriv-

atives up to order k are in Lp(Ω) as well. The norm in W k,p(Ω) is defined by

‖u‖k,p,Ω =
∑
|β|≤k

‖Dβu‖p,Ω.

W l,p(Ω) for non-integral l is a Banach space of the elements of W [l],p(Ω)1 with finite norm

‖u‖(l)p,Ω =
∑
|β|≤[l]

‖Dβu‖p,Ω + [u](l)q,Ω,

in which

[u](l)q,Ω =
∑
|β|=[l]

(∫
Ω

∫
Ω

|Dβu(x)−Dβu(y)|
|x− y|n+p(l−[l])

dxdy

)1/p

.

Lq,r(QT ) is the Banach space of all measurable functions in QT = Ω× [0, T ] with a finite norm

‖u‖q,r,QT
=

(∫ T

0

(∫
Ω
|u(x, t)|q dx

)r/q
dt

)1/r

in which q, r ≥ 1. If q = r then Lq,q(QT ) and ‖.‖q,q,QT
will be denoted by Lq(QT ) and ‖.‖q,QT

,

respectively.

W 2k,k
p (QT ) for integral k is a Banach space of the elements of Lp(QT ) that have generalized

derivatives of the form Dr
tD

β
x with any r and β satisfying the inequality 2r + |β| ≤ 2k. The norm is

1[l] is the integral part of l.

10



defined by

‖u‖(2k)p,QT
=

∑
2r+|β|≤2k

‖Dr
tD

β
xu‖p,QT

.

For 0 < α ≤ 1, Cα,α/2(QT ) is a Banach space of α-Hölder continuous functions in QT with a

finite norm

‖u‖Cα,α/2 = ‖u‖∞,QT
+ sup
z1 6=z2∈QT

|u(z1)− u(z2)|
d(z1, z2)α

,

where d(z1, z2) is a parabolic distance, that is d(z1, z2) = |x1−x2|+|t1−t2|1/2 for any z1 = (x1, t1), z2 =

(x2, t2) ∈ QT .

We recall the definitions of the Morrey space Mp,λ(Ω), the Sobolev-Morrey space W 1,(p,λ),

and the Campanato space Lp,µ(QT ). Mp,λ(Ω) is a Banach space of elements f in Lp(Ω) with a finite

norm

‖f‖p
Mp,λ := sup

x∈Ω,ρ>0
ρ−λ

∫
Bρ(x)

|f |pdy <∞.

W 1,(p,λ) is a Banach space of elements f in W 1,p(Ω) with a finite norm

‖f‖p
W 1,(p,λ) := ‖f‖p

Mp,λ + ‖∇f‖p
Mp,λ <∞.

Lp,µ(QT ) is a Banach space of elements f in Lp(QT ) with a finite norm

‖u‖Lp,µ := ‖u‖p,QT
+ [u]p,µ,QT

in which

[u]p,µ,QT
:= sup

z0∈QT ,R>0
R−µ

∫∫
QR(z0)

|u− uz0,R|p dz < +∞.

2.2 Auxiliary results

The purpose of this section is to present some auxiliary results used throughout this thesis.

We will omit the proofs and refer the reader to books we will correspondingly specify.

Lemma 2.2.1. (The Uniform Gronwall Lemma - [48, Lemma 3.1.1]) Let g,h,y be three nonnegative
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locally integrable functions on (t0,+∞) such that y′ is locally integrable on (t0,+∞), and

y′(t) ≤ g(t)y(t) + h(t), for t ≥ t0, (2.2.1)

and the following functions in t satisfy

∫ t+1

t
y(s)ds ≤ a1,

∫ t+1

t
g(s)ds ≤ a2,

∫ t+1

t
h(s)ds ≤ a3, for t ≥ t0, (2.2.2)

where a1, a2, a3 are positive constants. Then, for any t ≥ t0,

y(t+ 1) ≤ (a1 + a3) exp(a2).

We shall need the following useful imbedding theorems.

Lemma 2.2.2. (Poincaré’s inequality, [10, Theorem 3.14]) Let Ω ⊂ IRn be a bounded connected open

set, with Lipschitz-continuous boundary ∂Ω. There exists a constant c = c(n, p,Ω) such that for every

u ∈W 1,p(Ω) ∫
Ω
|u− uΩ|p dx ≤ c

∫
Ω
|Du|p dx, (2.2.3)

where uΩ =
∫

Ω
u dx is the average of u in Ω.

Lemma 2.2.3. (Sobolev-Poincaré’s inequality, [10, Theorem 3.15]) With the assumption of the pre-

ceding theorem, if p < n, we have

‖u− uΩ‖p∗ ≤ c‖Du‖p, (2.2.4)

where p∗ = np
n−p .

Also, we have the following result

Lemma 2.2.4. ([22, II.3]) For any u ∈W 1,2(Q)
⋂
L2,∞(Q), we obtain

‖u‖2κ,Q ≤ C

(
‖∇u‖2,Q + sup

τ
‖u(•, τ)‖2,Ω

)
, κ = 1 + 2/n.

Lemma 2.2.5. (Gagliardo-Nirenberg’s inequality, [13, p.37]) There exists a positive constant C =

C(n,Ω) such that
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(a) If p ≥ q, p ≥ r, 0 ≤ θ ≤ 1, and k − n/p ≤ θ(m − n/q) − n(1 − θ)/r, with strict inequality if q or

r = 1, then

‖u‖Wk,p ≤ C‖u‖θWm,q‖u‖1−θLr (2.2.5)

(b) If 0 ≤ θ ≤ 1 and ν ≤ θ(m− n/q)− n(1− θ)/r, with strict inequality if q or r = 1, or if ν is an

integer, then

‖u‖Cν ≤ C‖u‖θWm,q‖u‖1−θLr (2.2.6)

We recall the following imbedding results for functions in the Campanato space and the

Sobolev-Morrey space.

Lemma 2.2.6. ([9, Proposition 1]) The spaces L2,n+2+2µ(QT ) and Cµ,µ/2(QT ), 0 < µ < 1, are

topologically and algebraically isomorphic.

Lemma 2.2.7. ([5, Theorem 2.5]) If λ < n− p, p ≥ 1, and pλ = p(n−λ)
n−λ−p , we then have the following

imbedding result

W 1,(p,λ)(B) ⊂Mpλ,λ(B). (2.2.7)

We will also use two following useful results by Ladyzhenskaya et al. [22], which are stated for

scalar functions. One can easily see that they are still true for vector-valued functions.

Lemma 2.2.8. ([22, Lemma II.5.4]) For any function u in W 1,2s+2(Ω, IRm) and η is a smooth

function such that
∂u

∂n
η or uη vanishes on ∂Ω we have

∫
Ω
|∇u|2s+2η2 dx ≤ osc2{u,Ω}Cont.

∫
Ω

(|∇u|2s−2|D2u|2η2 + |∇u|2s|∇η|2) dx. (2.2.8)

Lemma 2.2.9. ([22, Lemma II.5.3]) Let α > 0 and v be a nonnegative function such that for any

ball BR and ΩR = Ω
⋂
BR the estimate

∫
ΩR

v(x) dx ≤ CRn−2+α
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holds. Then for any function η from W 1,2
0 (BR) the inequality

∫
ΩR

v(x)η2 dx ≤ CRα
∫

ΩR

|∇η|2 dx (2.2.9)

is valid.
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Chapter 3

A PRIORI ESTIMATES FOR TRIANGULAR SYSTEMS

Consider quasilinear differential operators

Au(u, v) = ∇[P (x, t, u, v)∇u+R(x, t, u, v)∇v],

Av(u, v) = ∇[Q(x, t, u, v)∇v],

and the parabolic system


ut = Au(u, v) + f(u, v), x ∈ Ω, t > 0,

vt = Av(u, v) + g(u, v), x ∈ Ω, t > 0,
(3.0.1)

with mixed boundary conditions for x ∈ ∂Ω and t > 0


χ(x)

[
∂v
∂n(x, t) + r(x)v(x, t)

]
+ (1− χ(x))v(x, t) = 0,

χ̄(x)
[
∂u
∂n(x, t) + r̄(x)u(x, t)

]
+ (1− χ̄(x))u(x, t) = 0,

(3.0.2)

where χ, χ̄ are given functions on ∂Ω with values in {0, 1}.

The functions r, r̄ are given bounded nonnegative functions on ∂Ω. Here, Ω is a bounded

domain in Rn and the initial conditions are

v(x, 0) = v0(x), u(x, 0) = u0(x), x ∈ Ω (3.0.3)

for nonnegative functions v0, u0. In (3.0.1), P and Q represent the self-diffusion pressures, and R is

the cross-diffusion pressure acting on the population u by v.

The system of form (3.0.1) is strongly coupled and of triangular form (the diffusion matrix is

triangular). Such a system has recently received a lot of attention in both mathematical analysis and

real life modelling. In particular, the well-known SKT model (1.0.4) (when α21 = 0) in population
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dynamics is a special case of system (3.0.1), that is,


ut = ∆[(d1 + α11u+ α12v)u] + u(a1 − b1u− c1v),

vt = ∆[(d2 + α22v)v] + v(a2 − b2u− c2v).
(3.0.4)

Fundamental theory of strongly coupled systems like (3.0.1) was studied in [2]. The concept of

W 1,p weak solutions and their local existence and uniqueness results were formulated there. Roughly

speaking, he showed that, for u0, v0 in W 1,p(Ω) for some p > n (see [2]), there exist ε > 0 and a unique

solution u(t), v(t) in W 1,p(Ω) of (3.0.1) defined for t ∈ (0, ε). In addition, one of the important issues,

the global existence of solutions, was also discussed. It was pointed out that solutions to (3.0.1) exist

globally in time if their L∞ norms do not blow up.

In this chapter, we shall investigate the global existence of solutions for (3.0.1) in domains with

arbitrary dimensional. Two different methods employed to obtain L∞ estimates for weak solutions are

Lp bootstrapping-semigroup techniques and Lyapunov functional approach. In addition, we highlight

here that such L∞ estimates are obtained ultimately uniformly. The ultimate uniformity of a priori

estimates is one of main issues to investigate the long time dynamics of the solutions, which we shall

study in later chapters.

Roughly speaking, first when differential operator Av does not depend on u, we shall be able

to employ Lp bootstrapping-semigroup techniques to establish the following.

A solution (u, v) of (3.0.1) exists globally in time if ‖v(·, t)‖∞ and ‖u‖q,r,[t,t+1]×Ω for

certain numbers q, r (see (3.1.10)) do not blow up in finite time. Moreover, if these

norms of the solutions are ultimately uniformly bounded then so are their Hölder norms.

Therefore seen in later chapters, there is a compact global attractor, with finite Hausdörff

dimension, attracting all solutions. In addition, if Av is linear then the results are still

proved when we replace ‖u‖q,r,[t,t+1]×Ω by ‖u(·, t)‖1.

The assumptions on the parameters defining (3.0.1) will be specified below in Section 3.1,

where we consider arbitrary dimensional domains. As an application of the general results, we shall

show in Section 3.2 that such assumptions are valid for the case when n ≤ 5 and reactions are of

competitive Lotka-Volterra type that is commonly hypothesized in mathematical biology contexts.
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Nevertheless, the limitation of this method is to restrict the differential operator Av on independence

of u. Even though such settings are general enough to cover many interesting models investigated in

literature (e.g., the SKT model (1.0.4) and chemotaxis systems), we are also interested in the case that

Av depends also on u, which basically means that the diffusion of the species (or the nutrient) v may

be affected by pressures of the population (or the bacteria) u (see Chapter 1). Not surprisingly, as

we shall see the Lp bootstrapping methods cannot apply to such a case. Indeed, a crucial ingredient

in those techniques is an estimate of ∇v that will be used in the bootstrapping argument on the

equation for u. Such an estimate, using standard results for scalar regular parabolic equations (see

[22]) for the equation of v, is no longer available here. This is because of the presence of u, whose

regularity is not yet known, in the diffusion term Q(x, t, u, v) of the equation for v.

In order to deal with such situations, we employ the Lyapunov functional approach introduced

in [29] to handle the full cross diffusion systems (see also Chapter 4). Roughly speaking, the method

relies on the key assumptions (H.0)-(H.2) in Section 3.3 on the existence of a function H(u, v), being

defined along the solution (u, v), which links the structures of the two equations in a way that we

can derive certain boundedness of H(u, v), as a function in (x, t). Such boundedness of H will be

exploited later to study that of u and v. In Section 3.5 we shall give explicit conditions on (3.0.1)

that are sufficient to employ the general results.

3.1 Lp bootstrapping techniques

In this section, we will consider system (3.0.1) with the following conditions.

(P1) P (u, v), R(u, v) are differentiable functions such that there exist a continuous function Φ and

positive constants C, d such that

P (u, v) ≥ d(1 + u) > 0, ∀u ≥ 0, (3.1.1)

|R(u, v)| ≤ Φ(v)u. (3.1.2)

Moreover, the partial derivatives of P,R with respect to u, v can be majorized by some powers

of u, v.
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(P2) The operatorAv is regular linear elliptic in divergence form. That is, for some Hölder continuous

functions Q(x, t) and c(x, t) with uniformly bounded norms

Av(u, v) = ∇(Q(x, t)∇v) + c(x, t)v, Q(x, t) ≥ d > 0, c(x, t) ≤ 0. (3.1.3)

We will impose the following assumption on the reaction terms.

(F) There exists a nonnegative continuous function C(v) such that

|g(u, v)| ≤ C(v)(1 + u), f(u, v)up ≤ C(v)(1 + up+1), (3.1.4)

for all u, v ≥ 0 and p > 0.

We will be interested only in nonnegative solutions, which are relevant in many applications.

Therefore, we will assume that the solution u, v stay nonnegative if the initial data u0, v0 are non-

negative functions. Conditions on f, g that guarantee such positive invariance can be found in [18].

Essentially, we will establish certain a priori estimates for various spatial norms of the solutions.

In order to simplify the statements of our theorems and proof, we will make use of the following

terminology taken from [27].

Definition 3.1.1. Consider the initial-boundary problem (3.0.1),(3.0.2) and (3.0.3). Assume that

there exists a solution (u, v) defined on a subinterval I of R+. Let O be the set of functions ω on I

such that there exists a positive constant C0, which may generally depend on the parameters of the

system and the W 1,p0 norm of the initial value (u0, v0), such that

ω(t) ≤ C0, ∀t ∈ I. (3.1.5)

Furthermore, if I = (0,∞), we say that ω is in P if ω ∈ O and there exists a positive constant C∞

that depends only on the parameters of the system but does not depend on the initial value of (u0, v0)

such that

lim sup
t→∞

ω(t) ≤ C∞. (3.1.6)

If ω ∈ P and I = (0,∞), we will say that ω is ultimately uniformly bounded.
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If ‖u(·, t)‖∞, ‖v(·, t)‖∞, as functions in t, satisfy (3.1.5) the supremum norms of the solutions to

(3.0.1) do not blow up in any finite time interval and are bounded by some constant that may depend

on the initial conditions. This implies that the solution exists globally (see [2]). Moreover, if these

norms verify (3.1.6), then they can be majorized eventually by a universal constant independent of the

initial data. This property implies that there is an absorbing ball for the solution and therefore shows

the existence of the global attractor if certain compactness is proven (see [11] and also Chapter 5).

Our first result is the following global existence result.

Theorem 3.1.2. Assume (P1), (P2), and (F). Let (u, v) be a nonnegative solution to (3.0.1) with

its maximal existence interval I. If ‖v(·, t)‖∞ and ‖u(·, t)‖1 are in O then for any α ∈ (0, 1)

‖v(·, t)‖Cα(Ω), ‖u(·, t)‖Cα(Ω) ∈ O. (3.1.7)

If we have better bounds on the norms of the solutions then a stronger conclusion follows.

Theorem 3.1.3. Assume (P1), (P2), and (F). Let (u, v) be a nonnegative solution to (3.0.1) with

its maximal existence interval I. If ‖v(·, t)‖∞ and ‖u(·, t)‖1 are in P then for any α ∈ (0, 1) we have

‖v(·, t)‖Cα(Ω), ‖u(·, t)‖Cα(Ω) ∈ P. (3.1.8)

To include (3.0.4) in our study, we assume

(P2’) Av is a quasilinear operator given by

Av(u, v) = ∇(Q(v)∇v) + c(x, t)v, Q(v) ≥ d > 0, (3.1.9)

for some differentiable function Q.

Additional a priori estimates will give the following statement.

Theorem 3.1.4. Assume as in Theorem 3.1.2 (respectively, Theorem 3.1.3) but (P2) is replaced by

(P2′). The conclusions of Theorem 3.1.2 (respectively, Theorem 3.1.3) continue to hold if ‖u‖q,r,[t,t+1]×Ω =
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( ∫ t+1
t ‖u(·, s)‖rq,Ωds

)1/r (as a function in t) is in O (respectively P) for some q, r satisfying

1
r

+
n

2q
= 1− χ, q ∈

[ n

2(1− χ)
,∞
]
, r ∈

[ 1
1− χ

,∞
]

(3.1.10)

for some χ ∈ (0, 1).

We first consider Theorem 3.1.2 and Theorem 3.1.3. Their proofs will be based on several

lemmas. Hereafter, we will use ω(t), ω1(t), . . . to denote various continuous functions in O or P. We

first have the following fact on the component v and its spatial derivative.

In order to prove theorems, we recall some notations and the semigroup result. First, for

any t > τ ≥ 0, we denote Qt = Ω × [0, t] and Qτ,t = Ω × [τ, t]. For r ∈ (1,∞) and Q as one of

the cylinders Qt, Qτ,t, let W 2,1
r (Q) be the Banach space of functions u ∈ Lr(Q) having generalized

derivatives ut, ∂xu, ∂xxu with finite Lr(Q) norms (see [22, page 5]). For s ≥ 0 and r ∈ (1,∞), we also

make use of the fractional order Sobolev spaces W s
r (Ω) (see, e.g., [1, 22] for the definition).

Let us consider the parabolic equation



∂v

∂t
= A(t)v + f0(x, t), x ∈ Ω, t > 0,

∂v

∂n
(x, t) = 0 x ∈ ∂Ω, t > 0,

v(x, 0) = v0(x) x ∈ Ω,

(3.1.11)

where A(t) is a uniformly regular elliptic operator of divergence form, with domain of definition

W 2
r (Ω). If the coefficients of the operator A(t) are uniformly Hölder continuous in a cylinder Qτ,t

and (λI + A(s))−1 exists for all λ ≥ 0 and s ∈ [τ, t] then it is well known that (see, e.g., [8, Sections

II.16-17]) there exists an evolution operator U(t, s) for (3.1.11) such that the abstract integral version

of (3.1.11) in Lr is

v(t) = U(t, τ)v(τ) +
∫ t

τ
U(t, s)F (s) ds, (3.1.12)

where F (s)(x) = f0(x, t). Moreover, for each t > 0, r > 1 and any β ≥ 0, the fractional power Aβ(t),

with its domain of definition D(Aβr (t)) in Lr(Ω), of A(t) is well defined ([8]). We recall the following

imbeddings (see [13]).

D(Aβr (t)) ⊂ Cµ(Ω), for 2β > µ+ n/r (3.1.13)
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and

D(Aβr (t)) ⊂W 1,p(Ω), if 2β ≥ 1− n/p+ n/r. (3.1.14)

Next, we collect some well known facts about (3.1.11).

Lemma 3.1.5. Let r ∈ (1,∞). For any solution v of (3.1.11) we have

i) For t > τ ≥ 0, assume that the coefficients of A(t) are bounded and continuous and f0 ∈ Lr(Qτ,t)

for some r > 3. We have

‖v‖
W 2,1

r (Qτ,t)
≤ C(t− τ)

(
‖f0‖Lr(Qτ,t) + ‖v(·, τ)‖

W
2−2/r
r (Ω)

)
(3.1.15)

where the constant C(t− τ) remains bounded if the length t− τ of the cylinder Qτ,t is bounded

and the coefficients of A(t) are uniformly bounded in Qτ,t.

ii) Let r > 1 and f(·, t) ∈ Lr(Ω). Assume that the coefficients of the operator A(t) are Hölder

continuous. Moreover, there exists δ0 > 0 such that (λI +A(t))−1 exists for all λ ≥ −δ0 and all

t > 0. For some fixed t0 > 0 and any β ∈ [0, 1], we have

‖Aβ(t0)v(t)‖r ≤ Cβt
−βe−δt‖v0‖r + Cβ

∫ t

0
(t− s)−βe−δ(t−s)‖f0(·, s)‖rds (3.1.16)

for some constants δ, Cβ > 0.

Proof: The proof of i) can be found in [22, Theorem 9.1, chapter IV] where Dirichlet boundary

condition was considered but the result holds as well for Neumann boundary condition (see [22,

page 351]). For ii), we apply Aγ(t) to both sides of (3.1.12), take the Lr norm and then make use the

inequality [8, (16.38)].

Going back to the solutions of (3.0.1) under the hypotheses of Theorem 3.1.2 and Theorem

3.1.3, we first have the following estimates for the component v and its spatial derivative.

Lemma 3.1.6. There exist nonnegative functions ω0, ω defined on the maximal interval of existence

of v such that ω0 ∈ P. For some δ > 0, r > 1, β ∈ (0, 1) such that
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a. if 2β > µ+ n/r, we have

‖v(·, t)‖Cµ(Ω) ≤ ω0(t) +
∫ t

0
(t− s)−βe−δ(t−s)ω(s)‖u(·, s)‖rds. (3.1.17)

b. if 2β > 1− n/q + n/r, we have

‖v(·, t)‖W 1,q(Ω) ≤ ω0(t) +
∫ t

0
(t− s)−βe−δ(t−s)ω(s)‖u(·, s)‖rds. (3.1.18)

Moreover, ω belongs to O, respectively P, if ‖v(·, t)‖∞ does.

Proof: Setting A(t) = ∇ · (Q(x, t)∇v + c(x, t)v) − kv and f̂0(x, t) = g(u, v) + kv for k > 0

sufficiently large, we see that v satisfies (3.1.11). Since v satisfies a parabolic equation with Hölder

continuous coefficients (due to (P.2)), we find that the conditions in ii) of Lemma 3.1.5 are verified.

Since ‖v(·, t)‖∞ ∈ P, we have ‖f̂0‖r ≤ ω(t)(1+‖u(·, s)‖r), for some function ω(t) ∈ P. Hence, (3.1.16)

of Lemma 3.1.5 gives

‖Aβ0v(t)‖r ≤ Cβt
−βe−δt‖v0‖r + Cβ

∫ t

0
(t− s)−βe−δ(t−s)ω(s)(1 + ‖u(·, s)‖r)ds

for any fixed t0 > 0. From the imbedding inequalities (3.1.13) (respectively, (3.1.14)), (3.1.17) (re-

spectively, (3.1.18)) follows at once.

Our starting point is the following integro-differential inequality for the Lp norm of u.

Lemma 3.1.7. Given the conditions of Theorem 3.1.2 (respectively Theorem 3.1.3). For any p >

max{n/2, 1}, we set y(t) =
∫
Ω u

p dx. We can find β ∈ (0, 1) and positive constants A,B,C, and

functions ωi ∈ O (respectively, P) such that the following inequality holds

d

dt
y ≤ −Ayη + (ω0(t) + ‖u(·, t)‖1)y +Bω(t)

+ Cyθ
{
ω1(t) +

∫ t

0
(t− s)−βe−δ(t−s)ω2(s)‖u(·, s)‖ζ1y

ϑ(s)ds
}2
. (3.1.19)

Here, η = p+1
p , θ = p−1

p and ϑ = (r−1)
r(p−1) , ζ = (p−r)

r(p−1) for some r ∈ (1, p). Moreover, η > θ+ 2ϑ.
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Proof: We assume the conditions of Theorem 3.1.3 as the proof for the other case is identical.

We multiply the equation for u by up−1 and integrate over Ω. Using integration by parts and noting

that the boundary integrals are all nonnegative thanks to the boundary condition on u, we see that

∫
Ω
up−1 d

dt
u dx +

∫
Ω
P (u, v)∇u∇(up−1) dx

≤
∫

Ω
(−R(u, v)∇(up−1)∇v + g(u, v)up−1) dx.

Using the conditions (3.1.1) and (3.1.2), for some positive constants C(d, p), ε, C(ε, d, p) we

derive

∫
Ω
P (u, v)∇u∇(up−1) dx ≥ C(d, p)

∫
Ω
up−1|∇u|2 dx,

−
∫

Ω
R(u, v)∇(up−1)∇v dx ≤ C(d, p)

∫
Ω
up−1Φ(v)∇u∇v dx

≤ ε

∫
Ω
up−1|∇u|2 dx+ C(ε, d, p)

∫
Ω
up−1Φ2(v)|∇v|2 dx.

From this inequality and (3.1.4), we obtain

d

dt

∫
Ω
up dx + C(d, p)

∫
Ω
up−1|∇u|2 dx

≤ C(ε, d, p)
∫
ω
(up−1Φ2(v)|∇v|2 + C(v)(up + 1) dx. (3.1.20)

Furthermore, the second term on the left-hand side can be estimated as

∫
Ω
up−1|∇u|2 dx = C(p)

∫
Ω
|∇(u(p+1)/2)|2 dx

≥ C

∫
Ω
up+1 dx− C

(∫
Ω
u(p+1)/2 dx

)2

≥ C
(∫

Ω
up dx

) p+1
p − C‖u‖1

∫
Ω
up dx.

Here, we have used the Hölder’s inequality
(∫

Ω
u(p+1)/2 dx

)2

≤ ‖u‖1
∫

Ω
up dx.
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Next, we consider the first integral on the right of (3.1.20). By our assumption on L∞ norm

of v, Φ(v) ≤ ω1(t) for some ω1 ∈ P. Using the Hölder inequality, we have

∫
Ω
up−1Φ2(v)|∇v|2 dx ≤ ω1(t)

(∫
Ω
up dx

) p−1
p
(∫

Ω
|∇v|2p dx

)1/p

= ω1(t)y
p−1

p ‖∇v‖22p.

Since p > max{n/2, 1}, there exists r ∈ (1, p) such that

1
n

+
1
2p

>
1
r
>

1
p
.

This implies 2 > 1− n/2p+ n/r. Hence, we can find β ∈ (0, 1) such that 2β > 1− n/2p+ n/r. From

(3.1.18), with q = 2p > r, we have

‖∇v‖2p ≤ ω0(t) +
∫ t

0
(t− s)−βe−δ(t−s)ω(s)‖u(·, s)‖rds.

Applying the above estimates in (3.1.20), we derive the following inequality for y(t)

d

dt
y + C(d, p)y

p+1
p ≤ Cy

p−1
p ω1(t)

{
ω0(t) +

∫ t

0
(t− s)−βe−δ(t−s)ω(s)‖u(·, s)‖rds

}2

+C(ω2(t) + ‖u‖1)y +Bω2(t). (3.1.21)

Since 1 < r < p, we can use Hölder’s inequality

‖u‖r ≤ ‖u‖1−λ1 ‖u‖λp = ‖u‖1−λ1 y
λ
p

with λ = 1−1/r
1−1/p = p(r−1)

r(p−1) . Applying this in (3.1.21) and re-indexing the functions ωi, we prove (3.1.19).

The last assertion of the lemma follows from the following equivalent inequalities

η > θ + 2ϑ⇔ p+ 1
p

>
p− 1
p

+
2(r − 1)
r(p− 1)

⇔ 1
p
>

(r − 1)
r(p− 1)

⇔ rp− r > pr − p⇔ p > r.

This completes the proof.

Next, we will show that the Lp norm of u is in the class O or P for any p ≥ 1.
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Lemma 3.1.8. Given the conditions of Theorem 3.1.2 (respectively Theorem 3.1.3), for any finite

p ≥ 1, there exists a function ωp ∈ O (respectively P) such that

‖u(·, t)‖p ≤ ωp(t). (3.1.22)

To prove this, we apply the following facts from [27] to the differential inequality (3.1.19).

For a function y : R+ → R, let us consider the inequality

y′(t) ≤ F(t, y), y(0) = y0, t ∈ (0,∞), (3.1.23)

where F is a functional from R+ × C(R+,R) into R. The following lemma is standard and gives a

global estimate for y but the estimate is still dependent on the initial data. Consider the assumptions:

F.1 Suppose that there is a function F (y, Y ) : R2 → R such that F(t, y) ≤ F (y(t), Y ) if y(s) ≤ Y

for all s ∈ [0, t].

F.2 There exists a real M such that F (Y, Y ) < 0 if Y ≥M .

Lemma 3.1.9. [27, Lemma 2.17] Assume (3.1.23), F.1, and F.2. Then there exists finite M0 such

that y(t) ≤M0 for all t ≥ 0.

The proof of this lemma is elementary, and therefore will be omitted.

Remark 3.1.10. In (F.1), the inequality F(t, y) ≤ F (y(t), Y ) is not pointwise. It requires that

y(s) ≤ Y on the interval s ∈ [0, t] not just that y(t) ≤ Y . Such situation usually happens when f(t, y)

contains integrals of y(t) over [0, t].

The above constant M0 still depends on the initial data y0. Moreover, the function F may

depend on y0 too. Next, we consider conditions which guarantee uniform estimates for y(t).

Consider the following assumptions:

(G.1) There exists a continuous function G(y, Y ) : R2 → R such that for τ sufficiently large, if t > τ

and y(s) ≤ Y for every s ∈ [τ, t] then there exists τ ′ ≥ τ such that

F(t, y) ≤ G(y(t), Y ) if t ≥ τ ′ ≥ τ . (3.1.24)
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(G.2) The set {z : G(z, z) = 0} is not empty and z∗ = sup{z : G(z, z) = 0} < ∞. Moreover,

G(M,M) < 0 for all M > z∗.

(G.3) For y, Y ≥ z∗, G(y, Y ) is increasing in Y and decreasing in y.

Proposition 3.1.11. [27, Prop 2.18] Assume (3.1.23), (G.1), (G.2), and (G.3). If

lim sup
t→∞

y(t) <∞

then

lim sup
t→∞

y(t) ≤ z∗.

Remark 3.1.12. Examples of functions F,G satisfying the conditions of the above two lemmas

include

F (y(t), Y ), G(y(t), Y ) = −Ayη(t) +D(yγ + 1) + yθ(B + CY ϑ)k, (3.1.25)

with positive constants A,B,C,D, η, θ, ϑ, k satisfies η > θ + kϑ and η > γ.

Proof: [Proof of Lemma 3.1.8] Assume first the conditions of Theorem 3.1.2. From (3.1.19),

we deduce the following integro-differential inequality

d

dt
y ≤ −Ayη + ω1(t)y +Bω2(t) + Cyθ{ω0(t) +K(t)}2, (3.1.26)

where

K(t) :=
∫ t

0
(t− s)−βe−δ(t−s)ω(s)yϑ(s)ds

for some ω0, ω1, ω ∈ O (because ‖u(·, t)‖1 ∈ O). We will show that Lemma 3.1.9 can be used here to

assert that y(t) is bounded in any finite interval. This means ‖u‖p ∈ O. We define the functional

F(t, y) = −Ayη + ω1(t)y +B + Cyθ{ω0(t) +K(t)}2. (3.1.27)

26



Since ωi ∈ O, we can find a positive constant Cω, which may still depend on the initial data, such

that ωi(t) ≤ Cω for all t > 0. Let

C1 := sup
t>0

∫ t

0
(t− s)−βe−δ(t−s)ds ≤

∫ ∞

0
s−βe−δsds <∞,

because β ∈ (0, 1) and δ > 0. We then set

F (y, Y ) = −Ayη + Cω(y +B) + Cyθ(Cω + CωC1Y
ϑ)2.

Because η > θ+ 2ϑ, by Lemma 3.1.7, and Remark 3.1.12, the functionals F , F satisfy the conditions

(F.1),(F.2). Hence, Lemma 3.1.9 applies and gives

y(t) ≤ C0(v0, u0), ∀t > 0. (3.1.28)

For some constant C0(v0, u0) which may still depend on the initial data since F does. We have shown

that y(t) ∈ O.

We now seek for uniform estimates and assume the conditions of Theorem 3.1.3. From Lemma

3.1.7 we again obtain (3.1.26) with ωi are now in P. If a function ω belong to P, by Definition 3.1.1,

we can find τ1 > 0 such that ω(s) ≤ C̄∞ = C∞ + 1 if s > τ1. We emphasize the fact that C̄∞ is

independent of the initial data. Let t > τ ≥ τ1 and assume that y(s) ≤ Y for all s ∈ [τ, t]. Let us

write

K(t) =
∫ τ

0
(t− s)−βe−δ(t−s)ω(s)yϑ(s)ds+

∫ t

τ
(t− s)−βe−δ(t−s)ω(s)yϑ(s)ds = J1 + J2.

By (3.1.28), there exists some constant C(v0, u0) such that ω(s)yϑ(s) ≤ C(v0, u0) for every s. Hence,

we can find τ ′ > τ such that J1 ≤ 1 if t > τ ′. Thus,

K(t) ≤ 1 + C̄∞C∗Y
ϑ, where C∗ = sup

t>τ,τ>0

∫ t

τ
(t− s)−βe−δ(t−s)ds <∞.
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Therefore, for t > τ ′ we have f(t, y) ≤ G(y(t), Y ) with

G(y(t), Y ) = −Ayη(t) + C̄∞(y +B) + yθ(C̄∞ + 1 + C̄∞C∗Y
ϑ)2. (3.1.29)

We see that G is independent of the initial data and satisfies (G1)-(G3) as η > θ + 2ϑ (see Remark

3.1.12). Therefore, Proposition 3.1.11 applies here to complete the proof.

We conclude this section by giving the following proofs.

Proof: [Proofs of Theorems 3.1.2 and 3.1.3] We first apply i) of Lemma 3.1.5 to the equation

for v in (3.0.1). Since ‖u(·, t)‖p ∈ P for any p large, we see that f(u, v) ∈ Lq(Qτ,t) for any q > 1. In

fact, with τ = t− 1, ‖f(u, v)‖Lq(Qτ,t), as a function in t, is in the class P. Hence,

‖v‖
W 2,1

q (Qτ,t)
≤ C

(
‖f(u, v)‖Lq(Qτ,t) + ‖v(·, τ)‖

W
2−2/q
q (Ω)

)
. (3.1.30)

Choosing β ∈ (0, 1) (close to 1) and r sufficiently large such that 2β > 2 − 1/q + n/r, Lemma 3.1.6

states that the norm of v(·, t) in C2−1/q(Ω), and therefore W 2−2/q
q (Ω), is in the class P for any q > 1.

We then conclude that ‖v‖
W 2,1

q (Qτ,t)
∈ P for any q > 1. So,

∫ t

t−1

∫
Ω

(
|∂v
∂t

(x, s)|q + |∆v(x, s)|q
)
dx ds ≤ ω(t), ∀t ∈ I (3.1.31)

for some ω ∈ P. We now write the equation for u as follows

∂u

∂t
= div(A(x, t)∇u) +B(x, t)∇u+ F̂ (x, t),

where A(x, t) = P (u, v), B = Ru∇v and F̂ (x, t) = g(u, v)R(u, v)∆v + Rv|∇v|2. Using (3.1.31),

we easily see that b(x, t) and F̂ (x, t) belong to Lq,q for any q large. Standard regularity theories for

quasilinear parabolic equations (see [26]) can be applied here to conclude that u(x, t) is in class Cα,α/2

for some α > 0.

Proof: [Proof of Theorem 3.1.4] The proof is exactly the same as that of Theorem 3.1.3

if we can regard Av as a linear regular elliptic operator with Hölder continuous coefficients (whose

norms are also ultimately uniformly bounded) so that Lemma 3.1.6 is applicable. To this end, we
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need only to show that Q(v(x, t)), as a function in (x, t), is Hölder continuous. Since we assume that

‖v(·, t)‖∞ ∈ P and (3.1.4) holds, the assumption of the theorem implies that ‖g(u, v)‖q,r,[t,t+1]×Ω ∈ P.

The range of q, r in (3.1.10) and well known regularity theory for quasilinear parabolic equations (see

[22, Chap.5, Theorem 1.1] or [26] ) assert that there is α > 0 such that v ∈ Cα,α/2(Ω× (0,∞)) with

uniformly bounded norm. So is Q(v(x, t)). In fact, by [9], we also have that ∇v ∈ Cα,α/2(Ω× (0,∞)).

3.2 The competitive Lotka-Volterra reaction terms

In this section we show that the hypotheses of Theorems 3.1.3 and 3.1.4 are verified for (3.0.1)

if the reaction terms are of Lotka-Volterra type used in (3.0.4), that is,

f(u, v) = u(a1 − b1u− c1v), g(u, v) = v(a2 − b2u− c2v), (3.2.1)

where ai, bi, ci’s are given constants. The main result of this section is the following.

Theorem 3.2.1. Assume that Au satisfies (P1), Av is of the form (3.1.9), n ≤ 5, and that b1, b2, c2 >

0. The assumption on the dimension will be omitted if Av is a linear operator of the form in (3.1.3).

For any given p0 > n and any given nonnegative initial data u0, v0 in

X = {(u, v) ∈W 1,p0(Ω)×W 1,p0(Ω) : u(x), v(x) ≥ 0, ∀x ∈ Ω}.

Then weak solutions (u, v) to (3.0.1) with (3.2.1) are classical and exist globally. Furthermore,

for any α ∈ (0, 1) we have

‖v(·, t)‖Cα(Ω), ‖u(·, t)‖Cα(Ω) ∈ P. (3.2.2)

For given nonnegative initial data u0, v0 ∈ X, it is standard to show that the solution stays

nonnegative (see [18]). Clearly, the functions f, g satisfy the condition (F). Thus, the above the-

orem is a consequence of Theorems 3.1.3 and 3.1.4 if we can show that the norms ‖v(•, t)‖∞ and

‖u‖q,r,[t,t+1]×Ω =
( ∫ t+1

t ‖u(·, s)‖rq,Ωds
)1/r (respectively, ‖u(•, t)‖1) belong to P for some q, r satisfying

1/r + n/2q ∈ (0, 1). These will be done in several steps.

First of all, since b2, c2 > 0, using invariant principle for scalar parabolic equation or test the
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equation of v by (v − k)+ for some k large we easily derive

Lemma 3.2.2. ‖v(·, t)‖∞ ∈ P.

The followings are devoted to obtain estimates of ‖u‖q,r.

Lemma 3.2.3. For the component u we have

‖u(·, t)‖1 ∈ P, (3.2.3)∫ t+1

t

∫
Ω
u2dx ∈ P. (3.2.4)

Proof: Integrating the equation for u over Ω. Using the Robin boundary condition and the

fact that u, v ≥ 0 we can drop the boundary integrals result in the integration by parts to obtain

d

dt

∫
Ω
udx ≤

∫
Ω
f(u, v) dx ≤ c

∫
Ω
u dx− b1

∫
Ω
u2 dx (3.2.5)

this implies (here c = a1 + |c1|‖v‖∞)

d

dt

∫
Ω
u dx ≤ c

∫
Ω
u dx− b1(

∫
Ω
u dx)2 (3.2.6)

It is easy to see that (3.2.6) gives (3.2.3) (see also Proposition 3.1.11). Integrating (3.2.5) from t to

t+ 1 and using (3.2.3), we get (3.2.4).

We need to estimate the norms of ∇v and vt.

Lemma 3.2.4. We assert that

‖∇v(·, t)‖2 ∈ P, (3.2.7)∫ t+1

t

∫
Ω
v2
t (x, s)dx ds ∈ P. (3.2.8)

Proof: First of all, using the boundary condition for v, we notice that

∫
Ω
∇(Q∇v)Qvt dx = −

∫
Ω
Q∇v(Qv∇vvt +Q∇(vt))dx+

∫
∂Ω
Q
∂v

∂n
Qvt dσ

= −1
2

∫
Ω

d

dt
(Q2|∇v|2)dx−

∫
∂Ω1

r(x)Qvvt dσ
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where ∂Ω1 is a subset of ∂Ω on which the Robin or Neumann conditions are given, that is, χ = 1 in

(3.0.2). Therefore, by multiplying the equation for v by Qvt, we get

∫
Ω
Qv2

t dx+
1
2
d

dt

∫
Ω
Q2|∇v|2dx ≤

∫
Ω
f(u, v)Qvt dx−

d

dt

∫
∂Ω1

r(x)Q̂(v) dσ,

where Q̂(v) =
∫ v
0 Q(s)s ds. The above then gives

∫
Ω
Qv2

t dx+
d

dt

∫
Ω
Q2|∇v|2dx ≤

∫
Ω
f2(u, v)Qdx− d

dt

∫
∂Ω1

r(x)Q̂(v) dσ. (3.2.9)

On the other hand, let Q̄(v) =
∫ v
0 Q(s)ds and multiply the equation for v by Q̄(v) to obtain

∫
Ω
Q̄vtdx = −

∫
Ω
Q2|∇v|2dx−

∫
∂Ω1

rvQ̄ dσ +
∫

Ω
f(u, v)Q̄(v) dx.

But ∫
Ω
Qv2

t dx ≥ −2
∫

Ω
Q̄vt dx−

∫
Ω

Q̄2

Q
dx

by Young inequality. We now set

y(t) =
∫

Ω
Q2|∇v|2dx+

∫
∂Ω1

r(x)Q̂(v) dσ

and add 2
∫
∂Ω1

rQ̂ dσ to both sides of (3.2.9). Using the above inequalities, we easily obtain

y′(t) + 2y(t) ≤
∫

Ω
[f2Q+

Q̄2

Q
+ 2fQ̄]dx− 2

∫
∂Ω1

rvQ̄ dσ + 2
∫
∂Ω1

rQ̂ dσ.

From the assumption f(u, v) ≤ C(v)(1 + u) and (3.2.4) we see that the above implies y(t) ∈ P. But

v, and therefore
∫
∂Ω1

rQ̂ dσ and
∫
∂Ω1

rvQ̄ dσ, belongs to P. We conclude that
∫
ΩQ

2|∇v|2dx ∈ P.

This and (3.1.3) give (3.2.7).

Finally, we can integrate (3.2.9) and use (3.2.7), (3.1.3) to obtain (3.2.8).

For n = 3, we note that the assumptions of Theorem 3.1.4 immediately follow from this lemma

if we take q = 2 > n/2 and r = ∞ in (3.1.10). However, we will present a unified proof for all n ≤ 5

below. We will also employ the variance of the Gronwall inequality (see Lemma 2.2.1)
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Lemma 3.2.5. For any q ≤ 2∗ = 2n/(n− 2), we have

∫ t+1

t
‖∇v(·, s)‖2qds ∈ P. (3.2.10)

Proof: By standard Sobolev embedding theorem [1, Theorem 5.4], we have

‖∇v‖22∗ ≤
1
d2

(∫
Ω
|Q∇v|2∗ dx

)2/2∗

≤ C

∫
Ω
(|Q∇v|2 + |∇(Q∇v)|2) dx (3.2.11)

From the equation for v and the condition on f , we have

|∇(Q∇v)|2 ≤ |f(u, v)|2 + |vt|2 ≤ ω(t)(u2 + 1) + |vt|2.

This and (3.2.11) imply

‖∇v‖22∗ ≤ Cω1(t)
∫

Ω
(|∇v|2 + |u|2 + |vt|2) dx.

We then integrate the above inequality over [t, t+ 1] and make use of Lemma 3.2.3 to get (3.2.10) for

q = 2∗. Finally, if q < 2∗, we have ‖∇v‖q ≤ C‖∇v‖2∗ (due to Hölder’s inequality and the fact that Ω

is bounded) for some constant C and complete the proof.

Multiplying the equation for u by u2p−1 (p > 1/2) and using the boundary condition, we derive

d

dt

∫
Ω
u2p dx +

2p− 1
p

∫
Ω
P |∇up|2 dx

≤ C(p)
∫

Ω
|R∇u2p−1∇v| dx+ ω(t)(

∫
Ω
(u2p + 1) dx. (3.2.12)

Using the conditions on P,R and Young’s inequality, we have

∫
Ω
P |∇up|2 dx ≥ d(

∫
Ω
u|∇up| dx+

∫
Ω
|∇up| dx),
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∫
Ω
|R∇u2p−1∇v| dx ≤ ω(t)

∫
Ω
|up∇up∇v| dx

≤ ε

∫
Ω
u|∇up|2 dx+ C(ε)ω(t)

∫
Ω
u2p−1|∇v|2 dx.

for any ε > 0. Moreover,

∫
Ω
u2p−1|∇v|2 dx ≤

(∫
Ω
u2p dx

)1−1/2p
‖∇v‖24p ≤

(∫
Ω
u2p dx+ 1

)
‖∇v‖24p

By choosing appropriately small ε, we derive from (3.2.12) and the above inequalities the following

key inequality
d

dt
y(t) + Cp

∫
ω
(1 + u)|∇up|2 dx ≤ g(t)y(t) + h(t), (3.2.13)

where y(t) =
∫
Ω u

2p dx, g(t) = ‖∇v‖24p + ω(t) + C(p), h(t) = ω(t) + C(p) for some ω ∈ P and

Cp, C(p) > 0.

We then have the following lemma.

Lemma 3.2.6. For λ = min{n/(n− 2), 2}, we have ‖u(·, t)‖λ ∈ P.

Proof: We choose p in (3.2.13) such that 2p = λ. Firstly, h(t) in (3.2.13) satisfies (2.2.2). On

the other hand, as 4p = 2λ ≤ 2∗ we see that ‖∇v(·, t)‖24p ∈ P by Lemma 3.2.5. Thus, g(t) in (3.2.13)

also verifies (2.2.2). Thanks to (3.2.4) and because λ ≤ 2, we see that y(t) =
∫
Ω u

λ dx verifies the

assumption of Lemma 2.2.1. This gives our lemma.

We conclude this section with the following proof.

Proof: [Proof of Theorem 3.2.1] Thanks to Lemma 3.2.3, we need only to verify the last

assumption on ‖u‖q,r of the theorem. Let p = λ/2 and l = λ+1
2 in (3.2.13), and U = ul. We integrate

(3.2.13) over [t, t+ 1] and use the above lemma to get

∫ t+1

t

∫
Ω
‖∇U |2 dx ds =

(
1 +

1
2p
)2 ∫ t+1

t

∫
Ω
u|∇up|2 dx ds ∈ P. (3.2.14)

The function W = U −
∫
Ω U dx has zero average and we can use the Gagliardo-Nirenberg inequality

to get

‖W‖2∗,Ω ≤ C‖∇W‖2,Ω ⇒ ‖U‖2∗,Ω ≤ C(‖∇U‖2,Ω + ‖U‖1,Ω).
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For r = 2l, q = l2∗, we derive

∫ t+1

t
‖u‖rq,Ω ds =

∫ t+1

t
‖U‖22∗,Ω ds ≤ C

(∫ t+1

t
‖∇U‖22,Ω ds+ sup

[t,t+1]
‖U‖21,Ω

)
.

As l ≤ λ, ‖U(·, t)‖1,Ω = ‖u(·, t)‖ll,Ω ∈ P (see Lemma 3.2.6). Thus, (3.2.14) and the above show that

‖u‖q,r,[t,t+1]×Ω ∈ P, with r, q satisfying

1− χ :=
1
r

+
n

2q
=

1
l
(
1
2

+
n

22∗
) =

n

4l

Set A := q− n
2(1−χ) = q− 2l, B := r− 1

1−χ = 2l− 4l
n . To see that q, r satisfy the condition (3.1.10) of

Theorem 3.1.4, we show that χ ∈ (0, 1) and A,B ≥ 0. Computing the values of χ,A,B for n = 3, 4, 5

gives:

n = 3 : χ = 1/2, A = 6, B = 1.

n = 4 : χ = 1/3, A = 3, B = 3/2.

n = 5 : χ = 1/16, A = 16/9, B = 8/5.

The assumptions of Theorem 3.1.4 are fulfilled and our proof is complete (we should also remark that

χ = −1/5 < 0 if n = 6).

3.3 Lyapunov functional method

In the rest of this chapter, we will employ the Lyapunov functional method, which is introduced

in [29] to deal with full regular system (see also next chapter), to establish a priori estimates of

solutions to system (3.0.1), that is,


ut = Au(u, v) + F (u, v), x ∈ Ω, t > 0,

vt = Av(u, v) +G(u, v), x ∈ Ω, t > 0.
(3.3.1)

Here we assume that

(P) Au = ∇(P (u, v)∇u + R(u, v)∇v),Av = ∇(Q(u, v)∇v) in which functions P,Q,R are differ-
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entiable functions in (u, v). Moreover, P,Q are positive for nonnegative u, v, and u0, v0 are

nonnegative on Ω.

(F) Reaction terms F,G are continuous functions in (u, v) such that F (0, v) = G(u, 0) = 0 and

F (u, v) and G(u, v) are negative if either u or v is sufficiently large. (3.3.2)

Firstly, for the sake of simplicity, we consider here systems with homogeneous Neumann bound-

ary conditions, and leave the mixed boundary case of the form (3.0.2) to Remark 3.3.6. The nonneg-

ativity of the solutions is easy to establish. Indeed, by testing the equations of u, v respectively by

their negative parts u−, v− and using elementary differential inequalities, one can prove that u−, v−

are zero for all t (see also [28]). This shows that u, v stay nonnegative for all t ∈ (0,∞).

By multiplying the equation of v in (3.3.1) with (v−Kv)+ and using the assumption on G we

easily prove the following.

Lemma 3.3.1. Assume (P) and (F). Then there exists a constant Kv > 0, which may depend on the

initial data v0, such that v(x, t) ≤ Kv for all (x, t) ∈ ΩT .

Under a stronger assumption on G, we shall obtain uniformity of the bound with respect to

the initial data. However, for convenience, we impose here an assumption on F as well, that is,

(F’) Reaction terms F,G are continuous functions in (u, v) and there exist positive constants α,M0 >

0 such that F (0, v) = G(u, 0) = 0 and

F (u, v) ≤ −αu, G(u, v) ≤ −αv, if either u ≥M0 or v ≥M0. (3.3.3)

We shall prove the following.

Lemma 3.3.2. Assume (P) and (F’). Then there exists a constant Kv that is independent of the

initial data such that

lim sup
t→∞

‖v(•, t)‖∞ ≤ Kv. (3.3.4)
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In the study of the boundedness of u, we consider the following subset of IR2

Γ = {(u, v) : u > 0, 0 < v < Kv}, (3.3.5)

and the following assumptions.

(H.0) There exist a C2 function H(u, v) defined on a neighborhood Γ0 of Γ and a constant K0 such

that (HuF +HvG)(H −K)+ ≤ 0 for every (u, v) ∈ Γ0 and K ≥ K0.

(H.1) There exists λ1 > 0 such that

[Hu(P∇u+R∇v) +HvQ∇v]∇H ≥ λ1|∇H|2, (3.3.6)

(P∇u+R∇v)∇Hu +Q∇v∇Hv ≥ 0, (3.3.7)

for every (u, v) ∈ ΓK := Γ
⋂
{(u, v) : H(u, v) ≥ K}, K ≥ K0, with K0 given in (H.0).

(H.2) If u→∞ in IR2 then H(u, v) →∞.

Here, we write Hu = ∂
∂uH(u, v), Huu = ∂2

∂u∂uH(u, v), ∇H = ∇xH(~u(x)), and so on. Fur-

thermore, w+ denotes the nonnegative part sup{w, 0} of a function w. Our first main result on the

boundedness of weak solutions is the following.

Theorem 3.3.3. The conditions (P), (F), (H.0), (H.1), and (H.2) imply that u, v are bounded.

To obtain uniform estimates we need to assume further that

(H.0’) There are constants C1,K0 > 0 such that (HuF +HvG) ≤ −C1H for every (u, v) ∈ Γ0 such

that H ≥ K0.

Our second main result on the uniform boundedness of u, v reads

Theorem 3.3.4. Assume as in Theorem 3.3.3 with replacing (F) and (H.0) by (F’) and (H.0’),

respectively. Then u, v are ultimately uniformly bounded, that is, there exist positive constants Ku,Kv

independent of the initial data u0, v0 such that

lim sup
t→∞

‖u(•, t)‖∞ ≤ Ku, lim sup
t→∞

‖v(•, t))‖∞ ≤ Kv. (3.3.8)
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Thanks to Lemmas 3.3.1 and 3.3.2, we need to prove the boundedness of u in order to complete

Theorems 3.3.3 and 3.3.4.

Proof: [Proof of Theorem 3.3.3] Firstly, for nonnegative φ ∈ W 1,2(Ω), we can test the

equations of u, v respectively by Huφ and Hvφ, add the results, and use (3.3.7) to get

∫
Ω

∂H

∂t
φ dx+

∫
Ω

(Hu(P∇u+R∇v) +HvQ∇v)∇φ dx ≤ C

∫
Ω

(HuF +HvG)φ dx. (3.3.9)

Here, we have used the homogeneous Neumann boundary conditions so that the boundary

integrals, which appear in the integration by parts, are all zero.

We set H0 = supx∈ΩH(u0(x), v0(x)), which is finite because u0, v0 are bounded on Ω. Let

K ≥ max{K0,H0} and φ be (H −K)+ in (3.3.9). Integrate the result in t and use (H.0), (3.3.6) to

obtain

∫
Ω

(H −K)2+ dx |t0 +λ1

∫ t

0

∫
H≥K

|∇H|2dxds ≤ 0. (3.3.10)

Since (H −K)+ = 0 when t = 0 (as K ≥ H0), the above shows that (H −K)+ = 0 for all t.

We conclude that H ≤ K on Ω. Condition (H.2) basically says that boundedness of u comes from

that of H(u, v). Thus, u, v are bounded by some constant depending on K0 and the initial data u0, v0.

We now turn to prove Theorem 3.3.4. Firstly in order to prove the uniform boundedness of

the component v (Lemma 3.3.2), we need the following standard Moser’s iteration technique.

Lemma 3.3.5. For T1 > T > T0, let V be a function on Ω× [T0, T1] such that

sup
τ∈It

∫
Ω×τ

V qdx+
∫∫

Qt

|∇V q/2|2 dz ≤ C
qν

t− s

∫∫
Qs

V q dz, (3.3.11)

for all q ≥ m, T0 < s < t < T and some ν ≥ 0. Here It := [t, T1], Qt := Ω × It, for any t ∈ [T0, T1].

Then there exists a positive constant C0 depending on T − T0 such that

sup
QT

V (x, t) ≤ C0

(∫∫
QT0

V m dz

)1/m

. (3.3.12)
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Proof: Applying Lemma 2.2.4 with U = V q/2, we obtain from (3.3.11)

(∫∫
Qt

(V q)κ dz
)1/κ

≤ Cqν

s− t

∫∫
Qs

V q dz, (3.3.13)

which κ = 1 + 2/n.

For i = 0, 1, . . ., set si = T − (T − T0)2−i, Qi = Qsi , and qi = mκi. Using s = si, t = si+1 in

(3.3.13), we obtain

(∫∫
Qi+1

V mκi+1
dz

)1/κ

≤ Cmν(κν)i2−i−1

T − T0

∫∫
Qi

V mκi
dz.

Dividing both sides by |Qi||Qi+1| and using the fact that QT ⊂ Qi ⊂ QT0 for any i, we easily

get

(∫∫
Qi+1

V mκi+1
dz

)1/κ

≤ C1(κν)i2−i
∫∫

Qi

V mκi
dz

which C1 = Cmν2−1 |QT0
|

|QT |
1

T−T0
.

Hence,

(∫∫
Qi+1

V mκi+1
dz

)1/(mκi+1)

≤ Cκ
−i

2 Ciκ
−i

3

(∫∫
Qi

V mκi
dz

)1/mκi

,

with C2 = C
1/m
1 and C3 = (κν/2)1/m. Iterating the above gives

(∫∫
Qk+1

V mκk+1
dz

)1/(mκk+1)

≤ C
Pk

i=0 κ
−i

2 C
Pk

i=0 iκ
−i

3

(∫∫
Qd0,T0

V m dz

)1/m

.

Since the series in the exponents converge, we can let k tend to ∞ to obtain (3.3.12).

Proof: (Proof of Lemma 3.3.2) Let T > 1 and s < t be two numbers in (T − 1, T ). We
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consider a C1 function η : (0,∞) −→ [0, 1] that satisfies

η(τ) =


0 if τ < s,

1 if τ > s

and |η′| ≤ 1
t− s

. (3.3.14)

For T sufficiently large and any q ≥ 1, we test the equation of v by V q−1η, with V = (v−K0)+.

Here K0 is in (F). Integration by parts gives

∫∫
Q

1
q

∂V q

∂t
η dz + d(q − 1)

∫∫
Q
V q−2|∇V |2 dz =

∫∫
Q
GV q−1η dz ≤ 0. (3.3.15)

By (3.3.14), this implies

∫∫
Q

∂(V qη)
∂t

dz + λ

∫∫
Q
|∇V q/2|2 dz ≤ Cq

∫∫
Q
V q|ηt| dz ≤

Cq

t− s

∫∫
Q
V q dz.

We then apply Lemma 3.3.5 to assert that

sup
QT

V (x, t) ≤ C0

(∫ T+1

T−1

∫
Ω
V 2 dx

)1/2

. (3.3.16)

On the other hand, we test the equation of v by V . We easily obtain

Y ′ ≤ −CY, with Y (t) =
∫

Ω
V 2(x, t) dx.

This shows that lim supt→∞ Y (t) is bounded by some constant independent of Y (0) or u0, u0.

Hence, this fact and (3.3.16) prove (3.3.4).

Proof: [Proof of Theorem 3.3.4] The proof of uniform boundedness of H is exactly the same

as that of v. Indeed, we first still have (3.3.9) in the proof of Theorem 3.3.3 which is due only to

assumption (H.1). Therefore, replacing φ by V q−1η with V = (H −K1)+ and η defined by (3.3.14),

and using (H.1), we obtain

∫∫
Q

1
q

∂V q

∂t
η dz + λ1(q − 1)

∫∫
Q
V q−2|∇V |2 dz =

∫∫
Q

(HuF +HvG)V q−1η dz.
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From this, using (H.0’), we obtain (3.3.15) and therefore (3.3.16). Finally, with noting that

HuF +HvG ≤ −C1H (also due to (H.0’)), we have the uniform bound of L2-norm of H. This and

(3.3.16) give the uniform boundedness of H. The proof is complete due to (H.2).

Remark 3.3.6. We remark that our proof goes unchanged if the mixed boundary conditions


χ(x)

[
∂v
∂n(x, t) + r(x)v(x, t)

]
+ (1− χ(x))v(x, t) = 0,

χ̄(x)
[
∂u
∂n(x, t) + r̄(x)u(x, t)

]
+ (1− χ̄(x))u(x, t) = 0,

are considered. Here χ, χ̄ are given functions on ∂Ω with values in {0, 1}, and functions r, r̄ are given

bounded nonnegative functions on ∂Ω. In fact, the only difference in our calculation is that there

would be boundary integrals, resulting from the integration by parts, to appear on the right hand

sides of (3.3.10) and (3.3.15). However, by using the fact that u, v,Hu,Hv, r, r̄ are nonnegative on

the boundary and choosing K0,H0 sufficiently large but independent of u, v, we can see easily that

these boundary integrals are negative. Thus, (3.3.10) and (3.3.15) are still valid and our argument

can continue as before.

3.4 The existence of the Lyapunov functional H

We now see that the assumption on the existence of a function H, satisfying (H.1), is crucial

for our main results in the previous section. Obviously, it is not clear whether this function ever

exists. In this section we will find sufficient conditions on the structure of (3.3.1) such that we can

find such H.

Clearly, the conditions (3.3.6),(3.3.7) are satisfied if the following quadratics (in U, V ∈ IRn)

are positive definite.

A1 := (P − λ)H2
uU

2 + [RHuHv + (Q− λ)H2
v ]V

2 + [RH2
u + (Q+ P − 2λ)HuHv]UV, (3.4.1)

A2 := PHuuU
2 + (RHuv +QHvv)V 2 + [RHuu + (P +Q)Huv]UV. (3.4.2)
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A1 is positive definite if the coefficients of U2, V 2 are nonnegative and its discriminant Θ1 is

nonpositive. However, a simple calculation shows that

Θ1 = (PHuHv −RH2
u −QHuHv)2 = H2

u((P −Q)Hv −RHu)2.

This suggests that we will require H to fulfill (P − Q)Hv = RHu. In other words, we will

consider the following equations

f(u, v) = (P −Q)/R, (3.4.3)

Hu = f(u, v)Hv. (3.4.4)

Lemma 3.4.1. Assume that (3.4.4) holds. There exists λ > 0 such that A1 is positive definite.

Proof: By (3.4.3) and (3.4.4), the coefficients of U2, V 2 in A1 are respectively H2
u(P −λ) and

H2
v (Rf +Q− λ) = H2

v (P − λ). They are nonnegative if we choose λ = infΓ P .

To verify the positivity of A2 in (3.4.2), we consider its discriminant Θ2. Easy computation

shows that

Θ2 := (RHuu + PHuv +QHuv)
2 − 4PHuu (RHuv +QHvv) .

Differentiating Hu = fHv, we get Huu = fuHv + fHuv and Huv = fvHv + fHvv. Substitute

these into Θ2 and simplify to obtain

Θ2 := α1H
2
vv + α2HvvHv + α3H

2
v . (3.4.5)

Using (3.4.3), we easily see that α1 = 0. Similarly, we have

α2 = 2 (R (fu + ffv) + Pfv +Qfv)
(
Rf2 + Pf +Qf

)
−4P [(fu + ffv) (Rf +Q) +Rf2fv]

= 4(−PRf2fv + P 2fvf − PQfu)

= −4PQ(fu − fvf).
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α3 = (R(fu + ffv) + Pfv +Qfv)2 − 4P (fu + ffv)Rfv

= (fu + ffv)2R2 + (P +Q)2f2
v + 2Rfv[(fu + ffv)(Q− P )]

= (fu + ffv)2R2 + (P −Q)2f2
v + 2Rfv(fu + ffv)(Q− P ) + 4PQf2

v

= [(fu + ffv)R+ fv(Q− P )]2 + 4PQf2
v

= R2f2
u + 4PQf2

v .

Let g be a solution to (3.4.4)and G be any differentiable function on IR. We observe that

H(u, v) = G(g(u, v)) is also a solution to (3.4.4). We will make the following main assumptions of

this section.

(H.3) Assume that there exists a connected neighborhood Γ0
K of ΓK such that g belong to C2(Γ0

K).

Moreover,

gv 6= 0, and α2 = −4PQ(fu − fvf) 6= 0, ∀(u, v) ∈ Γ0
K . (3.4.6)

(H.4) The quantities gvv/g2
v + α3/(α2gv), δ12/(fδ11) and fδ21/δ22 are bounded on ΓK . Here, we

denoted

δ12 = P [f2gvv + (fu + ffv)gv], δ21 = Pgvv +Rfvgv,

and δ11 = δ22 = Pfg2
v .

The existence of H is then given by

Theorem 3.4.2. Assume (H.3), (H.4) and let H(u, v) = exp(µg(u, v)). There exists µ such that

(H.1) holds.

Proof: Thanks to Lemma 3.4.1 and the choice of g, we need only to check the positivity of

A2. We first show that Θ2 < 0 on ΓK for suitable choice of µ. Let G(x) = exp(µx). As Hv = G′gv,

Hvv = (G′′g2
v +G′gvv), and G′′/G′ = µ, we have

Θ2 = HvvHvα2 +H2
vα3 = (G′)2g3

vα2

[
µ+ (

gvv
g2
v

+
α3

α2gv
)
]
.
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Thanks to our assumption (3.4.6) and because Γ0
K is connected, the coefficient of µ never

vanishes on ΓK . That is, either g3
vα2 < 0 or g3

vα2 > 0 on ΓK . Because gvv/g2
v +α3/(α2gv) is bounded

on ΓK and gv, G
′ 6= 0, the above shows that Θ2 < 0 on ΓK for suitable choice of µ with |µ| being

sufficiently large.

Finally, we show that the coefficients of U2, V 2 in A2 are positive. It suffices to show that

the following quantities δ1 = PHuu and δ2 = (RHuv +QHvv) are strictly positive on ΓK . Similar

calculation as before yields

δ1 = P [f2Hvv + (fuHv + ffvHv)] = exp(µg)fδ11

[
µ
δ12
fδ11

+ µ2

]
,

δ2 = (Rf +Q)Hvv +RfvHv = exp(µg)
δ22
f

[
µ
fδ21
δ22

+ µ2

]
,

where δij are defined as in (H.4). Since the coefficients of µ, δ12/(fδ11) and fδ21/δ22, are bounded on

ΓK , and fδ11, δ22/f are positive, we can choose |µ| large to have that δ1, δ2 > 0 on ΓK .

3.5 The Shigesada-Kawasaki-Teramoto model

This section is to illustrate the validity of our results obtained in the preceding sections. We

consider functions P,Q,R in (3.3.1) as follows

P (u, v) = d1 + a11u+ a12v, R(u, v) = b11u, Q(u, v) = d2 + a21u+ a22v. (3.5.1)

In this form, system (3.3.1) is a generalized version of the SKT model (3.0.4) when a12 = b11

and a21 = 0. Our first result is the following global existence result.

Theorem 3.5.1. Assume (F ), (3.5.1) and that aij ≥ 0, di, a11, b11 > 0, i, j = 1, 2. In addition,

suppose that

a11 6= a21, a22 > a12, and a22 6= a12 + b11. (3.5.2)

Then weak solutions to (3.3.1) with nonnegative initial data are classical and exist globally.
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Furthermore, for any α ∈ (0, 1) we have

‖v(·, t)‖Cα(Ω), ‖u(·, t)‖Cα(Ω) ∈ O. (3.5.3)

With an additional condition on the parameters of the system, we have the following uniform

estimates.

Theorem 3.5.2. Assume as in Theorem 3.5.1 and further that a11 > a21. Then for any α ∈ (0, 1)

we have

‖v(·, t)‖Cα(Ω), ‖u(·, t)‖Cα(Ω) ∈ P. (3.5.4)

Clearly, because the system is triangular, the estimates in L∞ norms are sufficient to obtain

estimates (3.5.3) and (3.5.4) (e.g., see proofs of Theorems 3.1.2 and 3.1.3 or [25, Theorem 6]). In

addition, the boundedness of v was proven in Lemmas 3.3.1 (respectively, 3.3.2) where only assump-

tions (P) and (F) (respectively, (F’)) are required so that we will only concern ourselves with the

boundedness of u here. We apply Theorem 3.3.3 to establish Theorem 3.5.1.

By Lemma 3.3.1, we can take Γ0 to be the strip {(u, v)|u > 0, 0 < v < Kv}. We also see that

h of (3.4.3) is given by

h(u, v) =
d+ au− bv

u
,

where

d =
d1 − d2

b11
, a =

a11 − a21

b11
, b =

a22 − a12

b11
.

Our assumption (3.5.2) simply means a 6= 0, b 6= 1 and b > 0. Moreover, the equation (3.4.4)

can be solved by methods of characteristics (see [7]). In fact, it is elementary to see that the general

solution of (3.4.4) is given by

g(u, v) = L

(
ub

d(b− 1) + abu− b(b− 1)v

)
,

where L can be any C1 function on IR.

Since a2b > 0 and F (u, v), G(u, v) ≤ 0 if u is large, we can find K1 > 0 such that if u ≥ K1
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then F (u, v), G(u, v) ≤ 0 and a[d(b− 1) + abu− b(b− 1)Kv] > 1. We define

Γ1 := {(u, v) ∈ Γ0 |u ≥ K1}

and

ĝ(u, v) = (b− 1) log
(

ub

a[d(b− 1) + abu− b(b− 1)v]

)
, (u, v) ∈ Γ1. (3.5.5)

Put G0 = sup{ĝ(u, v) |u = K1, 0 < v ≤ Kv}. Let g(u, v) be a C1 extension of ĝ(u, v) on Γ0

that satisfies supΓ0\Γ1
g(u, v) ≤ G0 + 1. We then set G1 := G0 + 2. Obviously, we have

g(u, v) ≥ G1 ⇒ (u, v) ∈ Γ1 ⇒ u ≥ K1. (3.5.6)

We study the function g on Γ1. Firstly, we compute and find

gv =
b(b− 1)2

d(b− 1) + abu− b(b− 1)v
, gvv =

g2
v

b− 1
, (3.5.7)

fu =
bv − d

u2
, fv = − b

u
. (3.5.8)

We then prove the following lemmas.

Lemma 3.5.3. For (u, v) ∈ Γ1, we have gvα2 < 0 and α3/(α2gv) is bounded.

Proof: By (3.5.8), we have

fu − ffv =
d(b− 1) + abu− b(b− 1)v

u2
6= 0, ∀(u, v) ∈ Γ1.

Thus, by (3.5.7), gvα2 = −4PQb(b− 1)2/u2 < 0 on Γ1. On the other hand, we write

α3

α2gv
=
R2f2

u

α2gv
− f2

v

(fu − ffv)gv
,

which can be simplified to

− (bv − d)2b211
4b(b− 1)2PQ

− b

(b− 1)2
.
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The above quantity is bounded on Γ1 since P ≥ d1, Q ≥ d2 and v is bounded. The proof of

this lemma is complete.

Lemma 3.5.4. δ12/(fδ11) and fδ21/δ22 are bounded on Γ1.

Proof: We have

δ12

fδ11
=
gvv
g2
v

+
fu + ffv
f2gv

=
1

b− 1
+
fu + ffv
f2gv

.

The last fraction is

−(d(1 + b) + abu− b(b+ 1)v)(d(b− 1) + abu− b(b− 1)v)
(d+ au− bv)2b(b− 1)2

,

which is bounded because v is bounded on Γ1 and the powers of u in the numerator and denominator

are equal (so that the fraction is bounded when u is large).

Next, we have

fδ21

δ22
=
gvv
g2
v

+
Rfv
Pgv

=
1

b− 1
− b11(d(b− 1) + abu− b(b− 1)v)

(d1 + a11u+ a12v)(b− 1)2
.

The last fraction is bounded on Γ1 by the same reason as before.

We have shown that the conditions (H.3) and (H.4) are satisfied on the set Γ1. In particular,

because gvα2 < 0, we see that the factor µ in the proof of Theorem 3.4.2 can be chosen to be

positive and sufficiently large. Fix such a constant µ, we then define H(u, v) = exp(µg(u, v)). Let

K0 = exp(µG1). We see that H(u, v) ≥ K0 ⇒ g(u, v) ≥ G1. Therefore, thanks to (3.5.6), we have

ΓK0 = {(u, v) ∈ Γ0 |H(u, v) ≥ K0} ⊂ Γ1. (3.5.9)

The definition of Γ1, Theorem 3.4.2 and the above lemmas show that (H.0) and (H.1) are

verified on Γ1. By (3.5.9), they also hold on ΓK0 . It is easy to see that g(u, v) ∼ log(u(b−1)2) when

u is large so that H(u, v) ∼ uµ(b−1)2 . Since µ > 0 and H(u, v) is bounded on Γ0 \ Γ1 (by exp(µG1))

we easily see that H(u, v) → ∞ iff u → ∞. Hence (H.2) also holds. Theorem 3.3.3 asserts that u is

bounded. Our proof of Theorem 3.5.1 is complete.
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Finally, to finish the proof of Theorem 3.5.2, we just need to verify (H.0’). Indeed, when u is

large, we have

gv =
b(b− 1)2

d(b− 1) + abu− b(b− 1)v
> 0.

Hence, Hu,Hv are positive and HuF +HvG can be estimated from above by

α(Huu+Hvv) = −αµHgv(fu+ v) = −αµH b(b− 1)2(d+ au− (b− 1)v)
d(b− 1) + abu− b(b− 1)v

.

It is easy to see that the last fraction is bounded from below by (b−1)2. This gives (H.0’). The proof

is complete.

Notes and Remarks

The Lp bootstrapping techniques presented in Section 3.1 rely largely on a paper of Le in

2002 where he proved the result under the assumption that the domain is of dimension 2 ([27]). The

results are also in our paper [36]. When this work was completed, we learned that Choi, Lui and

Yamada ([4]) were also able to prove global existence results for the SKT model (3.0.4) (also when

n ≤ 5). However, their method was pure PDE and did not provide time independent estimates so

that they could only assert that the solutions exist globally. Meanwhile, not only does our method,

using PDE and semigroup techniques, apply to more general systems and gives stronger conclusions;

but it also requires a much weaker assumption in some cases to obtain the uniform a priori estimates

which are key (sufficient) issues to investigate the long-time dynamics of solutions (see Chapter 5).

In particular, we only need L1 estimates of u if the second equation is semi-linear.

The Lyapunov functional approach was also employed in [46, 47, 52, 53] to address the question

of the global existence for full cross diffusion systems. However, these authors must assume certain

special structure conditions on their systems and also the domain Ω to be of dimension at most 2

due to their use of Sobolev imbedding inequalities. Our result in Section 3.3 is obtained without

any requirement on the dimension of considered domains. Furthermore, the general theory can be

applied to a general class of triangular cross diffusion systems (with conditions (P) and (F), of course)

rather than the SKT model as long as one guarantees the existence of function H satisfying conditions

(H.0)-(H.2), or (H.3) and (H.4). The result can be also found in our published papers [31, 33].
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Chapter 4

A PRIORI ESTIMATES FOR FULL SYSTEMS

The purpose of this chapter is to recall the global existence result of Le [29] and go further to

establish uniform a priori estimates for solutions of a class of strongly coupled parabolic systems.

4.1 Main result

Consider the following strongly coupled parabolic system

 ut = ∇(P u(u, v)∇u+ P v(u, v)∇v) + F (u, v),

vt = ∇(Qu(u, v)∇u+Qv(u, v)∇v) +G(u, v),
(4.1.1)

on a bounded domain Ω in IRn. Here, the initial conditions are described by u(x, 0) = u0 and

v(x, 0) = v0, x ∈ Ω.

Concerning the boundary conditions, for the sake of simplicity, we consider here homogeneous

Neumann boundary conditions. In fact, by a view of Remark 3.3.6, our main results could apply to

the following mixed conditions


χ(x)

[
∂v
∂n(x, t) + r(x)v(x, t)

]
+ (1− χ(x))v(x, t) = 0,

χ̄(x)
[
∂u
∂n(x, t) + r̄(x)u(x, t)

]
+ (1− χ̄(x))u(x, t) = 0,

(4.1.2)

where χ, χ̄ are given functions on ∂Ω with values in {0, 1}, and functions r, r̄ are given bounded

nonnegative function on ∂Ω.

The above system arises in many applications and has recently received a lot of attention in

both mathematical analysis and real life modelling. As we already mentioned in Chapter 1, it is also

referred to by the cross diffusion system names as P u, Qv model the self diffusion of the components

u, v and P v, Qu represent the cross diffusion that result from the influence of one component on the

other. If P v, Qu are zero, (4.1.1) is the well studied weakly coupled parabolic system (or classical

reaction diffusion system). The introduction of cross diffusion terms into classical diffusion systems
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allows the mathematical models to capture much more important features of many phenomena in

physics, biology, ecology, and engineering sciences. Of course, the presence of these terms caused

enormous difficulties in the mathematical treatment due to the strong coupling in the diffusion terms.

Most recently, under certain assumptions on the parameters of the system, Le proved in [29]

that weak solutions of (4.1.1) are bounded and everywhere regularity. Therefore they are classical

and exist globally. In particular, he also gave explicit conditions on the parameters of the system

(4.1.1), which includes the SKT model (1.0.4) (when a12 = b11, a21 = b22), with

P u = d1 + a11u+ a12v, P v = b11u,

Qv = d2 + a21u+ a22v, Qu = b22v.
(4.1.3)

In this chapter, we shall go further to obtain the uniform a priori estimates for weak solutions

of (4.1.1) with (4.1.3). Such estimates of solutions will be used to prove the existence of global

attractors (see Chapter 5). First we would recall Le’s result of global existence whose proof is in [29].

Theorem 4.1.1. [29, Theorem 1.2] Assume that aij ≥ 0, di, b11, b22 > 0, i, j = 1, 2, and F (0, v) =

G(u, 0) = 0 for all u, v. In addition suppose that

F (u, v) and G(u, v) are negative if either u or v are sufficiently large. (4.1.4)

and

a11 − a21 > b22, a22 − a12 > b11. (4.1.5)

Then weak solutions, with nonnegative initial data, to (4.1.1) with (4.1.3) are classical and

exist globally. Furthermore, the Hölder norms of solutions depend only on the bound of their L∞

norms.

We shall give the proof of our following main result.

Theorem 4.1.2. Assume as in Theorem 4.1.1 and that there exist positive constants K0 and α such

that if either u ≥ K0 or v ≥ K0, then

F (u, v) ≤ −αu, G(u, v) ≤ −αv. (4.1.6)

49



Then for any nonnegative solution (u, v) to (4.1.1) and any α ∈ (0, 1), there exists a C∞(α) > 0

independent of initial data such that

lim sup
t→∞

‖u(•, t)‖Cα + lim sup
t→∞

‖v(•, t)‖Cα ≤ C∞(α). (4.1.7)

In population dynamics terms, condition (4.1.5) means that self diffusion rates are stronger

than cross diffusion ones. Obviously, our assumption (4.1.6) is satisfied if the reactions F,G are the

well known Lotka-Volterra competitive reaction type of the form

F (u, v) = u(a1 − b1u− c1v), G(u, v) = v(a2 − b2u− c2v). (4.1.8)

We also remark that the condition F (0, v) = G(u, 0) = 0 and maximum principles imply that the

solutions stay positive if their initial data are nonnegative.

4.2 Proof of main result

Clearly, in order to obtain uniform estimate (4.1.7), thanks to Theorem 4.1.1, it suffices to

show that the L∞ norms of the solution are ultimately uniformly bounded. That is, we need only

find a positive constant C∞ independent of the initial data such that

lim sup
t→∞

‖u(•, t)‖∞ + lim sup
t→∞

‖v(•, t))‖∞ ≤ C∞. (4.2.1)

The proof of this fact will largely base on the analysis in [29, Section 4.2] where Le proved the

existence of a C2 function H(u, v) defined on IR2
+ such that the below conditions are satisfied.

(H.0) H(u, v) = exp(µg(u, v)) for some sufficiently large µ > 0 (depending only on the parameters

of the system) and g is a solution of gu = f(u, v)gv, with f(u, v) being the positive solution of

F (f) := −P vf2 + (P u −Qv)f +Qu = 0. (4.2.2)

(H.1) There exists a constant K1 such that (HuF + HvG)(H − K)+ ≤ 0 for any (u, v) ∈ Γ0 and

K ≥ K1.
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(H.2) Let P = P u∇u+ P v∇v and Q = Qu∇u+Qv∇v. There exists λ > 0 such that

HuP +HvQ ≥ λ|∇H|2, (4.2.3)

P∇Hu +Q∇Hv ≥ 0, (4.2.4)

for any (u, v) ∈ F
⋂
{(u, v) : H(u, v) ≥ K1}, with K1 given in (H.1).

(H.2) If (u, v) →∞ in IR2, then H(u, v) →∞.

Under our additional assumption (4.1.6), we observe that function H has the following prop-

erty.

Lemma 4.2.1. There exists a positive constant C such that

HuF +HvG ≤ −CH (4.2.5)

if either u ≥ K0 or v ≥ K0, with K0 being given in (4.1.6).

Proof: Without loss of generality, we can assume that d1 ≤ d2. Substituting f = a11−a21
b11

> 0

in the quadratic on the left hand side of (4.2.2) and simplifying the result, we get

− [(a11 − a21)(a22 − a12)− b11b22]v + (d2 − d1)(a11 − a21)
b11

.

By (4.1.5) and the fact that d1 ≤ d2, the above is negative. Since leading coefficient −P v is negative

and f(u, v) is the positive root, we must have that f(u, v) is bounded by (a11−a21)/b11 for all u, v ≥ 0.

This and [29, Lemma 4.3] imply that there exists a positive constant C such that

gv ≥
C

f(u, v)
≥ b11C

a11 − a21
.

Now, from H = exp(µg) and assumption (4.1.6) on the reaction terms F and G, we easily

obtain

HuF +HvG = µHgv(fF (u, v) +G(u, v)) ≤ −µαHgv(fu+ v) ≤ −C1H

if either u ≥ K0 or v ≥ K0. The proof of this lemma is complete.
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We are now ready to give the proof of Theorem 4.1.2

Proof of Theorem 4.1.2: For any positive test function φ, we test the equations of u, v

respectively with Huφ,Hvφ and add the results. By using (4.2.4), we easily obtain

∫
Ω
Htφ dx+

∫
Ω

[HuP +HvQ]∇φ dx ≤
∫

Ω
(HuF +HvG)φ dx. (4.2.6)

Now follow exactly proof of Theorem 3.3.4, we obtain the ultimately uniform boundedness of

H. Therefore (H.2) gives that of u and v, that is, estimate (4.2.1). By our earlier discussion, this

completes our proof of Theorem 4.1.1.

Notes and Remarks

As we mentioned, the presence of cross diffusion terms caused enormous difficulties in the

mathematical treatment. It is not surprising that many classical methods, which were developed

successfully for regular reaction diffusion systems, could not be extended to handle (4.1.1) (even for

the SKT model). Not much work had been done before.

Technically, the boundedness of weak solutions to the SKT system was studied in [19, 43] by

using invariance principles. Of course, this method required severe restrictions on the initial data

of the solutions. Lp estimates and Lyapunov functional approachs were used in [46, 47, 52, 53] to

attack this question. However, not only that these authors must assume that the systems are of

certain special form but also their use of Sobolev imbedding inequalities forced the domain Ω to be

of dimension at most 2.

On the other hand, the question of whether bounded weak solutions are Hölder continuous also

presents great difficulties, and little progress has been made in the last twenty years. Partial regularity

results were obtained by Giaquinta and Struwe in [9] for a general class of systems. Everywhere

regularity results for bounded solutions were proven only in very few situations assuming additional

structure conditions. Among these are triangular systems (see [2, 27, 25]) or strongly coupled systems

of special form (see [25, 51]). In [25], we assumed rather restrictive structural conditions that prevent

the application of our results to many important models. In fact, the SKT model (1.0.4) does

not satisfy the structures studied in [25, 51]. Under the assumption that the domain Ω is of two

dimensional, the authors of [17] studied regularity of certain full systems. Very recently, Le proposed
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a general assumption, namely, (H.0)-(H.2) on the parameters of the systems to address the global

existence issues (see [29]). In addition, in [35] we went further to establish the ultimate uniformity of

a priori estimates, which is Theorem 4.1.2 presented here.

53



Chapter 5

GLOBAL ATTRACTORS AND ESTIMATES FOR GRADIENTS

In the preceding chapters, we have obtained the global existence result and the uniform a

priori estimates of solutions to cross diffusion parabolic systems of the form


∂u

∂t
= ∇[(d1 + a11u+ a12v)∇u+ b11u∇v] + F (u, v),

∂v

∂t
= ∇[b22v∇u+ (d2 + a21u+ a22v)∇v] +G(u, v),

(5.0.1)

which is supplied with the Neumann or Robin type boundary conditions

∂u

∂n
+ r1(x)u = 0,

∂v

∂n
+ r2(x)v = 0, (5.0.2)

on the boundary ∂Ω of a bounded domain Ω in IRn. Here r1, r2 are given nonnegative functions

on ∂Ω. The initial conditions are described by u(x, 0) = u0(x) and v(x, 0) = v0(x), x ∈ Ω. Here

u0, v0 ∈W 1,p(Ω) for some p > n.

Our main results in this chapter are to obtain the existence of a global attractor and uniform

estimates of gradients of solutions. In order to state these results, let us first recall some definitions

in the dynamical system theory. Let (X, d) be a metric space and Φ be a semiflow on X. That is,

(x, t) 7→ Φt(x) is continuous, Φ0 = idX , and Φt ◦ Φs = Φt+s for s, t ≥ 0. A subset A of X is said to

be positively invariant for Φ if Φt(A) ⊂ A for all t ≥ 0, and invariant if Φt(A) = A for all t ≥ 0.

A subset A ⊂ X is said to be an attractor for Φ if A is nonempty, compact, invariant, and

there exists some open neighborhood U of A in X such that limt→∞ d(Φt(u), A) = 0 for all u ∈ U .

Here, d(x,A) is the usual Hausdorff distance from x to the set A. If A is an attractor which attracts

every point in X, A is called global attractor. There are two other names, universal or maximal

attractor, used in literature which have the same meaning as global attractor.

It is shown that a dynamical system possessing a global attractor is observable in the sense

that all the orbits converge towards the set, or in another word, the set describes all possible long-

time dynamics that the solution semiflow associated with the system can produce. For background
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information and references, the reader is referred to the book of Temam [48].

We obtain the following result whose proof is given in Section 5.2.

Theorem 5.0.1. Assume that aij , b22 ≥ 0, di, b11 > 0, i, j = 1, 2, and

a11 − a21 > b22, a22 − a12 > b11. (5.0.3)

In addition, there exist positive constants K0 and K1 such that if either u ≥ K0 or v ≥ K0,

then

F (u, v) ≤ −K1u, G(u, v) ≤ −K1v. (5.0.4)

Then (5.0.1) and (5.0.2) define a dynamical system on W 1,p
+ (Ω, IR2), the positive cone of

W 1,p(Ω, IR2), for some p > n. And this dynamical system possesses a global attractor set.

Furthermore, let (u, v) be a nonnegative solution to (5.0.1). Then there exist ν > 1 and C∞ > 0

independent of initial data such that

lim sup
t→∞

‖u(•, t)‖Cν(Ω) + lim sup
t→∞

‖v(•, t)‖Cν(Ω) ≤ C∞. (5.0.5)

In population dynamics terms, condition (5.0.3) means that self diffusion rates are stronger

than cross diffusion ones. In fact, these assumptions are only needed in the preceding chapters

to establish that weak solutions are bounded and Hölder continuous and their Hölder norms are

uniformly bounded in time (see Chapters 3 and 4). Moreover, for sake of generalization, estimate

(5.0.5) will be in fact proven for solutions of a more general class of cross diffusion systems (of m

equations) rather than those to (5.0.1).

Let us consider the following nonlinear parabolic systems of m equations (m ≥ 2) given by

ut = div(a(u)∇u) + f(u,∇u), (5.0.6)

in a domain Q = Ω× (0, T ) ⊂ IRN+1, with Ω being an open subset of IRN , N ≥ 1. The vector valued

functions u = (u1, ..., um), f = (f1, ..., fm) take values in IRm, m ≥ 1. ∇u denotes (∇u1, ...,∇um) in

which ∇ui is the spatial gradient of ui, that is, ∇ui = (Dαu
i)nα=1. Here, a(u) = (aij(u)) is a m×m

matrix. See also Remark 5.2.2 for the case a(u) is a symmetric tensor, that is, aij = (aijαβ) is an n×n
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matrix and aijαβ = ajiβα.

We need the following assumption on parameters of the system: there exist a positive constant

λ and a continuous function C(|u|) such that for any ξ ∈ IRm

|f(u, ξ)|+ |fu(u, ξ)| ≤ C(|u|)(1 + |ξ|2), |fξ(u, ξ)| ≤ C(|u|)(1 + |ξ|), (5.0.7)

λ|ξ|2 ≤ aij(u)ξiξj ≤ C(|u|)|ξ|2. (5.0.8)

For the sake of simplicity, we will deal with the Neumann conditions
∂u

∂n
= 0 in the proof

below, and leave the Robin case to Remark 5.2.3.

Later we shall define our semi-flow Φt(u0) = (u(•, t)) for all t ≥ 0 and any u0 inW 1,p
+ (Ω, IRm) =

{u ∈ W 1,p(Ω, IRm) : u(x) ≥ 0∀x ∈ Ω}. Here (u(•, t)) be the solution to (5.0.6). Our goal in

this chapter is to show that the semi-flow Φt is well defined and possesses a global attractor in

W 1,p
+ (Ω, IRm). Precisely, we obtain the following.

Theorem 5.0.2. Let u = (ui) be a nonnegative solution of (5.0.6). Suppose that there exists a

positive constant C∞(α) independent of initial data such that

lim sup
t→∞

‖ui(•, t)‖Cα(Ω) ≤ C∞(α) (5.0.9)

for all α ∈ (0, 1) and i = 1, ...,m.

Then there exist ν > 1 and a positive constant C∞ independent of the initial data such that

lim sup
t→∞

‖ui(•, t)‖Cν(Ω) ≤ C∞. (5.0.10)

Moreover, for p > n ≥ 2, let K be a closed bounded subset in W 1,p(Ω, IRm). We consider

solutions u with their initial data u0 ∈ K. Then the image of K under solution flow Kt := {u(•, t) :

u0 ∈ K} is a compact subset of W 1,p(Ω, IRm).
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5.1 Lp estimates of gradients

Our main results in this section are the following estimates for higher order norms of solutions.

We first establish uniform estimates in W 1,p norms of solutions to prove the existence of an absorbing

ball in the W 1,p(Ω, IRm) space. This is a crucial step of proving the existence of the global attractor

set.

Theorem 5.1.1. Assume as in Theorem 5.0.2. Then there exists a positive constant C∞(p) inde-

pendent of the initial data such that

lim sup
t→∞

‖ui(•, t)‖W 1,p(Ω) ≤ C∞(p) (5.1.1)

for any p > 1 and i = 1, ...,m.

The proof of these theorems will be based on several lemmas. The main idea to prove the

above theorems is to use the imbedding results for Morrey’s spaces. We recall the definitions of the

Morrey space Mp,λ(Ω) and the Sobolev-Morrey space W 1,(p,λ). Let BR(x) denote a cube centered at

x with radius R in IRn.

We say that f ∈Mp,λ(Ω) if f ∈ Lp(Ω) and

‖f‖p
Mp,λ := sup

x∈Ω,ρ>0
ρ−λ

∫
Bρ(x)

|f |pdy <∞.

Also, f is said to be in Sobolev-Morrey space W 1,(p,λ) if f ∈W 1,p(Ω) and

‖f‖p
W 1,(p,λ) := ‖f‖p

Mp,λ + ‖∇f‖p
Mp,λ <∞.

If λ < n−p, p ≥ 1, and pλ = p(n−λ)
n−λ−p , we then have the following imbedding result (see Theorem

2.5 in [5])

W 1,(p,λ)(B) ⊂Mpλ,λ(B). (5.1.2)

We then proceed by proving some estimates for the Morrey norms of the gradients of the
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solutions. In the sequel, the temporal variable t is always assumed to be sufficiently large such that

‖u(., t)‖Cα ≤ C∞(α), ∀α ∈ (0, 1) and t ≥ T, (5.1.3)

where T may depend on the initial data.

From now on, let us fix a point (x, t) ∈ Ω× (T,∞). As far as no ambiguity can arise, we write

BR = BR(x), ΩR = Ω
⋂
BR, and QR = ΩR × [t−R2, t]. In the proofs, we will always use ξ(x, t) as a

cut off function between BR × [t− R2, t] and B2R × [t− 4R2, t], that is, ξ is a smooth function that

ξ = 1 in BR × [t−R2, t] and ξ = 0 outside B2R × [t− 4R2, t].

We first have the following technical lemmas.

Lemma 5.1.2. For any sufficiently small R > 0, solution u of (5.0.6) satisifes

∫
Ω2R

|D2u|2ξ2 dx ≤ C

∫
Ω2R

[
|ut|2ξ2 + (|∇u|2 + 1)(|∇ξ|2 + ξ2)

]
dx. (5.1.4)

Proof: We first consider the points x on the boundary ∂Ω. As ∂Ω is smooth, we can locally

flatten the boundary and assume that ∂Ω is the plane {xn = 0}. Therefore u solves a new system of

the form

uit = Dα(a′ijαβDβu
j) + f ′(u,Du) (5.1.5)

with the Neumann boundary condition, Dnu
i = 0. This new system still satisfies the same conditions

as (5.0.7) and (5.0.8) (e.g., see [7, pp. 320-322]). In particular, we have the ellipticity condition, that

is, for any p ∈ IRm×n, ∑
ijαβ

a′ijαβp
i
αp

j
β ≥ λ|p|2 = λ

∑
iα

|piα|2. (5.1.6)

We test the equations (5.1.5) of ui by
∑n−1

s=1 Ds(Dsu
iξ2). Here Ds = Dxs . Using integration
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by parts, we obtain

∫
Ω2R

(uit − f ′)Ds(Dsu
iξ2) dx = −

∫
Ω2R

(a′ijαβDβu
j)DαDs(Dsu

iξ2) dx

=
∫

Ω2R

Ds(a
′ij
αβDβu

j)Dα(Dsu
iξ2) dx

−
∫
∂Ω2R

a′ijαβDβu
jDα(Dsu

iξ2) cos(n, xs) dσ

Since cos(n, xs) = δns = 0 for any s 6= n, the above boundary integral is zero. In addition, by

using Young’s inequality and the ellipticity condition, with piα = Dsαu
i in (5.1.6), it is not difficult

to deduce the inequality

n−1∑
s=1

n∑
α,i=1

∫
Ω2R

|Dsαu
i|2ξ2 dx ≤ C

∫
Ω2R

[
|ut|2ξ2 + |∇u|4ξ2 + (|∇u|2 + 1)(|∇ξ|2 + ξ2)

]
dx.

On the other hand, by solving equations of u with respect to the derivative Dnnu
i, we get

|Dnnu|2 ≤ C

|ut|2 +
n−1∑
s=1

n∑
k,i=1

|Dksu
i|2 + |∇u|4 + 1

 .

Combining the last two inequalities, we derive

∫
Ω2R

|D2u|2ξ2 dx ≤ C

∫
Ω2R

[
|ut|2ξ2 + |∇u|4ξ2 + (|∇u|2 + 1)(|∇ξ|2 + ξ2)

]
dx.

Using Lemma 2.2.8 with s = 1, we then have

∫∫
Q2R

|∇u|4ξ2 dz ≤ CR2α

∫
Ω2R

(
|D2u|2ξ2 + |∇u|2|∇ξ|2

)
dx. (5.1.7)

Therefore, the estimates of the lemma for points on the boundary follows at once from two last

inequalities with sufficiently small R. In order to obtain the interior estimates, we test the equations

by
∑n

s=1Ds(Dsu
iξ2) and use integration by parts and the conditions (5.0.7) and (5.0.8). The lemma

follows at once.
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Lemma 5.1.3. For sufficiently small R > 0, we have the following estimate

∫
ΩR

|∇u|2 dx+
∫∫

QR

[|ut|2 + |D2u|2] dz ≤ CRn−2+2α.

In the proof below, we will need two useful Lemmas 2.2.8 and 2.2.9 by Ladyzhenskaya et al.

[22].

Proof: Rewrite (5.0.6) as follows

ut = a(u)∆u+ (aui∇ui)∇u+ f(u,∇u) (5.1.8)

and test this by −∆uξ2. Integration by parts gives

∫∫
Q2R

ut∆uξ2 dz = −1
2

∫∫
Q2R

∂(|∇u|2ξ2)
∂t

dz +
∫∫

Q2R

[
|∇u|2ξξt − ut∇uξ∇ξ

]
dz.

Note that we have used ξ
∂u

∂n
= 0 on ∂Q2R that is due to the choice of ξ and the Neumann

condition of u. Therefore the boundary integrals resulting in the integration by parts are all zero.

Since a(u)∆u∆u ≥ λ|∆u|2 (see (5.0.8)), we obtain

∫
ΩR

|∇u(x, t)|2 dx+
∫∫

Q2R

|∆u|2ξ2 dz ≤ C

∫∫
Q2R

|∇u|2(ξ|ξt|+ ξ2 + ξ2|∆u|) dz

+ C

∫∫
Q2R

[
|ut||∇u|ξ|∇ξ|+ |f ||∆u|ξ2

]
dz.

By Young’s inequality and the facts that |ξt|, |∇ξ|2 ≤ C/R2, we derive

∫
ΩR

|∇u(x, t)|2 dx +
∫∫

Q2R

|∆u|2ξ2 dz ≤ ε

∫∫
Q2R

|ut|2ξ2 dz

+ C

∫∫
Q2R

(
|∇u|4ξ2 +

1
R2
|∇u|2

)
dz + CRn+2. (5.1.9)

From (5.1.8), we get

∫∫
Q2R

|ut|2ξ2 dz ≤
∫∫

Q2R

(
|∆u|2 + |∇u|4 + |∇u|2 + 1

)
ξ2 dz.
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Together with Lemma 5.1.2, we obtain

∫∫
Q2R

|D2u|2ξ2 dz ≤
∫∫

Q2R

[
(|∆u|2 + |∇u|4)ξ2 + (|∇u|2 + 1)(|∇ξ|2 + ξ2)

]
dz.

We then choose ε sufficiently small in (5.1.9) to derive that

∫
ΩR

|∇u|2 dx+
∫∫

QR

(|ut|2 + |D2u|2) dz ≤ C

∫∫
Q2R

[|∇u|4ξ2 +
1
R2
|∇u|2] dz + CRn+2.

By using the estimate (5.1.7) with R sufficiently small and again noting that |∇ξ| ≤ CR−1,

we obtain from the last inequality

∫
ΩR

|∇u|2 dx+
∫∫

QR

(|ut|2 + |D2u|2) dz ≤ C

R2

∫∫
Q2R

|∇u|2 dz + CRn+2. (5.1.10)

On the other hand, by testing (5.0.6) with (u− uR)ξ2, which uR is the average of u over QR,

one can easily get ∫∫
Q2R

|∇u|2 dz ≤ CRn+2α.

This and (5.1.10) complete the proof of this lemma.

The following lemma shows that ∇u is uniformly bounded in W 1,(2,n−4+2α)(ΩR) so that imbed-

ding (5.1.2) can be employed.

Lemma 5.1.4. For R > 0 sufficiently small, we have the following estimates

∫
ΩR

(u2
t + |D2u|2) dx ≤ CRn−4+2α. (5.1.11)

Proof: We now test (5.0.6) with −(utξ2)t. Integration by parts in t gives

−1
2
∂

∂t

∫∫
Q2R

u2
t ξ

2 dz +
∫∫

Q2R

u2
t ξξt dz +

∫∫
Q2R

(a(u)∇u)t∇(utξ2) dz

= −
∫∫

Q2R

ft(u,∇u)utξ2 dz. (5.1.12)
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We again note that the boundary integrals resulting in the integration by parts are all zero. We

consider the term

(a(u)∇u)t∇(utξ2) = (a(u)∇ut + au(u)ut∇u)(∇utξ2 + 2utξ∇ξ).

Using assumptions (5.0.7), (5.0.8), and Young’s inequality, we have the following inequalities:

a(u)∇ut∇ut ≥ λ|∇ut|2, and

|ut∇utξ∇ξ| ≤ ε|∇ut|2ξ2 + C(ε)u2
t |∇ξ|2,

|ut∇u∇utξ2| ≤ ε|∇ut|2ξ2 + C(ε)u2
t |∇u|2ξ2,

|u2
t∇uξ∇ξ| ≤ u2

t |∇u|2ξ2 + u2
t |∇ξ|2,

|ft(u,∇u)utξ2| ≤ ε|∇ut|2ξ2 + C(ε)u2
t |∇u|2ξ2 + C(ε)u2

t ξ
2.

These inequalities and (5.1.12) yield

∫
ΩR

|ut|2 dx+
∫∫

Q2R

|∇ut|2ξ2 dz ≤ C

∫∫
Q2R

|ut|2
(
|∇u|2ξ2 + ξ2 + |∇ξ|2 + |ξt|

)
dz. (5.1.13)

As we have shown in Lemma 5.1.3,
∫

ΩR

|∇u|2 dx ≤ cRn−2+α. This allows us to apply

Lemma 2.2.9, with the function v being |∇u|2, to derive

∫∫
Q2R

|∇u|2u2
t ξ

2 dz ≤ cR2α

∫∫
Q2R

[|∇ut|2ξ2 + u2
t |∇ξ|2] dz.

Hence, for R sufficiently small, we obtain from the above and (5.1.13) that

∫
ΩR

|ut|2 dx+
∫∫

QR

|∇ut|2 dz ≤ C

∫∫
Q2R

|ut|2
(
ξ2 + |∇ξ|2 + |ξt|

)
dz. (5.1.14)

Applying Lemma 5.1.3 and using the fact that |ξt|, |∇ξ|2 ≤ CR−2, we obtain the desired

inequality ut. Finally, employ Lemma 5.1.2 and then again Lemma 5.1.3 to obtain the estimate for

D2u. We conclude the proof.

We are now ready to give
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Proof of Theorem 5.1.1: Thanks to the estimate (5.1.11), we can assert that ∇u is in

W 1,(2,λ)(ΩR), λ = n − 4 + 2α, and furthermore its norms are uniformly bounded. Therefore, by

the imbedding (5.1.2) and the fact that M2λ,λ ⊂ L2λ , we have ‖∇u(•, t)‖L2λ (Ω) with 2λ = 2(4−2α)
2−2α

bounded by some constant C. Since α is arbitrarily chosen in (0, 1), 2λ can be as large as we wish.

This proves that there exists a positive constant C∞(p) such that ‖u(•, t)‖W 1,p(Ω) ≤ C∞(p), for any

p > 1 and t ≥ T . T is in (5.1.3). The proof of Theorem 5.1.1 is complete.

5.2 Proofs

In this section we shall give the proof of Theorem 5.0.2 and therefore that of Theorem 5.0.1

thanks to the uniform estimate (5.0.9) in the preceding chapters. To this end we will need the

following Schauder estimate by Schlag in [44].

Lemma 5.2.1. Let u ∈ C2,1(QT ) be a solution of (5.0.6). Then, for 1 < q < ∞, there exists a

constant C(q, T ) such that

‖D2u‖Lq(QT ) ≤ C(q, T )
[
‖f‖Lq(QT ) + ‖u‖Lq(QT )

]
, (5.2.1)

where QT = Ω× [0, T ].

In fact, this result was proven in [44] under the assumption that a is a symmetric tensor, that

is, a = (aαβij ) with aαβij = aβαji . In our case, a is a matrix a = (aij) and it is not necessary symmetric.

However, the above estimate is still in force as we will discuss the necessary modifications in the

argument of [44] at the end of this section after the proof of our main theorem.

Proof of Theorem 5.0.2: For each i, we rewrite each equation for ui as follows

uit = ∆ui + Fi

where Fi =
∑

i,j(aij(u)− δij)∆uj + au(u)∇u • ∇u+ f(u,∇u), where δij is the Kronecker delta. We

now apply ii) of [27, Lemma 2.5] here to obtain

‖u(•, t)‖Cν(Ω) ≤ C‖u(•, τ)‖Lr(Ω) + Cβ

∫ t

τ
(t− s)−βe−δ(t−s)‖F (•, s)‖Lr(Ω)ds
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for any t > T + 1, τ = t − 1 and β ∈ (0, 1) satisfying 2β > ν + n/r, and for some fixed constants

C, δ, Cβ > 0. By Hölder’s inequality, we have

∫ t

τ
(t− s)−βe−δ(t−s)‖F (•, s)‖Lr(Ω)ds ≤ ‖F‖Lr(Qτ,t)

[∫ t

τ
(t− s)−βr

′
e−δ(t−s)r

′
ds

]1/r′

.

Here r′ = r
r−1 . The last integral is bounded by a constant C(β, r, δ) as long as βr′ ∈ (0, 1)

or r is sufficiently large. On the other hand, since ‖u(•, t)‖L∞(Ω) is uniformly bounded for large t,

|F (•, t)| ≤ C(|∆u| + |∇u|2). This, (5.1.1) (with p = 2r) and Schauder estimate (5.2.1) imply that

there is a constant Cr such that

‖F‖Lr(Qτ,t) ≤ Cr, ∀t > T.

Putting these facts together, we now choose r sufficiently large and β < 1 such that ν > 1.

We then see that ‖ui(•, t)‖Cν(Ω) is uniformly bounded for large t. This proves (5.0.10).

Concerning the compactness, let p > n ≥ 2 be given andK be a bounded subset in
⊗m

i=1W
1,p(Ω).

We consider solutions u with their initial data u0 ∈ K. Estimate (5.0.10) shows that Kt is a bounded

subset of
⊗m

i=1C
ν(Ω). By using the well-known compact imbedding Cν(Ω) ⊂ W 1,p(Ω), Kt is a

compact subset of
⊗m

i=1W
1,p(Ω). The proof of this theorem is complete.

Remark 5.2.2. Our results here are still true for the case a is a symmetric tensor. Indeed, one may

realize that the only place needed to reprove is Lemma 5.1.3. To this end, we test the equations of

ui by uitξ
2. Symmetry of the tensor a and integration by parts give

∫∫
Q2R

f(u,∇u)utξ2 dz =
∫∫

Q2R

[uit −Dα(aijαβDβu
j)]uitξ

2 dz

=
∫∫

Q2R

[|ut|2ξ2 + aijαβDβu
jDαu

i
tξ

2 + 2aijαβDβu
juitξDαξ] dz

=
∫∫

Q2R
[|ut|2ξ2 +

∂

∂t

(
aijαβDβu

jDαu
iξ2/2

)
+ 2aijαβDβu

juitξDαξ

− (aijαβ)tDβu
jDαu

iξ2/2− aijαβDβu
juiξξt]dz

From this, by using the ellipticity condition aijαβDβu
jDαu

i ≥ λ|Du|2 and Young’s inequality,
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it is not difficult to deduce

∫
ΩR

|∇u|2 dx+
∫∫

Q2R

|ut|2ξ2 dz ≤ C

∫∫
Q2R

[|∇u|4ξ2 + (|∇u|2 + 1)(|∇ξ|2 + |ξt|+ ξ2)] dz.

Thanks to Lemmas 5.1.2 and 2.2.8, we obtain from this

∫
ΩR

|∇u|2 dx+
∫∫

QR

(|ut|2 + |D2u|2) dz ≤ C

∫∫
Q2R

(|∇u|2 + 1)(|∇ξ|2 + |ξt|+ ξ2) dz.

Lemma 5.1.3 follows from this at once. The proof for the case a is the tensor is complete.

Remark 5.2.3. The case of Robin boundary conditions can be reduced to the Neumann one by a

simple change of variables. First of all, since our proof is based on the local estimates of Lemmas

5.1.3 and 5.1.4, we need only to study these inequalities near the boundary. As ∂Ω is smooth, we can

locally flatten the boundary and assume that ∂Ω is the plane {xn = 0}. Furthermore, we can take

ΩR = {(x′, xn) : xn > 0, |(x′, xn)| < R}. The boundary conditions become

∂ui
∂xn

+ r̃i(x′)ui = 0.

We then introduce U(x′, xn) = (U1(x′, xn), ..., Um(x′, xn)) with

Ui(x′, xn) = exp(xnr̃i(x′))ui(x′, xn)

Obviously, U satisfies the Neumann boundary condition on xn = 0. Simple calculations also show

that U verifies a system similar to that for u, and conditions (Q.1), (Q.2) are still valid. In fact,

there will be some extra terms occurring in the divergence parts of the equations for U , but these

terms can be handled by a simple use of Young’s inequality so that our proof is still in force. Thus

Theorem 5.0.2 applies to U , and the estimates for u then follow.

Finally, we conclude this section by a brief discussion of Lemma 5.2.1. A careful reading of

[44] reveals that the only place where the symmetry of a(u) is needed is the proof of [44, Lemma 1].
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This lemma concerns the estimates for solutions to homogeneous systems with constant coefficients

vit −Aij∆vj = 0 in QR (5.2.2)

which v = 0 on ∂B+
R

⋂
{xn > 0} × [−R2, 0] and on B+

R × {−R2} and
∂v

∂n
= 0 on B+

R

⋂
{xn =

0} × [−R2, 0].

The lemma is stated as follows.

Lemma 5.2.4. Let 0 < r ≤ R. Then any smooth solution v of (5.2.2) satisfies

a. ∫∫
Qr/2

|vt|2 dz ≤ Cr−2

∫∫
Qr

|∇v|2 dz. (5.2.3)

b. for k = 1, 2, 3, ... ∫∫
Qr/2

|∇kv|2 dz ≤ Ckr
−2k

∫∫
Qr

|v|2 dz. (5.2.4)

c. for any 0 < ρ < r ≤ R, ∫∫
Qρ

|v|2 dz ≤ C
(ρ
r

)2
∫∫

Qr

|v|2 dz. (5.2.5)

Thus, Lemma 5.2.1 is proven if we can relax the symmetry assumption in this lemma.

Proof: Let v = (vi) be a solution of (5.2.2), that is,

∫∫
Q2R

vitφ+Aij∇vj∇φ dz = 0, (5.2.6)

where φ ∈ C1(QR) such that φ = 0 on ∂B+
R

⋂
{xn > 0} × [−R2, 0] and on B+

R × {−R2}.

Let η be a cut-off function in Qr such that η = 1 in Qr/2, η(.,−r2) = 0, and η vanishes on

∂Br
⋂
{xn > 0} × [−r2, 0].

By squaring equations (5.2.2) and summing up the results, we have

∫∫
Qr

|vt|2η dz ≤ C

∫∫
Qr

|∆v|2η dz. (5.2.7)
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Now, by choosing φ = ∆viη2 in (5.2.6), one can easily see that

∫∫
Qr

vit∆v
iη2 dz −

∫∫
Qr

Aij∆vj∆viη2 dz = 0.

Thanks to the ellipticity and integrations by parts, we obtain

λ

∫∫
Qr

|∆v|2η2 dz ≤
∫∫

Qr

vit∆v
iη2 dz

= −1
2
∂

∂t

∫∫
Qr

|∇vi|2η2 dz −
∫∫

Qr

(∇vivit∇η − |∇vi|2ηt)η dz

≤ ε

∫∫
Qr

|vt|2η dz + C

∫∫
Qr

(|ηt|+ |∇η|2)|∇v|2 dz.

Using this, (5.2.7), and the fact that |ηt|, |∇η|2 ≤ Cr−2, we easily get (5.2.3).

In order to prove (5.2.4) for k = 1, we choose φ = viη2 in (5.2.2). It is now standard to see

that ∫∫
Qr/2

|∇v|2 dz ≤ Cr−2

∫∫
Qr

|v|2 dz.

From this point on, we can follow [44] to complete the proof.

Notes and Remarks

It is well known that the existence of the global attractor for reaction diffusion systems was

very much investigated (e.g., see [24]). However, to the best of our knowledge, there has been not

much work on such dynamics or long time behavior of solutions to the cross diffusion systems. Some

works in this direction are due to Redlinger in [42] for certain triangular systems and in some years

later to Le and others in [27, 20, 36] for more general triangular systems. Theorems 5.0.1 and 5.0.2

which now also appear in [35] are therefore new in literature for full cross diffusion systems (and even

for triangular ones, see [34]). More importantly, these theorems give uniform estimates in Hölder

norms of gradients. It should be noticed that the fact the Hölder continuity of Du follows from

that of solutions u to (5.0.6) was established in [9]. However, no such estimates of Hölder norms of

gradients were established in there as well as in recent developments. As far as we are aware of, such

estimates first exist in literature due to [35].

It is also worth noticing that even although our theory was stated for a very general class of
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cross diffusion systems, it relies presumedly on the everywhere Hölder continuity of weak solutions

to (5.0.6), which has been very long standing in question. Certainly, the best regularity one can

obtain for solutions of such systems is partial regularity (see [9]). Moreover, counterexamples in [16]

show that it is hopeless in general to expect that if we do not add more conditions on structure of

the systems. Therefore, finding certain conditions to obtain the everywhere regularity becomes an

interesting problem. Chapters 3.0.1 and 4 are affirmative examples in this direction.

Finally, we would like to highlight that the establishment of the global attractor result and

uniform estimates in C1 of solutions for the systems allows us to apply powerful results on uniform

persistence (permanence), developed by Hale-Waltman [12], Thieme [49, 50], and Hirsch-Smith-Zhao

[15]. The employment will be in detail discussed in the following chapter. Once uniform persistence

is obtained, the existence of a positive equilibrium solution of the modeling system, representing the

survival of the competitive population, then follows at once (e.g., see [41]).
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Chapter 6

PERSISTENCE PROPERTY

The goal of this chapter is to study uniform persistence property of positive solutions of the

generalized SKT model. We seek sufficient conditions in terms of principal eigenvalues of linearized

problems for the existence of positive threshold levels below which time dependent solutions will never

be for large t. Our proof mainly bases on a persistence result in [15] for general dynamical systems

defined on metric spaces.

6.1 Main result

Owing to the preceding chapters, we have known the regularity as well as ultimately uniform

estimates in C1-norms of solutions to the cross diffusion system of the form


∂u

∂t
= ∇[(d1 + a11u+ a12v)∇u+ b11u∇v] + u(a1 − b1u− c1v),

∂v

∂t
= ∇[b22v∇u+ (d2 + a21u+ a22v)∇v] + v(a2 − b2u− c2v),

(6.1.1)

which is supplied by the Robin boundary condition
∂u

∂n
+ r1u =

∂v

∂n
+ r2v = 0 on ∂Ω, for some

nonnegative continuous functions r1, r2.

Also due to Theorem 5.0.1, the existence of the global attractor for the above system was

established. That is, the corresponding dynamical system possesses a set that attracts all bounded

sets or towards which all the orbits converge. However, it is possible that the global attractor may

contain trivial or semitrivial steady states. Regarding to biological implications, such solutions de-

scribe the ultimate wash out of populations. This possibility may be the case since each species in

population dynamics is assumed to be capable of attachment to one another (c1, b2 > 0). Therefore

we are interested in seeking sufficient conditions to protect against the wash out or to guarantee the

coexistence.

Coexistence problems for cross diffusion systems were also extensively studied (see [21] and the

reference therein). However, whether these coexistence states are observable, that is their stability,
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is still yet to be determined. This question remains widely open even for the simpler Lotka-Volterra

counterpart. Coexistence in the sense of uniform persistence would then be more appropriate and

realistic. Strictly speaking, by uniform persistence, we take the sense that we seek sufficient conditions

for the existence of η > 0, independent of the nonnegative initial data (u0, v0), such that

‖u(•, t)‖C1 , ‖v(•, t)‖C1 ≥ η

for all large t, say t ≥ T , where T may depend on the initial data, provided that densities of both

species are initially present, that is, both u0 and u0 do not vanish identically. In biological terms,

uniform persistence means that no species will be either wiped out or completely invaded by others

so that they coexist in time. For background information about persistence properties and references

we refer to [49, 50].

We attain our main results by taking advantage of the theory on uniform persistence for general

dynamical systems defined on metric spaces, developed by Hirsch, Smith, and Zhao [15]. The results

will be stated under assumptions on the positivity of the principal eigenvalues of linearized problems

at the wash out steady states. That is, these steady states are assumed to be unstable (or repelling)

in their complementary directions. Once uniform persistence is obtained, the existence of a positive

equilibrium solution of the modeling system, representing the survival of the competitive population,

then follows at once (e.g., see [41]).

Let u∗, v∗ be the unique positive solutions (see [3]) to

0 = ∇(P u(u∗, 0)∇u∗) + f(u∗, 0), 0 = ∇(Qv(0, v∗)∇v∗) + g(0, v∗),

and the same Robin boundary condition as that of u, v. Here and throughout this chapter, for

simplicity, we set

P u = d1 + a11u+ a12v, P v = b11u,

Qv = d2 + a21u+ a22v, Qu = b22v,
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and

f(u, v) = u(b1 − c11u− c12v), g(u, v) = v(b2 − c21u− c22v).

We consider the eigenvalue problems

λψ = d1∆ψ + a1ψ, and λφ = d2∆φ+ a2φ, (6.1.2)

λψ = ∇[P u(0, v∗)∇ψ + ∂uP
v(0, v∗)ψ∇v∗] + ∂uf(0, v∗)ψ, (6.1.3)

λφ = ∇[Qv(u∗, 0)∇φ+ ∂vQ
u(u∗, 0)φ∇u∗] + ∂vg(u∗, 0)φ (6.1.4)

with the boundary conditions
∂ψ

∂n
+ r1ψ =

∂φ

∂n
+ r2φ = 0.

Our persistence result reads as follows.

Theorem 6.1.1. Assume that aij , b22 ≥ 0, di, b11 > 0, i, j = 1, 2, and

a11 − a21 > b22, a22 − a12 > b11. (6.1.5)

Furthermore, suppose that the principal eigenvalues of (6.1.2), (6.1.3) and (6.1.4) are positive.

If Robin boundary conditions are considered, we also assume further that the two quantities a12 − b11

and a21 − b22 are positive and sufficiently small.

Then system (6.1.1) is uniformly persistent. That is, there exists η > 0 such that any its

solution (u, v), whose initial data u0, v0 ∈W 1,p(Ω) are positive, satisfies

lim inf
t→∞

‖u(•, t)‖C1(Ω) ≥ η, lim inf
t→∞

‖v(•, t)‖C1(Ω) ≥ η. (6.1.6)

The conditions (6.1.5) are due to Theorem 5.0.1, where they are required to obtain the existence

of the global attractor for the dynamical system associated with (6.1.1) (More precisely, they are only

needed to establish the uniform a priori estimates of solutions in Theorems 3.5.2 and 4.1.2). As

mentioned earlier, the positivity of the principal eigenvalues in theorem means that the trivial steady

state (0, 0) is repelling in the (u, 0), (0, v) directions, and the semitrivial steady states (u∗, 0), (0, v∗)

are unstable in their complementary directions. At the end of this chapter (see Lemma 6.2.6 and
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Lemma 6.2.7), we also present explicit sufficient conditions on the parameters of (6.1.1) that guarantee

this positivity.

6.2 Proof of the main result

Let us first recall some definitions in the dynamical system theory. Let (X, d) be a met-

ric space and Φ be a semiflow on X. For a nonempty invariant set M , the set W s(M) := {x ∈

X : limt→∞ d(Φt(x),M) = 0} is called the stable set of M . Here, d(x,A) is the usual Hausdorff

distance from x to the set A. A nonempty invariant subset M of X is said to be isolated if it is the

maximal invariant set in some neighborhood of itself.

Let A and B be two isolated invariant sets. A is said to be chained to B, denoted by A→ B,

if there exists a globally defined trajectory Φt(x), t ∈ (−∞,∞), through some x 6∈ A
⋃
B whose range

has compact closure such that the omega limit set ω(x) ⊂ B and the alpha limit set α(x) ⊂ A. A

finite sequence {M1,M2, ...,Mk} of isolated invariant sets is called a chain if M1 →M2 → ...→Mk.

The chain is called a cycle if Mk = M1.

Let X0 ⊂ X be an open set and ∂X0 = X \X0. Assume that X0 is positively invariant. Let

p(x) = d(x, ∂X0), the distance from x to ∂X0. Φ is said to be uniformly persistent with respect

to (X0, ∂X0, p) if there exists η > 0 such that

lim inf
t→∞

p(Φt(x)) ≥ η

for all x ∈ X0.

The following uniform persistence result is established in [15].

Theorem 6.2.1. (Theorem 4.3 in [15]) Assume that

(C1) Φ has a global attractor A;

(C2) There exists a finite sequence M = {M1, ...,Mk} of pairwise disjoint, compact and isolated

invariant sets in ∂X0 with the following properties:

(m.1)
⋃
x∈∂X0

ω(x) ⊂
⋃k
i=1Mi,
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(m.2) no set of M forms a cycle in ∂X0,

(m.3) Mi is isolated in X,

(m.4) W s(Mi)
⋂
X0 = ∅ for each i = 1, ..., k.

Then there exists δ > 0 such that for any x ∈ X0, the following inequality holds

inf
y∈ω(x)

d(y, ∂X0) > δ.

We will apply this theorem to prove our main result, Theorem 6.1.1. Denote X = C1
+(Ω) ×

C1
+(Ω) and its positive cone X0 = {(u, v) ∈ X : u > 0 and v > 0}. Then (X, d), with d(x, y) =

‖x − y‖C1(Ω), is a complete metric space. The boundary of X0 consists of Iu := {(u, 0) : u ≥ 0}

and Iv := {(0, v) : v ≥ 0}. Thanks to Theorem 5.0.1, we can define the semiflow on X as follows:

for any initial data (u0, v0) in X, define Φt(u0, v0) = (u(•, t), v(•, t)) for all t ≥ 0. Estimate (5.0.5)

also gives that Φ is a compact semiflow and possesses a global attractor in X. A simple application

of maximum principles for scalar parabolic equations shows that X0, Iu, Iv are positively invariant

under Φ (see [38]). Therefore, (C.1) is verified.

Next, we consider the condition (C.2). It is clear that the “boundary” parts u = 0 or v = 0 of

X0 are also invariant with respect to Φ. On these boundaries, the dynamics of (6.1.1) is reduced to

those of the following scalar parabolic equations.

ut = ∇(P u(u, 0)∇u) + f(u, 0), u(0) > 0, (6.2.1)

vt = ∇(Qv(0, v)∇v) + g(0, v), v(0) > 0. (6.2.2)

Investigating the dynamics of these equations leads us to the following steady state equations

∇(P u(u∗, 0)∇u∗) + f(u∗, 0) = 0, ∇(Qv(0, v∗)∇v∗) + g(0, v∗) = 0,

together with the Robin boundary conditions. If the principal eigenvalues of (6.1.2) are positive, the

above equations admit unique solutions, which are denoted respectively by u∗ and v∗. Furthermore,

the solutions u(x, t), v(x, t) of (6.2.1), (6.2.2) converge to u∗, v∗, respectively, in the C1 norm as t
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tends to infinity. Meanwhile, the trivial solution 0 is an unstable steady state for both equations.

These claims are obtained by following closely the proof of [3, Corollary 2.4], where the Dirichlet

boundary condition was assumed.

Therefore, the sets M0 = (0, 0), M1 = (u∗, 0), and M2 = (0, v∗) are pairwise disjoint, compact

and isolated invariant sets in ∂X0 with respect to Φ. Moreover, no set of {Mi} can form a cycle in

∂X0; and
⋃
x∈∂X0

ω(x) ⊂
⋃2
i=0Mi. We thus show that the conditions (m.1) and (m.2) are satisfied.

Checking (m.3) and (m.4) requires much more effort. The role of the parameters r1, r2 will

play an important role here. Let us assume that the system (6.1.1) satisfies the Robin boundary

condition with r1, r2 6= 0. The Neumann case is simpler, and will be discussed later in Remark 6.2.5.

We discuss first the property (m.4) at M0. We will show below that the instability of M0 is

determined by the principal eigenvalue λ of (see (6.1.2))

 λφ = d2∆φ+ a2φ,

∂φ

∂n
+ r2φ = 0.

(6.2.3)

Proposition 6.2.2. Assume that the principal eigenvalue λ of (6.2.3) is positive. There exists η0 > 0

such that for any solution (u, v) of (6.1.1) with (u0, v0) ∈ X0, we have

lim sup
t→∞

‖(u(., t), v(., t))‖X ≥ η0.

Proof: Let φ be the positive eigenfunction associated with the principal eigenvalue λ of (6.2.3). By

testing the equation of v by φ and (6.2.3) by v, we subtract the results to get

d

dt

∫
Ω
vφ dx = λ

∫
Ω
vφ dx−

∫
∂Ω

(Q0r2 +Quvr1u)vφ dσ

+
∫

Ω
[−Q0∇v∇φ−Qu∇u∇φ+ (g − a2v)φ] dx. (6.2.4)

Here, we denoted Q0 = Qv − d2 = a21u+ a22v. Integration by parts yields

−
∫

Ω
Q0∇v∇φ dx =

∫
Ω
v∇(Q0∇φ) dx+

∫
∂Ω

r2Q0vφ dσ.
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Putting this in (6.2.4), we infer

d

dt

∫
Ω
vφ dx = λ

∫
Ω
vφ dx+

∫
Ω
vφ
∇(Q0∇φ)−Quv∇u∇φ

φ
dx−

∫
Ω

(b2u+ c2v)vφ dx.

Now, suppose that our claim was false. For any η > 0, there would be a solution (u, v) such

that ‖(u(., t), v(., t))‖X ≤ η when t is large. This implies that the quantities |∇(Q0∇φ)|
φ , |Q

u
v∇u∇φ|
φ , and

(b2u+ c2v) can be very small. Thus, if η is sufficiently small, then the above equation yields

d

dt

∫
Ω
vφ dx ≥ λ

2

∫
Ω
vφ dx.

This shows that, as t→∞,
∫

Ω
v(., t)φ dx goes to infinity, contradicting the fact that ‖(u, v)‖X

is bounded. Our proof is complete.

Next, we study M1 and M2. Our main assumption for (m.3) and (m.4) to hold is the instability

of M1, M2 in their complement v, u directions, respectively. To this end, we consider the linearization

of the system (6.1.1) at a general steady state point (u, v).


λψ = ∇ [(P uuψ + P uv φ)∇u+ P u∇ψ + P vuψ∇v + P v∇φ] + fuψ + fvφ,

λφ = ∇[Quvφ∇u+Qu∇ψ + (Qvuψ +Qvvφ)∇v +Qv∇φ] + guψ + gvφ.

(6.2.5)

Here ψ (respectively, φ) satisfies the same boundary condition as that of u (respectively, v).

Putting (u, v) = (0, v∗) and (ψ, φ) = (ψ, 0) in (6.2.5), the instability of M2 = (0, v∗) in the

direction u is determined by the sign of the principal eigenvalue of the following system.

λψ = ∇(P u(0, v∗)∇ψ + P vuψ∇v∗) + fu(0, v∗)ψ, (6.2.6)

with v∗ being the solution of

0 = ∇(Qv(0, v∗)∇v∗) + g(0, v∗). (6.2.7)

We shall establish the following repelling property of (0, v∗).

Proposition 6.2.3. Suppose that the principal eigenvalue λ of (6.2.6) is positive. If P uv − P vu =

a12 − b11 is positive and sufficiently small, then there exists η0 > 0 such that for any solution (u, v)
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of (6.1.1) with (u0, v0) ∈ X0, we have

lim sup
t→∞

‖(u(., t), v(., t))− (0, v∗)‖X ≥ η0.

Similarly, putting (u, v) = (u∗, 0) and (ψ, φ) = (0, φ) in (6.2.5), the instability of M1 = (u∗, 0)

in the direction v is determined by the sign of the principal eigenvalue of the following system.

λφ = ∇(Quvφ∇u∗ +Qv(u∗, 0)∇φ) + gv(u∗, 0)φ, (6.2.8)

with u∗ being the solution of

0 = ∇(P u(u∗, 0)∇u∗) + f(u∗, 0). (6.2.9)

We shall also establish the following repelling property of (u∗, 0).

Proposition 6.2.4. Suppose that the principal eigenvalue λ of (6.2.8) is positive. If Qvu − Quv =

a21 − b22 is positive and sufficiently small, then there exists η0 > 0 such that for any solution (u, v)

of (6.1.1) with (u0, v0) ∈ X0, we have

lim sup
t→∞

‖(u(., t), v(., t))− (u∗, 0)‖X ≥ η0.

An immediate consequence of these propositions is that W s(Mi)
⋂
X0 = ∅, i = 0, 1, 2 respec-

tively. Otherwise, by the definition ofW s(Mi), there exists (u0, v0) ∈ X0 such that d((u(t), v(t)),Mi) →

0 as t→∞, a contradiction to the above corresponding propositions.

Moreover, we also see that Mi is isolated in X. Indeed, consider a neighborhood of Mi in X0,

V = {(u, v) ∈ X0 : d((u, v),Mi) < η0/2}. For any (u0, v0) ∈ X0
⋂
V , the above proposition shows

that (u(t), v(t)) will inevitably exits V . This means Mi is maximal in V and isolated in X.

We now give the proof of Proposition 6.2.3. The proof of Proposition 6.2.4 is obviously the

same and we will omit it.

Proof: (Proof of Proposition 6.2.3). The proof is by contradiction. Assume that for any η > 0 there
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exist a solution (u, v) of (6.1.1) and T > 0 such that

‖u(., t)‖C1(Ω), ‖v(., t)− v∗‖C1(Ω) < η (6.2.10)

for all t > T . Hereafter, we always consider t > T .

We denote P0 = P u(0, v∗) and recall (6.2.5):

λψ = ∇(P0∇ψ + P vuψ∇v∗) + fu(0, v∗)ψ.

Set P (u, v) =
∫ u
0 P

u(s, v)ds. We note that ∇P (u, v) = P u∇u+ P uv u∇v. Testing the above equation

with P , we obtain

λ

∫
Ω
ψP (u, v) dx = −

∫
Ω
P0P

u∇ψ∇u dx−
∫

Ω
P0P

u
v u∇ψ∇v dx

−
∫

Ω
P vuψ∇v∗(P u∇u+ P uv u∇v) dx+

∫
Ω
fu((0, v∗))ψP dx

+
∫
∂Ω

(P0
∂ψ

∂n
+ P vuψ

∂v∗
∂n

)P dσ. (6.2.11)

Similarly, we test the equation of u in (6.1.1) with P0ψ (∇(P0ψ) = P uv ψ∇v∗+P0∇ψ), and get

∂

∂t

∫
Ω
P0uψ dx = −

∫
Ω
P uP0∇u∇ψ dx−

∫
Ω
P uP uv ψ∇u∇v∗ dx

−
∫

Ω
P v∇v(P0∇ψ + P uv ψ∇v∗) dx+

∫
Ω
fP0ψ dx

+
∫
∂Ω

(P u
∂u

∂n
+ P v

∂v

∂n
)P0ψ dσ. (6.2.12)

From (6.2.11), (6.2.12) and the boundary condition, we find

∂

∂t

∫
Ω
P0uψ dx = λ

∫
Ω
ψP dx+ (P uv − P vu )

∫
Ω

[P0u∇v∇ψ − P uψ∇u∇v∗] dx

+
∫

Ω
(fP0 − fu(0, v∗)P )ψ dx+ I∂ , (6.2.13)

where I∂ =
∫
∂Ω

(P − P uu)r1ψP0 + (Pv∗ − uvP0)P vu r2ψ dσ.

Next, we shall show that the integrals on the right of (6.2.13) are either nonnegative or

77



controlled by the first integral. From the definition of the parameters, we have

Pψ = (d1 + α12v)uψ +
α11u

2

2
ψ ≥ P0uψ + P uv (v − v∗)uψ,

(fP0 − fu(0, v∗)P )ψ = (c1(v∗ − v)− b1u)P0uψ + fu(α12(v∗ − v)− α11u

2
)uψ.

Hence, if η in (6.2.10) is sufficiently small, the above gives

∫
Ω
Pψ dx ≥ 3

4

∫
Ω
P0uψ dx,

∣∣∣∣∫
Ω

(fP0 − fu(0, v∗)P )ψ dx

∣∣∣∣ ≤ λ

4

∫
Ω
P0uψ dx.

On the other hand, integrate by parts to get

−
∫

Ω
Pψ∇u∇v∗ dx =

∫
Ω
u∇(P uψ∇v∗) dx−

∫
∂Ω

uP uψ
∂v∗
∂n

dσ

=
∫

Ω
uψ
∇(P uψ∇v∗)

ψ
dx+

∫
∂Ω

uP uψr2v∗ dσ.

Thanks to (6.2.10) and the fact that ψ > 0 on Ω̄, the quantities |∇v||∇ψψ |,
∇(Puψ∇v∗)

P0ψ
are

bounded. Thus, if P uv − P vu is positive and sufficiently small, then

(P uv − P vu )
∫

Ω
[P0u∇v∇ψ − P uψ∇u∇v∗] dx ≥ −

λ

4

∫
Ω
P0uψ dx+ (P uv − P vu )

∫
∂Ω

P ur2v∗uψ dσ.

Putting these facts in (6.2.13), we derive

∂

∂t

∫
Ω
P0uψ dx ≥ λ

4

∫
Ω
P0uψ dx+ I∂ + (P uv − P vu )

∫
∂Ω

uP uψr2v∗ dσ.

Finally, we study the boundary integrals. Straightforward calculations show

I∂ =
∫
∂Ω

[−α11

2
ur1P0 + (d1(v∗ − v) +

α11

2
uv∗)P vu r2]uψ dσ.

If η in (6.2.10) is small, then it is clear that the quantity in the brackets can be very small. Thus, I∂

can be controlled by the positive boundary integral (P uv − P vu )
∫
∂Ω

P ur2v∗uψ dσ.
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Therefore
∂

∂t

∫
Ω
P0uψ dx ≥ λ

4

∫
Ω
P0uψ dx. (6.2.14)

As λ > 0, this shows that
∫

Ω
P u(0, v∗)uψ dx goes to infinity as t does. This contradicts

(6.2.10) and completes this proof.

Remark 6.2.5. If the boundary conditions are of Neumann type, then u∗, v∗, ψ, φ in the above

proofs are just constant functions and our calculations will be much simpler. In fact, it is easy to see

that the smallness condition for P uv − P vu (respectively Qvu − Quv ) in Proposition 6.2.3 (respectively

Proposition 6.2.4) is no longer needed.

Next, we will present explicit and simple criteria on the parameters of (6.1.1) for the positivity

of the principal eigenvalues of (6.2.6), (6.2.8).

Lemma 6.2.6. Assume that either r1 = r2 ≡ 0 and a1/a2 > c1/c2, or r1, r2 6= 0 and

a1

a2
> max

{
c1
c2
,
2a12

a22

}
, (6.2.15)

and

a) a12 > b11 and d1a22 ≥ 2d2b11;

b) sup∂Ω(r1(x)− r2(x))+ and (a2d1 − a1d2)+ are sufficiently small.

Then λ in (6.2.6) is positive.

Proof: Set P0 = P u(0, v∗), Q0 = Qv(0, v∗). We test (6.2.6) with Q =
∫ v∗
0 Qv(0, s)ds and test (6.2.7)

with P u(0, v∗)ψ. Together, we get

λ

∫
Ω
ψQ dx = −

∫
Ω
P0Q0∇ψ∇v∗ dx−

∫
Ω
P vuQ0ψ|∇v∗|2 dx

+
∫
∂Ω

(P0
∂ψ

∂n
+ P vuψ

∂v∗
∂n

)Q dσ +
∫

Ω
fuψQ dx

= (P uv − P vu )
∫

Ω
Q0ψ|∇v∗|2 dx+

∫
Ω

(fuQ− g0P0)ψ dx

+
∫
∂Ω

(P0
∂ψ

∂n
+ P vuψ

∂v∗
∂n

)Q dσ −
∫
∂Ω

Q0P0ψ
∂v∗
∂n

dσ.
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We need only show that the right hand side is positive. Since P uv = a12 > b11 = P vu , the first

term on the right is nonnegative. For the second integral, we note that

fuQ− g0P0 = v∗[(a1 − c1v∗)(d2 +
a22

2
v∗)− (a2 − c2v∗)(d1 + a12v∗)].

We study the quantity in the brackets by considering the quadratic

F (X) = (a1 − c1X)(d2 +
a22

2
X)− (a2 − c2X)(d1 + a12X)

= (c2a12 −
1
2
c1a22)X2 + (

1
2
a1a22 − a2a12 + c2d1 − c1d2)X + a1d2 − a2d1.

First of all, by a simple use of maximum principles, we can easily show that 0 < v∗(x) ≤ a2/c2

for all x ∈ Ω. Let µ = infΩ v∗(x) > 0.

We will show that F (v∗) > 0. Firstly, due to (6.2.15),

F (0) = a1d2 − a2d1 and F (a2/c2) = (a1 −
a2c1
c2

)(d2 +
a2a22

2c2
) > 0.

Consider the case when the coefficient of X2 in F (X) is negative. If F (0) ≥ 0 then F (v∗) > 0

because 0 < µ ≤ v∗(x) ≤ a2/c2. If F (0) < 0, then F (X) = 0 has two positive roots X1, X2 with

X2 > a2/c2. Hence, if |F (0)| is sufficiently small then µ > X1 and therefore F (v∗) > 0.

Otherwise, by (6.2.15), we have F (v∗) ≥ (1
2a1a22 − a2a12 + c2d1 − c1d2)v∗ + F (0). If (c2d1 −

c1d2) ≥ 0, the last quantity is obviously positive when either F (0) ≥ 0 or F (0) < 0 but |F (0)| is

small. Or else, because v∗ ≤ a2/c2 we have

F (v∗) ≥ (c2d1 − c1d2)
a2

c2
+ a1d2 − a2d1 = a2d2(

a1

a2
− c1
c2

) > 0.

In all cases, F (v∗) > 0. Thus, the second integral is also positive. It remains to consider the

boundary integrals. In view of the boundary condition, they are

∫
∂Ω

(r2 − r1)P0Qψ dσ +
∫
∂Ω

r2ψv
2
∗

(a22

2
d1 − b11d2 +

a22

2
(Pv −Ru)v∗

)
dσ

The last integrand is positive due to the first condition in b). Therefore the above sum is
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nonnegative if either r2 ≥ r1 or r1 − r2 > 0 but sufficiently small. Therefore, under the stated

assumptions in the lemma, λ is positive.

Similarly, we have the following result.

Lemma 6.2.7. Assume that either r1 = r2 ≡ 0 and b1/b2 > a1/a2, or r1, r2 6= 0 and

a1

a2
< min

{
b1
b2
,
a11

2a21

}
,

and

a) a21 > b22 and d2a11 ≥ 2d1b22;

b) sup∂Ω(r2(x)− r1(x))+ and (a1d2 − a2d1)+ are sufficiently small.

Then λ in (6.2.8) is positive.

We conclude this paper by giving the proof of Theorem 6.1.1.

Proof of Theorem 6.1.1. It is clear that the stated conditions (P.1) or (P.2) satisfy those of our

propositions and lemmas of this section. The theorem then follows from Theorem 6.2.1.

Notes and Remarks

It is worth noticing that when homogeneous Neumann boundary conditions are assumed, the

conditions in Lemma 6.2.6 and Lemma 6.2.7 read

b1
b2
>
a1

a2
>
c1
c2
,

which is already well known for the Lotka-Volterra counterparts (see [3, 14] and the references therein).

It is not quite surprising to see that the cross diffusion parameters (aij , b11, b22) do not manifest in

this case as the semitrivial steady states u∗, v∗ are being just constants. The situation will be more

interesting when we consider the Robin boundary conditions. In this case, the semitrivial steady

states are non-constants; and the cross diffusion (or gradient) effects will play an essential role as seen

in Lemma 6.2.6 and Lemma 6.2.7.
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Finally, we would like to remark that the uniform persistence property in this chapter is

established in the C1 norm instead of the usual L∞ norm widely used in literature of Lotka-Volterra

systems. This is in part due to the setting of the phase space W 1,p for strongly coupled parabolic

systems (see [2]). So, our persistence result does not rule out the possibility that solutions might

form spikes at some points but approach zero almost everywhere as t → ∞. That type of behavior

can be seen in some models for chemotaxis, which also involve a form of strong coupling, so it may

be that the results presented here are optimal. However, it is naturally to ask if it is impossible for

one species can survive in the sense that its density is going to be almost negligible (that is, the L∞

norm goes to zero) while oscillating wildly to maintain the positivity of its C1 norm. The answer to

this question is still under investigation.
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Chapter 7

DEGENERATE PARABOLIC SYSTEMS

In this chapter, a class of strongly coupled degenerate parabolic systems is considered. We shall

give sufficient conditions to guarantee that bounded weak solutions are Hölder continuous everywhere.

The general theory will be applied to a porous media type Shigesada-Kawasaki-Teramoto model in

population dynamics.

Let us consider the following nonlinear parabolic systems of m equations (m ≥ 2) given by

ut = div(a(x, t, u)∇u) + f(x, t, u), (7.0.1)

in a domain Q = Ω × (0, T ) ⊂ IRN+1, with Ω being an open subset of IRN , N ≥ 1. The vector

valued functions u, f take values in IRm, m ≥ 1. ∇u denotes the spatial derivative of u. Here,

a(x, t, u) = (Aαβij ) is a tensor in Hom(IRnm, IRnm).

A weak solution u to (7.0.1) is a function u ∈W 1,0
2 (Q, IRm) such that

∫∫
Q

[−uφt + a(x, t, u)∇u∇φ] dz =
∫∫

Q
f(x, t, u)φ dz

for all φ ∈ C1
c (Q, IR

m). Here, we write dz = dxdt.

In a recent work [30], we investigated the question of partial regularity of (7.0.1) having the

following structure conditions.

(A.1) There exists a C1 map g : IRm → IRm, with Φ(u) = ∇ug(u), such that for some positive

constants λ,Λ > 0 there hold

a(u)∇u · ∇u ≥ λ|∇g(u)|2, |a(u)∇u| ≤ Λ|Φ(u)||∇g(u)|.

(A.2) (Degeneracy condition) Φ(0) = 0. There exist positive constants C1, C2 such that

C1(|Φ(u)|+ |Φ(v)|)|u− v| ≤ |g(u)− g(v)| ≤ C2(|Φ(u)|+ |Φ(v)|)|u− v|.
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(A.3) (Comparability condition) For any β ∈ (0, 1), there exist constants C1(β), C2(β) such that if

u, v ∈ IRm and β|u| ≤ |v| ≤ |u|, then C1(β)|Φ(u)| ≤ |Φ(v)| ≤ C2(β)|Φ(u)|.

(A.4) (Continuity condition) Φ(u) is invertible for u 6= 0. The map a(u)Φ(u)−1 is continuous on

IRm\{0}. Moreover, there exists a monotone nondecreasing concave function ω : [0,∞) → [0,∞)

such that ω(0) = 0, ω is continuous at 0, and

|a(v)Φ(v)−1 − a(u)Φ(u)−1| ≤ (|Φ(u)|+ |Φ(v)|)ω(|u− v|2), (7.0.2)

|Φ(u)− Φ(v)| ≤ (|Φ(u)|+ |Φ(v)|)ω(|u− v|2) (7.0.3)

for all u, v ∈ IRm.

Introducing the so called A-heat approximation method, we were able to extend the partial

regularity results in [9] to the degenerate system (7.0.1). The main result of [30] is the following

characterization of the regular sets of bounded weak solutions.

Theorem 7.0.1. ([30]) Let u be a bounded weak solution to (7.0.1) satisfying (A.1)-(A.4). Set

Reg(u) = {(x, t) ∈ Ω× (0, T ) : u is Hölder continuous in a neighborhood of (x, t)}

and Sing(u) = Ω× (0, T )\Reg(u). Then Sing(u) ⊆ Σ1
⋃

Σ2, where

Σ1 = {(x, t) ∈ Ω× (0, T ) : lim inf
R→0

|(u)QR(x,t)| = 0},

Σ2 = {(x, t) ∈ Ω× (0, T ) : lim inf
R→0

∫∫
QR

|u− (u)QR(x,t)|2 dz > 0}.

Here, for each R > 0, QR(x, t) = BR(x)× (t−R2, t) and (u)QR(x,t) =
∫∫

QR(x,t)
u dz.

Moreover, Hn(Σ2) = 0, where Hn is the n-dimensional Hausdorff measure.

Obviously, whether bounded weak solutions are Hölder continuous everywhere, that is Sing(u) =

∅, is an important question and still remains open. There are no previous results concerning every-
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where regularity for general systems of the form (7.0.1). The results and methods in aforementioned

works [17, 27, 51] for regular systems cannot apply here. New techniques and additional structure

conditions will be needed. This will be the main goal of this chapter.

We begin our chapter, in Section 7.2, by considering systems like (7.0.1) ofm equations (m ≥ 2)

and giving sufficient conditions (in addition to (A.1)-(A.4)) that guarantee everywhere regularity of

bounded weak solutions. Roughly speaking, our method relies on the key assumption on the existence

of a function H(u). This function links the structures of the equations in a way that we can derive

certain regularity of H(u), which is regarded as a function in (x, t). Such regularity of H(u) will be

exploited later to study that of u. This technique was first introduced by us in [27] to handle the

regular cases. Here, we make use of the scaled parabolic cylinders in order to reflect the degeneracy

Φ(u). This idea was originally introduced in [6] to deal with scalar p-Laplacian equations. However,

the case of degenerate systems needs much more sophisticated techniques. Another difficulty arises

as the L2 estimate for ∇u, derived by Giaquinta and Struwe in [9, page 443] for regular cases, is

no longer available here to obtain the smallness of the average of the deviation |u − (u)QR
|2 on QR.

Direct estimates of these quantities must be rediscovered. In addition, we must also show that the

system is averagely not too degenerate in certain scaled cylinder so that the component Σ1 of the

singular set is empty.

We demonstrate our general theory by considering a degenerate Shigesada-Kawasaki-Teramoto

(SKT) model arising in population dynamics. Here, we incorporate the porous media type diffusion

into the well studied regular (SKT) systems. We will give sufficient conditions on the parameters

of this system such that a function H can be found; and the results of Section 7.2 are applicable.

The existence of a function H for general regular (SKT) systems was studied in [29]. Our degenerate

system (SKT) obviously necessitates a different H, but some calculations in [29] are reusable here.

The new choice of H in this work also greatly simplifies many complicated calculations in [29].

We would like to remark that we assume no presence of ∇u in the lower order term f in (7.0.1)

for the sake of simplicity. In fact, in [30] and this present work, we could allow f to depend on ∇u,

and to have growth like ε|Φ(u)|2|∇u|2 for sufficiently small ε > 0. The proof for this case is similar,

with an exception of some minor technical modifications.

The chapter is organized as follows. In Section 7.1, we introduce our notations, hypotheses
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and main theorems. We study the general system (7.0.1) in Section 7.2. Section 7.3 is devoted to the

degenerate (SKT) system and concludes this chapter.

7.1 Main results

Throughout this chapter, Ω is a bounded domain in IRN . For a scalar function h(x, t), with

(x, t) ∈ IRN+1, its spatial (resp. temporal) derivative with respect to the x (resp. t)variable is denoted

by∇h (resp. ∂h/∂t or ht). If u = (u1, . . . , um) is a vector valued function, then∇u = (∇u1, . . . ,∇um).

If H is a function in u, then Hu = ∇uH = (∂u1H, . . . , ∂umH).

For a given set X ⊂ IRn we denote by |X| its n dimensional Lebesgue measure. We write

BR(x0) = {x ∈ IRn : |x−x0| < R}, the ball centered at x0 with radius R. For a measurable bounded

X, we denote the average of a given measurable function h over X by hX = 1
|X|
∫
X h(x)dx.

In our proofs, C,C1, . . . will denote various constants whose values change from line to line

but are independent of the solutions in question. For a, b ≥ 0, we also write a ∼ b if there are positive

constants C1, C2 such that C1a ≤ b ≤ C2a.

In the sequel, we first consider a bounded weak solution u to (7.0.1) on Ω × (0, T ) and the

following conditions.

(H.1) There exists a C2 real function H(u) defined on a neighborhood of the range of the solution

u. Moreover, for some γ ≥ 2 and |u| small, we have H(u) ∼ |u|γ .

(H.2) There are positive constants λ1, λ2, and λ3 such that

HT
u a(u)∇u∇H ≥ λ1|Φ(u)|2|∇H|2,

∇HT
u a(u)∇u ≥ λ2|u|γ−2|∇g(u)|2,

|HT
u a(u)∇u| ≤ λ3|Φ(u)|2|∇H|.

We are now in a position to state our first theorem on the everywhere regularity.

Theorem 7.1.1. Given the conditions (A.1)-(A.4) and (H.1)-(H.2), bounded weak solutions to

(7.0.1) are Hölder continuous on Ω× (0, T ).
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To illustrate this general result, we then study a system of the form


ut = ∇(P u∇u+ P v∇v) + F (u, v),

vt = ∇(Qu∇u+Qv∇v) +G(u, v).
(7.1.1)

with the following degenerate structure, for some m > 0,

P u = a11u
m + a12v

m, P v = b11u
m + b12v

m,

Qv = a21u
m + a22v

m, Qu = b21u
m + b22v

m.

In this form, (7.1.1) is a generalized version of the well known Shigesada-Kawasaki-Teramoto

model in population dynamics (see [45]). By allowing the presence of powers of u, v and dropping

random diffusion terms, we take into account porous media type diffusion effects. The system becomes

degenerate and has not been ever discussed in existing literature.

In applications, u, v represent population densities of the species under investigation, and thus

only positive solutions are of interest. Our second result deals with the regularity of these positive

weak solutions.

Theorem 7.1.2. Assume that m ≥ 1 and the following conditions on the coefficients of (7.1.1):

α := a11 − a21 > 0, β := a22 − a12 > 0, (7.1.2)

and

α2b12 + αβb11 + b11b12b21 ≥ b22b
2
11, β2b21 + αβb22 + b22b12b21 ≥ b11b

2
22. (7.1.3)

If (u, v) is a positive bounded weak solution to (7.1.1), then (u, v) is Hölder continuous every-

where.

7.2 The general case

We give the proof of Theorem 7.1.1 in this section. For the sake of simplicity, we will assume

throughout that f(x, t, u) ≡ 0. The presence of this term would cause no major difficulties.
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By translation, we will assume that (x0, t0) = (0, 0). Fix an ε ∈ (0, 2) and sufficiently small

R0 > 0. We consider the cylinder

Q(2R0, R
2−ε
0 ) = B2R0(0)× [−R2−ε

0 , 0] ⊆ ΩT .

Given ρ > 0, we will determine the positive constants θ and δ ∈ (0, 1) and construct the

following sequences:

Rn =
R0

θn
, µ0 = sup

Q(2R0,R
2−ε
0 )

H(u(x, t)), µn+1 = max{δµn, θRεn},

Φµn = sup{|Φ(u)| : H(u) ≤ µn}, Qn = BRn(0)× [−Φ−2
µn
R2
n, 0].

We also define the following function on Qn:

w(x, t) := log
(

µn
N(u)

)
, with N(u) =

1
ρ
(µn −H(u)).

For each n, let Q0
n = {(x, t) ∈ Qn : w(x, t)+ = 0}. We consider the following two alternatives.

(A) For all integers n, we have

|Q0
n| > ρ|Qn|. (7.2.1)

(B) For some integer n, we have

|Q0
n| ≤ ρ|Qn|. (7.2.2)

Let us briefly explain how Theorem 7.1.1 follows from these two alternatives.

Given any ε > 0, we will show that ρ = ρ(ε) > 0 can be chosen such that if (7.2.2) holds for

some (fixed) n, then there are fixed constants µ, β > 0 such that

sup
QR

|u| ≤ µ,

∫∫
QR

|u− uQR
|2 dz ≤ εµ2 and |uQR

| ≥ βµ, R = Rn/2. (7.2.3)
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The Hölder continuity of u then follows immediately from (7.2.3) and Theorem 7.0.1.

Otherwise, for such ρ, we suppose that (7.2.1) holds for all integers n. We will show that the

followings are true for all integers n.

H(u(x, t)) ≤ µn ∀(x, t) ∈ Qn, (7.2.4)

Qn+1 ⊆ Qn. (7.2.5)

Arguing as in the proof of [22, Lemma 5.8], we can see that the sequence {µn} satisfies

µn ≤ C(Rn/R0)α for some α > 0 and some constant C depending only on θ,R0, µ0. Due to (7.2.4),

H(u(x, t)) is Hölder continuous. The assumption (H.1) then gives the Hölder continuity of u(x, t).

Remark 7.2.1. If H(u) ≥ σµn for some σ > 0, then there is constant C = C(σ) > 0 such that

|Φ(u)| ≥ CΦµn . Indeed, let Φµn = |Φ(u0)| for some u0 such that H(u0) ≤ µn. (H.1) implies that

|u|γ ≥ C1(σ)µn and |u0|γ ≤ C2µn. Hence, |u0| ≤ C3(σ)|u| for some C3(σ). This and (A.3) give

Φµn ≤ C(σ)|Φ(u)|.

Alternative (A): First of all, by scaling and assuming that Φµ0 ≥ CRε0, we can make

Q0 ⊆ Q(2R0, R
2−ε
0 ) so that (7.2.4) and (7.2.5) are verified for n = 0. Moreover, we can also assume

that µn ≤ 1 for all n.

Assume that (7.2.4) holds for some integer n. Let R = Rn/4 and η be a function with compact

support in QR = BR × [−Φ−2
µn
R2, 0].

We test the equation of ui by Huiη/N and add the results to get

∫
Ω

∂w

∂t
η dx+

∫
Ω

[
HT
u a(u)∇u
N

∇η +
∇HT

u a(u)∇u
N

η +
HT
u a(u)∇u∇H

N2
η

]
dx = 0. (7.2.6)

If η ≥ 0, then (H.2) and the above imply

∫
Ω

∂w

∂t
η dx+

∫
Ω

HT
u a(u)∇u
N

∇η dx ≤ 0. (7.2.7)

We first show that ‖w‖∞,QR
can be estimated in terms of ‖w‖2,Q2R

. By (H.2), we have
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∣∣∣∣HT
u a(u)∇u
N

∣∣∣∣ ≤ λ3|Φ(u)|2|∇w|, HT
u a(u)∇u
N

∇w =
HT
u a(u)∇u∇H

N2
≥ λ1|Φ(u)|2|∇w|2.

We then see that the assumptions of [26, Lemma 3.3] are satisfied. Moreover, on the set w+ > 0

we have H > (1− ρ)µn. Remark 7.2.1 asserts that |Φ(u)| ≥ CΦµn on the set w+ > 0. Furthermore,

since H(u(x, t)) ≤ µn on Qn by (7.2.4), we have |Φ(u(x, t)| ≤ Φµn on Qn. Hence, the comparability

property (3.12) of [26, Lemma 3.4] is verified too. The iteration argument of [26, Lemma 3.5] then

gives a constant C independent of R and Φ such that

sup
BR×[−Φ−2

µnR
2,0]

w ≤ C(1 +
1

|QR|

∫∫
QR

(w+)2 dz). (7.2.8)

Next, we replace η by η2 in (7.2.6) and use (H.2) to get

∫
Ω

∂w

∂t
η2 dx+

∫
Ω
|Φ(u)|2|∇w|2η2 dx ≤ C

∫
Ω

(|Φ(u)|2|∇w|η|∇η| dx.

Having established that |Φ(u)| ∼ Φµn on the set w+ > 0 and meas({w+ = 0}) = meas(Q0
n) ≥

ρ|Qn| by (7.2.1), we can follow the proof of [26, Lemma 3.6] to show that 1
|QR|

∫∫
QR

(w+)2 dz can be

bounded by a constant independent of R and Φ. By (7.2.8), supBR×[−Φ−2
µnR

2,0]w is also bounded by

a constant, denoted by ln(C), independent of R and Φ. From the definition of w, we easily get

H(u(x, t)) ≤ δµn, ∀(x, t) ∈ QR, (7.2.9)

with δ = C−ρ
C < 1 and depends only on ρ.

We now show that (7.2.5) is verified by a suitable choice of θ.

To proceed, we claim that there is a constant C0 = C(δ) such that Φµn ≤ C0Φµn+1 . Indeed,

let u1 be such that Φµn = |Φ(u1)| and H(u1) ≤ µn. Since µn ≤ µn+1/δ, we have |u1|γ ≤ C1(δ)µn+1.

Hence, for some C2(δ), we have u2 = C2(δ)u1 satisfying H(u2) ≤ µn+1. This gives that |Φ(u1)| ≤

C3(δ)|Φ(u2)| ≤ C0(δ)Φµn+1 , due to (A.3). Our claim then follows.

We then determine θ such that Qn+1 ⊆ QR. This is to say, Rn+1 ≤ R = Rn/4 and

Φ−2
µn+1

R2
n+1 ≤ Φ−2

µn
R2. To this end, we need θ ≥ 4 and Φµn ≤ Φµn+1θ/4. We then choose θ =
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max{4, 4C0(δ)}.

Therefore, Qn+1 ⊆ QR ⊆ Qn and (7.2.9) holds on Qn+1. This shows that (7.2.4) continues to

hold for n+ 1. By induction, we conclude that (7.2.4) and (7.2.5) hold for all integers n. Our proof

is complete in this case.

Alternative B: We now have (7.2.2) for some n. Denote R = Rn/4 and

Q4R = Qn, QR = BR × [−Φ−2
µn
R2, 0].

It is easy to see that (7.2.2) yields

|Q0
n| = |{(x, t) ∈ Q4R : H ≤ (1− ρ)µn}| < ρ|Q4R|. (7.2.10)

We first derive Lp estimates for |∇g|. Test (7.0.1) with Huη to get

∫
Ω

∂H

∂t
η dx+

∫
Ω

(∇Hu)Ta(u)∇uη dx+
∫

Ω
HT
u a(u)∇η dx = 0. (7.2.11)

Let H+
k = (H(u(x, t))− k)+. Replacing η in (7.2.11) by H+

k η
2, we easily obtain

∫∫
ΩT

∂(H+
k η)

2

∂t
dz +

∫∫
ΩT

[HT
u a(u)∇u∇H+

k η
2 +∇HT

u a(u)∇uH+
k η

2] dz

≤
∫∫

ΩT

[HT
u a(u)∇uH+

k η∇η + (H+
k )2ηηt] dz.

By (H.2), this implies

∫∫
ΩT

[λ1|Φ(u)|2|∇H|2η2 + λ2|u|γ−2|∇g(u)|2H+
k η

2] dz ≤
∫∫

ΩT

[|Φ(u)|2|H+
k |

2|∇η|2 + |H+
k |

2|ηt|] dz.

We now take η to be a cut-off function with respect to the scaled cylinders QR, Q4R. We have

that |∇η| ≤ 1
R and |ηt| ≤

Φ2
µn

R2 .

We then take k = (1 − 2ρ)µn and note that H+
k ≤ 2ρµn on Q4R. Moreover, because

H(u(x, t)) ≤ µn on Q4R, we have |Φ(u(x, t))| ≤ Φµn . Using the fact that |QR| ∼ Φ−2
µn
RN+2, we
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obtain

∫∫
QR

|u|γ−2|∇g(u)|2H+
k dz ≤ C(ρµn)2RN .

Let A0 := {(x, t) ∈ QR|H ≥ (1− ρ)µn}. Then (H − k)+ ≥ ρµn on A0. So,

∫∫
A0

|u|γ−2|∇g(u)|2 dz ≤ CρµnR
N . (7.2.12)

Since H(u) ∼ |u|γ (γ ≥ 2) and ρ < 1/2, the following is valid on A0

|u|γ−2 ∼ H(γ−2)/γ ≥ ((1− ρ)µn)(γ−2)/γ ≥ Cµ(γ−2)/γ
n

Therefore, (7.2.12) implies

∫∫
A0

|∇g(u)|2 dz ≤ Cρµ2/γ
n Rn. (7.2.13)

In addition, we can find C such that if µ = (Cµn)1/γ then

sup
QR

|u(x)| ≤ µ and µn ≤ Cµγ . (7.2.14)

It means we obtain ∫∫
A0

|∇g(u)|2 dz ≤ Cρµ2Rn. (7.2.15)

By testing (7.0.1) with uη, it is standard to show that

∫∫
QR

|∇g(u)|2 dz ≤ Cµ2Rn. (7.2.16)

For any subset A of QR, Hölder’s inequality gives

∫∫
A
|∇~u|q dz ≤

(∫∫
A
|∇~u|2 dz

) q
2

|A|1−
q
2 . (7.2.17)

Taking q = 2n
n+1 < 2, A = A0 and using (7.2.12), we obtain

92



∫∫
A0

|∇g(u)|q dz ≤ C(ρµ2Rn)
n

n+1 Φ
−2

n+1
µn R

n+2
n+1 = C(ρµ2)

n
n+1 Φ

−2
n+1
µn Rn+ 2

n+1 .

Similarly, we take A = QR \A0 in (7.2.17). Using (7.2.16) and also the fact that |A| ≤ ρ|QR|,

we have

∫∫
QR\A0

|∇g(u)|q dz ≤ C(µ2Rn)
n

n+1 (ρΦ−2
µn
Rn+2)

1
n+1 = Cρ

1
n+1 Φ

−2
n+1
µn µ

2n
n+1Rn+ 2

n+1 .

The above inequalities give us the following estimate for |∇g|:

∫∫
QR

|∇g(u)|q dz ≤ C(ρ
n

n+1 + ρ
1

n+1 )Φ
−2

n+1
µn µ

2n
n+1Rn+ 2

n+1 . (7.2.18)

We now try to estimate the deviation |u−uQR
|. We recall the following inequality ([Ladyzen-

skaja, (2.10), p.45]), with r = 1, p = 2 and m = 2n/n+ 1), for functions u with uΩ = 0.

∫
Ω
u2 dx ≤ C

∫
Ω
|∇u|

n
n+1 dx

(∫
Ω
|u| dx

) 2
n+1

Let V (t) be a vector such that g(V (t)) = gBR
(u). The above yields

∫∫
QR

|g(u)− g(V (t))|2 dz ≤ C

∫∫
QR

|∇g(u)|q dz sup
t

(∫
BR(t)

|g(u)− gBR
(u)| dx

) 2
n+1

≤ C[ρ
n

n+1 + ρ
1

n+1 ]µ
2n

n+1 Φ
−2

n+1
µn Rn+ 2

n+1 (Φµnµ)
2

n+1R
2n

n+1

Hence,

∫∫
QR

|g(u)− g(V (t))|2 dz ≤ C[ρ
n

n+1 + ρ
1

n+1 ]µ2Rn+2.

As |g(u) − g(V (t))| ≥ C(|Φ(u)|1/2 + |Φ(V (t))|1/2)|u − V (t)| and H(u) ≥ (1 − ρ)µn on A0,

Lemma 7.2.1 showed that |Φ(u)| ∼ Φµn on the set A0. Thus,
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Φ2
µn

∫∫
A0

|u− V (t)|2 dz ≤ C[ρ
n

n+1 + ρ
1

n+1 ]µ2Rn+2 = ε(ρ)µ2Rn+2,

with ε(ρ) = C[ρ
n

n+1 + ρ
1

n+1 ].

Because
∫
Br

|u− uBR
|2 dx ≤ C

∫
Br

|u− V (t)|2 dx, we have

Φ2
µn

∫∫
QR

|u− uBR
|2 dz ≤ Φ2

µn

∫∫
A0

|u− V (t)|2 dz + Φ2
µn

∫∫
QR\A0

|u− V (t)|2 dz

≤ ε(ρ)µ2Rn+2 + Φ2
µn
µ2ρ|QR|

This gives Φ2
µn

∫∫
QR

|u− uBR
|2 dz ≤ (ε(ρ) + ρ)µ2Rn+2.

On the other hand, for G =
∫∫

QR

|uBR
− uQR

|2 dz, we have

G ≤ |QR| supt∈IR

∣∣∣∣∫
BR

u(x, t) dx− 1
|IR|

∫
IR

∫
BR

u(x, s) dxds
∣∣∣∣2

≤ |QR||BR|−2 supt,s∈IR

∣∣∣∣∫
BR

[u(x, t)− u(x, s)] dx
∣∣∣∣2

From the equation, for σ ∈ (0, 1), we have

sup
t,s∈IR

∣∣∣∣∫
BR

[u(x, t)− u(x, s)] dx
∣∣∣∣ ≤

∫
B(σ+1)R\BR

|u(x, t)− u(x, s)| dx

+
∫∫

Q(σ+1)R

|a(u)∇u∇η| dz

≤ CσµRn +
Φµn

σR

∫∫
Q2R

|∇g(u)| dz

Using the inequality
∫
A u ≤

√∫
A u

2|A| we argue the same way as in (7.2.18) to get

∫∫
Q2R

|∇g(u)| dz ≤
√
ρµ2RnΦ−2

µnR
n+2 +

√
(Cµ2Rn)(ρΦ−2

µnR
n+2)

= C
√
ρΦ−2

µnµR
n+1
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Therefore, by choosing σ = ρ1/4, we have

sup
t,s∈IR

∣∣∣∣∫
BR

[u(x, t)− u(x, s)] dx
∣∣∣∣ ≤ C

(
σ +

√
ρ

σ

)
µRn ≤ Cρ1/4µRn

Thus,

G ≤ Cρ1/2µ2|QR|

Hence,

∫∫
QR

|u− uQR
|2 dz ≤ C(ε(ρ) + ρ)µ2 + Cρ1/2µ2 ≤ o(ρ)µ2

Given any ε > 0. We can choose ρ such that

∫∫
QR

|u− uQR
|2 dz ≤ εµ2.

We show that uQR
is not small. We have

∫∫
QR

u2 dz ≤ (εµ2 + |uQR
|2)|QR|.

Because |H| ≥ (1− ρ)µn implies |u|γ ≥ Cµγ . Therefore |u| ≥ Cµ on A0 (|A0| ≥ (1− ρ)|QR|, we have

∫∫
QR

u2 dz ≥
∫∫

A0

u2 dz ≥ C2µ2(1− ρ)|QR|.

By choosing ρ, ε small, we see that |uQR
| ≥ βµ for some constant β > 0. This gives (7.2.3).

7.3 The degenerate (SKT) system

We prove Theorem 7.1.2 in this section. Let us recall the system


ut = ∇(P u∇u+ P v∇v) + F (u, v),

vt = ∇(Qu∇u+Qv∇v) +G(u, v).
(7.3.1)
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with the following degenerate structure, for some m > 0,

P u = a11u
m + a12v

m, P v = b11u
m + b12v

m,

Qv = a21u
m + a22v

m, Qu = b21u
m + b22v

m.

We also recall the following conditions stated in Theorem 7.1.2.

(P) Assume m ≥ 1, α := a11 − a21 > 0, and β := a22 − a12 > 0. Moreover

α2b12 + αβb11 + b11b12b21 ≥ b22b
2
11, β2b21 + αβb22 + b22b12b21 ≥ b11b

2
22. (7.3.2)

Let (u, v) be a positive solution to (7.3.1). Our goal is to find a suitable function H that

satisfies the conditions (H.1), (H.2) such that Theorem 7.1.1 can apply here.

To begin, we set det a(u, v) = P uQv − P vQu and

Φ2(u, v) =
P u +Qv +

√
(P u +Qv)2 − det(a)

2

We also take gu(u, v) = Φ(u, v)I2, where I2 is the 2 × 2 identity matrix. Thanks to (P), it is

easy to see that (A.1)-(A.4) are satisfied here.

We first observe that the condition (H.2) is verified if we can find a function H that satisfies

the following conditions.

HT
u a(~u)∇~u∇H ≥ λ1|∇H|2, (7.3.3)

∇HT
u a(~u)∇~u ≥ λ2|∇~u|2, (7.3.4)

|HT
u a(~u)∇~u| ≤ λ3|∇H|, (7.3.5)

where λ1 = λ1Φ2(u, v), λ2 = λ2|~u|µ−2Φ2(u, v), λ3 = λ3Φ2(u, v), with λi being positive constants.

These conditions amount to the positivity of the following quadratics in U, V ∈ IRN :
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A1 =
(
(PuHu +QuHv)Hu − λ1Hu

2
)
U2 +

(
(PvHu +QvHv)Hv − λ1Hv

2
)
V 2

+
(
(PvHu +QvHv)Hu + (PuHu +QuHv)Hv − 2λ1HvHu

)
V U,

(7.3.6)

A2 =
(
QuHuv + PuHuu − λ2

)
U2 +

(
PvHuv − λ2 +QvHvv

)
V 2

+(PvHuu + PuHuv +QvHuv +QuHvv)V U,
(7.3.7)

and

A3 =
(
λ3Hu

2 − (PuHu +QuHv)
2
)
U2 +

(
λ3Hv

2 − (PvHu +QvHv)
2
)
V 2

+
(
2λ3HvHu − 2 (PvHu +QvHv) (PuHu +QuHv)

)
V U.

(7.3.8)

Following [29], the discriminants of A1, A3 will be nonpositive if the following first order

equation is satisfied.

Hu = f(u, v)Hv, (7.3.9)

where f is the solution to

−Pvf2 + (Pu −Qv)f +Qu = 0. (7.3.10)

Because PvQu > 0, (7.3.10) has two solutions f1, f2 with f1f2 < 0. In what follows, we denote

by f = f(u, v) the positive solution of (7.3.10).

We first have the following simple lemma.

Lemma 7.3.1. Assume that H satisfies (7.3.9). There exist positive numbers λ1, λ3 such that A1, A3

are positive definite.

Proof: Following the proof of [29, Lemma 3.2], we need only choose λ1, λ3 such that the

coefficients of U2, V 2 in A1, A3 can be positive. By (7.3.10) and (7.3.9), these coefficients in A1 can

be written as

H2
vf

2(Pvf +Qv − λ1), H2
v (Pvf +Qv − λ1).
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Similarly, for A3, they are

H2
u(λ3 − (Pvf +Qv)2), H2

v (λ3 − (Pvf +Qv)2).

Since f > 0 and Φ2 = P vf + Qv, we can take λ1 = 1
2 and λ3 = 2 supΓ(Pvf + Qv), which is

finite positive number because of the boundedness of f (see below) and the fact that u, v are bounded.

Thus, we are left with the positivity of A2. The rest of this section will be devoted to find-

ing H that solves (7.3.9) and makes A2 positive definite. This is also the crucial step in proving

Theorem 7.1.2.

To proceed, we pick a solution g of the first order equation

gu − f(u, v)gv = 0, (7.3.11)

and let G be any C2 differentiable function on IR. Notice that H(u, v) = G(g(u, v)) is also a solution

to (7.3.9).

We shall follow the calculations of [29]. To verify the positivity of A2, we consider its discrim-

inant Θ. Owing to Hu = fHv, an easy computation shows that

Θ = −4λ2
2 + 4Θ1λ2 + Θ2

Where

Θ1 = β2Hvv + β3Hv = δ1 + δ2

Θ2 = −α2HvvHv + α3H
2
v = −H2

v

(
α2
Hvv

Hv
− α3

)
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with (see [29])

α2 = 4 (P uQv −QuP v) (fu − ffv) ,

α3 = [(fu + ffv)P v − fv(P u −Qv)]2 + 4 (Pu Qv −Qu Pv ) f2
v

=
[
fuP

v +
fvQ

u

f

]2

+ 4 det(a)f2
v ,

β2 = Φ2(f2 + 1), β3 = Φ2ffv + P ufu + P vfv.

Meanwhile, the coefficients of U2 and V 2 in A2 are δ1 − λ2 and δ2 − λ2, respectively, with

δ1 = Φ2f2Hvv +
(
Φ2ffv + Pu fu

)
Hv , δ2 = Φ2Hvv + Pv fv Hv .

We first study on f, fu, fv. We obtain the following result.

Lemma 7.3.2. Assume (P). We have

i) There exist two positive constants C1, C2 such that C1 ≤ f(u, v) ≤ C2.

ii) fuu+ fvv = 0 and fu > 0 and fv < 0.

Proof: We recall the formula of f ,

f =
P u −Qv + σ(u, v)

2P v
=
αum − βvm + σ(u, v)

2(b11um + b12vm)

Therefore, it is easy to see that

fu = um−1−b11f
2 + αf + b21
σ(u, v)

, fv = vm−1−b12f2 − βf + b22
σ(u, v)

.

Here σ(u, v) =
√

(Pu −Qv)2 + 4PvQu.

Let f1 (f2) be the positive solution of fv = 0 (fu = 0, respectively). We easily get

f1 =
2b22

β +
√
β2 + 4 b12b22

, f2 =
α+

√
α2 + 4 b11b21
2b11
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We would recall that f is the positive solution of

F (f) := −(b11u
m + b12v

m)f2 + (αum − βvm)f + b21u
m + b22v

m = 0.

By simple calculations, we get F (f1) is

2um
(
−2 b22

2b11 + b22αβ + b22α
√
β2 + 4 b12b22 + b21β

2 + b21β
√
β2 + 4 b12b22 + 2 b12b22b21

)
(
β +

√
β2 + 4 b12b22

)2

and, similarly, F (f2) is exactly equal to

vm
(
b12α

2 + b12α
√
α2 + 4 b11b21 + 2 b12b11b21 + b11β α+ b11β

√
α2 + 4 b11b21 − 2 b22b11

2
)

−2b112

Our condition (P) simply makes F (f1) > 0 and F (f2) < 0. Since there is a unique positive

solution f of F (f) = 0, we immediately get fu > 0, fv < 0, and f1 < f < f2. This proves i). Straight

calculation shows ii).

Our next step is to determine solution g of

gu = fgv, (7.3.12)

which can be solved by characteristic methods. From [7, pp. 97-99], we know that ~x(t) = (u(t), v(t)),

z(t) = g(~x(t)) and ~p(t) = (pu(t), pv(t)) = ∇g(~x(t)) solve the following system:

~x′(t) = (1,−f),

~p′(t) = (fupv, fvpv),

z′(t) = pu − fpv = 0.

(7.3.13)

We choose the initial data for x, ~p on the line Υ = {(u, v) : u = v > 0}, which is noncharacteristic,

to be

~x(0) = (u, u); pu(0) = f(u, u), pv(0) = 1. (7.3.14)

A smooth solution g of (7.3.12) can be found by setting g to be constant along each flow line
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~x(t). In fact, we will define g on the line Υ by

g(u, v) =
∫ u

0
f(s, s)ds+ v.

The following lemma provides useful properties of the solution g of the above system.

Lemma 7.3.3. The followings hold for (7.3.13) and (7.3.14).

i) g is defined on the first quadrant {(u, v) : u, v > 0}.

ii) There exist C1, C2 > 0 such that C1 ≤ gv ≤ C2.

iii) There are positive constants C1, C2 such that C1(fu+ v) ≤ g(u, v) ≤ C2(fu+ v).

iv) gvv = −gv fv

f .

Proof: i) Because f is bounded by Lemma 7.3.2, ~x(t) exists for all t ∈ IR. It is trivial to

show that the flow lines cross every point in the first quadrant so that g is well defined on this set.

ii) Consider a characteristic curve emanating from a point (u0, v0) on Υ. From the first

equation of (7.3.13) and the fact that f is bounded, we easily see that there is a constant C such

that −u0 ≤ t ≤ Cv0 for u(t), v(t) to be positive. From the equation for ~p in (7.3.13), we have

pv(t) = exp(
∫ t
0 fv(u(s), v(s))ds. We will estimate the last integral.

Consider the case t ≥ 0. We have u(t) ≥ u0. The proof of ii) of Lemma 7.3.2 reveals that

|fv(u(t), v(t))| ≤
C1v

α−1

σ̄(u, v)
≤ C1v

α−1

√
4b11b22uαvα

≤ C2v
α/2−1

u
α/2
0

.

Thus, ∫ t

0
|fv|ds =

∫ t

0
|fv|

dv(s)
−f

≤ C3

∫ Cv0

0

vα/2−1

u
α/2
0

dv ≤ C4.

For t < 0, we use the fact that fvv = −fuu to get

∫ t

0
|fv|ds ≤

∫ |t|

0

∣∣∣∣fuuv
∣∣∣∣ ds ≤ C5

∫ u0

0

uα/2

v
α/2+1
0

du ≤ C6.

In both cases, we find gv = exp(
∫ t
0 fv(u(s), v(s))ds is bounded from above and below by positive

constants, and conclude the proof of ii).
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iii) Using the fact that f is homogeneous, we have

g(u, v) =
∫ 1

0
g′(tu, tv)dt =

∫ 1

0
gu(tu, tv)u+ gv(tu, tv)vdt

=
∫ 1

0
(f(tu, tv)u+ v)gv(tu, tv)dt = (fu+ v)

∫ 1

0
gv(tu, tv)dt.

This and ii) give the assertion.

iv) From the fact that gv = exp(
∫ t
0 fv(u(s), v(s))ds, we obtain

gvv =
∂

∂t
gv
∂t

∂v
= exp(

∫ t

0
fv(u(s), v(s))ds)fv(u(t), v(t))

1
−f

= −gv
fv
f
.

This concludes our proof of the lemma.

Theorem 7.3.4. Assume m ≥ 1. There exists a µ sufficiently large such that H(u, v) = (g(u, v))µ

satisfies (H.2).

Proof: First, we shall show that Θ2 < 0 with sufficiently large µ. In deed, we write

Θ2 = −H2
v

(
α2
Hvv

Hv
− α3

)
= −H2

v

(
α2g

−1gv(µ− 1)− α2
fv
f
− α3

)
= −H2

vα2g
−1gv

(
µ− 1− fvg

fgv
− α3g

α2gv

)

Since α2 = det(a)(fu− ffv) and fu > 0, fv < 0 due to Lemma 7.3.2, we have H2
vα2g

−1gv > 0.

Therefore it suffices for the negativity of Θ2 to show that fvg
fgv

and α3g
α2gv

are bounded.

Indeed, we observe

σ(u, v) ∼ um + vm, det(a) ∼ σ2, fu ∼
um−1

σ(u, v)
, fv ∼

vm−1

σ(u, v)

Thus thanks to Young’s inequality (m ≥ 1), we obtain

∣∣∣∣gfvgv
∣∣∣∣+ ∣∣∣∣gfugv

∣∣∣∣ ≤ (u+ v)(um−1 + vm−1)
σ(u, v)

≤ C
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We recall
α3g

α2gv
=

g[ffuP v + fvQ
u]2

det(a)gvf2(fu − ffv)
+

gf2
v

gv(fu − ffv)
.

Since fu − ffv > −ffv > 0 and fu − ffv > fu > 0, we have

gf2
v

gv(fu − ffv)
≤
∣∣∣∣ gfvfgv

∣∣∣∣ ≤ C

and

g[ffuP v + fvQ
u]2

det(a)gvf2(fu − ffv)
≤ (P v)2 + (Qu)2

det(a)

(∣∣∣∣gfugv
∣∣∣∣+ ∣∣∣∣ gfvf3gv

∣∣∣∣) ≤ C.

Therefore Θ2 < 0 by choosing a sufficiently large µ. We shall next show that

Θ = −4λ2
2 + 4Θ1λ2 + Θ2 < 0

Here Θ1 = β2Hvv + β3Hv and Θ2 = −α2HvvHv + α3H
2
v . By a view of the above proof of

Θ2 < 0, it is obviously enough to show that Θ1λ2
α3H2

v
is bounded. We have

Θ1λ2

α3H2
v

=
λ2β2Hvv|~u|µ−2Φ2

α3H2
v

+
λ2β3|u|µ−2Φ2

α2Hv
. (7.3.15)

We recall that g ∼ u+ v,Φ2 ∼ um + vm,Hvv ∼ |~u|µ−2,Hv ∼ g|~u|µ−2, α2 ∼ g[um−1 + vm−1]2,

α3 =
[
fuP

v +
fvQ

u

f

]2

+ 4 det(a)f2
v ≥

[
fuP

v +
fvQ

u

f

]2

∼
[
um−1 + vm−1

]2
,

and

β2 = Φ2(f2 + 1) ∼ Φ2, β3 = Φ2ffv + P ufu + P vfv ∼ um−1 + vm−1.

Put these estimates into (7.3.15) and note that λ2 can be as small as we wish, we easily see

that Θ1λ2
α3H2

v
are bounded by a constant independent of µ. This proves the existence of µ such that

Θ < 0.

Finally, we need to show that the coefficients of U2 and V 2 in A2 are positive, that is, the
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following quantities are positive.

δ1 − λ2 = −λ2 + Φ2f2Hvv +
(
Φ2ffv + Pu fu

)
Hv

= Φ2f2g−1Hv

[
− gλ2

Φ2f2Hv
+
g(Φ2ffv + P ufu)

Φ2f2
+
gHvv

Hv

]
,

δ2 − λ2 = −λ2 + P vfvHv + Φ2Hvv = Φ2g−1Hv

[
− gλ2

Φ2Hv
+
gP vfv

Φ2
+
gHvv

Hv

]
.

Note that gHvv
Hv

can be very large as µ is sufficiently large, while the other terms are bounded

due to the same arguments as above. Therefore δ1 − λ2, δ2 − λ2 are positive and so is A2 thanks to

the negativity of Θ. The proof is complete.

Notes and Remarks

The regularity of bounded solutions to cross diffusion (strongly coupled) systems is a long-

standing problem. For systems with regular diffusion part a(x, t, u), partial regularity results were

established by Giaquinta and Struwe in [9]. However, the question of whether bounded weak solutions

are Hölder continuous everywhere was only answered in very few situations under either a severe

restriction on the dimension N of the domain Ω, N ≤ 2, as in [17], or special structural conditions

on a(x, t, u) for arbitrary N (see [29, 51]).

To the best of our knowledge, the best regularity one can obtain for cross diffusion systems like

(7.0.1), which has certain degeneracy in the tensor a, is the partial regularity established by Le in [30].

Important examples of (7.0.1) include cross diffusion systems modelling phenomena in porous media.

In contrast to the single equation case (see [26]), one cannot expect in general that bounded weak

solutions of (7.0.1) will be Hölder continuous everywhere. Our result here thus are new in literature,

and this is the content of our paper [32].
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