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Toan Nguyen

ASYMPTOTIC STABILITY OF NONCHARACTERISTIC VISCOUS

BOUNDARY LAYERS

Abstract

In this dissertation we give a rigorous mathematical analysis of the asymptotic

stability of arbitrary–amplitude noncharacteristic viscous boundary layers in dimen-

sions d ≥ 1, motivated by physical applications such as compressible gas dynamics

and magnetohydrodynamics (MHD) equations. Briefly, the dissertation addresses the

following problems.

One–dimensional stability. Our first result concerns the stability of one–dimensional

boundary layers for a class of symmetrizable hyperbolic-parabolic systems. We ob-

tain the results by following the approach of detailed derivation of pointwise Green

function bounds; more specifically, we build on the works of C. Mascia and K. Zum-

brun in their treating the shock cases for the hyperbolic-parabolic systems and of S.

Yarahmadian and K. Zumbrun in their treating the boundary layers for the strictly

parabolic systems.

Multi–dimensional stability. Our second result concerns the long-time stability of

multi-dimensional boundary layers of a general class of systems. Under the so–called

uniform Evans stability condition, we prove the stability of the layers in dimensions

d ≥ 2, following a modified version of the approach of K. Zumbrun in treating the

multi-dimensional shock cases, involving estimates between various Lp spaces.

Multi–dimensional stability for systems with variable multiplicities. Our third re-

sult is to extend the existing stability results to certain MHD layers for which the

constant multiplicity assumption used in previous analyses fails to hold. In addition,

the removal of a technical assumption is done. We encompass the extension by em-

ploying the recent work of O. Guès, G. Métivier, M. Williams, and K. Zumbrun in

the construction of Kreiss’ symmetrizers.

Spectral stability of isentropic Navier–Stokes layers. Our final result concerns the

verification of the uniform Evans stability condition. By making use of the Evans-

function framework of K. Zumbrun and others, we verify numerically the stability

of large-amplitude compressive, or “shock-like”, boundary layers of the isentropic

Navier–Stokes equations.
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Chapter 1

INTRODUCTION

1.1 Boundary layers

The notion of boundary layers appears in many applications, for instance in gas dy-

namics, magnetohydrodynamics (MHD), and fluid mechanics; see, for example, phys-

ical discussions in Schlichting and Gersten [53] and Braslow [4]. See also discussions

in the Introduction of S. Yarahmadian’s doctoral thesis [55]. For the mathematical

analysis of the boundary layer theory, see a very interesting book of Métivier [40] and

the references therein.

Specifically, we consider a boundary layer, or stationary solution,

Ũ = Ū(x1), lim
x1→+∞

Ū(x1) = U+, Ū(0) = Ū0 (1.1)

of a hyperbolic–parabolic system of conservation laws on the quarter-space

Ũt +
∑
j

F j(Ũ)xj =
∑
jk

(Bjk(Ũ)Ũxk)xj , x ∈ Rd
+ = {x1 > 0}, t > 0, (1.2)

Ũ = (ũ, ṽ)tr ∈ Rn−r × Rr, F j ∈ Rn, Bjk ∈ Rn×n, with initial data Ũ(x, 0) = Ũ0(x)

and Dirichlet type boundary conditions specified later.

In this dissertation, we restrict our studies to boundary layers assuming that the

layer solution is noncharacteristic, that is, the matrix dF 1
11 in the hyperbolic equations

of ũ is either strictly positive (inflow case) or strictly negative (outflow case). Roughly

speaking, the noncharacteristicity limits the signals to be transmitted into or out of

but not along the boundary. In the context of gas dynamics or MHD, this corresponds

1



to the situation of a porous boundary with prescribed inflow or outflow conditions

accomplished by suction or blowing, a scenario that has been suggested as a means

to reduce drag along an airfoil by stabilizing laminar flow; see Example 1.2.1 below.

A fundamental question connected to the physical motivations from aerodynamics

is whether or not such boundary layer solutions are stable in the sense of PDE, i.e.,

whether or not a sufficiently small (initial and boundary) perturbation of Ū remains

close to Ū , or converges time-asymptotically to Ū , under the evolution of (1.2). That

is the question we address here.

1.2 Physical examples.

Example 1.2.1. The main example we have in mind consists of laminar solutions

(ρ, u, e)(x1, t) of the compressible Navier–Stokes equations

∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρutu) +∇p = εµ∆u+ ε(µ+ η)∇divu

∂t(ρE) + div
(
(ρE + p)u

)
= εκ∆T + εµdiv

(
(u · ∇)u

)
+ ε(µ+ η)∇(u · divu),

(1.3)

x ∈ Rd, on a half-space x1 > 0, where ρ denotes density, u ∈ Rd velocity, e specific

internal energy, E = e + |u|2
2

specific total energy, p = p(ρ, e) pressure, T = T (ρ, e)

temperature, µ > 0 and |η| ≤ µ first and second coefficients of viscosity, κ > 0

the coefficient of heat conduction, and ε > 0 (typically small) the reciprocal of the

Reynolds number, with no-slip suction-type boundary conditions on the velocity,

uj(0, x2, . . . , xd) = 0, j 6= 1 and u1(0, x2, . . . , xd) = V (x) < 0,

and prescribed temperature, T (0, x2, . . . , xd) = Twall(x̃). Under the standard assump-

tions pρ, Te > 0, this can be seen to satisfy all of the hypotheses that we shall make

in Chapters 2 and 3 with the outflow boundary condition; indeed these are satisfied

also under much weaker van der Waals gas assumptions [37, 59, 9, 19, 18]. In par-

ticular, boundary-layer solutions are of noncharacteristic type, scaling as (ρ, u, e) =

(ρ̄, ū, ē)(x1/ε), with layer thickness ∼ ε as compared to the ∼
√
ε thickness of the

characteristic type found for an impermeable boundary.

2



This corresponds to the situation of an airfoil with microscopic holes through

which gas is pumped from the surrounding flow, the microscopic suction imposing

a fixed normal velocity while the macroscopic surface imposes standard temperature

conditions as in flow past a (nonporous) plate. This configuration was suggested

by Prandtl and tested experimentally by G.I. Taylor as a means to reduce drag by

stabilizing laminar flow; see [53, 4]. It was implemented in the NASA F-16XL ex-

perimental aircraft program in the 1990’s with reported 25% reduction in drag at

supersonic speeds [4].1 Possible mechanisms for this reduction are smaller thickness

∼ ε <<
√
ε of noncharacteristic boundary layers as compared to characteristic type,

and greater stability, delaying the transition from laminar to turbulent flow. In par-

ticular, stability properties appear to be quite important for the understanding of this

phenomenon. For further discussion, including the related issues of matched asymp-

totic expansion, multi-dimensional effects, and more general boundary configurations,

see [19].

Example 1.2.2. Alternatively, we may consider the compressible Navier–Stokes

equations (1.3) with blowing-type boundary conditions

uj(0, x2, . . . , xd) = 0, j 6= 1 and u1(0, x2, . . . , xd) = V (x) > 0,

and prescribed temperature and pressure

T (0, x2, . . . , xd) = Twall(x̃), p(0, x2, . . . , xd) = pwall(x̃)

(equivalently, prescribed temperature and density). Under the standard assumptions

pρ, Te > 0 on the equation of state (alternatively, van der Waals gas assumptions), this

again can be seen to satisfy all hypotheses in Chapters 2 and 3 with inflow boundary

condition.

Example 1.2.3. For (1.3), or the general (1.2), a large class of boundary-layer solu-

tions, sufficient for the present purposes, may be generated as truncations ūx0(x1) :=

ū(x1 − x0) of standing shock solutions

u = ū(x1), lim
x1→±∞

ū(x1) = u± (1.4)

1See also NASA site http://www.dfrc.nasa.gov/Gallery/photo/F-16XL2/index.html
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on the whole line x1 ∈ R, with boundary conditions βh(t) ≡ ū(0) (inflow) or βh(t) ≡
w̄I(0) (outflow) chosen to match. However, there are also many other boundary-layer

solutions not connected with any shock. For more general catalogs of boundary-layer

solutions of (1.3), see, e.g., [38, 54, 9, 19].

1.3 Main results

Our first main result can be described as follows in a formal fashion.

Result 1. (One–dimensional stability; Theorems 2.1.3–2.1.4) Under general

structural assumptions, necessary and sufficient condition for linearized and nonlin-

ear one–dimensional stability of arbitrary–amplitude boundary layers of (1.2) is the

Evans stability condition (D1) (defined in Chapter 2). In case of stability, we obtain

rates of decay:

‖Ũ(x, t)− Ū(x)‖Lp ∼ (1 + t)−
1
2

(1− 1
p

), 1 ≤ p ≤ ∞, (1.5)

‖Ũ(x, t)− Ū(x)‖H4 ∼ (1 + t)−
1
4 . (1.6)

The general structural assumptions required for Result 1 (precisely defined in

Chapter 2) are satisfied for gas dynamics (1.3) and MHD with van der Waals equation

of state under inflow or outflow conditions. Thus, in the general spirit of [60, 36, 37,

59, 23, 56], Result 1 is to reduce the questions of linearized and nonlinear stability to

verification of the Evans function condition (D1), which can then be checked either

numerically or by the variety of methods available for study of eigenvalue ODE; see,

for example, [6, 7, 8, 5, 28, 49, 11, 3, 24, 26, 25, 9] or further discussion below.

The stability of noncharacteristic boundary layers in gas dynamics has been treated

using energy estimates in, e.g., [38, 33, 52], for both “compressive” boundary layers

including the truncated shock-solutions (1.4), and for “expansive” solutions analo-

gous to rarefaction waves. However, in the case of compressive waves, these and most

subsequent analyses were restricted to the small-amplitude case

‖ū− u+‖L1(R+) sufficiently small. (1.7)

Examining this condition even for the special class (1.4) of truncated shock solutions,

we find that it is extremely restrictive.

4



For, consider the one-parameter family ūx0(x) = ū(x − x0) of boundary-layers

associated with a standing shock ū of amplitude δ := |u+ − u−| << 1. By center

manifold analysis [47], ū− u+ ∼ δe−cδx, hence

‖ū− u+‖L1(R+) ∼ e−cδx ∼ |u+ − u(0)|
|u+ − u−|

in fact measures relative amplitude with respect to the amplitude |u+−u−| of the back-

ground shock solution ū. Thus, smallness condition (1.7) requires that the boundary

layer consist of a small, nearly-constant piece of the original shock.

Result 1, extending results of [56] in the strictly parabolic case, remove this re-

striction, allowing applications in principle to shocks of any amplitude. In particular,

in combination with the spectral stability results obtained in [9] (see Chapter 5) by

asymptotic Evans function analysis, they yield stability of noncharacteristic isentropic

gas-dynamical layers of sufficiently large amplitude. Together with further, numerical,

investigations of [9] give strong evidence that in fact all noncharacteristic isentropic

gas layers are spectrally stable, independent of amplitude, which would together with

our results yield nonlinear stability. For further discussion, see Section 2.1.3

Our second and third main results concern the multi–dimensional stability.

Result 2. (Multi–dimensional stability; Theorems 3.1.3–3.1.4) Sufficient condi-

tion for linearized and nonlinear multi–dimensional stability of boundary layers is the

uniform Evans function condition (D2) (defined in Chapter 3). In case of stability,

we obtain rates of decay:

|Ũ(t)− Ū |Lp ∼ (1 + t)−
d
2

(1−1/p)+1/2p

|Ũ(t)− Ū |Hs ∼ (1 + t)−
d−1
4

(1.8)

for any p ≥ 2 and dimensions d ≥ 2.

Result 2 is established under general structural assumptions which hold for gas

dynamics equations. Motivated by MHD applications for which the constant multi-

plicity assumption used in the course of obtaining Result 2 always fails, we establish

the following extension of Result 2 by employing a rather different technique: the

method of Kreiss’ symmetrizers.

Result 3. ((Extended) multi–dimensional stability; Theorems 4.1.4,4.1.5, and

4.1.7) There holds an extension of Result 2 to the case where the characteristic hy-

5



perbolic roots are totally nonglancing. In addition, a structural assumption (condition

(H4) in Chapter 3) can be removed with price of losing a factor in the decay rates,

and in dimension d = 3, requiring an additional (generic) assumption.

Asymptotic stability, without rates of decay, has been shown for small amplitude

noncharacteristic “normal” boundary layers of the isentropic compressible Navier–

Stokes equations with outflow boundary conditions and vanishing transverse velocity

in [30], using energy estimates. Results 2-3, together with the spectral verification

of O. Guès, G. Métivier, M. Williams, and K. Zumbrun for small-amplitude layers

(see Proposition 3.1.2), recover this existing result and extend it to the general arbi-

trary transverse velocity, outflow or inflow, and isentropic or nonisentropic (full com-

pressible Navier–Stokes) case and certain cases of MHD layers, in addition to giving

asymptotic rates of decay. Moreover, we treat perturbations of boundary as well as

initial data, as previous time-asymptotic investigations (with the exception of direct

predecessors [56, 45, 46]) do not. As discussed in Appendix B.1, the type of boundary

layer relevant to the drag-reduction strategy discussed in Examples 1.2.1–1.2.2 is a

noncharacteristic “transverse” type with constant normal velocity, complementary to

the normal type considered in [30].

Our final result concerns the one–dimensional spectral stability of compressive, or

“shock-like”, boundary layers of the isentropic compressible Navier–Stokes equations

with γ-law pressure. The work was building on that of Barker, Humpherys, Lafitte,

Rudd, and Zumbrun [3, 24] in the shock wave case, a combination of asymptotic ODE

estimates and numerical Evans function computations.

Result 4a. (Analytical results; Theorems 5.3.2–5.3.3 and Corollary 5.3.9) The

convergence of the Evans function in the shock and large-amplitude limits is shown.

In addition, compressive inflow/outflow boundary layers with sufficiently large ampli-

tudes are stable.

Result 4b. (Numerical verification; Section 5.3.4) Our numerical computations

indicate unconditional spectral stability of uniformly noncharacteristic compressive

boundary-layers for isentropic Navier–Stokes equations.
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1.4 Plan of the thesis and remarks

In Chapter i + 1, we shall establish the Result i above, correspondingly. Except

Chapter 4 whose materials depend on those of the preceding chapter, each chapter

can be read alone without referring to the other.

Materials included in Chapters 2 and 3 are taken from papers with my advisor

K. Zumbrun [45, 46], respectively; Chapter 4 is from [44]; and those in Chapter 5

including four figures are from a joint paper with N. Costanzino, J. Humpherys, and

K. Zumbrun, [9]. The reproduction has full permission of joint authors.
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Chapter 2

ONE–DIMENSIONAL

STABILITY

2.1 Introduction

In this chapter, we study the one–dimensional stability of a noncharacteristic bound-

ary layer, or stationary solution,

Ũ = Ū(x), lim
x→+∞

Ū(x) = U+, Ū(0) = Ū0 (2.1)

of a system of conservation laws on the quarter-plane

Ũt + F (Ũ)x = (B(Ũ)Ũx)x, x, t > 0, (2.2)

Ũ , F ∈ Rn, B ∈ Rn×n, with initial data Ũ(x, 0) = Ũ0(x) and Dirichlet type boundary

conditions specified in (2.5), (2.6) below.

2.1.1 Equations and assumptions.

We consider the general hyperbolic-parabolic system of conservation laws (2.2) in

conserved variable Ũ , with

Ũ =

(
ũ

ṽ

)
, B =

(
0 0

b1 b2

)
, σ(b2) ≥ θ > 0,
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ũ ∈ R, and ṽ ∈ Rn−1, where, here and elsewhere, σ denotes spectrum of a linearized

operator or matrix. Here for simplicity, we have restricted to the case (as in standard

gas dynamics and MHD) that the hyperbolic part (equation for ũ) consists of a single

scalar equation. As in [36], the results extend in straightforward fashion to the case

ũ ∈ Rk, k > 1, with σ(A11) strictly positive or strictly negative.

Following [37, 59], we assume that equations (2.2) can be written, alternatively,

after a triangular change of coordinates

W̃ := W̃ (Ũ) =

(
w̃I(ũ)

w̃II(ũ, ṽ)

)
, (2.3)

in the quasilinear, partially symmetric hyperbolic-parabolic form

Ã0W̃t + ÃW̃x = (B̃W̃x)x + G̃, (2.4)

where

Ã0 =

(
Ã0

11 0

0 Ã0
22

)
, Ã =

(
Ã11 Ã12

Ã21 Ã22

)
, B̃ =

(
0 0

0 b̃

)
, G̃ =

(
0

g̃

)

and, defining W̃+ := W̃ (U+),

(A1) Ã(W̃+), Ã0, Ã11 are symmetric, Ã0 ≥ θ0 > 0,

(A2) no eigenvector of Ã(Ã0)−1(W̃+) lies in the kernel of B̃(Ã0)−1(W̃+),

(A3) b̃ ≥ θ > 0 and g̃(W̃x, W̃x) = O(|W̃x|2).

Along with the above structural assumptions, we make the following technical

hypotheses:

(H0) F,B, Ã0, Ã, B̃, W̃ (·), g̃(·, ·) ∈ C5.

(H1) Ã11 (scalar) is either strictly positive or strictly negative, that is, either

Ã11 ≥ θ1 > 0, or Ã11 ≤ −θ1 < 0. (We shall call these cases the inflow case or outflow

case, correspondingly.)

(H2) The eigenvalues of dF (U+) are distinct and nonzero.

Condition (H1) corresponds to hyperbolic–parabolic noncharacteristicity, while (H2)

is the condition for the hyperbolicity at U+ of the associated first-order hyperbolic

system obtained by dropping second-order terms. The assumptions (A1)-(A3) and
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(H0)-(H2) are satisfied for gas dynamics and MHD with van der Waals equation of

state under inflow or outflow conditions; see discussions in [37, 9, 19, 18].

We also assume:

(B) Dirichlet boundary conditions in W̃ -coordinates:

(w̃I , w̃II)(0, t) = h̃(t) := (h̃1, h̃2)(t) (2.5)

for the inflow case, and

w̃II(0, t) = h̃(t) (2.6)

for the outflow case.

This is sufficient for the main physical applications; the situation of more general,

Neumann- and mixed-type boundary conditions on the parabolic variable v can be

treated as discussed in [19, 18].

2.1.2 One-dimensional results.

Linearizing the equations (2.2), (B) about the boundary layer Ū , we obtain the lin-

earized equation

Ut = LU := −(ĀU)x + (B̄Ux)x, (2.7)

where

B̄ := B(Ū), ĀU := dF (Ū)U − (dB(Ū)U)Ūx,

with boundary conditions (now expressed in U -coordinates)

(∂W̃/∂Ũ)(Ū0)U(0, t) = h(t) :=

(
h1

h2

)
(t) (2.8)

for the inflow case, and

(∂w̃II/∂Ũ)(Ū0)U(0, t) = h(t) (2.9)

for the outflow case, where (∂W̃/∂Ũ)(Ū0) is constant and invertible,

(∂w̃II/∂Ũ)(Ū0) = m
(
b̄1 b̄2

)
(Ū0), (2.10)
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(by (A1) and triangular structure (2.3)) is constant with m ∈ R(n−1)×(n−1) invertible,

and h := h̃− h̄.

Definition 2.1.1. The boundary layer Ū is said to be linearly X → Y stable if, for

some C > 0, the problem (2.7) with initial data U0 in X and homogeneous boundary

data h ≡ 0 has a unique global solution U(·, t) such that |U(·, t)|Y ≤ C|U0|X for all t;

it is said to be linearly asymptotically X → Y stable if also |U(·, t)|Y → 0 as t→∞.

We define the following stability criterion, where D(λ) described below, denotes

the Evans function associated with the linearized operator L about the layer, an

analytic function analogous to the characteristic polynomial of a finite-dimensional

operator, whose zeroes away from the essential spectrum agree in location and mul-

tiplicity with the eigenvalues of L:

There exist no zeroes of D(·) in the nonstable half-plane Reλ ≥ 0 (D1)

As discussed, e.g., in [51, 42, 19, 18], under assumptions (H0)-(H2), this is equiv-

alent to strong spectral stability, σ(L) ⊂ {Reλ < 0}, (ii) transversality of Ū as a

solution of the connection problem in the associated standing-wave ODE, and hyper-

bolic stability of an associated boundary value problem obtained by formal matched

asymptotics. See [19, 18] for further discussions.

Definition 2.1.2. The boundary layer Ū is said to be nonlinearly X → Y stable if,

for each ε > 0, the problem (2.2) with initial data Ũ0 sufficiently close to the profile

Ū in | · |X has a unique global solution Ũ(·, t) such that |Ũ(·, t)− Ū(·)|Y < ε for all t;

it is said to be nonlinearly asymptotically X → Y stable if also |Ũ(·, t)− Ū(·)|Y → 0

as t→∞. We shall sometimes not explicitly define the norm X, speaking instead of

stability or asymptotic stability in Y under perturbations satisfying specified smallness

conditions.

Our first main result is as follows.

Theorem 2.1.3 (Linearized stability). Assume (A1)-(A3), (H0)-(H2), and (B) with

|h(t)| ≤ E0(1 + t)−1−ε, |h′(t)| ≤ E0(1 + t)−1, for arbitrary fixed ε > 0. Let Ū be a

boundary layer. Then linearized L1∩Lp → L1∩Lp stability, 1 ≤ p ≤ ∞, is equivalent

to (D1). In the case of stability, there holds also linearized asymptotic L1 ∩ Lp → Lp
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stability, p > 1, with rate

|U(·, t)|Lp ≤ C(1 + t)−
1
2

(1−1/p)|U0|L1∩Lp + CE0(1 + t)−
1
2

(1−1/p). (2.11)

To state the pointwise nonlinear stability result, we need some notations. Denoting

by

a+
1 < a+

2 < · · · < a+
n (2.12)

the eigenvalues of of the limiting convection matrix A+ := dF (U+), define

θ(x, t) :=
∑
a+
j >0

(1 + t)−1/2e−|x−a
+
j t|

2/Mt, (2.13)

ψ1(x, t) := χ(x, t)
∑
a+
j >0

(1 + |x|+ t)−1/2(1 + |x− a+
j t|)−1/2,

(2.14)

and

ψ2(x, t) := (1− χ(x, t))(1 + |x− a+
n t|+ t1/2)−3/2, (2.15)

where χ(x, t) = 1 for x ∈ [0, a+
n t] and χ(x, t) = 0 otherwise and M > 0 is a sufficiently

large constant.

For simplicity, we measure the boundary data by function

Bh(t) :=
2∑
r=0

|(d/dt)rh| (2.16)

for the outflow case, and

Bh(t) :=
4∑
r=0

|(d/dt)rh1|+
2∑
r=0

|(d/dt)rh2| (2.17)

for the inflow case.

Then, our next result is as follows.

Theorem 2.1.4 (Nonlinear stability). Assuming (A1)-(A3), (H0)-(H2), (B), and

the linear stability condition (D1), the profile Ū is nonlinearly asymptotically stable

in Lp ∩ H4, p > 1, with respect to perturbations U0 ∈ H4, h ∈ C4 in initial and

boundary data satisfying: |h(t)| ≤ E0(1 + t)−1−ε, |h′(t)| ≤ E0(1 + t)−1, for arbitrary
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fixed ε > 0, and

‖(1 + |x|2)3/4U0‖H4 ≤ E0 and |Bh(t)| ≤ E0(1 + t)−1/4

for E0 sufficiently small. More precisely,

|Ũ(x, t)− Ū(x)| ≤ CE0(θ + ψ1 + ψ2)(x, t),

|Ũx(x, t)− Ūx(x)| ≤ CE0(θ + ψ1 + ψ2)(x, t),
(2.18)

where Ũ(x, t) denotes the solution of (2.2) with initial and boundary data Ũ(x, 0) =

Ū(x) + U0(x) and Ũ(0, t) = Ū0 + h(t), yielding the sharp rates

‖Ũ(x, t)− Ū(x)‖Lp ≤ CE0(1 + t)−
1
2

(1− 1
p

), 1 ≤ p ≤ ∞, (2.19)

‖Ũ(x, t)− Ū(x)‖H4 ≤ CE0(1 + t)−
1
4 . (2.20)

Remark 2.1.5. By the one dimensional Sobolev embedding, from the hypothesis on

U0, we automatically assume that

‖U0‖H4 ≤ E0, |U0(x)|+ |U ′0(x)| ≤ E0(1 + |x|)−3/2.

A crucial step in establishing Theorems 2.1.3 and 2.1.4 is to obtain pointwise

bounds on the Green function G(x, t; y) of the linearized evolution equations (2.7)

(more properly speaking, a distribution), which we now describe. Let a+
j , j = 1, ...., n

denote the eigenvalues of A(+∞), and l+j , r
+
j associated left and right eigenvectors,

respectively, normalized so that l+j r
+
k = δkj . Eigenvalues aj(x), and eigenvectors

lj(x), rj(x) correspond to large-time convection rates and modes of propagation of

the linearized model (2.7).

Define time-asymptotic, scalar diffusion rates

β+
j := (ljBrj)+, j = 1, ..., n, (2.21)

and local dissipation coefficient

η∗ := −D∗(x) (2.22)
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where

D∗(x) := A12b
−1
2

[
A21 − A22b

−1
2 b1 + b−1

2 b1A∗ + b2∂x(b
−1
2 b1)

]
(x)

is an effective dissipation analogous to the effective diffusion predicted by formal,

Chapman-Enskog expansion in the (dual) relaxation case,

A∗ := A11 − A12b
−1
2 b1.

Note that as a consequence of dissipativity, (A2), we obtain

η+
∗ > 0, β+

j > 0, for all j. (2.23)

We also define modes of propagation for the reduced, hyperbolic part of system (2.7)

as

L∗ =

(
1

0n−1

)
, R∗ =

(
1

−b−1
2 b1

)
(2.24)

We define the Green function G(x, t; y) of the linearized evolution equations (2.7)

with homogeneous boundary conditions (more properly speaking, a distribution), by

(i) (∂t − Lx)G = 0 in the distributional sense, for all x, y, t > 0;

(ii) G(x, t; y)→ δ(x− y) as t→ 0;

(iii) for all y, t > 0,

(
Ā∗ 0

b̄1 b̄2

)
G(0, t; y) =

(
∗
0

)
where ∗ = 0 for the inflow case

Ā∗ > 0 and ∗ is arbitrary for the outflow case Ā∗ < 0, noting that no boundary

condition is needed to be prescribed on the hyperbolic part.

By standard arguments as in [36], we have the spectral resolution, or inverse

Laplace transform formulae

eLtf =
1

2πi
P.V.

∫ η+i∞

η−i∞
eλt(λ− L)−1fdλ (2.25)

and

G(x, t; y) =
1

2πi
P.V.

∫ η+i∞

η−i∞
eλtGλ(x, y) dλ (2.26)

for any large positive η.

We prove the following pointwise bounds on the Green function G(x, t; y).

Proposition 2.1.6. Under assumptions (A1)-(A3), (H0)-(H2), (B), and (D1), we
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obtain

G(x, t; y) = H(x, t; y) + G̃(x, t; y), (2.27)

where

H(x, t; y) =
1

2π
A∗(x)−1A∗(y)δx−ā∗t(y)e−

∫ x
y (η∗/A∗)(z)dzR∗L

tr
∗

= O(e−η0t)δx−ā∗t(y)R∗L
tr
∗ ,

(2.28)

and

|∂γx∂αy G̃(x, t; y)| ≤ Ce−η(|x−y|+t)

+ C(t−(|α|+|γ|)/2 + |α|e−η|y| + |γ|e−η|x|)
( n∑
k=1

t−1/2e−(x−y−a+
k t)

2/Mt

+
∑

a+
k <0, a+

j >0

χ{|a+
k t|≥|y|}

t−1/2e−(x−a+
j (t−|y/a+

k |))
2/Mt

)
,

(2.29)

0 ≤ |α|, |γ| ≤ 1, for some η, C, M > 0, where indicator function χ{|a+
k t|≥|y|}

is 1 for

|a+
k t| ≥ |y| and 0 otherwise.

Here, the averaged convection rate ā∗(x, t) in (2.28) denotes the time-averages

over [0, t] of A∗(z) along backward characteristic paths z∗ = z∗(x, t) defined by

dz∗
dt

= A∗(z∗(x, t)), z∗(t) = x. (2.30)

In all equations, a+
j , A∗, L∗, R∗ are as defined just above.

2.1.3 Discussion

As mentioned in the Introduction, the present result extends results of [56] in the

strictly parabolic case. Let us now comment briefly on the difference between our

analysis and the earlier analysis [56] carried out by similar techniques based on the

Evans function and stationary phase estimates on the inverse Laplace transform for-

mula. Our analysis is in the same spirit as, and borrows heavily from this earlier

work. The main new issues are technical ones connected with the more singular

high-frequency/short-time behavior of hyperbolic-parabolic equations as compared

to the strictly parabolic equations considered in [56]. In particular, linearized behav-

ior in the u coordinate, U = (u, v), is essentially hyperbolic, governed for short times
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approximately by the principle part

vt + A∗(x)vx = 0, A∗ := (A11
0 )−1A11 (2.31)

Thus, we may expect as in the whole-line analysis of hyperbolic-parabolic equations

in [36] that the associated Green function contain a delta-function component trans-

ported along the hyperbolic characteristic

dx/dt = A∗(x),

with the difference that now we must consider also a possibly-complicated interaction

with the boundary.

A key point is that in fact this potential complication does not occur. For, in the

special case occurring in continuum-mechanical systems [59] that all hyperbolic signals

either enter or leave the boundary, there is no such boundary interaction and no

reflected signal. For example, in the simple scalar example (2.31), the Green function

on the half-line with either homogeneous inflow (A11 > 0) boundary condition v(0) =

0 or outflow (A11 < 0) condition v(0) arbitrary, is by inspection exactly the whole-line

Green function

g(x, t; y) = δx−āt(y)/A∗(x)

restricted to the half-line x, y > 0, where ā is the average over [0, t] of A∗(z∗(t)) along

the backward characteristic path

dz∗
dt

= A∗(z∗(x, t)), z∗(t) = x.

Indeed, comparing the description of the homogeneous boundary-value Green function

in Proposition 2.1.6 with that of the whole-line Green function in [36], we see that

they are identical. However, to prove this simple observation costs us considerable

care in the high-frequency analysis.

A further issue at the nonlinear level is to obtain nonlinear damping estimates

using energy estimates as in [37], which are somewhat complicated by the presence

of a boundary. This is necessary to prevent a loss of derivatives in the nonlinear

iteration.

As in [56], we get stability also with respect to perturbations in boundary data,
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something that was not accounted for in earlier works on long-time stability. We

mention, finally, the works [15, 42, 19, 18] in one- and multi-dimensions of a similar

spirit but somewhat different technical flavor on the related small viscosity problem–

for example, ε → 0 in (1.3)– which establish that the Evans condition (or its multi-

dimensional analog) is also sufficient for existence and stability of matched asymptotic

solution as viscosity goes to zero.

2.2 Pointwise bounds on resolvent kernel Gλ

In this section, we shall establish estimates on resolvent kernel Gλ(x, y).

2.2.1 Evans function framework

Before starting the analysis, we review the basic Evans function methods and gap/conjugation

lemma.

The gap/conjugation lemma

Consider a family of first order ODE systems on the half-line:

W ′ = A(x, λ)W, λ ∈ Ω and x > 0,

B(λ)W = 0, λ ∈ Ω and x = 0.
(2.32)

These systems of ODEs should be considered as a generalized eigenvalue equation,

with λ representing frequency. We assume that the boundary matrix B is analytic in

λ and that the coefficient matrix A is analytic in λ as a function from Ω into L∞(x),

CK in x, and approaches exponentially to a limit A+(λ) as x → ∞, with uniform

exponentially decay estimates

|(∂/∂x)k(A− A+)| ≤ C1e
−θ|x|/C2 , for x > 0, 0 ≤ k ≤ K, (2.33)

Cj, θ > 0, on compact subsets of Ω. Now we can state a refinement of the “Gap

Lemma” of [14, 31], relating solutions of the variable-coefficient ODE to the solutions

of its constant-coefficient limiting equations

Z ′ = A+(λ)Z (2.34)
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as x→ +∞.

Lemma 2.2.1 (Conjugation Lemma [42]). Under assumption (2.33), there exists

locally to any given λ0 ∈ Ω a linear transformation P+(x, λ) = I+Θ+(x, λ) on x ≥ 0,

Φ+ analytic in λ as functions from Ω to L∞[0,+∞), such that:

(i) |P+| and their inverses are uniformly bounded, with

|(∂/∂λ)j(∂/∂x)kΘ+| ≤ C(j)C1C2e
−θ|x|/C2 for x > 0, 0 ≤ k ≤ K + 1, (2.35)

j ≥ 0, where 0 < θ < 1 is an arbitrary fixed parameter, and C > 0 and the size of the

neighborhood of definition depend only on θ, j, the modulus of the entries of A at λ0,

and the modulus of continuity of A on some neighborhood of λ0 ∈ Ω.

(ii) The change of coordinates W := P+Z reduces (2.32) on x ≥ 0 to the asymp-

totic constant-coefficient equations (2.34). Equivalently, solutions of (2.32) may be

conveniently factorized as

W = (I + Θ+)Z+, (2.36)

where Z+ are solutions of the constant-coefficient equations, and Θ+ satisfy bounds.

Proof. As described in [36], for j = k = 0 this is a straightforward corollary of the

gap lemma as stated in [59], applied to the “lifted” matrix-valued ODE

P ′ = A+P − PA + (A− A+)P

for the conjugating matrices P+. The x-derivative bounds 0 < k ≤ K + 1 then follow

from the ODE and its first K derivatives. Finally, the λ-derivative bounds follow

from standard interior estimates for analytic functions.

Definition 2.2.2. Following [1], we define the domain of consistent splitting for the

ODE system W ′ = A(x, λ)W as the (open) set of λ such that the limiting matrix A+

is hyperbolic (has no center subspace) and the boundary matrix B is full rank, with

dimS+ = rank B.

Lemma 2.2.3. On any simply connected subset of the domain of consistent splitting,

there exist analytic bases {v1, . . . , vk}+ and {vk+1, . . . , vN}+ for the subspaces S+ and

U+ defined in Definition 2.2.2.
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Proof. By spectral separation of U+, S+, the associated (group) eigenprojections are

analytic. The existence of analytic bases then follows by a standard result of Kato;

see [32], pp. 99–102.

Corollary 2.2.4. By the Conjugation Lemma , on the domain of consistent splitting,

the stable manifold of solutions decaying as x→ +∞ of (2.32) is

S+ := span {P+v
+
1 , . . . , P+v

+
k }, (2.37)

where W j
+ := P+v

+
j are analytic in λ and CK+1 in x for A ∈ CK.

Definition of the Evans Function

On any simply connected subset of the domain of consistent splitting, letW+
1 , . . . ,W

+
k =

P+v
+
1 , . . . , P+v

+
k be the analytic basis described in Corollary 2.2.4 of the subspace S+

of solutions W of (2.32) satisfying the boundary condition W → 0 at +∞. Then, the

Evans function for the ODE systems W ′ = A(x, λ)W associated with this choice of

limiting bases is defined as the k × k Gramian determinant

D(λ) := det
(
BW+

1 , . . . ,BW+
k

)
|x=0,λ

= det
(
BP+v

+
1 , . . . ,BP+v

+
k

)
|x=0,λ

.
(2.38)

Remark 2.2.5. Note that D is independent of the choice of P+ as, by uniqueness

of stable manifolds, the exterior products (minors) P+v
+
1 ∧ · · · ∧ P+v

+
k are uniquely

determined by their behavior as x→ +∞.

Proposition 2.2.6. Both the Evans function and the subspace S+ are analytic on

the entire simply connected subset of the domain of consistent splitting on which they

are defined. Moreover, for λ within this region, equation (2.32) admits a nontrivial

solution W ∈ L2(x > 0) if and only if D(λ) = 0.

Proof. Analyticity follows by uniqueness, and local analyticity of P+, v+
k . Noting

that the first P+v
+
j are a basis for the stable manifold of (2.32) at x→ +∞, we find

that the determinant of BP+v
+
j vanishes if and only if B(λ) has nontrivial kernel on

S+(λ, 0), whence the second assertion follows.
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Remark 2.2.7. In the case (as here) that the ODE system describes an eigenvalue

equation associated with an ordinary differential operator L, Proposition 2.2.6 implies

that eigenvalues of L agree in location with zeroes of D. (Indeed, they agree also in

multiplicity; see [12, 13]; Lemma 6.1, [60]; or Proposition 6.15 of [36].)

When ker B has an analytic basis v0
k+1, . . . , v

0
N , for example, in the commonly

occurring case, as here, that B ≡ constant, we have the following useful alternative

formulation. This is the version that we will use in our analysis of the Green function

and Resolvent kernel.

Proposition 2.2.8. Let v0
k+1, . . . , v

0
N be an analytic basis of ker B, normalized so that

det
(
B∗, v0

k+1, . . . v
0
N

)
≡ 1. Then, the solutions W 0

j of (2.32) determined by initial data

W 0
j (λ, 0) = v0

j are analytic in λ and CK+1 in x, and

D(λ) := det
(
W+

1 , . . . ,W
+
k ,W

0
k+1, . . . ,W

0
N

)
|x=0,λ

. (2.39)

Proof. Analyticity/smoothness follow by analytic/smooth dependence on initial data/parameters.

By the chosen normalization, and standard properties of Grammian determinants,

D(λ) = det
(
W+

1 , . . . ,W
+
k , v

0
k+1, . . . , v

0
N

)
|x=0,λ

,

yielding (2.39).

The tracking/reduction lemma

Next, consider a family of systems

W ′ = A(x, p, ε)W, p ∈ P , ε ∈ R+ and x > 0,

B(p, ε)W = 0, λ ∈ Ω and x = 0
(2.40)

parametrized by p, ε, with ε→ 0. The main example we have in mind is (2.32) with

p = λ/|λ| and ε := |λ|−1, in the high-frequency regime |λ| → ∞. We assume further

that by some coordinate change we can arrange that

A =

(
M+ 0

0 M−

)
+ Θ, (2.41)

20



with

|Θ| ≤ δ(ε), <(M+ −M−) ≥ 2η(ε) + αε(x), (2.42)

‖α‖L1(R+) uniformly bounded for all ε sufficiently small, and

(δ/η)(ε)→ 0 as ε→ 0, (2.43)

where <(Q) := (1/2)(Q+Q∗) denotes the symmetric part of a matrix Q.

Then, we have the following analog of Lemma 5.4.3, asserting that the approxi-

mately block-diagonalized equations (2.40) may be converted by a smooth coordinate

transformation (
I Θ1

Θ2 I

)
→ I as ε→ 0

to exactly diagonalized form with the same leading part M.

Lemma 2.2.9 ([36]). Consider a system (2.41), with F̃ ≡ 0 and δ/η → 0 as ε→ 0.

Then, (i) for all 0 < ε ≤ ε0, there exist (unique) linear transformations Φε
1(z, p) and

Φε
2(z, p), possessing the same regularity with respect to the various parameters z, p,

ε as do coefficients M± and Θ, for which the graphs {(Z1,Φ
ε
2Z1)} and {(Φε

1Z2, Z2)}
are invariant under the flow of (2.41), and satisfying

|Φε
1|, |Φε

2| ≤ Cδ(ε)/η(ε) for all z.

In particular, (ii) the subspace E− of data at z = 0 for which the solution decays as

z → +∞, given by span {(Φε
1(0, p)v, v)}, converges as ε→ 0 to Ẽ− := span {(0, v)}.

Proof. Standard contraction mapping argument carried out on the “lifted” equa-

tions governing the flow of the conjugating matrices Φε
j ; see Appendix C, [36].

Remark 2.2.10. In practice, we usually have αε ≡ 0, as can be obtained in general

by a change of coordinates multiplying the first coordinate by exponential weight

e
∫
αεdx.

2.2.2 Construction of the resolvent kernel

In this section we construct the explicit form of the resolvent kernel, which is nothing

more than the Green function Gλ(x, y) associated with the elliptic operator (L−λI),
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where

(L− λI)Gλ(·, y) = δyI,

(
Ā∗ 0

b̄1 b̄2

)
Gλ(0, y) ≡

(
∗
0

)
(2.44)

where ∗ = 0 for the inflow case and is arbitrary for the outflow case.

Let Λ be the region of consistent splitting for L. It is a standard fact (see, e.g.,

[He]) that the resolvent (L−λI)−1 and the Green function Gλ(x, y) are meromorphic

in λ on Λ, with isolated poles of finite order.

Writing the associated eigenvalue equation LU−λU = 0 in the form of a first-order

system (2.32) as follows: W := (u, v, z) ∈ C2n−1 with z := b1u
′ + b2v

′, and

u′ = A−1
∗ (−A12b

−1
2 z − (A′11 + λ)u− A′12v),

v′ = b−1
2 z − b−1

2 b1u
′, (2.45)

z′ = (A21 − A22b
−1
2 b1)u′ + A22b

−1
2 z + A′21u+ (A′22 + λ)v.

Domain of consistent splitting

Define

Λ := ∩Λ+
j , j = 1, 2, ..., n (2.46)

where Λ+
j denote the open sets bounded on the left by the algebraic curves λ+

j (ξ)

determined by the eigenvalues of the symbols −ξ2B+− iξA+ of the limiting constant-

coefficient operators

L+w := B+w
′′ − A+w

′ (2.47)

as ξ is varied along the real axis. The curves λ+
j comprise the essential spectrum of

operators L+.

Lemma 2.2.11 ([36]). The set Λ is equal to the component containing real +∞ of the

domain of consistent splitting for (2.45). Moreover, under (A1)–(A3), (H0)–(H2),

Λ ⊂ {λ : <eλ > −η|=mλ|/(1 + |=mλ|), η > 0. (2.48)

Basic construction

We first recall the following duality relation derived for the degenerate viscosity case

in [36].
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Lemma 2.2.12 ([60, 36]). The function W = (U,Z) is a solution of (2.45) if and

only if W̃ ∗S̃W ≡ constant for any solution W̃ = (Ũ , Z̃) of the adjoint eigenvalue

equation, where

S̃ =

 −A11 −A12 0

−A21 −A22 Ir

−b−1
2 b1 −Ir 0

 (2.49)

and

Z = (b1, b2)U ′, Z̃ = (0, b∗2)Ũ ′. (2.50)

For future reference, we note the representation

S̃−1 =

 −A−1
∗ 0 A−1

∗ A12

b−1
2 b1A

−1
∗ 0 −b−1

2 b1A
−1
∗ A12 − Ir

−ÃA−1
∗ Ir −A22 + ÃA−1

∗ A12

 (2.51)

where Ã := A21−A22b−1b1, A∗ := A11−A12b
−1
2 b1, obtained by direct computation in

[36].

Denote by

Φ0 = (φ0
k+1(x;λ), · · · , φ0

n+r(x;λ)), (2.52)

Φ+ = (φ+
1 (x;λ), · · · , φ+

k (x;λ) = (P+v
+
1 , · · · , P+v

+
k ), (2.53)

and

Φ = (Φ+,Φ0), (2.54)

the matrices whose columns span the subspaces of solutions of (2.32) that, respec-

tively, decay at x = +∞, and satisfy the prescribed boundary conditions at x = 0,

denoting (analytically chosen) complementary subspaces by

Ψ0 = (ψ0
1(x;λ), · · · , ψ0

k(x;λ)), (2.55)

Ψ+ = (ψ+
k+1(x;λ), · · · , ψ+

n+r(x;λ)) (2.56)

and

Ψ = (Ψ0,Ψ+). (2.57)

As described in the previous subsection, eigenfunctions decaying at +∞ and sat-

isfying the prescribed boundary conditions at 0 occur precisely when the subspaces
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span Φ0 and span Φ+ intersect, i.e., at zeros of the Evans function defined in (2.39):

DL(λ) := det(Φ0,Φ+)|x=0. (2.58)

Define the solution operator from y to x of (L− λ)U = 0, denoted by Fy→x, as

Fy→x = Φ(x, λ)Φ−1(y, λ)

and the projections Π0
y,Π

+
y on the stable manifolds at 0,+∞ as

Π+
y =

(
Φ+(y) 0

)
Φ−1(y), Π0

y =
(

0 Φ0(y)
)

Φ−1(y).

With these preparations, the construction of the Resolvent kernel goes exactly as

in the construction performed in [60, 36] on the whole line.

Lemma 2.2.13. We have the the representation

Gλ(x, y) =

(In, 0)Fy→xΠ+
y S̃
−1(y)(In, 0)tr, for x > y,

−(In, 0)Fy→xΠ0
yS̃
−1(y)(In, 0)tr, for x < y.

(2.59)

Moreover, on any compact subset K of ρ(L) ∩ Λ,

|Gλ(x, y)| ≤ Ceη|x−y|, (2.60)

where C > 0 and η > 0 depend only on K,L.

We define also the dual subspaces of solutions of (L∗ − λ∗)W̃ = 0. We denote

growing solutions

Φ̃0 =
(
φ̃0

1(x;λ) · · · φ̃0
k(x;λ)

)
, (2.61)

Φ̃+ =
(
φ̃+
k+1(x;λ) · · · φ̃+

n+r(x;λ)
)
, (2.62)

Φ̃ := (Φ̃0, Φ̃+) and decaying solutions

Ψ̃0 =
(
ψ̃0

1(x;λ) · · · ψ̃+
k (x;λ)

)
, (2.63)

Ψ̃+ =
(
ψ̃+
k+1(x;λ) · · · ψ̃+

n+r(x;λ),
)

(2.64)
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and Ψ̃ := (Ψ̃0, Ψ̃+), satisfying the relations(
Ψ̃ Φ̃

)∗
0,+

S̃
(

Ψ Φ
)

0,+
≡ I.

Then, we have

Proposition 2.2.14. The resolvent kernel may alternatively be expressed as

Gλ(x, y) =

(In, 0)Φ+(x;λ)M+(λ)Ψ̃0∗(y;λ)(In, 0)tr x > y,

−(In, 0)Φ0(x;λ)M0(λ)Ψ̃+∗(y;λ)(In, 0)tr x < y,
(2.65)

where

M(λ) := diag(M+(λ),M0(λ)) = Φ−1(z;λ)S̄−1(z)Ψ̃−1∗(z;λ). (2.66)

From Proposition 2.2.14, we obtain the following scattering decomposition, gen-

eralizing the Fourier transform representation in the constant-coefficient case

Corollary 2.2.15. On Λ ∩ ρ(L),

Gλ(x, y) =
∑
j,k

d+
jkφ

+
j (x;λ)ψ̃+

k (y;λ)∗ +
∑
k

φ+
k (x;λ)φ̃+

k (y;λ)∗ (2.67)

for 0 ≤ y ≤ x, and

Gλ(x, y) =
∑
j,k

d0
jk(λ)φ+

j (x;λ)ψ̃+
k (y;λ)∗ +

∑
k

ψ+
k (x;λ)ψ̃+

k (y;λ)∗ (2.68)

for 0 ≤ x ≤ y, where d0,+
jk (λ) = O(λ−K) are scalar meromorphic functions with pole

of order K less than or equal to the order to which the Evans function D(λ) vanishes

at λ = 0 (note that K = 0 under assumption (D1)).

Proof. Matrix manipulation of expression (2.66), Kramer’s rule, and the definition of

the Evans function; see [36].

Remark 2.2.16. In the constant-coefficient case, with a choice of common bases

Ψ0,+ = Φ+,0 at 0,+∞, the above representation (2.2.15) reduces to the simple formula

Gλ(x, y) =


∑N

j=k+1 φ
+
j (x;λ)φ̃+∗

j (y;λ) x > y,

−
∑k

j=1 ψ
+
j (x;λ)ψ̃+∗

j (y;λ) x < y.
(2.69)
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2.2.3 High frequency estimates

We now turn to the crucial estimation of the resolvent kernel in the high-frequency

regime |λ| → +∞, following the general approach of [36]. Define sectors

ΩP := {λ : <eλ ≥ −θ1|=mλ|+ θ2}, θj > 0. (2.70)

and

Ω := {λ : − η1 ≤ <eλ} (2.71)

with η1 sufficiently small such that Ω \ B(0, r) is compactly contained in the set of

consistent splitting Λ, for some small r to be chosen later. Then, we have the following

crucial result analogous to the estimates on the whole line performed in [36].

Proposition 2.2.17. Assume that (A1)-(A3), (H0)-(H2), and (B) hold. Then for

any r > 0 and η1 = η1(r) > 0 chosen sufficiently small such that Ω\B(0, r) ⊂ Λ∩ρ(L).

Moreover for R > 0 sufficiently large, the following decomposition holds on Ω\B(0, R):

Gλ(x, y) = Hλ(x, y) + Pλ(x, y) + ΘH
λ (x, y) + ΘP

λ (x, y), (2.72)

where

Hλ(x, y) =

χ{A∗>0}A∗(x)−1e
∫ x
y (−λ/A∗−η∗/A∗)(z)dzR∗L

tr
∗ x > y,

χ{A∗<0}A∗(x)−1e
∫ x
y (−λ/A∗−η∗/A∗)(z)dzR∗L

tr
∗ x < y,

(2.73)

and
ΘH
λ (x, y) = λ−1Bλ(x, y;λ) + λ−1(x− y)Cλ(x, y;λ),

ΘP
λ (x, y) = λ−2Dλ(x, y;λ)

(2.74)

where

Bλ(x, y) = Cλ(x, y) =

χ{A∗>0}e
−
∫ x
y λ/A∗(z)dzb∗(x, y) x > y,

χ{A∗<0}e
−
∫ x
y λ/A∗(z)dzb∗(x, y) x < y,

(2.75)

with

b∗ := e
∫ x
y (−η∗/A∗)(z)dz = O(e−θ|x−y|), (2.76)

due to (2.23), and

Dλ(x, y;λ) = O(e−θ(1+Reλ)|x−y| + e−θ|λ|
1/2|x−y|), (2.77)
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for some uniform θ > 0 independent of x, y, z, each described term separately analytic

in λ, and Pλ is analytic in λ on a (larger) sector ΩP as in (2.70), with θ1 sufficiently

small, and θ2 sufficiently large, satisfying uniform bounds

(∂/∂x)α(∂/∂y)βPλ(x, y) = O(|λ|(|α|+|β|−1)/2)e−θ|λ|
1/2|x−y|, θ > 0, (2.78)

for |α|+ |β| ≤ 2 and 0 ≤ |α|, |β| ≤ 1.

Likewise, the following derivative bounds also hold:

(∂/∂x)Θλ(x, y) =
(
B0
x(x, y;λ) + (x− y)C0

x(x, y;λ)
)

+ λ−1
(
B1
x(x, y;λ)

+ (x− y)C1
x(x, y;λ) + (x− y)2D1

x(x, y;λ)
)

+ λ−3/2Ex(x, y;λ)

and

(∂/∂y)Θλ(x, y) =
(
B0
y(x, y;λ) + (x− y)C0

y (x, y;λ)
)

+ λ−1
(
B1
y(x, y;λ)

+ (x− y)C1
y (x, y;λ) + (x− y)2D1

y(x, y;λ)
)

+ λ−3/2Ey(x, y;λ)

where Bα
β , Cα

β , and D1
β satisfy bounds of the form (2.75), and Eβ satisfies a bound of

the form (2.77).

Proof. We shall follow closely the argument in [36], with the new feature of boundary

treatments, or estimates of Φ0,Ψ0. Writing the associated eigenvalue equation LU −
λU = 0 in the form of a first-order system as follows: W := (u, v, z) ∈ C2n−1 with

z := b1u
′ + b2v

′, and

u′ = A−1
∗ (−A12b

−1
2 z − (A′11 + λ)u− A′12v),

v′ = b−1
2 z − b−1

2 b1u
′, (2.79)

z′ = (A21 − A22b
−1
2 b1)u′ + A22b

−1
2 z + A′21u+ (A′22 + λ)v

or

W ′ = AW. (2.80)
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Recall from Lemma 2.2.13 that we have the the representation

Gλ(x, y) =

(In, 0)Fy→xW Π+
W (y)S̃−1(y)(In, 0)tr, for x > y,

−(In, 0)Fy→xW Π0
W (y)S̃−1(y)(In, 0)tr, for x < y.

(2.81)

We shall find it more convenient to use the “local” coordinates ũ := A∗u, ṽ :=

b1u+ b2v. yielding from (2.45):

ũx = −λA−1
∗ ũ− (A12b

−1
2 ṽ)x

(ṽx)x =
[
((A21 − A22b

−1
2 b1 + b2∂x(b

−1
2 b1))A−1

∗ ũ)x (2.82)

+ ((A22 + ∂x(b2)b−1
2 )ṽ)x + λb−1

2 b1A
−1
∗ ũ+ λb−1

2 ṽ
]
.

Following standard procedure (e.g., [1, 14, 60, 36]), performing the rescaling

x̃ := |λ|x, λ̃ := λ/|λ|, (2.83)

and changing coordinates W 7→ Y = QW , where

Y = (ũ, ṽ, ṽx)
tr = (A∗u, b1u+ b2v, (b1u+ b2v)x)

tr, (2.84)

Q =

 A∗ 0 0

b1 b2 0

|λ|−1∂xb1 |λ|−1∂xb2 |λ|−1Ir,

 (2.85)

and

Q−1 =

 A−1
∗ 0 0

−b−1
2 b1A

−1
∗ b−1

2 0

−|λ|b2∂x(b
−1
2 b1)A−1

∗ −|λ|∂x(b2)b−1
2 |λ|Ir,

 (2.86)

we obtain the first order equations

Y ′ = A(x̃, |λ|−1)Y, Y := (ũ, ṽ, ṽ′)tr, ′ := ∂x̃ (2.87)

where

A(x̃, |λ|−1) = A0(x̃) + |λ|−1A1(x̃) +O(|λ|−2), (2.88)
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with

A0(x̃) =

−λ̃A
−1
∗ 0 −A12b

−1
2

0 0 Ir

0 0 0



A1(x̃) =

 0 −∂x(A12b
−1
2 ) 0

0 0 0

−λ̃d∗A−2
∗ λ̃b−1

2 e∗b
−1
2


(2.89)

d∗ := A21 − A22b
−1
2 b1 − b−1

2 b1A∗ + b2∂x(b
−1
2 b1),

e∗ := A22 + d∗A
−1
∗ A12 + ∂x(b2).

(2.90)

We will carry out the details of the lower-order estimates in Proposition 2.2.17,

leaving high-order estimates and derivative bounds as brief remarks at the end. First,

observe that the representation (2.81) becomes

Gλ(x, y) =

(In, 0)Q−1Fy→xY Π+
Y (y)QS̃−1(y)(In, 0)tr, for x > y,

−(In, 0)Q−1Fy→xY Π0
Y (y)QS̃−1(y)(In, 0)tr, for x < y

(2.91)

where Π0,+
Y and Fy→xY denote projections and flows in Y−coordinates.

Initial diagonalization.

Applying the formal iterative diagonalization procedure described in [36, Proposition

3.12], one obtains the approximately block-diagonalized system

Z ′ = D(x̃, |λ|−1)Z, TZ := Y, D := T−1AT, (2.92)

T (x̃, |λ|−1) = T0(x̃) + |λ|−1T1(x̃) + · · ·+ |λ|−3T3(x̃) (2.93)

D(x̃, |λ|−1) = D0(x̃) + |λ|−1D1(x̃) + · · ·+D3(x̃)|λ|−3 +O(|λ|−4), (2.94)

where without loss of generality (since T0 is uniquely determined up to a constant

linear coordinate change)

T0 :=

1 0 −λ̃−1A∗A12b
−1
2

0 Ir 0

0 0 Ir

 , T−1
0 =

1 0 λ̃−1A∗A12b
−1
2

0 Ir 0

0 0 Ir

 (2.95)
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and

D0 :=

−λ̃A
−1
∗ 0 0

0 0 Ir

0 0 0

 , D1 :=

−η∗A
−1
∗ 0 0

0 0 0

0 λ̃b−1
2 ∗

 (2.96)

with η∗ as defined in (2.22); see Proposition 3.12 [36]. (Here, the simple block upper-

triangular form of A0 has been used to deduce the above simple form of D0, D1.)

The parabolic block.

At this point, we have approximately diagonalized our system into a 1× 1 hyperbolic

block with eigenvalue µ̃ = −λ̃/A∗ of A0, and a 2r × 2r parabolic block

Z ′p = NZp (2.97)

with

N :=

(
0 Ir

0 0

)
+ |λ|−1

(
0 0

λ̃b−1
2 ∗

)
+O(|λ|−2). (2.98)

Balancing this matrix N by transformations B := diag{Ir, |λ|−1/2Ir} we get

M̃ := B−1NB = |λ|−1/2M̃1 +O(|λ|−1), M̃1 :=

(
0 Ir

λ̃b−1
2 0

)
(2.99)

Observe that σ(M̃1) = ±
√
σ(λ̃b−1

2 ) has a uniform spectral gap of order one. Thus,

there is a well-conditioned transformation S = S(M̃1) depending continuously on M̃1

such that

M̂1 := S−1M̃1S = diag{M̂−, M̂+} (2.100)

with M̂±
1 uniformly positive/negative definite, respectively. Applying this coordinate

change, and noting that the “dynamic error” S−1∂x̃S is of order ∂x̃M̃1 = O(|λ|−1),

we obtain the formal expansion

M̂(x̃, |λ|−1) = |λ|−1/2diag{M̂−
1 , M̂

+
1 }+O(|λ|−1). (2.101)

Finally, on sector ΩP , blocks |λ|−1/2M̂±
1 are exponentially separated to order

|λ|−1/2. Thus, by the reduction lemma, Lemma 2.2.9, there is a further transfor-
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mation Ŝ := I2r +O(|λ|−1/2) converting M̂ to the fully diagonalized form

M(x̃, |λ|−1) := |λ|−1/2Ŝ−1
(
M̂1 +O(|λ|−1/2)

)
Ŝ

= O(|λ|−1/2)diag{M−
1 ,M

+
1 }

where M±
1 = M̂±

1 +O(|λ|−1/2) are still uniformly positive/negative definite.

In summary, changing coordinates

BSŜẐp = Zp, (2.102)

(2.97) yields

Ẑ ′p = O(|λ|−1/2)

(
M−

1 0

0 M+
1

)
Ẑp +O(|λ|−3/2) (2.103)

Therefore the transformation

T := (T0 + |λ|−1T1)

(
1 0

0 BSŜ

)
(2.104)

converts equations (2.87) to the following:

ζ ′ = −(λ̃A−1
∗ + |λ|−1η∗A

−1
∗ )ζ +O(|λ|−2)

ρ′± = |λ|−1/2M±
1 ρ± +O(|λ|−3/2)

(2.105)

by relation

T Z = Y, Z = (ζ, ρ−, ρ+)tr. (2.106)

Then, we have the the representation

Gλ(x, y) =

(In, 0)Q−1T Fy→xZ Π+
Z(y)T −1QS̃−1(y)(In, 0)tr, for x > y,

−(In, 0)Q−1T Fy→xZ Π0
Z(y)T −1QS̃−1(y)(In, 0)tr, for x < y,

(2.107)

thanks to the fact that

Fy→xY = T Fy→xZ T −1, Π+
Y = T Π+

ZT
−1. (2.108)
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Computing, we have

T =

1 |λ|−1/2 |λ|−1/2

0 O(1) O(1)

0 |λ|−1/2 |λ|−1/2

 T −1 =

1 0 λ̃−1A∗A12b
−1
2

0 O(1) |λ|1/2

0 O(1) |λ|1/2


and

(In, 0)Q−1 =

(
A−1
∗ 0 0

−b−1
2 b1A

−1
∗ b−1

2 0

)
(2.109)

(In, 0)Q−1T =

(
A−1
∗ O(|λ|−1/2) O(|λ|−1/2)

−b−1
2 b1A

−1
∗ O(1) O(1)

)
(2.110)

and

QS̃−1(In, 0)tr =

 −1 0

0 0

|λ|−1 |λ|−1Ir

 (2.111)

T −1QS̃−1(In, 0)tr =

−1 + |λ|−1 O(|λ|−1)

O(|λ|−1/2) O(|λ|−1/2)

O(|λ|−1/2) O(|λ|−1/2)

 (2.112)

Therefore now we are ready to estimate Fy→xZ Π+
Z and Fy→xZ Π+

Z .

Estimates on projections and solution operators

We shall give estimates on the projections:

Π+
Z = (Φ+, 0)(Φ+,Φ0)−1, Π0

Z = (0,Φ0)(Φ+,Φ0)−1 (2.113)

and the solution operators:

Fy→xZ = (Φ+(x),Φ0(x))(Φ+(y),Φ0(y))−1. (2.114)

First, let Φp+/Ψp+ be the decaying/growing basis solutions of

ρ′− = |λ|−1/2M−
1 ρ− and ρ′+ = |λ|−1/2M+

1 ρ+ (2.115)

32



and φh+/ψh+ be the decaying/growing basis solutions of

ζ ′ = −(λ̃A−1
∗ + |λ|−1η∗A

−1
∗ )ζ. (2.116)

Lemma 2.2.18. [Inflow case] For the inflow case A∗ > 0, we obtain

Π+
Z =

1 0 −|λ|−1/2φh+e(λ)Ψp+−1

0 Ir −Φp+E(λ)Ψp+−1

0 0 0

 (2.117)

Π0
Z =

0 0 |λ|−1/2φh+e(λ)Ψp+−1

0 0 Φp+E(λ)Ψp+−1

0 0 Ir

 (2.118)

with bounded functions e(λ), E(λ), and

Fy→xZ =

φ
h+(x)φh+(y)−1 0 0

0 Φp+(x)Φp+(y)−1 0

0 0 Ψp+(x)Ψp+(y)−1

 (2.119)

Proof. We have the decaying basis solution in Z-coordinates of the first order equa-

tions (2.105)

Φ+ =

φ
h+ 0

0 Φp+

0 0

+O(|λ|−1). (2.120)

Since Φ+ and Ψ+ (exactly Ψp+) form a basis solution, we can write

Φ0(x) = e(λ)

φ
h+

0

0

+

 0

Φp+(x)E(λ)

0

+

 0

0

Ψp+(x)F (λ)

 (2.121)

Now since {ψp+j }j forms a basis, we can take {ψp+j (0)} to be the analytic basis for

Y at x = 0. Also as we recall that Z = T −1Y , we compute

φ0
j|x=0

= T −1

 0

0

ψp+j (0)

 =

 O(1)

|λ|1/2ψp+j (0)

|λ|1/2ψp+j (0)

 (2.122)
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This and (2.121) yield

Φ0(x) =

 e(λ)φh+(x)

|λ|1/2Φp+(x)E(λ)

|λ|1/2Ψp+(x)

+O(|λ|−1/2) (2.123)

where

E(λ) = (E1(λ), . . . , Er(λ))tr, Ej(λ) = ψp+j (0, λ)Φp+(0, λ)−1 (2.124)

and e(λ), Ej(λ) ∈ Rr are bounded functions in λ. Therefore computing, we get

(Φ+,Φ0)−1 =

φ
h+−1

0 −|λ|−1/2e(λ)Ψp+−1

0 Φp+−1 −E(λ)Ψp+−1

0 0 |λ|−1/2Ψp+−1

 (2.125)

and hence straightforward computations give the lemma.

Lemma 2.2.19. [Outflow case] For the outflow case A∗ < 0, we obtain

Π+
Z =

0 0 0

0 Ir −Φp+EΨp+−1

0 0 0

 , Π0
Z =

1 0 0

0 0 Φp+EΨp+−1

0 0 Ir

 , (2.126)

where E(λ) is a bounded function in λ determined below. Moreover,

Fy→xZ =

ψ
h+(x)ψh+(y)−1 0 0

0 Φp+(x)Φp+(y)−1 0

0 0 Ψp+(x)Ψp+(y)−1

 (2.127)

Proof. Similarly, we have Φ+ = Φp+ and Φ0 = (φh0,Φp0) where we can write

Φ0(x) =

 0

Φp+(x)E(λ)

0

+ e(λ)

ψ
h+

0

0

+

 0

0

Ψp+(x)F (λ)

 . (2.128)
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As before, using the form of the linearized boundary conditions (2.9), we can take

φp0j|x=0
= T −1

 0

0

ψp+j (0)

 =

 O(1)

|λ|1/2ψp+j (0)

|λ|1/2ψp+j (0)

 (2.129)

and thus

Φp0(x) =

 e(λ)ψh+(x)

|λ|1/2Φp+(x)E(λ)

|λ|1/2Ψp+(x)

 (2.130)

with bounded functions e(λ) and Ej(λ) = ψp+j (0, λ)Φp+(0, λ)−1.

Similarly, we take

φh0
|x=0

= T −1

1

0

0

 =

1

0

0


and thus

φh0(x) =

ψ
h+(x)

0

0

 (2.131)

Putting together and computing, we obtain

(Φ+,Φ0) =

 0 ψh+ e(λ)ψh+

Φp+ 0 |λ|1/2Φp+E(λ)

0 0 |λ|1/2Ψp+

 (2.132)

and

(Φ+,Φ0)−1 =

 0 Φp+−1 −E(λ)Ψp+−1

ψh+−1
0 −|λ|−1/2e(λ)Ψp+−1

0 0 |λ|−1/2Ψp+−1

 (2.133)

Direct computations yield the lemma.
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Estimates on Gλ: Inflow case A∗ > 0.

Now we are ready to combine all above estimates to give the bounds on resolvent

kernel Gλ. We shall work in detail for the case x > y. Similar estimates can be easily

obtained for x < y. First decompose the projection as Π+
Z = Πh+

Z + Πp+
Z where

Πh+
Z =

1 0 −|λ|−1/2φh+e(λ)Ψp+−1

0 0 0

0 0 0



Πp+
Z =

0 0 0

0 Ir −Φp+E(λ)Ψp+−1

0 0 Ir


(2.134)

Hence

Hλ(x, y) = (In, 0)Q−1T Fy→xZ Πh+
Z (y)T −1QS̃−1(y)(In, 0)tr

= φh+(x)φh+(y)−1

(
(−1 +O(|λ|−1))A−1

∗ O(|λ|−1)A−1
∗

(1 +O(|λ|−1))b−1
2 b1A

−1
∗ O(|λ|−1)b−1

2 b1A
−1
∗

)

= φh+(x)φh+(y)−1

(
−A−1

∗ (x) 0

b−1
2 b1A

−1
∗ (x) 0

)
+O(|λ|−1)φh+(x)φh+(y)−1,

= φh+(x)φh+(y)−1R∗L
tr
∗ +O(|λ|−1)φh+(x)φh+(y)−1,

recalling that φh+(x)φh+(y)−1 is the solution operator of hyperbolic equation in

(2.116) and thus satisfies

φh+(x)φh+(y)−1 = e
∫ x̃
ỹ (−1/A∗−|λ|−1η∗/A∗)(z)dz = e

∫ x
y (−λ/A∗−η∗/A∗)(z)dz. (2.135)

At the same time, computing Pλ(x, y), we obtain

Pλ(x, y) = (In, 0)Q−1T Fy→xZ Πp+
Z (y)T −1QS̃−1(y)(In, 0)tr

= O(|λ|−1/2)Φp+(x)Φp+(y)−1

recalling that Φp+(x)Φp+(y)−1 is the (stable) solution operator of parabolic equation
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(2.115), with M−
1 uniformly negative definite, and thus we have an obvious estimate

|Φp+(x)Φp+(y)−1| ≤ Ce−θ|λ|
−1/2(x̃−ỹ) ≤ Ce−θ|λ|

1/2(x−y). (2.136)

We therefore obtain

Pλ(x, y) = O(|λ|−1/2)e−θ|λ|
1/2(x−y). (2.137)

Estimates on Gλ: Outflow case A∗ < 0.

Again as above, we shall work in detail for the case x > y. Similar estimates can be

easily obtained for x < y. Estimates in Lemma 2.2.19 yield

Fy→xZ Π+
Z(y) =

0 0 0

0 Φp+(x)Φp+(y)−1 −Φp+(x)E(λ)Ψp+(y)−1

0 0 0

 (2.138)

where Φp+(x)E(λ)Ψp+(y)−1 ≤ CΦp+(x)Φp+(y)−1. Observe that Πh+
Z ≡ 0. Therefore,

Hλ(x, y) = 0 and

Pλ(x, y) = (In, 0)Q−1T Fy→xZ Πp+
Z (y)T −1QS̃−1(y)(In, 0)tr

= Φp+(x)Φp+(y)−1

(
O(|λ|−1) O(|λ|−1)

O(|λ|−1/2) O(|λ|−1/2)

)
≤ C|λ|−1/2e−θ|λ|

1/2(x−y)

We thus complete the proof of estimates Hλ and of Pλ appearing in Proposition 2.2.17.

Derivative estimates.

Derivative estimates now follow in a straightforward fashion, by differentiation of

(2.107), noting from the approximately decoupled equations that differentiation of

the flow brings down a factor (to absorbable error) of λ in hyperbolic modes, λ1/2 in

parabolic modes. This completes the proof of Proposition 2.2.17.
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2.2.4 Low frequency estimates

Our goal in this section is the estimation of the resolvent kernel in the critical regime

|λ| → 0, i.e., the large time behavior of the Green function G, or global behavior in

space and time. We are basically following the same treatment as that carried out

for viscous shock waves of strictly parabolic conservation laws in [60, 36]; we refer

to those references for details. In the low frequency case the behavior is essentially

governed by the limiting far-field equation

Ut = L+U := −A+Ux +B+Uxx (2.139)

Lemma 2.2.20 ([36]). Assuming (A1)–(A3), (H0)-(H2), for |λ| sufficiently small,

the eigenvalue equation (L+−λ)W = 0 associated with the limiting, constant-coefficient

operator L+, considered as a first-order system W ′ = A+W , W = (u, v, v′), has a ba-

sis of 2n − 1 solutions W̄+
j = eA+(λ)xVj(λ), consisting of n − 1 “fast” modes (not

necessarily eigenmodes)

|eA+(λ)xVj| ≤ Ce−θ|x|, θ > 0, (2.140)

and n analytic “slow” (eigen-)modes

eA+(λ)xVj = eµj(λ)xVj,

µ+
n−1+j(λ) := −λ/a+

j + λ2β+
j /a

+3

j +O(λ3),

V +
n−1+j(λ) := r+

j +O(λ),

(2.141)

where a+
j , l+j , r+

j , β
+
j are defined as in Proposition 2.1.6. The same is true for the

adjoint eigenvalue equation

(L+ − λ)∗Z = 0,

i.e, it has a basis of solutions ¯̃W+
j = e−A∗+(λ)xṼj(λ) with n− 1 analytic “fast” modes

|e−A∗+(λ)xṼj| ≤ Ce−θ|x|, θ > 0, (2.142)

and n analytic “slow” (eigen-)modes

Ṽ +
n−1+j(λ) = l+j +O(λ). (2.143)
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Proof. Standard matrix perturbation theory; see [36], Appendix B.

Also we recall from the representation of Gλ in Corollary 2.2.15:

Proposition 2.2.21. Assuming (A1)–(A3), (H0)-(H2), let K be the order of the pole

of Gλ at λ = 0 and r be sufficiently small that there are no other poles in B(0, r).

Then for λ ∈ Ωθ such that |λ| ≤ r and we have

Gλ(x, y) =
∑
j,k

d+
jk(λ)φ+

j (x)ψ̃+
k (y) +

∑
k

φ+
k (x)φ̃+

k (y), (2.144)

for x > y > 0, and

Gλ(x, y) =
∑
j,k

d0
jk(λ)φ+

j (x)ψ̃+
k (y) +

∑
k

ψ+
k (x)ψ̃+

k (y), (2.145)

for 0 < x < y, where d0,+
jk (λ) = O(λ−K) are scalar meromorphic functions, moreover

K ≤ order of vanishing of the Evans function D(λ) at λ = 0.

Proof. See [60, Proposition 7.1] for the first statement and theorem 6.3 for the second

statement linking order K of the pole to multiplicity of the zero of the Evans Function.

Our main result of this section is then:

Proposition 2.2.22. Assume (A1)–(A3), (H0)-(H2), and (D1). Then, for r >

0 sufficiently small, the resolvent kernel Gλ associated with the linearized evolution

equation (2.139) satisfies, for 0 ≤ y ≤ x:

|∂γx∂αyGλ(x, y)|

≤ C(|λ|γ + e−θ|x|)(|λ|α + e−θ|y|)
( ∑
a+
k >0

∣∣e(−λ/a+
k +λ2β+

k /a
+
k

3
)(x−y)

∣∣
+

∑
a+
k <0, a+

j >0

∣∣e(−λ/a+
j +λ2β+

j /a
+
j

3
)x+(λ/a+

k −λ
2β+
k /a

+
k

3
)y
∣∣),

(2.146)

0 ≤ |α|, |γ| ≤ 1, θ > 0, with similar bounds for 0 ≤ x ≤ y. Moreover, each term in

the summation on the righthand side of (2.146) bounds a separately analytic function.
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Proof. By condition (D1), D(λ) does not vanish on Re(λ) ≥ 0, hence, by continuity,

on |λ| ≤ r. Thus, according to Proposition 2.2.21, all |djk(λ)| are uniformly bounded

on |λ| ≤ r, and thus it is enough to find estimates for fast and slow modes φ+
j , φ̃+

j ,

ψ+
j and ψ̃+

j . By applying Lemma 2.2.20 and using (2.53) we find:(
φ+
j

∂xφ
+
j

)
= eA+(λ)xP+

(
vj

µjvj

)
= eA+(λ)x(I + Θ)

(
vj

µjvj

)
(2.147)

and similarly for φ̃+
j , ψ+

j and ψ̃+
j . Now using (5.73) and the fact, by Lemma 2.2.20,

that eµj(λ)x is of order e−(λ/a+
j +λ2β+

j /a
+3

j +O(λ3))x for slow modes and order e−θ|x| for

fast modes, so by substituting this and corresponding dual estimates in (2.147) and

grouping terms, we obtain the result.

2.3 Pointwise bounds on Green function G(x, t; y)

In this section, we prove the pointwise bounds on the Green function G following

the general approach of [36] in the whole-line, shock, case. Our starting point is the

representation

G(x, t; y) =
1

2πi
P.V.

∫ η+i∞

η−i∞
eλtGλ(x, y) dλ (2.148)

where η is any sufficiently large positive real number.

Case I. |x − y|/t large. We first treat the simple case that |x − y|/t ≥ S, S

sufficiently large. Fixing x, y, t, set λ = η + iξ, for η > 0 sufficiently large. Applying

Proposition 2.2.17, we obtain the decomposition

G(x, t; y) =
1

2πi
P.V

∫ η+i∞

η−i∞
eλt
[
Hλ + ΘH

λ + Pλ + ΘP
λ

]
(x, y)dλ

=: I + II + III + IV.

For definiteness considering the inflow case A∗ > 0 and taking x > y, we estimate

each term in turn.
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Term I. Computing,

I =
1

2πi
P.V

∫ η+i∞

η−i∞
eλtHλ(x, y)dλ

=
1

2π
A∗(x)−1eη(t−

∫ x
y 1/A∗(z)dz)e−

∫ x
y (η∗/A∗)(z)dzP.V

∫ +∞

−∞
eiξ(t−

∫ x
y 1/A∗(z)dz)dξ

=
1

2π
A∗(x)−1δ(t−

∫ x

y

1/A∗(z)dz)e−
∫ x
y (η∗/A∗)(z)dz

=
1

2π
A∗(x)−1A∗(y)δx−ā∗t(y)e−

∫ x
y (η∗/A∗)(z)dz

where ā∗ is defined as in Proposition 2.1.6. Noting that ā∗ ≥ infxA∗(x) > 0 and

η+
∗ > 0, we get e−

∫ x
y (η∗/A∗)(z)dz = O(e−θ(x−y)) and thus

I = O(e−θt)δx−ā∗t(y), (2.149)

vanishing for |x− y|/t large.

Term II. Similar calculations show that the “hyperbolic error term” II also vanishes.

For example, the term eλtλ−1B(x, y;λ) contributes

1

2π
eη(t−

∫ x
y 1/A∗(z)dz)e−

∫ x
y (η∗/A∗)(z)dzP.V

∫ +∞

−∞
(η + iξ)−1eiξ(t−

∫ x
y 1/A∗(z)dz)dξ.

The integral though not absolutely convergent, is integrable and uniformly bounded

as a principal value integral, for all real η bounded away from zero, by explicit com-

putation. On the other hand

eη(t−
∫ x
y 1/A∗(z)dz) ≤ eη(t−|x−y|/minz A∗(z)) ≤ eηt(1−S/minz A∗(z)) → 0,

as η → +∞, for S sufficiently large. Thus, we find that the above integral term

goes to zero. Likewise, the result applies for the term of eλtC(x, y;λ), since (x −
y)e−

∫ x
y (η∗/A∗)(z)dz ≤ C(x− y)e−θ(x−y) is also bounded. Thus, each term of II vanishes

as η → +∞.

Term III. The parabolic term III may be treated exactly as in the strictly parabolic
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case [60]. Precisely, we may first deform the contour in the principle value integral to∫
Γ1∪Γ2

eλtPλ(x, y) dλ, (2.150)

where Γ1 := ∂B(0, R) ∩ Ω̄P and Γ2 := ∂ΩP \ B(0, R), recalling the parabolic sector

ΩP defined in (2.70). Choose

ᾱ :=
|x− y|

2θt
, R := θᾱ2, (2.151)

where θ is as in (2.78). Note that the intersection of Γ with the real axis is λmin =

R = θᾱ2. By the large |λ| estimates of Proposition 2.2.17, we have for all λ ∈ Γ1 ∪Γ2

that

|Pλ(x, y)| ≤ C|λ|−1/2e−θ|λ|
1/2|x−y|.

Further, we have

Reλ ≤ R(1− ηω2), λ ∈ Γ1,

Reλ ≤ Reλ0 − η(|Imλ| − |Imλ0|), λ ∈ Γ2

(2.152)

for R sufficiently large, where ω is the argument of λ and λ0 and λ∗0 are the two

points of intersection of Γ1 and Γ2, for some η > 0 independent of ᾱ. Combining

these estimates, we obtain∣∣∣ ∫
Γ1

eλtPλdλ
∣∣∣ ≤ C

∫
Γ1

|λ|−1/2 eReλt−θ|λ|
1/2|x−y| dλ

≤ Ce−θᾱ
2t

∫ +arg(λ0)

−arg(λ0)

R−1/2e−θRηω
2tRdω

≤ Ct−1/2e−θᾱ
2t.

(2.153)
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Likewise,

|
∫

Γ2

eλtPλdλ| ≤
∫

Γ2

C|λ|−1/2CeReλt−θ|λ|
1/2|x−y|dλ

≤ CeRe(λ0)t−θ|λ0|1/2|x−y|
∫

Γ2

|λ|−1/2e(Reλ−Reλ0)t |dλ|

≤ Ce−θᾱ
2t

∫
Γ2

|Imλ|−1/2e−η|Imλ−Imλ0|t |d Imλ|

≤ Ct−1/2e−θᾱ
2t.

(2.154)

Combining these last two estimates, we have

III ≤ Ct−1/2e−θᾱ
2t/2e−(x−y)2/8θt ≤ Ct−1/2e−ηte−(x−y)2/8θt, (2.155)

for η > 0 independent of ᾱ. Observing that |x− at|/2t ≤ |x− y|/t ≤ 2|x− at|/t for

any bounded a, for |x− y|/t sufficiently large, we find that III may be absorbed in

any summand t−1/2e−(x−y−a+
k t)

2/Mt.

Term IV . Similarly, as in the treatment of the term III, the principle value in-

tegral for the “parabolic error term IV may be shifted to η = R = θᾱ2, ᾱ as above.

This yields an estimate

|IV | ≤ Ce−θᾱ
2t

∫ +∞

−∞
|η0 + iξ|−2dξ ≤ Ce−θᾱ

2t,

absorbed in O(e−ηte−|x−y|
2/Mt) for all t.

Case II. |x− y|/t bounded. We now turn to the critical case where |x− y|/t ≤ S,

for some fixed S.

Decomposition of the contour: We begin by converting the contour integral (2.148)

into a more convenient form decomposing high, intermediate, and low frequency con-

tributions.

We first observe that L has no spectrum on the portion of Ω lying outside the

rectangle

R := {λ : − η1 ≤ <λ ≤ η,−R ≤ =λ ≤ R} (2.156)
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for η > 0, R > 0 sufficiently large, hence Gλ is analytic on this region. Since, also,

Hλ is analytic on the whole complex plane, contours involving either one of these

contributions may be arbitrarily deformed within Ω \ R without affecting the result,

by Cauchy’s theorem. Likewise, Pλ is analytic on ΩP \ R, and so contours involving

this contribution may be arbitrarily deformed within this region. Thus, we obtain

Observation 2.3.1 ([36]). Assume (A1)–(A3), (H0)-(H2), and (D1). Then, the

principle value integral (2.148) may be replaced by

G(x, t; y) = Ia + Ib + Ic + IIa + IIb + III (2.157)

where

Ia := P.V.

∫ η+i∞

η−i∞
eλtHλ(x, y)dλ

Ib := P.V
(∫ −η1−iR
−η1−i∞

+

∫ −η1+i∞

−η1+iR

)
eλt(Gλ −Hλ − Pλ)(x, y)dλ

Ic : =

∫
Γ2

eλtPλ(x, y)dλ

IIa :=
(∫ −η1−ir/2
−η1−iR

+

∫ −η1+iR

−η1+ir/2

)
eλtGλ(x, y)dλ

IIb := −
∫ −η1+iR

−η1−iR
eλtHλ(x, y)dλ

III :=

∫
Γ1

eλtGλ(x, y)dλ

with

Γ1 :=[−η1 − ir/2, η − ir/2] ∪ [η − ir/2, η + ir/2] ∪ [η + ir/2,−η1 + ir/2]

Γ2 :=∂ΩP \ Ω,

for any η, r > 0, R sufficiently large, and η1 sufficiently small with respect to r.

Using the above decomposition (2.157), we shall estimate in turn the high-frequency

contributions Ia, Ib, and Ic, the intermediate-frequency contributions IIa and IIb, and

the low-frequency contributions III.

High-frequency contribution. We first carry out the straightforward estimation of the
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high-frequency terms Ia, Ib, and Ic. The principal term Ia has already been computed

in (2.149) to be H(x, t; y). Likewise, calculations similar to those of Term II show

that the term Ib is time-exponentially small. For example, the term eλtλ−1B(x, y;λ)

contributes

P.V.
(∫ −R
−∞

+

∫ +∞

R

)
(−η1 + iξ)−1eiξ(t−

∫ x
y 1/A∗(z)dz)dξ

× e−η1(t−
∫ x
y 1/A∗(z)dz)e−

∫ x
y (η∗/A∗)(z)dz (2.158)

where

P.V.
(∫ −R
−∞

+

∫ +∞

R

)
(−η1 + iξ)−1eiξ(t−

∫ x
y 1/A∗(z)dz)dξ <∞ (2.159)

and

eη1
∫ x
y 1/A∗(z)dze−

∫ x
y (η∗/A∗)(z)dz ≤ Ce

η1|x−y|
minz A∗(z) e−θ|x−y| ≤ Ce−θ|x−y|/2, (2.160)

for η1 sufficiently small. This contributes in the term O(e−η1(t+|x−y|)) of R. Likewise,

the contributions of terms eλtλ−1(x− y)C(x, y;λ) and eλtλ−2D(x, y;λ) split into the

product of a convergent, uniformly bounded integral in ξ, a bounded factor analogous

to (2.160), and the factor e−η1t, giving the result.

The term Ic may be estimated exactly as was term III in the large |x − y|/t
case, to obtain contribution O(t−1/2e−η1t) absorbable again in the residual term

O(e−ηte−|x−y|
2/Mt) for t ≥ ε, any ε > 0, and by any summandO(t−1/2(1+t)−1/2e−(x−y−a+

k )2/Mt)e−η(x+y)

for t small.

Intermediate-frequency contribution. Error term IIb is time-exponentially small for

η1 sufficiently small, by the same calculation as in (2.158)-(2.160), hence negligible.

Likewise, term IIa by the basic estimate (2.60) is seen to be time-exponentially small

of order O(e−η1t) for any η1 > 0 sufficiently small that the associated contour lies in

the resolvent set of L.

Low-frequency contribution. It remains to estimate the low-frequency term III, which

is of essentially the same form as the low-frequency contribution analyzed in [60, 56]

in the strictly parabolic case, in that the contour is the same and the resolvent kernel

Gλ satisfies same bounds (with no Eλ term) in this regime. Thus, we may conclude
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from these previous analyses that III gives contribution as claimed, exactly as in

the strictly parabolic case. For completeness, we indicate the main features of the

argument here.

Bounded time. For t bounded, we can use the medium-λ bounds |Gλ|, |Gλx|,
|Gλy | ≤ C to obtain |

∫
Γ1
eλtGλdλ| ≤ C2|Γ1|. This contribution is order Ce−ηt for

bounded time, hence can be absorbed.

Large time. For t large, we must instead estimate
∫

Γ1
eλtGλdλ using the small-|λ|

expansions. First, observe that, all coefficient functions djk(λ) are uniformly bounded

(since |λ| is bounded in this case).

Case II(i). (0 < y < x). By our low-frequency estimates in Proposition 2.2.21, we

have ∫
Γ1

eλtGλ(x, y) dλ =

∫
Γ1

∑
j,k

eλtdjkφ
+
j (x)ψ̃+

k (y)dλ

+

∫
Γ1

∑
k

eλtφ+
k (x)φ̃+

k (y)dλ,

(2.161)

where each djk is analytic, hence bounded. We estimate separately each of the terms∫
Γ1

eλtdjkφ
+
j (x)ψ̃+

k (y)dλ

on the righthand side of (2.161). Estimates for terms∫
Γ1

eλtφ+
k (x)φ̃+

k (y)dλ

go similarly.

Case II(ia). First, consider the critical case a+
j > 0, a+

k < 0 . For this case,

|djkφ+
j (x)ψ̃+

k (y)| ≤ CeRe(ρ
+
j x−ν

+
k y),

where ν+
k (λ) = −λ/a+

k + λ2β+
k /(a

+
k )3 +O(λ3)

ρ+
j (λ) = −λ/a+

j + λ2β+
j /(a

+
j )3 +O(λ3).
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Set

ᾱ =
a+
k x/a

+
j − y − a+

k t

2t
, p :=

β+
j a

+
k x/(a

+
j )3 − β+

k y/(a
+
k )2

t
< 0.

Define Γ′1a to be the portion contained in Ωθ of the hyperbola

Re(ρ+
j x− ν+

k y) +O(λ3)(|x|+ |y|)

= (1/a+
k )Re[λ(−a+

k x/a
+
j + y) + λ2(xβ+

j a
+
k /(a

+
j )3 − yβ+

k /(a
+
k )2)]

≡ constant

= (1/a+
k )[(λmin(−a+

k x/a
+
j + y) + λ2

min(xβ+
j a

+
k /(a

+
j )3 − yβ+

k /(a
+
k )2)],

(2.162)

where

λmin :=

 ᾱ
p

if | ᾱ
p
| ≤ ε

±ε if ᾱ
p

≷ ε
(2.163)

Denoting by λ1, λ∗1, the intersections of this hyperbola with ∂Ωθ, define Γ′1b to

be the union of λ1λ0 and λ∗0λ
∗
1, and define Γ′1 = Γ′1a ∪ Γ′1b . Note that λ = ᾱ/p

minimizes the left hand side of (2.162) for λ real. Note also that that p is bounded

for ᾱ sufficiently small, since ᾱ ≤ ε implies that

(|a+
k x/a

+
j |+ |y|)/t ≤ 2|a+

k |+ 2ε

i.e. (|x|+ |y|)/t is controlled by ᾱ.

With these definitions, we readily obtain that

Re(λt+ ρ+
j x− ν+

k y) ≤ −(t/a−k )(ᾱ2/4p)− ηIm(λ)2t

≤ −ᾱ2t/M − ηIm(λ)2t,
(2.164)

for λ ∈ Γ′1a (note: here, we have used the crucial fact that ᾱ controls (|x| + |y|)/t,
in bounding the error term O(λ3)(|x| + |y|)/t arising from expansion Likewise, we

obtain for any q that∫
Γ′1a

|λ|qeRe(λt+ρ
+
j x−ν

−
k y)dλ ≤ Ct−

1
2
− q

2 e−ᾱ
2t/M , (2.165)

47



for suitably large C, M > 0 (depending on q). Observing that

ᾱ = (a+
k /a

+
j )(x− a+

j (t− |y/a+
k |))/2t,

we find that the contribution of (2.165) can be absorbed in the described bounds for

t ≥ |y/a−k |. At the same time, we find that ᾱ ≥ x > 0 for t ≤ |y/a+
k |, whence

ᾱ ≥ (x− y − a+
j t)/Mt+ |x|/M,

for some ε > 0 sufficiently small and M > 0 sufficiently large.

This gives

e−ᾱ
2/|p| ≤ e−(x−y−a+

k t)
2/Mte−η|x|

provided |x|/t > a+
j , a contribution which can again be absorbed. On the other hand,

if t ≤ |x/a+
j |, we can use the dual estimate

ᾱ = (−y − a+
k (t− |x/a+

j |))/2t

≥ (x− y − a+
k t)/Mt+ |y|/M,

(2.166)

together with |y| ≥ |a−k t|, to obtain

e−ᾱ
2/|p| ≤ e−(x−y−a+

j t)
2/Mte−η|y|,

a contribution that can likewise be absorbed.

Case II(ib). In case a+
j < 0 or a+

k > 0, terms |ϕ+
j | ≤ Ce−η|x| and |ψ̃+

j | ≤ Ce−η|y|

are strictly smaller than those already treated in Case II(ia), so may be absorbed in

previous terms.

Case II(ii) (0 < x < y). The case 0 < x < y can be treated very similarly to

the previous one; see [60] for details. This completes the proof of Case II, and the

theorem.
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2.4 Energy estimates

2.4.1 Energy estimate I

We shall require the following energy estimate adapted from [37, 58]. Define the

nonlinear perturbation variables U = (u, v) by

U(x, t) := Ũ(x, t)− Ū(x). (2.167)

Proposition 2.4.1. Under the hypotheses of Theorem 2.1.4, let U0 ∈ H4 and U =

(u, v)T be a solution of (2.2) and (2.167). Suppose that, for 0 ≤ t ≤ T , the W 2,∞
x

norm of the solution U remains bounded by a sufficiently small constant ζ > 0. Then

‖U(t)‖2
H4 ≤ Ce−θt‖U0‖2

H4 + C

∫ t

0

e−θ(t−τ)
(
‖U(τ)‖2

L2 + Bh(τ)2
)
dτ (2.168)

for all 0 ≤ t ≤ T , where the boundary operator Bh is defined in Theorem 2.1.4.

Proof. Observe that a straightforward calculation shows that |U |Hr ∼ |W |Hr ,

W = W̃ − W̄ := W (Ũ)−W (Ū), (2.169)

for 0 ≤ r ≤ 4, provided |U |W 2,∞ remains bounded, hence it is sufficient to prove a

corresponding bound in the special variable W . We first carry out a complete proof

in the more straightforward case with conditions (A1)-(A3) replaced by the following

global versions, indicating afterward by a few brief remarks the changes needed to

carry out the proof in the general case.

(A1’) Ã(W̃ ), Ã0, Ã11 are symmetric, Ã0 ≥ θ0 > 0,

(A2’) no eigenvector of Ã(Ã0)−1(W̃ ) lies in the kernel of B̃(Ã0)−1(W̃ ),

(A3’) W̃ =

(
w̃I

w̃II

)
, B̃ =

(
0 0

0 b̃

)
, b̃ ≥ θ > 0, and G̃ ≡ 0.

Substituting (2.169) into (2.4), we obtain the quasilinear perturbation equation

A0Wt + AWx = (BWx)x +M1W̄x + (M2W̄x)x (2.170)
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where A0 := A0(W+W̄ ) is positive definite symmetric, A := A(W+W̄ ) is symmetric,

M1 = A(W + W̄ )− A(W̄ ) =
(∫ 1

0

dA(W̄ + θW )dθ
)
W,

M2 = B(W + W̄ )−B(W̄ ) =

(
0 0

0 (
∫ 1

0
db(W̄ + θW )dθ)W

)
.

As shown in [37], we have bounds

|A0| ≤ C, |A0
t | ≤ C|Wt| ≤ C(|Wx|+ |wIIxx|) ≤ Cζ, (2.171)

|∂xA0|+ |∂2
xA

0| ≤ C(
2∑

k=1

|∂kxW |+ |W̄x|) ≤ C(ζ + |W̄x|). (2.172)

We have the same bounds for A,B,K, and also due to the form of M1,M2,

|M1|, |M2| ≤ C(ζ + |W̄x|)|W |. (2.173)

Note that thanks to Lemma A.1.1 we have the bound on the profile: |W̄x| ≤
Ce−θ|x|, as x→ +∞.

The following results assert that hyperbolic effects can compensate for degenerate

viscosity B, as revealed by the existence of a compensating matrix K.

Lemma 2.4.2 ([34]). Assuming (A1’), condition (A2’) is equivalent to the following:

(K1) There exists a smooth skew-symmetric matrix K(W ) such that

<e(K(A0)−1A+B)(W ) ≥ θ2 > 0. (2.174)

Define α by the ODE

αx = −sign(A11)c∗|W̄x|α, α(0) = 1 (2.175)

where c∗ > 0 is a large constant to be chosen later. Note that we have

(αx/α)A11 ≤ −c∗θ1|W̄x| =: −ω(x) (2.176)
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and

|αx/α| ≤ c∗|W̄x| = θ−1
1 ω(x). (2.177)

In what follows, we shall use 〈·, ·〉 as the α-weighted L2 inner product defined as

〈f, g〉 = 〈αf, g〉L2

and ‖f‖s =
∑s

i=0〈
d(i)

dxi
f, d

(i)

dxi
f〉1/2 as the norm in weighted Hs space. Note that for any

symmetric operator S,

〈Sfx, f〉 = −1

2
〈(Sx + (αx/α)S)f, f〉 − 1

2
S0f0.f0.

Note that in what follows, we shall pay attention to keeping track of c∗. For

constants independent of c∗, we simply write them as C.

Zeroth order “Friedrichs-type” estimate

First employing integration by parts yields, and using estimates (2.171), (2.172), and

then (2.176), we obtain

−〈AWx,W 〉

=
1

2
〈(Ax + (αx/α)A)W,W 〉+

1

2
A0W (0) ·W (0)

≤ 1

2
〈(αx/α)A11wI , wI〉+ C〈(ζ + |W̄x|)|W |+ ω(x)|wII |, |W |〉+ J0

b

≤ −1

2
〈ω(x)wI , wI〉+ C(ζ‖wI‖2

0 + 〈|W̄x|wI , wI〉) + C(c∗)‖wII‖2
0 + J0

b

where J0
b denotes the boundary term 1

2
A0W (0) ·W (0). The term 〈|W̄x|wI , wI〉 may

be easily absorbed into the first term of the right-hand side, since for c∗ sufficiently

large,

〈|W̄x|wI , wI〉 ≤ (c∗θ1)−1〈ω(x)wI , wI〉 ≤ 1

4C
〈ω(x)wI , wI〉. (2.178)
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Also, integration by parts yields

〈(BWx)x,W 〉 = −〈BWx,Wx〉 − 〈(αx/α)BWx,W 〉 −B0Wx(0) ·W (0)

≤ −θ‖wIIx ‖2
0 + C〈ω(x)wIIx , w

II〉 − b0w
II
x (0) · wII(0)

≤ −θ‖wIIx ‖2
0 + C(c∗)‖wII‖2

0 − b0w
II
x (0) · wII(0).

where we used the fact that BWx ·W = bwIIx ·wII , noting that B has block-diagonal

form with the first block identical to zero. Similarly, recalling that M2 = B(W +

W̄ )−B(W̄ ), we have

〈(M2W̄x)x,W 〉

= −〈M2W̄x,Wx〉 − 〈(αx/α)M2W̄x,W 〉 −M2(0)W̄x(0) ·W (0)

≤ C〈|W̄x||W |, |wIIx |〉+ C〈ω(x)|W |, wII〉 −m2(0)W̄x(0) · wII(0)

≤ ξ‖wIIx ‖2
0 + C

(
ε〈ω(x)wI , wI〉+ C(c∗)‖wII‖2

0

)
−m2(0)W̄x(0) · wII(0)

for any small ξ, ε. Note that C is independent of c∗. Therefore, for ξ = θ/2 and c∗

sufficiently large, combining all above estimates, we obtain

1

2

d

dt
〈A0W,W 〉

= 〈A0Wt,W 〉+
1

2
〈A0

tW,W 〉

= 〈−AWx + (BWx)x +M1W̄x + (M2W̄x)x,W 〉+
1

2
〈A0

tW,W 〉

≤ −1

4
[〈ω(x)wI , wI〉+ θ‖wIIx ‖2

0] + Cζ‖wI‖2
0 + C(c∗)‖wII‖2

0 + I0
b

(2.179)

where the boundary term

I0
b :=

1

2
A0W (0) ·W (0)− b0w

II
x (0)wII(0)−M2(0)W̄x(0) ·W (0) (2.180)

which, in the outflow case (thanks to the negative definiteness of A11), is estimated

as

I0
b ≤ −

θ1

2
|wI(0)|2 + C(|wII(0)|2 + |wIIx (0)||wII(0)|), (2.181)
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and similarly in the inflow case, estimated as

I0
b ≤ C(|W (0)|2 + |wIIx (0)||wII(0)|). (2.182)

Therefore together with these boundary treatments, (2.179) yields

1

2

d

dt
〈A0W,W 〉

≤ −1

4
[〈ω(x)wI , wI〉+ θ‖wIIx ‖2

0] + Cζ‖wI‖2
0 + C(c∗)‖wII‖2

0 + I0
b . (2.183)

First order “Friedrichs-type” estimate

Similarly as above, we need the following key estimate, computing by the use of

integration by parts, (2.178), and c∗ being sufficiently large,

−〈Wx, AWxx〉 =
1

2
〈Wx, (Ax + (αx/α)A)Wx〉+

1

2
A0Wx(0) ·Wx(0)

≤ −1

4
〈ω(x)wIx, w

I
x〉+ Cζ‖wIx‖2

0 + Cc2
∗‖wIIx ‖2

0

+
1

2
A0Wx(0) ·Wx(0).

(2.184)

We deal with the boundary term later. Now let us compute

1

2

d

dt
〈A0Wx,Wx〉 = 〈Wx, (A

0Wt)x〉 − 〈Wx, A
0
xWt〉+

1

2
〈A0

tWx,Wx〉. (2.185)

We control each term in turn. By (2.171) and (2.172), we first have

〈A0
tWx,Wx〉 ≤ Cζ‖Wx‖2

0

and by multiplying (A0)−1 into (2.170),

|〈Wx, A
0
xWt〉| ≤C〈(ζ + |W̄x|)|Wx|, (|Wx|+ |wIIxx|+ |W |)〉

≤ξ‖wIIxx‖2
0 + C〈(ζ + |W̄x|)wIx, wIx〉

+ C〈(ζ + |W̄x|)wI , wI〉+ C‖wII‖2
1,
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where the term 〈|W̄x|wIx, wIx〉 may be treated in the same way as was 〈|W̄x|wI , wI〉 in

(2.178). Using (2.170), we write the first term in the right-hand side of (2.185) as

〈Wx, (A
0Wt)x〉 =〈Wx, [−AWx + (BWx)x +M1W̄x + (M2W̄x)x]x〉

=− 〈Wx, AWxx〉+ 〈Wx,−AxWx + (M1W̄x)x〉

− 〈Wxx + (αx/α)Wx, [(BWx)x + (M2W̄x)x]〉

−Wx(0).[(BWx)x + (M2W̄x)x](0)

≤− 1

4

[
〈ω(x)wIx, w

I
x〉+ θ‖wIIxx‖2

0

]
+ C

[
ζ‖wI‖2

1 + C(c∗)‖wIIx ‖2
0 + 〈|W̄x|wI , wI〉

]
+ I1

b

where I1
b denotes the boundary terms

I1
b :=

1

2
A0Wx(0) ·Wx(0)−Wx(0) · [(BWx)x + (M2W̄x)x](0), (2.186)

and we have used estimates (2.184),(2.178) for wI , wIx, and Young’s inequality to

obtain:

〈Wx,−AxWx + (M1W̄x)x〉 ≤ C〈(ζ + |W̄x|)|Wx|, |Wx|+ |W |〉.

−〈Wxx + (αx/α)Wx, (BWx)x〉 ≤

−θ‖wIIxx‖2
0 + C〈|wIIxx|+ ω(x)|wIIx |, (ζ + |W̄x|)|wIIx |〉

−〈Wxx + (αx/α)Wx, (M2W̄x)x〉 ≤

C〈|wIIxx|+ ω(x)|wIIx |, (ζ + |W̄x|)(|Wx|+ |W |)〉.

Putting these estimates together into (2.185), we have obtained

1

2

d

dt
〈A0Wx,Wx〉+

1

4
θ‖wIIxx‖2

0 +
1

4
〈ω(x)wIx, w

I
x〉

≤ C
[
ζ‖wI‖2

1 + 〈|W̄x|wI , wI〉+ C(c∗)‖wII‖2
1

]
+ I1

b . (2.187)

Let us now treat the boundary term. First observe that using the parabolic equations,
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noting that A0 is the diagonal-block form, we can estimate∣∣∣Wx(0) · [(BWx)x + (M2W̄x)x](0)
∣∣∣

=
∣∣∣wIIx (0) · [(bwIIx )x + (M22

2 W̄x)x](0)
∣∣∣

=
∣∣∣wIIx (0) · [A0

2w
II
t + A21w

I
x + A22w

II
x −M1W̄x](0)

∣∣∣
≤ ε|wIIx (0)|2 + C(|W (0)|2 + |wIIx (0)|2 + |wIIt (0)|2).

For the first term in Ib, we consider each inflow/outflow case separately. For the

outflow case, since A11 ≤ −θ1 < 0, we get

A0Wx(0) ·Wx(0) ≤ −θ1

2
|wIx(0)|2 + C|wIIx (0)|2.

Therefore

I1
b ≤ −

θ1

2
|wIx(0)|2 + C(|W (0)|2 + |wIIx (0)|2 + |wIIt (0)|2). (2.188)

Meanwhile, for the inflow case, since A11 ≥ θ1 > 0, we have

|A0Wx(0) ·Wx(0)| ≤ C|Wx(0)|2.

In this case, the invertibility of A11 allows us to use the hyperbolic equation to derive

|wIx(0)| ≤ C(|wIt (0)|+ |wIIx (0)|).

Therefore we get

I1
b ≤ C(|W (0)|2 + |Wt(0)|2 + |wIIx (0)|2). (2.189)

Now applying the standard Sobolev inequality (applies for α−weighted norms as

long as |αx/α| is uniformly bounded):

|w(0)|2 ≤ C‖w‖L2(‖wx‖L2 + ‖w‖L2) (2.190)
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to control the term |wIIx (0)|2 in I1
b in both cases. We get

|wIIx (0)|2 ≤ ε′‖wIIxx‖2
0 + C‖wIIx ‖2

0. (2.191)

Using this with ε′ = θ/8, (2.186), and (2.188), the estimate (2.187) reads

1

2

d

dt
〈A0Wx,Wx〉+

θ

8
‖wIIxx‖2

0 +
1

4
〈ω(x)wIx, w

I
x〉

≤ C
(
ζ‖wI‖2

1 + 〈|W̄x|wI , wI〉+ C(c∗)‖wII‖2
1

)
+ I1

b (2.192)

where the boundary term I1
b is estimated as

I1
b ≤ −

θ1

2
|wIx(0)|2 + C(|W (0)|2 + |wIIt (0)|2) (2.193)

for the outflow case, and similarly

I1
b ≤ C(|W (0)|2 + |Wt(0)|2) (2.194)

for the inflow case.

Higher order “Friedrichs-type” estimate

Similarly as above, we shall now derive an estimate for 〈A0∂kxW,∂
k
xW 〉, k = 2, 3, 4.

We need the following key estimate. Integration by parts and (2.176) give

−〈∂kxW,A∂k+1
x W 〉 =

1

2
〈∂kxW, (Ax + (αx/α)A)∂kxW 〉+

1

2
A0∂

k
xW (0) · ∂kxW (0)

≤− 1

4
〈ω(x)∂kxw

I , ∂kxw
I〉+ Cζ‖∂kxwI‖2

0

+ Cc2
∗‖∂kxwII‖2

0 +
1

2
A0∂

k
xW (0) · ∂kxW (0).

We compute

1

2

d

dt
〈A0∂kxW,∂

k
xW 〉 =

1

2
〈A0

t∂
k
xW,∂

k
xW 〉+ 〈A0∂kxW,∂

k
xWt〉

=
1

2
〈A0

t∂
k
xW,∂

k
xW 〉+ 〈A0∂kxW,∂

k
x [(A0)−1

(−AWx + (BWx)x) +M1W̄x + (M2W̄x)x]〉. (2.195)
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We shall estimate each term in turn. First, |〈A0
t∂

k
xW,∂

k
xW 〉| ≤ Cζ‖∂kxW‖2

0, and

〈A0∂kxW,∂
k
x [−(A0)−1AWx]〉

= 〈A0∂kxW,

k∑
i=0

∂ix[−(A0)−1A]∂k−i+1
x W 〉

= −〈∂kxW,A∂k+1
x W 〉+

k∑
i=1

〈A0∂kxW,∂
i
x[−(A0)−1A]∂k−i+1

x W 〉

where we have ∣∣∣∂ix[−(A0)−1A]
∣∣∣ ≤ C

∑
∑
αj=i

∏
1≤j≤i

|∂αjx W |. (2.196)

Using the hypothesis on the boundedness of solutions in W 2,∞ and weak Moser in-

equality [57, Lemma 1.5], we get

|〈A0∂kxW,∂
i
x[−(A0)−1A]∂k−i+1

x W 〉| ≤

C
(
‖wII‖2

k + ζ‖wI‖2
k +

k∑
i=1

〈|W̄x|∂ixwI , ∂ixwI〉
)
.

This, (2.195), similar treatment (2.178) for 〈|W̄x|∂kxwI , ∂kxwI〉 with c∗ being suffi-

ciently large give

〈A0∂kxW,∂
k
x [−(A0)−1AWx]〉 ≤ −

1

4
〈ω∂kxwI , ∂kxwI〉+

1

2
A0∂

k
xW (0) · ∂kxW (0)

+ C
(
‖wII‖2

k + ζ‖wI‖2
k +

k−1∑
i=1

〈|W̄x|∂ixwI , ∂ixwI〉
)

(2.197)

Next, similarly, we obtain

|〈A0∂kxW,∂
k
x [(A0)−1M1W̄x]〉| ≤ C

(
‖wII‖2

k + ζ‖wI‖2
k +

k∑
i=1

〈|W̄x|∂ixwI , ∂ixwI〉
)
.
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Finally, we compute and

〈A0∂kxW,∂
k
x [(A0)−1(BWx +M2W̄x)x]〉

=
k∑
i=0

〈A0∂kxW,∂
i
x[(A

0)−1]∂k−i+1
x (BWx +M2W̄x)〉

=〈∂kxW,∂k+1
x (BWx +M2W̄x)〉

+
k∑
i=1

〈A0∂kxW,∂
i
x[(A

0)−1]∂k−i+1
x (BWx +M2W̄x)〉

≤ − 〈∂k+1
x W + (αx/α)∂kxW,∂

k
x(BWx +M2W̄x)〉

− ∂kx [b∂xw
II +M22

2 W̄x](0)∂kxw
II(0)

+ ξ‖∂k+1
x wII‖2

0 + C
(
c2
∗‖wII‖2

k + ζ‖wI‖2
k +

k∑
i=1

〈|W̄x|∂ixwI , ∂ixwI〉
)

≤− θ

2
‖∂k+1

x wII‖2
0 − ∂kx [b∂xw

II +M22
2 W̄x](0)∂kxw

II(0)

+ C
(
c2
∗‖wII‖2

k + ζ‖wI‖2
k +

k∑
i=1

〈|W̄x|∂ixwI , ∂ixwI〉
)

where in the last inequality we used the special form of B and M2 to get

〈∂k+1
x W + (αx/α)∂kxW,∂

k
x(BWx +M2W̄x)〉

≤ 〈|∂k+1
x wII |+ ω(x)|∂kxwII |, |∂kx(bwIIx + Π2M2W̄x)|〉

≤ −θ‖∂k+1
x wII‖2

0 + C
(
C(c∗)‖wII‖2

k + ζ‖wI‖2
k +

k∑
i=1

〈|W̄x|∂ixwI , ∂ixwI〉
)
.

Note that in the last inequality, there is no term of 〈ω(x)∂ixw
I , ∂ixw

I〉 because of the

presence of |W̄x| in term of Π2M2.

Put all these estimates into (2.195) together, we have obtained

1

2

d

dt
〈A0∂kxW,∂

k
xW 〉+

1

4
θ‖∂k+1

x wII‖2
0 +

1

4
〈ω(x)∂kxw

I , ∂kxw
I〉

≤ C
(
C(c∗)‖wII‖2

k + ζ‖wI‖2
k +

k−1∑
i=1

〈|W̄x|∂ixwI , ∂ixwI〉
)

+ Ib (2.198)
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where the boundary term

Ib :=
1

2
A0∂

k
xW (0) · ∂kxW (0)− ∂kx [b∂xw

II +M22
2 W̄x](0)∂kxw

II(0). (2.199)

For this boundary term, we shall treat the same as we did before. First using the

parabolic equations with noting that A0 is the diagonal-block matrix diag(A0
1, A

0
2),

we can write

∂kx [b∂xw
II +M22

2 W̄x](0)

= ∂k−1
x [A0

2(0)wIIt (0, t) + A21w
I
x(0) + A22w

II
x (0)− Π2M1(0)W̄x(0)]. (2.200)

Therefore we get

|∂kx [b∂xw
II +M22

2 W̄x](0)∂kxw
II(0)|

≤ C|∂kxwII(0)|
[
|∂k−1
x wIIt (0)|+

k∑
i=0

(|∂ixwII(0)|+ |∂ixwI(0)|)
]

≤ ε
k∑
i=0

|∂ixwI(0)|2 + C
k∑
i=1

|∂ixwII(0)|2 (2.201)

+ C|∂kxwII(0)||∂k−1
x wIIt (0)| (2.202)

for any ε small. To deal with the term of wIIt , for simplicity, assume k = 3. By solving

the parabolic-part equations and using the invertibility of b, we obtain

|∂2
xw

II
t | = |∂twIIxx| ≤ C(|wIItt |+ |Wt|+ |Wx|+ |Wxt|)

|Wxt| ≤ C(|W |+ |Wx|+ |Wxx|+ |wIIxxx|).
(2.203)

Since for case k = 3 we have a good term ‖∂4
xw

II‖0 (see (2.198)), the term |wIIxxx(0)|
resulting from the boundary treatment is easily treated via Sobolev embedding in-

equality. Hence all terms in a form ∂rxw
II(0) are easily estimated. Meanwhile, using

the hyperbolic-part equations, we have

|wIt | ≤ C(|W |+ |Wx|). (2.204)
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Employing Young’s inequality to the last term in (2.201), we obtain

|∂kx [b∂xw
II +M22

2 W̄x](0)∂kxw
II(0)|

≤ ε
k∑
i=0

|∂ixwI(0)|2 + C(
k∑
i=0

|∂ixwII(0)|2 + |wIIt (0)|2 + |wIItt (0)|2) (2.205)

To deal with the term of wI , we need to consider two cases separately. When A11 ≤
−θ1 < 0, we get

A0∂
k
xW (0) · ∂kxW (0) ≤ −θ1

2
|∂kxwI(0)|2 + C|∂kxwII(0)|2.

Therefore

Ikb ≤−
θ1

2
|∂kxwI(0)|2 + C(

k−1∑
i=0

|∂ixwI(0)|2

+
k∑
i=0

|∂ixwII(0)|2 + |wIIt (0)|2 + |wIItt (0)|2). (2.206)

Meanwhile, for the case A11 ≥ θ1 > 0, we have

|A0∂
k
xW (0) · ∂kxW (0)| ≤ C(|∂kxwI(0)|2 + |∂kxwII(0)|2).

The invertibility of A11 allows us to use the hyperbolic equation to derive

|∂kxwI(0)| ≤ C(
k∑
i=0

(|∂ixwII(0)|2 + |∂itwI(0)|2) + |wIIt (0)|2 + |wIItt (0)|2).

Therefore in the case of A11 ≥ θ1 > 0, we get

Ikb ≤ C(
k∑
i=0

(|∂ixwII(0)|2 + |∂itwI(0)|2) + |wIIt (0)|2 + |wIItt (0)|2). (2.207)
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Employing the boundary estimates into (2.198), we have obtained

d

dt
〈A0∂kxW,∂

k
xW 〉+ θ‖∂k+1

x wII‖2
0 + c∗θ1〈|W̄x|∂kxwI , ∂kxwI〉

≤ C
(
ζ‖wI‖2

k + c2
∗‖wII‖2

k +
k−1∑
j=0

〈|W̄x|∂jxwI , ∂jxwI〉
)

+ Ikb (2.208)

where, after absorbing the terms of |∂rxwII(0)| via Sobolev embedding, the boundary

term Ikb satisfies

Ikb ≤ −
θ1

2
|∂kxwI(0)|2 + C(

k−1∑
i=0

|∂ixwI(0)|2 + |wIIt (0)|2 + |wIItt (0)|2) (2.209)

for outflow case, and

Ikb ≤ C(
k∑
i=0

|∂itwI(0)|2 + |wIIt (0)|2 + |wIItt (0)|2) (2.210)

for the inflow case.

We shall establish an Kawashima-type estimate to bound the term ‖wI‖2
k appear-

ing on the left hand side of the above.

“Kawashima-type” estimate

Let K be the skew-symmetry in (2.174). Integration by parts and skew-symmetry

property of K yield

〈KWxt,W 〉 = −〈KWt,Wx〉 − 〈(Kx + (αx/α)K)Wt,W 〉 −K0W0 · (W0)t

= 〈KWx,Wt〉+ 〈(Kx + (αx/α)K)W,Wt〉 −K0W0 · (W0)t.
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Using this, we compute

d

dt
〈KWx,W 〉 =

〈KtWx +KWxt,W 〉+ 〈KWx,Wt〉

=〈KtWx,W 〉+ 〈2KWx + (Kx + (αx/α)K)W,Wt〉

−K0W0 · (W0)t

=〈KtWx,W 〉+ 〈2KWx + (Kx + (αx/α)K)W,−(A0)−1AWx〉

+ 〈2KWx + (Kx + (αx/α)K)W, (A0)−1(BWx)x

+M1W̄x + (M2W̄x)x〉 −K0W0 · (W0)t

≤− 2〈K(A0)−1AWx,Wx〉+ ξ‖wIx‖2
0 −K0W0 · (W0)t

+ C
(
C(c∗)‖wII‖2

2 + ζ‖wI‖2
0 + 〈ω(x)wI , wI〉+ 〈ω(x)wIx, w

I
x〉
)
.

Using (2.174), we get

〈K(A0)−1AWx,Wx〉 ≥ θ2‖wIx‖2
0 − C(c0)‖wIIx ‖2

0,

and thus obtain from the above estimate with ξ = θ2/2

d

dt
〈KWx,W 〉 ≤ −

θ2

2
‖wIx‖2

0 + C
(
C(c∗)‖wII‖2

2 + ζ‖wI‖2
0

+ 〈ω(x)wI , wI〉+ 〈ω(x)wIx, w
I
x〉
)
−K0W0 · (W0)t. (2.211)

Higher order “Kawashima-type” estimate

With similar calculations, we shall obtain an estimate for d
dt
〈K∂kxW,∂k−1

x W 〉, k ≥ 1.

We compute

〈K∂kxWt, ∂
k−1
x W 〉 = 〈K∂kxW,∂k−1

x Wt〉

+ 〈(Kx + (αx/α)K)∂k−1
x W,∂k−1

x Wt〉 −K∂k−1
x Wt · ∂k−1

x W (0).
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and hence

d

dt
〈K∂kxW,∂k−1

x W 〉 = 〈Kt∂
k
xW,∂

k−1
x W 〉+ 〈2K∂kxW,∂k−1

x Wt〉

+ 〈(Kx + (αx/α)K)∂k−1
x W,∂k−1

x Wt〉 −K∂k−1
x Wt · ∂k−1

x W (0)

= 〈2K∂kxW,∂k−1
x [(−A0)−1(AWx + (BWx)x +M1W̄x + (M2W̄x)x)]〉

+ 〈(Kx + (αx/α)K)∂k−1
x W,

∂k−1
x [(−A0)−1(AWx + (BWx)x +M1W̄x + (M2W̄x)x)]〉

−K∂k−1
x Wt · ∂k−1

x W (0)

≤ −2〈K(A0)−1A∂kxW,∂
k
xW 〉+ ε‖wI‖2

k + Cc2
∗‖wII‖2

k+1

+ Cζ‖wI‖2
0 + C

k∑
l=1

〈ω(x)∂lxw
I , ∂lxw

I〉 −K∂k−1
x Wt · ∂k−1

x W (0)

for ε small.

Using (2.174), we obtain from the above

d

dt
〈K∂kxW,∂k−1

x W 〉 ≤ − θ2

3
‖∂kxwI‖2

0 + Cc2
∗‖wII‖2

k+1 + ε‖wI‖k−1 (2.212)

+ Cζ‖wI‖2
0 + C

k∑
l=1

〈ω(x)∂lxw
I , ∂lxw

I〉

−K∂k−1
x Wt · ∂k−1

x W (0). (2.213)

Final estimates

We are ready to conclude our result. First combining the estimate (2.192) with

(2.183), we easily obtain

1

2

d

dt

(
〈A0Wx,Wx〉+M〈A0W,W 〉

)
≤−

(θ
8
‖wIIxx‖2

0 +
1

4
〈ω(x)wIx, w

I
x〉
)

+ C
(
ζ‖wI‖2

1 + 〈|W̄x|wI , wI〉+ C(c∗)‖wII‖2
1

)
+ I1

b

− M

4

(
〈ω(x)wI , wI〉+ θ‖wIIx ‖2

0

)
+ CMζ‖wI‖2

0

+MC(c∗)‖wII‖2
0 +MI0

b
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By choosingM sufficiently large such thatMθ � C(c∗), and noting that c∗θ1|W̄x| ≤
ω(x), we get

1

2

d

dt

(
〈A0Wx,Wx〉+M〈A0W,W 〉

)
≤−

(
θ‖wII‖2

2 + 〈ω(x)wI , wI〉+ 〈ω(x)wIx, w
I
x〉
)

+ C
(
ζ‖wI‖2

1 + C(c∗)‖wII‖2
0

)
+ I1

b +MI0
b .

(2.214)

We shall treat the boundary terms later. Now we employ the estimate (2.211) to

absorb the term ‖wI‖1 into the left hand side. Indeed, fixing c∗ large as above,

adding (2.214) with (2.211) times ε, and choosing ε, ζ sufficiently small such that

εC(c∗)� θ, ε� 1 and ζ � εθ2, we obtain

1

2

d

dt

(
〈A0Wx,Wx〉+M〈A0W,W 〉+ ε〈KWx,W 〉

)
≤−

(
θ‖wII‖2

2 + 〈ω(x)wI , wI〉+ 〈ω(x)wIx, w
I
x〉
)

+ C
(
ζ‖wI‖2

1 + C(c∗)‖wII‖2
0

)
− θ2ε

2
‖wIx‖2

0

+ Cε
(
C(c∗)‖wII‖2

2 + ζ‖wI‖2
0 + 〈ω(x)wI , wI〉+ 〈ω(x)wIx, w

I
x〉
)

+ I1
b +MI0

b − εK0W0 · (W0)t

≤− 1

2

(
θ‖wII‖2

2 + θ2ε‖wIx‖2
0

)
+ C(c∗)

(
ζ‖wI‖2

0 + ‖wII‖2
0

)
+ Ib

where Ib := I1
b +MI0

b − εK0W0 · (W0)t.

By a view of boundary terms I0
b , I

1
b , we treat the term Ib in each inflow/outflow

case separately. Recalling the inequality (2.191), |wIIx (0)| ≤ C‖wII‖2. Thus, using

this, for the inflow case we have

Ib ≤M |W (0)|2 + C|Wt(0)|2 +M |wIIx (0)||wII(0)|

≤ θ

2
‖wII‖2

2 +M2|W (0)|2 + C|Wt(0)|2.

Meanwhile, for the outflow case, with Mθ1 � 1 and K0W0 · (W0)t ∼ wII0 w
I
0t +wI0w

II
0t ,
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we have Ib is bounded by

−θ1

2
(|wIx(0)|2 + |wI(0)|2)

+ C(|wIIt (0)|2 + |wII(0)|2) + ε(|wIIx (0)|2 + |wIt (0)|2)

which, together with ε being sufficiently small and the facts that

|wIt (0)| ≤ C(|wIx(0)|+ |wIIx (0)|+ |W (0)|)

obtained from solving the hyperbolic equation and the embedding inequality

|wIIx (0)| ≤ C‖wII‖2,

yields

Ib ≤ −
θ1

2
(|wIx(0)|2 + |wI(0)|2) +

θ

2
‖wII‖2

2 + C(|wII(0)|2 + |wIIt (0)|2)

for the outflow case. Now by Cauchy-Schwarz’s inequality and by positivity definite

of A0, it is easy to see that

E := 〈A0Wx,Wx〉+M〈A0W,W 〉+ ε〈KWx,W 〉 ∼ ‖W‖2
H1
α
∼ ‖W‖2

H1 . (2.215)

The last equivalence is due to the fact that α is bounded above and below away from

zero. Thus the above gives

d

dt
E(W )(t) ≤ −θ3E(W )(t) + C(c∗)

(
‖W (t)‖2

L2 + B1(t)2
)
,

for some positive constant θ3, which by the Gronwall inequality yields

‖W (t)‖2
H1 ≤ Ce−θt‖W0‖2

H1 + C(c∗)

∫ t

0

e−θ(t−τ)
(
‖W (τ)‖2

L2 + B1(τ)2
)
dτ, (2.216)

where W (x, 0) = W0(x) and

B1(τ)2 := O(|W (0, τ)|2 + |Wt(0, τ)|2) = O(|(h1, h2)|2 + |(h1, h2)t|2) (2.217)
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for the inflow case, and

B1(τ)2 := O(|wII(0, τ)|2 + |wIIt (0, τ)|2) = O(|h|2 + |ht|2) (2.218)

for the outflow case.

Similarly, by induction, we shall derive the same estimates for W in Hs. To do

that, let us define

E1(W ) := 〈A0Wx,Wx〉+M〈A0W,W 〉+ ε〈KWx,W 〉

Ek(W ) := 〈A0∂kxW,∂
k
xW 〉+MEk−1(W ) + ε〈K∂kxW,∂k−1

x W 〉.

Then by Cauchy-Schwarz inequality, it is easy to see that Ek(W ) ∼ ‖W‖2
Hk , and

by induction, we obtain

d

dt
Es(W )(t) ≤ −θ3Es(W )(t) + C(c∗)(‖W (t)‖2

L2 + Bh(t)2),

for some positive constant θ3, which by the Gronwall inequality yields

‖W (t)‖2
Hs ≤ Ce−θt‖W0‖2

Hs + C(c∗)

∫ t

0

e−θ(t−τ)(‖W (τ)‖2
L2 + Bh(τ)2)dτ, (2.219)

where W (x, 0) = W0(x) and Bh is defined as in (2.16) and (2.17).

The general case

Following [37], the general case that hypotheses (A1)-(A3) hold can easily be covered

via following simple observations. First, we may express matrix A in (2.170) as

A(W + W̄ ) = Â+ (ζ + |W̄x|)

(
0 O(1)

O(1) O(1)

)
(2.220)

where Â is a symmetric matrix obeying the same derivative bounds as described for

A, identical to A in the 11 block and obtained in other blocks jk by

Ajk(W + W̄ ) = Ajk(W̄ ) + Ajk(W + W̄ )− Ajk(W̄ )

= Ajk(W+) +O(|Wx|+ |W̄x|) = Ajk(W+) +O(ζ + |W̄x|). (2.221)
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Replacing A by Â in the kth order Friedrichs-type bounds above, we find that the

resulting error terms may be expressed as

〈∂kxO(ζ + |W̄x|)|W |, |∂k+1
x wII |〉,

plus lower order terms, easily absorbed using Young’s inequality, and boundary terms

O(
k∑
i=0

|∂ixwII(0)||∂kxwI(0)|)

resulting from the use of integration by parts as we deal with the 12−block. However

these boundary terms were already treated somewhere as before (see (2.201)). Hence

we can recover the same Friedrichs-type estimates obtained above. Thus we may

relax (A1′) to (A1).

The second observation is that, because of the favorable terms

c∗θ1〈|W̄x|∂kxwI , ∂kxwI〉

occurring in the lefthand sides of the Friedrichs-type estimates (2.208), we need the

Kawashima-type bound only to control the contribution to |∂kxwI |2 coming from x

near +∞; more precisely, we require from this estimate only a favorable term

−θ2〈(1−O(ζ + |W̄x|))∂kxwI , ∂kxwI〉

rather than θ2‖∂kxwI‖2
0 as in (2.212). But, this may easily be obtained by substituting

for K a skew-symmetric matrix-valued function K̂ := K(W+), and using the fact

that

<e(K(A0)−1A+B)(W+) ≥ θ2 > 0,

and same as (2.221), K = K̂ +O(ζ + |W̄x|), we have

<e(K(A0)−1A+B)(W ) ≥ θ2(1−O(ζ + |W̄x|)) > 0.

Thus we may relax (A2′) to (A2).

Finally, notice that the term g(W̃x)− g(W̄x) in the perturbation equation may be
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Taylor expanded as(
0

g1(W̃x, W̄x) + g1(W̄x, W̃x)

)
+

(
0

O(|Wx|2)

)

The first term, since it vanishes in the first component and since |W̄x| decays at plus

spatial infinity, yields by Young’s inequality the estimate

〈( 0

g1(W̃x, W̄x) + g1(W̄x, W̃x)

)
,

(
wIx

wIIx

)〉
≤ C

(
〈(ζ + |W̄x|)wIx, wIx〉+ ‖wIIx ‖2

0

)
which can be treated in the Friedrichs-type estimates. The (0, O(|Wx|2)T nonlinear

term may be treated as other source terms in the energy estimates. Specifically, the

worst-case term

〈∂kxW,∂kx

(
0

O(|Wx|2)

)
〉 = −〈∂k+1

x wII , ∂k−1
x O(|Wx|2)〉 − ∂kxwII(0)∂k−1

x O(|Wx|2)(0)

may be bounded by

‖∂k+1
x wII‖L2‖W‖W 2,∞‖W‖Hk − ∂kxwII(0)∂k−1

x O(|Wx|2)(0).

The boundary term will contribute to energy estimates in the form (2.199) of Ib,

and thus we may use the parabolic equations to get rid of this term as we did in

(2.200). Thus, we may relax (A3′) to (A3), completing the proof of the general case

(A1)− (A3) and the proposition.

2.4.2 Energy estimate II

We require also the following estimate:

Lemma 2.4.3 ([22]). Under the hypotheses of Theorem 2.1.4, let E0 := ‖(1 +

|x|2)3/4U0‖H4, and suppose that, for 0 ≤ t ≤ T , the W 2,∞ norm of the solution

U of (2.225) remains bounded by some constant C > 0. Then, for all 0 ≤ t ≤ T ,

‖(1 + |x|2)3/4U(x, t)‖2
H4 ≤ME0e

Mt. (2.222)

Proof. This follows by standard Friedrichs symmetrizer estimates carried out in the
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weighted H4 norm.

Remark 2.4.4. An immediate consequence of Lemma 2.4.3, by Sobolev embedding:

W 3,∞ ⊂ H4 and equation (2.225), is that, if E0 and ‖U‖H4 are uniformly bounded on

[0, T ], then

(1 + |x|)3/2
[
|U |+ |Ut|+ |Ux|+ |Uxt|

]
(x, t) (2.223)

is uniformly bounded on [0, T ] as well.

2.5 Stability analysis

In this section, we shall prove Theorems 2.1.3 and 2.1.4. Following [23, 36], define

the nonlinear perturbation U = (u, v) by

U(x, t) := Ũ(x, t)− Ū(x), (2.224)

we obtain

Ut − LU = Q(U,Ux)x, (2.225)

where linearized operator

LU := −(AU)x + (BUx)x (2.226)

where

AU := dF (Ū)U − (dB(Ū)U)Ūx, B = B(Ū)

and the second-order Taylor remainder:

Q(U,Ux) = F (Ū + U)− F (Ū) + A(Ū)U + (B(Ū + U)−B(Ū))Ux

satisfying

|Q(U,Ux)| ≤ C(|U ||Ux|+ |U |2)

|Π1Q(U,Ux)x| ≤ C(|U ||Ux|+ |U |2)

|Q(U,Ux)x| ≤ C(|U ||Uxx|+ |Ux|2 + |U ||Ux|)

|Q(U,Ux)xx| ≤ C(|U ||Uxx|+ |U ||Uxxx|+ |Ux||Uxx|+ |Ux|2)

(2.227)
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so long as |U | remains bounded.

For boundary conditions written in U−coordinates, (B) gives

h(t) = h̃(t)− h̄ = (W̃ (U + Ū)− W̃ (Ū))(0, t)

= (∂W̃/∂Ũ)(Ū0)U(0, t) +O(|U(0, t)|2).
(2.228)

in inflow case and

h(t) = h̃(t)− h̄ = (w̃II(U + Ū)− w̃II(Ū))(0, t)

= (∂w̃II/∂Ũ)(Ū0)U(0, t) +O(|U(0, t)|2)

= m
(
b̄1 b̄2

)
(Ū0)U(0, t) +O(|U(0, t)|2)

= mB(Ū0)U(0, t) +O(|U(0, t)|2).

(2.229)

2.5.1 Integral formulation

We obtain the following:

Lemma 2.5.1 (Integral formulation). We have

U(x, t) =

∫ ∞
0

G(x, t; y)U0(y) dy

+

∫ t

0

(
G̃y(x, t− s; 0)BU(0, s) +G(x, t− s; 0)AU(0, s)

)
ds

+

∫ t

0

∫ ∞
0

H(x, t− s; y)Π1Q(U,Uy)y(y, s) dy ds

−
∫ t

0

∫ ∞
0

G̃y(x, t− s; y)Π2Q(U,Uy)(y, s) dy ds

(2.230)

where U(y, 0) = U0(y).

Proof. From the duality (see [60, Lemma 4.3]), we find that G(x, t− s; y) considered

as a function of y, s satisfies the adjoint equation

(∂s − Ly)∗G∗(x, t− s; y) = 0, (2.231)

or

−Gs − (GA)y +GAy = (GyB)y. (2.232)
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in the distributional sense, for all x, y, t > s > 0, where the adjoint operator of Ly is

defined by

L∗yV := V ∗y A+ (V ∗y B)y, (2.233)

with V ∗ = V tr.

Likewise, for boundary conditions, we have, by duality

(iii’) for all x, t > 0, G(x, t; 0) ≡ 0 in the outflow case Ā∗ < 0; and G(x, t; 0)B = 0

in the inflow case Ā∗ > 0, noting that no boundary condition need be applied on the

hyperbolic part for the adjoint equations in the inflow case.

Thus, integrating G against (2.225), we obtain for any classical solution that∫ t

0

∫ ∞
0

G(x, t− s; y)Q(U,Uy)y(y, s) dy ds =∫ t

0

∫ ∞
0

G(x, t− s; y)(∂s − Ly)U(y, s) dy ds

= : I1 + I2.

(2.234)

Integrating by parts and using the boundary conditions (iii’) on the boundary

y = 0, we get

I1 =

∫ t

0

∫ ∞
0

G(x, t− s; y)∂sU(y, s) dy ds

=

∫ t

0

∫ ∞
0

∂sG(x, t− s; y)U(y, s) dy ds

+

∫ ∞
0

G(x, 0; y)U(y, t) dy −
∫ ∞

0

G(x, t; y)U(y, 0) dy

where note that

U(x, t) =

∫ ∞
0

G(x, 0; y)U(y, t) dy
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and also

I2 =

∫ t

0

∫ ∞
0

G(x, t− s; y)(−Ly)U(y, s) dy ds

=

∫ t

0

∫ ∞
0

G(x, t− s; y)((AU)y − (BUy)y)(y, s) dy ds

=

∫ t

0

∫ ∞
0

(−GyA− (GyB)y)U(y, s) dy ds

−
∫ t

0

Gy(x, t− s; 0)BU(0, s)ds−
∫ t

0

G(x, t− s; 0)AU(0, s)ds

Combining these estimates, and noting that GyB = G̃yB since HB ≡ 0, we obtain

(2.230) by rearranging and integrating by parts the last term of∫ t

0

∫ ∞
0

G(x, t− s; y)Q(U,Uy)y(y, s) dy ds

=

∫ t

0

∫ ∞
0

(H + G̃)(x, t− s; y)Q(U,Uy)y(y, s) dy ds

(2.235)

As an expression for Ux, we obtain the following.

Lemma 2.5.2 (Integral formulation for Ux). We have

Ux(x, t) =

∫ ∞
0

Gx(x, t; y)U0(y) dy −
∫ t

0

H(x, t− s; 0)Π1Q(U,Uy)y(0, s) ds

+

∫ t

0

[
G̃xy(x, t− s; 0)BU(0, s) +Gx(x, t− s; 0)AU(0, s)

]
ds

+

∫ t

0

∫ ∞
0

(Hx −Hy)(x, t− s; y)Π1Q(U,Uy)y(y, s) dy ds

−
∫ t

0

∫ ∞
0

H(x, t− s; y)Π1Q(U,Uy)yy(y, s) dy ds

−
∫ t−1

0

∫ ∞
0

G̃xy(x, t− s; y)Π2Q(U,Uy)(y, s) dy ds

+

∫ t

t−1

∫ ∞
0

G̃x(x, t− s; y)Π2Q(U,Uy)y(y, s) dy ds

(2.236)

where U(y, 0) = U0(y).
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Proof. Differentiating the formulation (2.230) for U(x, t) with respect to x and noting

that ∫ t

0

∫ ∞
0

Hxφ dy ds =

∫ t

0

∫ ∞
0

(Hx −Hy)φ dy ds

−
∫ t

0

∫ ∞
0

H(x, t− s; y)φy(y, s) dy ds−
∫ t

0

H(x, t− s; 0)φ(0, s)ds

and ∫ t

0

∫ ∞
0

G̃xyψ dy ds =

∫ t−1

0

∫ ∞
0

G̃xyψ dy ds

−
∫ t

t−1

∫ ∞
0

G̃xψy dy ds−
∫ t

t−1

G̃x(x, t− s; 0)ψ(0, s)ds

are valid for any smooth functions φ, ψ, we obtain the lemma.

2.5.2 Convolution estimates

To establish stability, we use the following lemmas whose proof was given in [23, 22, 50]

and will be recalled in Appendix A.2, for sake of completeness.

Lemma 2.5.3 (Linear estimates I). Under the assumptions of Theorem 2.1.4,∫ +∞

0

|G̃(x, t; y)|(1 + |y|)−3/2 dy ≤ C(θ + ψ1 + ψ2)(x, t),∫ +∞

0

|G̃x(x, t; y)|(1 + |y|)−3/2 dy ≤ C(θ + ψ1 + ψ2)(x, t),

(2.237)

for 0 ≤ t ≤ +∞, some C > 0.

Lemma 2.5.4 (Linear estimates II). Under the assumptions of Theorem 2.1.4, if

|U0(x)|+ |∂xU0(x)| ≤ E0(1 + |x|)−3/2, E0 > 0, then, for some θ > 0,∫ +∞

0

H(x, t; y)U0(y) dy ≤ CE0e
−θt(1 + |x|)−3/2,∫ +∞

0

Hx(x, t; y)U0(y) dy ≤ CE0e
−θt(1 + |x|)−3/2,

(2.238)

and so both are dominated by CE0(ψ1 + ψ2), for 0 ≤ t ≤ +∞, some C > 0.
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Lemma 2.5.5 (Nonlinear estimates I). Under the assumptions of Theorem 2.1.4,∫ t

0

∫ +∞

0

|G̃y(x, t− s; y)|Ψ(y, s) dyds ≤ C(θ + ψ1 + ψ2)(x, t),∫ t−1

0

∫ +∞

0

|G̃xy(x, t− s; y)|Ψ(y, s) dyds ≤ C(θ + ψ1 + ψ2)(x, t),

(2.239)

for 0 ≤ t ≤ +∞, some C > 0, where

Ψ(y, s) := (θ + ψ1 + ψ2)2(y, s). (2.240)

Lemma 2.5.6 (Nonlinear estimates II). Under the assumptions of Theorem 2.1.4,∫ t

0

∫ +∞

0

H(x, t− s; y)Υ(y, s) dyds ≤ C(ψ1 + ψ2)(x, t)∫ t

0

∫ +∞

0

(Hx −Hy)(x, t− s; y)Υ(y, s) dyds ≤ C(ψ1 + ψ2)(x, t)∫ t

t−1

∫ +∞

0

|G̃x(x, t− s; y)|Υ(y, s) dyds ≤ C(ψ1 + ψ2)(x, t)

(2.241)

for all 0 < t < +∞, some C > 0, where

Υ(y, s) := s−1/4(θ + ψ1 + ψ2)(y, s) (2.242)

We require also the following estimate accounting boundary effects.

Lemma 2.5.7 (Boundary estimates I). Under the assumptions of Theorem 2.1.4, if

|h(t)|+ |h′(t)| ≤ E0(1 + t)−1,∫ t

0

H(x, t− s; 0)h(s) ds ≤ CE0(ψ1 + ψ2)(x, t)∫ t

0

Hx(x, t− s; 0)h(s) ds ≤ CE0(ψ1 + ψ2)(x, t),

(2.243)

for 0 ≤ t ≤ +∞, some C > 0.

Proof. Note that H(x, t; 0) ≡ 0 for the outflow case A∗ < 0. Consider the inflow case
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A∗ > 0 (and thus ā∗ > 0). We have

∣∣∣ ∫ t

0

H(x, t− s; 0)h(s) ds
∣∣∣

= e−η0x/ā∗|h(− 1

ā∗
(x− ā∗t))|

≤ e−η0|x|(1 + |x− ā∗t|)−1 ≤ CE0(ψ1 + ψ2)(x, t),∣∣∣ ∫ t

0

Hx(x, t− s; 0)h(s) ds
∣∣∣

≤ e−η0x/ā∗
(
|h|+ |h′|

)
(− 1

ā∗
(x− ā∗t))|

≤ e−η0|x|(1 + |x− ā∗t|)−1 ≤ CE0(ψ1 + ψ2)(x, t),

which completes the proof of the lemma.

Lemma 2.5.8 (Boundary estimates II). Under the assumptions of Theorem 2.1.4, if

|h(t)| ≤ E0(1 + t)−1−ε and |h′(t)| ≤ E0(1 + t)−1,

∣∣∣ ∫ t

0

(
G̃y(x, t− s; 0)Bh(s)+G(x, t− s; 0)Ah(s)

)
ds
∣∣∣

≤ CE0(θ + ψ1 + ψ2)(x, t)∣∣∣ ∫ t

0

(
G̃xy(x, t− s; 0)Bh(s)+Gx(x, t− s; 0)Ah(s)

)
ds
∣∣∣

≤ CE0(θ + ψ1 + ψ2)(x, t)

(2.244)

for 0 ≤ t ≤ +∞, some C > 0.

Proof. We first give the estimate on
∫ t−1

0
, where Gy(x, t − s; 0) and G̃xy(x, t − s; 0)

are nonsingular. We have

∣∣∣ ∫ t−1

0

G̃y(x, t− s; 0)Bh(s) ds
∣∣∣ ≤ C

∫ t

1

|G̃y(x, τ ; 0)|(1 + t− τ)−1−ε dτ. (2.245)

We shall estimate the integral for each term (1 + τ)−1/2e−|x−akτ |
2/Mτ , appearing in

G̃y(x, τ ; 0), and omit the O(e−η(x+t)) term, which is negligible. First, for ak < 0,
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using e−|x−akτ |
2/Mτ ≤ e−x

2/Mte−ητ for some η > 0, we have∫ t

1

(1 + τ)−1/2(1 + t− τ)−1e−|x−akτ |
2/Mτ dτ

≤ e−x
2/Mt

(∫ t/2

1

+

∫ t

t/2

)
(1 + τ)−1/2(1 + t− τ)−1e−ητ dτ

≤ e−x
2/Mt

(
(1 + t)−1 + (1 + t)−1/2e−ηt

)
,

(2.246)

which is clearly bounded by C(θ + ψ1)(x, t). For ak > 0, we consider three distinct

regions depending on x and t. First for x ≥ akt, we further divide the estimates into

two cases: (1, t/2) and (t/2, t). For τ ∈ (1, t/2), we have e−|x−akτ |
2/Mτ ≤ e−x

2/Mte−ητ

for some η > 0 and thus as above the integral is bounded by C(θ + ψ1)(x, t). For

τ ∈ (t/2, t), we write x− akτ = x− akt+ ak(t− τ) and thus∫ t

t/2

(1 + τ)−1/2(1 + t− τ)−1−εe−|x−akτ |
2/Mτ dτ

≤ e−(x−akt)2/Mt

∫ t

t/2

(1 + τ)−1/2(1 + t− τ)−1−εe−ak(t−τ)2/Mτ dτ

≤ C(1 + t)−1/2e−(x−akt)2/Mt

∫ t

t/2

(1 + t− τ)−1−ε dτ ≤ Cθ(x, t).

Next, consider the case: x ≤ akt/2. Divide the analysis into cases: (1, 3t/4) and

(3t/4, t). For τ ∈ (1, 3t/4), use the change of variable s := (x− akτ)/
√
τ to get∫ 3t/4

1

(1 + τ)−1/2(1 + t− τ)−1e−|x−akτ |
2/Mτ dτ

≤ (1 + t)−1

∫ 3t/4

1

(1 + τ)−1/2e−|x−akτ |
2/Mτ dτ

≤ (1 + t)−1

∫ +∞

−∞
e−s

2/M ds ≤ (1 + t)−1,

(2.247)

which is bounded by Cψ1(x, t). For τ ∈ (3t/4, t), we have e−|x−akτ |
2/Mτ ≤ e−ητ for
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some η > 0 and thus∫ t

3t/4

(1 + τ)−1/2(1 + t− τ)−1e−|x−akτ |
2/Mτ dτ

≤ (1 + t)−1/2

∫ t

3t/4

e−ητ dτ ≤ C(1 + t)−1/2e−ηt ≤ Cθ(x, t).

(2.248)

Finally, consider the case x ∈ (akt/2, akt). We write x = aakt with a := x
akt

.

We again divide the estimate into three regions: (1, at), (at, 1+a
2
t), and (1+a

2
t, t). For

τ ∈ (1, at), we have (1 + t− τ)−1 ≤ C(1 + t)−1 ≤ Cψ1(x, t) and∫ at

1

(1 + τ)−1/2e−|x−akτ |
2/Mτ dτ ≤

∫ +∞

0

e−s
2/M ds ≤ C. (2.249)

For τ ∈ (at, 1+a
2
t), we have (1+t−τ)−1 ≤ C(1+ |x−akt|)−1 and by change of variable

s := (x− akτ)/τ ,

∫ 1+a
2
t

at

(1 + τ)−1/2e−|x−akτ |
2/Mτ dτ

≤
∫ 1−a

1+a

0

e−τ
2/M dτ ≤ C(1− a) ≤ Ct−1|x− akt|.

(2.250)

Thus the integral is bounded by Ct−1 ≤ Cψ1(x, t). For τ ∈ (1+a
2
t, t), we have |x −

akτ | ≥ |x− ak 1+a
2
t| = ak

2
|1− a|t = |x−akt|

2
, and thus∫ t

1+a
2
t

(1 + τ)−1/2(1 + t− τ)−1−εe−|x−akτ |
2/Mτ dτ

≤ (1 + t)−1/2e−|x−akt|
2/2Mt

∫ t

1+a
2
t

(1 + t− τ)−1−ε dτ

≤ C(1 + t)−1/2e−|x−akt|
2/2Mt ≤ Cθ(x, t).

(2.251)

Therefore, combining all these estimates, we obtain

∣∣∣ ∫ t−1

0

G̃y(x, t− s; 0)Bh(s) ds
∣∣∣ ≤ C(θ + ψ1)(x, t). (2.252)

We also have similar estimates for Gxy on the nonsingular part
∫ t−1

0
.

Next, to bound the singular part
∫ t
t−1

, we integrate (2.232) in y from 0 to +∞ to
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obtain

G̃yB +GA = −
∫ +∞

0

G(x, t− s; y)Ay dy +

∫ +∞

0

Gs(x, t− s; y) dy. (2.253)

Substituting in the lefthand side of (2.244), and integrating by parts in s, we obtain∫ t

t−1

(G̃yB +GA)h(s) ds =

∫ 1

0

(∫ +∞

0

Ay(y)G(x, τ ; y) dy
)
h(t− τ) dτ

−
∫ 1

0

(∫ +∞

0

G(x, τ ; y) dy
)
h′(t− τ) dτ

+
(∫ +∞

0

G(x, 1; y) dy
)
h(t− 1),

(2.254)

which by
∫
|G|dy ≤ C is bounded by max0≤τ≤1(|h|+ |h′|)(t− τ).

Combining this with the following more straightforward estimate (for large x,

|x| > a+
n t)∣∣∣ ∫ t

t−1

G̃y(x, t− s; 0)Bh(s) ds
∣∣∣ ≤ ∫ 1

0

|G̃y(x, τ ; 0)|Bh(t− τ) dτ

≤ C max
0≤τ≤1

|h(t− τ)|
∫ 1

0

τ−1/2e−|x|
2/Cτ dτ

≤ C max
0≤τ≤1

|h(t− τ)|
∫ 1

0

τ−1e−|x|
2/Cτ dτ

= C|x|−2 max
0≤τ≤1

|h(t− τ)|

×
∫ 1

0

(|x|2/τ)e−|x|
2/Cτ dτ

≤ C max
0≤τ≤1

|h(t− τ)||x|−2,

(2.255)

∣∣∣ ∫ t

t−1

G̃(x, t− s; 0)Ah(s) ds
∣∣∣ ≤ ∫ 1

0

|G̃(x, τ ; 0)|Ah(t− τ) dτ

≤ C max
0≤τ≤1

|h(t− τ)|
∫ 1

0

τ−1/2e−|x|
2/Cτ dτ

≤ C max
0≤τ≤1

|h(t− τ)||x|−2,

(2.256)

and the estimate (2.243) for H term (thus together with (2.256) for G = G̃+H), we

78



find that the contribution from
∫ t
t−1

has norm bounded by

max
0≤τ≤1

(|h|+ |h′|)(t− τ)(1 + |x|)−2 ≤ CE0(ψ1 + ψ2)(x, t).

Combining this estimate with the one for
∫ t−1

0
, we obtain the first inequality in

(2.244). For second inequality, we first differentiate (2.254) with respect to x to get∫ t

t−1

(G̃xyB +GxA)h(s) ds =

∫ 1

0

(∫ +∞

0

Ay(y)Gx(x, τ ; y) dy
)
h(t− τ) dτ

−
∫ 1

0

(∫ +∞

0

Gx(x, τ ; y) dy
)
h′(t− τ) dτ

+
(∫ +∞

0

Gx(x, 1; y) dy
)
h(t− 1),

(2.257)

which, by
∫ 1

0

∫
|Gx|dydτ ≤ C

∫ 1

0
τ−1/2dτ ≤ C, is bounded by max0≤τ≤1(|h|+ |h′|)(t−

τ), similarly as above.

For the large x, clearly we still have similar estimates as (2.255) and (2.256) for

G̃xy and G̃x. These, estimate (2.243) for Hx, and (2.257) yield the contribution

from
∫ t
t−1

as above, which together with the estimate for
∫ t−1

0
completes the proof of

(2.244).

2.5.3 Linearized stability

In this subsection, we shall give the proof of Theorem 2.1.3. We first need the following

estimates:

Lemma 2.5.9 ([37]). Under the assumptions of Theorem 2.1.3,

∣∣∣ ∫ +∞

0

G̃(·, t; y)f(y) dy
∣∣∣
Lp
≤ C(1 + t)−

1
2

(1−1/r)|f |Lq ,∣∣∣ ∫ +∞

0

H(·, t; y)f(y) dy
∣∣∣
Lp
≤ Ce−ηt|f |Lp ,

(2.258)

for all t ≥ 0, some C, η > 0, for any 1 ≤ q ≤ p and f ∈ Lq ∩ Lp, where 1/r + 1/q =

1 + 1/p.

79



Lemma 2.5.10. Under the assumptions of Theorem 2.1.3, if |h(t)| ≤ E0(1 + t)−1−ε,

∣∣∣ ∫ t

0

(
G̃y(x, t− s; 0)Bh(s)+G(x, t− s; 0)Ah(s)

)
ds
∣∣∣
Lp

≤ CE0(1 + t)−
1
2

(1−1/p)

(2.259)

for 0 ≤ t ≤ +∞, some C > 0.

Proof. This follows at once by the boundary estimate (2.244) and the fact that |(θ+

ψ1 + ψ2)(·, t)|Lp ≤ C(1 + t)−
1
2

(1−1/p).

Proof of Theorem 2.1.3. Sufficiency of (D1) for linearized stability (the main point

here) follows easily by applying the above lemmas to the following representation for

solution U(x, t) of the linearized equations (2.7)

U(x, t) =

∫ ∞
0

G(x, t; y)U0(y) dy

+

∫ t

0

(
G̃y(x, t− s; 0)BU(0, s) +G(x, t− s; 0)AU(0, s)

)
ds

where U(y, 0) = U0(y) and |U(0, s)| ≤ C|h(s)| ≤ C(1 + s)−1−ε by (2.8) in the inflow

case, and |BU(0, s)| ≤ C|h(s)| ≤ C(1+s)−1−ε by (2.9) in the outflow case, noting that

G(x, t; 0) ≡ 0 in this case. Necessity follows by a much simpler argument, restricting

x, y to a bounded set and letting t→∞, noting that G is given by the ODE evolution

of the spectral projection onto the finite set of zeros of D in <λ ≥ 0, necessarily

nondecaying, plus an O(e−ηt) error, η > 0, from which we find that asymptotic decay

implies nonexistence of any such zeros; see Proposition 7.7 and Corollary 7.8, [36] for

details.

2.5.4 Nonlinear argument

In this subsection, we shall give the proof of Theorem 2.1.4. In fact, with the above

preparations, the proof of nonlinear stability is also straightforward.

Lemma 2.5.11 (H4 local theory). Under the hypotheses of Theorem 2.1.4, then, for

T sufficiently small depending on the H4−norm of U0, there exists a unique solution

U(x, t) ∈ L∞(0, T ;H4(x)) of (2.225) satisfying

|U(t)|H4 ≤ C|U0|H4 (2.260)
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for all 0 ≤ t ≤ T .

Proof. Short-time existence, uniqueness, and stability are described in [58, 57], using a

standard (bounded high norm, contractive low norm) contraction mapping argument.

We omit the details.

Lemma 2.5.12. Under the hypotheses of Theorem 2.1.4, let U ∈ L∞(0, T ;H4(x))

satisfy (2.225) on [0, T ], and define

ζ(t) := sup
x,0≤s≤t

[
(|U |+ |Ux|)(θ + ψ1 + ψ2)−1(x, t)

]
. (2.261)

If ζ(T ) and |U0|H4 are bounded by ζ0 sufficiently small, then, for some ε > 0, (i)

the solution U , and thus ζ extends to [0, T + ε], and (ii) ζ is bounded and continuous

on [0, T + ε].

Proof. Boundedness and smallness of |U(t)|H4 on [0, T ] follow by Proposition 2.4.1,

provided smallness of ζ(T ) and |U0|H4 . By Lemma 2.5.11, this implies the existence,

boundedness of |U(t)|H4 on [0, T + ε], for some ε > 0, and thus, by Lemma 2.4.3,

boundedness and continuity of ζ on [0, T + ε].

Proof of Theorem 2.1.4. We shall establish:

Claim. For all t ≥ 0 for which a solution exists with ζ uniformly bounded by some

fixed, sufficiently small constant, there holds

ζ(t) ≤ C2(E0 + ζ(t)2). (2.262)

From this result, provided E0 < 1/4C2
2 , we have that by continuous induction

ζ(t) < 2C2E0 (2.263)

for all t ≥ 0. From (2.263) and the definition of ζ in (2.261) we then obtain the

bounds of (2.18). Thus, it remains only to establish the claim above.

Proof of Claim. We must show that (|U | + |Ux|)(θ + ψ1 + ψ2)−1 is bounded by

C(E0 + ζ(t)2), for some C > 0, all 0 ≤ s ≤ t, so long as ζ remains sufficiently small.

First we need an estimate for U(0, s) and Us(0, s). For the inflow case, by boundary
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condition estimate (2.228) and by the hypotheses on h(s), we have

|U(0, s)| ≤ C(h(s) + |U(0, s)|2) ≤ C(E0(1 + s)−1−ε + |U(0, s)|2) (2.264)

from which by continuity of |U(0, t)| (Remark 2.4.4) and smallness of E0, we obtain

a similar estimate to (2.263):

|U(0, s)| ≤ CE0(1 + s)−1−ε. (2.265)

Similarly for an estimate of Ut(0, t), by taking the derivative of (2.228), we get

|Us(0, s)| ≤ C(h′(s) + |U ||Us|(0, s))

≤ C(E0(1 + s)−1 + |U(0, s)||Us(0, s)|)

≤ C(E0(1 + s)−1 + |Us(0, s)|2)

(2.266)

which by the same argument as above yields

|Us(0, s)| ≤ CE0(1 + s)−1. (2.267)

Next, for the outflow case with boundary condition (2.229), we have

|BU(0, s)| ≤ CE0(1 + s)−1−ε +O(|U(0, s)|2)

|(BU)s(0, s)| ≤ CE0(1 + s)−1 +O(|U ||Us|(0, s)).
(2.268)

Now by (2.261), we have for all t ≥ 0 and some C > 0 that

|U(x, t)|+ |Ux(x, t)| ≤ ζ(t)(θ + ψ1 + ψ2)(x, t), (2.269)

and therefore
|Q(U,Uy)(y, s)| ≤ Cζ(t)2Ψ(y, s)

|Π1Q(U,Uy)y(y, s)| ≤ Cζ(t)2Ψ(y, s)
(2.270)

with Ψ = (θ + ψ1 + ψ2)2 as defined in (2.240), for 0 ≤ s ≤ t.
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As an estimate for U(x, t), we use the representation (2.230) of U(x, t):

|U(x, t)| =
∣∣∣ ∫ ∞

0

G(x, t; y)U0(y) dy
∣∣∣

+
∣∣∣ ∫ t

0

(G̃y(x, t− s; 0)BU(0, s) +G(x, t− s; 0)AU(0, s)) ds
∣∣∣

+
∣∣∣ ∫ t

0

∫ ∞
0

H(x, t− s; y)Π1Q(U,Uy)y(y, s) dy ds
∣∣∣

+
∣∣∣ ∫ t

0

∫ ∞
0

G̃y(x, t− s; y)Π2Q(U,Uy)(y, s) dy ds
∣∣∣,

where by applying Lemmas 2.5.3-2.5.6 together with (2.270), we have∣∣∣ ∫ ∞
0

G(x, t; y)g(y) dy
∣∣∣

≤ E0

∫ ∞
0

(|G̃(x, t; y)|+ |H(x, t; y)|)(1 + |y|)−3/2 dy

≤ CE0(θ + ψ1 + ψ2)(x, t)

(2.271)

∣∣∣ ∫ t

0

∫ ∞
0

G̃y(x, t− s; y)Q(U,Uy)(y, s) dy ds
∣∣∣

≤ Cζ(t)2

∫ t

0

∫ ∞
0

|G̃y(x, t− s; y)|Ψ(y, s) dy ds

≤ Cζ(t)2(θ + ψ1 + ψ2)(x, t)

(2.272)

∣∣∣ ∫ t

0

∫ ∞
0

H(x, t− s; y)Π1Q(U,Uy)y(y, s) dy ds
∣∣∣

≤ Cζ(t)2

∫ t

0

∫ ∞
0

H(x, t− s; y)(θ + ψ1 + ψ2)2 dy ds

≤ Cζ(t)2

∫ t

0

∫ ∞
0

H(x, t− s; y)Υ(y, s) dy ds

≤ Cζ(t)2(θ + ψ1 + ψ2)(x, t)

(2.273)

and, for the boundary term, we apply the estimate (2.265) and Lemma 2.5.8, yielding

∣∣∣ ∫ t

0

(G̃y(x, t− s; 0)BU(0, s) +G(x, t− s; 0)AU(0, s)) ds
∣∣∣

≤ C(E0 + ζ(t)2)(θ + ψ1 + ψ2)(x, t)

(2.274)
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for the inflow. Whereas, for the outflow case, noting that G(x, t − s; 0) ≡ 0 in the

outflow case, we apply the estimate (2.268), (2.269) and Lemma 2.5.8 to give the

same estimate as above, yielding

∣∣∣ ∫ t

0

G̃y(x, t− s; 0)BU(0, s) ds
∣∣∣ ≤ C(E0 + ζ(t)2)(θ + ψ1 + ψ2)(x, t)

where we used (2.269) for |U(0, s)| ≤ ζ(t)(1 + s)−1 and thus by (2.268), |BU(0, s)| ≤
C(E0 + ζ(t)2)(1 + s)−1−ε.

Therefore, combining the above estimates, we obtain

|U(x, t)|(θ + ψ1 + ψ2)−1(x, t) ≤ C(E0 + ζ(t)2). (2.275)

To derive the same estimate for |Ux(x, t)|, we first obtain by using Proposition

2.4.1,

|U(t)|2H4 ≤ Ce−θt|U0|2H4 + C

∫ t

0

e−θ(t−τ)
[
|U(τ)|2L2 + Bh(τ)2

]
dτ

≤ C(E0 + ζ(t)2)t−1/2,

where Bh is the boundary function defined in Proposition 2.4.1, and thus by the one

dimensional Sobolev embedding: |U(t)|W 3,∞ ≤ C|U(t)|H4 ,

|Q(U,Ux)x| ≤ C(ζ2(t) + 4C2E2
0)Υ

|Q(U,Ux)xx| ≤ C(ζ2(t) + 4C2E2
0)Υ

(2.276)

where Υ = t−1/4(θ + ψ1 + ψ2).

Now again applying Lemmas 2.5.3-2.5.8 together with (2.276), (2.267), and (2.268),

we have obtained the desired estimate, that is, bounded by (ζ2(t) + CE0)(θ + ψ1 +

ψ2)(x, t), for most terms in the formulation (2.236) of Ux(x, t), except one boundary

term: ∫ t

0

H(x, t− s; 0)|Π1Q(U,Uy)y(0, s)| ds,

which is bounded by CE0(ψ1 + ψ2)(x, t) by using (2.227), (2.269), and Lemma 2.5.7,

84



and noting that

|Π1Q(U,Uy)y(0, s)| ≤ ζ(t)|h(s)|(θ + ψ1 + ψ2)(0, s) ≤ Cζ(t)|h(s)|.

Therefore, together with (2.275), we have obtained

(|U(x, t)|+ |Ux(x, t)|)(θ + ψ1 + ψ2)−1(x, t) ≤ C(E0 + ζ(t)2) (2.277)

as claimed, which completes the proof of Theorem 2.1.4.
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Chapter 3

MULTI–DIMENSIONAL

STABILITY

3.1 Introduction

In this chapter, we study the multi–dimensional stability of a noncharacteristic bound-

ary layer, or stationary solution,

Ũ = Ū(x1), lim
z→+∞

Ū(z) = U+, Ū(0) = Ū0 (3.1)

of a system of conservation laws on the quarter-space

Ũt +
∑
j

F j(Ũ)xj =
∑
jk

(Bjk(Ũ)Ũxk)xj , x ∈ Rd
+ = {x1 > 0}, t > 0, (3.2)

Ũ , F j ∈ Rn, Bjk ∈ Rn×n, with initial data Ũ(x, 0) = Ũ0(x) and Dirichlet type bound-

ary conditions specified in (3.5), (3.6) below.

3.1.1 Equations and assumptions

We consider the general hyperbolic-parabolic system of conservation laws (3.2) in

conserved variable Ũ , with

Ũ =

(
ũ

ṽ

)
, B =

(
0 0

bjk1 bjk2

)
,
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ũ ∈ Rn−r, and ṽ ∈ Rr, where

<σ
∑
jk

bjk2 ξjξk ≥ θ|ξ|2 > 0, ∀ξ ∈ Rn\{0}.

Following [37, 59, 57], we assume that equations (3.2) can be written, alternatively,

after a triangular change of coordinates

W̃ := W̃ (Ũ) =

(
w̃I(ũ)

w̃II(ũ, ṽ)

)
, (3.3)

in the quasilinear, partially symmetric hyperbolic-parabolic form

Ã0W̃t +
∑
j

ÃjW̃xj =
∑
jk

(B̃jkW̃xk)xj + G̃, (3.4)

where

Ã0 =

(
Ã0

11 0

0 Ã0
22

)
, Ãj =

(
Ãj11 Ãj12

Ãj21 Ãj22

)
, B̃jk =

(
0 0

0 b̃jk

)
, G̃ =

(
0

g̃

)

and, defining W̃± := W̃ (U±),

(A1) Ãj(W̃+), Ã0, Ã1
11 are symmetric, Ã0 ≥ θ0 > 0,

(A2) no eigenvector of
∑

j ξjÃ
j(Ã0)−1(W̃+) lies in the kernel of

∑
jk ξjξkB̃

jk(Ã0)−1(W̃+),

for each ξ ∈ Rd \ {0},

(A3)
∑
b̃jkξjξk ≥ θ|ξ|2, θ > 0, and g̃(W̃x, W̃x) = O(|W̃x|2).

Along with the above structural assumptions, we make the following technical

hypotheses:

(H0) F j, Bjk, Ã0, Ãj, B̃jk, W̃ (·), g̃(·, ·) ∈ Cs+1, with s ≥ [(d − 1)/2] + 4 in our

analysis of linearized stability, and s ≥ s(d) := [(d − 1)/2] + 7 in our analysis of

nonlinear stability.

(H1) Ã11
1 is either strictly positive or strictly negative, that is, either Ã11

1 ≥ θ1 >

0, or Ã11
1 ≤ −θ1 < 0. (We shall call these cases the inflow case or outflow case,

correspondingly.)

(H2) The eigenvalues of dF 1(U+) are distinct and nonzero.
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(H3) The eigenvalues of
∑

j dF
j
+ξj have constant multiplicity with respect to ξ ∈

Rd, ξ 6= 0.

(H4) The set of branch points of the eigenvalues of (Ã1)−1(iτÃ0 +
∑

j 6=1 iξjÃ
j)+,

τ ∈ R, ξ̃ ∈ Rd−1 is the (possibly intersecting) union of finitely many smooth curves τ =

η+
q (ξ̃), on which the branching eigenvalue has constant multiplicity sq (by definition

≥ 2).

Condition (H1) corresponds to hyperbolic–parabolic noncharacteristicity, while (H2)

is the condition for the hyperbolicity at U+ of the associated first-order hyperbolic

system obtained by dropping second-order terms. The assumptions (A1)-(A3) and

(H0)-(H2) are satisfied for gas dynamics and MHD with van der Waals equation of

state under inflow or outflow conditions; see discussions in [37, 9, 19, 18]. Condition

(H3) holds always for gas dynamics, but fails always for MHD in dimension d ≥ 2.

Condition (H4) is a technical requirement of the analysis introduced in [58]. It is

satisfied always in dimension d = 2 or for rotationally invariant systems in dimensions

d ≥ 2, for which it serves only to define notation; in particular, it holds always for

gas dynamics.

We also assume:

(B) Dirichlet boundary conditions in W̃ -coordinates:

(w̃I , w̃II)(0, x̃, t) = h̃(x̃, t) := (h̃1, h̃2)(x̃, t) (3.5)

for the inflow case, and

w̃II(0, x̃, t) = h̃(x̃, t) (3.6)

for the outflow case, with x = (x1, x̃) ∈ Rd.

This is sufficient for the main physical applications; the situation of more general,

Neumann and mixed-type boundary conditions on the parabolic variable v can be

treated as discussed in [19, 18].

3.1.2 The Evans condition and strong spectral stability

The linearized equations of (3.2), (B) about Ū are

Ut = LU :=
∑
j,k

(BjkUxk)xj −
∑
j

(AjU)xj (3.7)
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with initial data U(0) = U0 and boundary conditions in (linearized) W̃ -coordinates

of

W (0, x̃, t) := (wI , wII)T (0, x̃, t) = h

for the inflow case, and

wII(0, x̃, t) = h

for the outflow case, with x = (x1, x̃) ∈ Rd, where W := (∂W̃/∂U)(Ū)U .

A necessary condition for linearized stability is weak spectral stability, defined as

nonexistence of unstable spectra <λ > 0 of the linearized operator L about the wave.

As described in Section 3.2.1, this is equivalent to nonvanishing for all ξ̃ ∈ Rd−1,

<λ > 0 of the Evans function

DL(ξ̃, λ)

(defined in (3.21)), a Wronskian associated with the Fourier-transformed eigenvalue

ODE.

Definition 3.1.1. We define strong spectral stability as uniform Evans stability:

|DL(ξ̃, λ)| ≥ θ(C) > 0 (D2)

for (ξ̃, λ) on bounded subsets C ⊂ {ξ̃ ∈ Rd−1, <λ ≥ 0} \ {0}.

For the class of equations we consider, this is equivalent to the uniform Evans

condition of [19, 18], which includes an additional high-frequency condition that for

these equations is always satisfied (see Proposition 3.8, [19]). A fundamental result

proved in [19] is that small-amplitude noncharacteristic boundary-layers are always

strongly spectrally stable.1

Proposition 3.1.2 ([19]). Assuming (A1)-(A3), (H0)-(H3), (B) for some fixed end-

state (or compact set of endstates) U+, boundary layers with amplitude

‖Ū − U+‖L∞[0,+∞]

sufficiently small satisfy the strong spectral stability condition (D2).

As demonstrated in [54], stability of large-amplitude boundary layers may fail for

the class of equations considered here, even in a single space dimension, so there is

1The result of [19] applies also to more general types of boundary conditions and in some situations
to systems with variable multiplicity characteristics, including, in some parameter ranges, MHD.

89



no such general theorem in the large-amplitude case. Stability of large-amplitude

boundary-layers may be checked efficiently by numerical Evans computations as in

[5, 6, 7, 8, 28, 3, 24, 9, 26, 25].

3.1.3 Multi-dimensional results I

Our main results are as follows.

Theorem 3.1.3 (Linearized stability). Assuming (A1)-(A3), (H0)-(H4), (B), and

strong spectral stability (D2), we obtain asymptotic L1 ∩H [(d−1)/2]+5 → Lp stability of

(3.7) in dimension d ≥ 2, and any 2 ≤ p ≤ ∞, with rate of decay

|U(t)|L2 ≤ C(1 + t)−
d−1
4 (|U0|L1∩H3 + E0),

|U(t)|Lp ≤ C(1 + t)−
d
2

(1−1/p)+1/2p(|U0|L1∩H[(d−1)/2]+5 + E0),
(3.8)

provided that the initial perturbations U0 are in L1∩H3 for p = 2, or in L1∩H [(d−1)/2]+5

for p > 2, and boundary perturbations h satisfy

|h(t)|L2
x̃
≤ E0(1 + t)−(d+1)/4,

|h(t)|L∞x̃ ≤ E0(1 + t)−d/2

|Dh(t)|L1
x̃∩H

[(d−1)/2]+5
x̃

≤ E0(1 + t)−d/2−ε,

(3.9)

where Dh(t) := |ht|+ |hx̃|+ |hx̃x̃|, E0 is some positive constant, and ε > 0 is arbitrary

small for the case d = 2 and ε = 0 for d ≥ 3.

Theorem 3.1.4 (Nonlinear stability). Assuming (A1)-(A3), (H0)-(H4), (B), and

strong spectral stability (D2), we obtain asymptotic L1 ∩Hs → Lp ∩Hs stability of Ū

as a solution of (3.2) in dimension d ≥ 2, for s ≥ s(d) as defined in (H0), and any

2 ≤ p ≤ ∞, with rate of decay

|Ũ(t)− Ū |Lp ≤ C(1 + t)−
d
2

(1−1/p)+1/2p(|U0|L1∩Hs + E0)

|Ũ(t)− Ū |Hs ≤ C(1 + t)−
d−1
4 (|U0|L1∩Hs + E0),

(3.10)

provided that the initial perturbations U0 := Ũ0 − Ū are sufficiently small in L1 ∩Hs

and boundary perturbations h(t) := h̃(t)−W (Ū0) satisfy (3.9) and

Bh(t) ≤ E0(1 + t)−
d−1
4 , (3.11)
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with sufficiently small E0, where the boundary measure Bh is defined as

Bh(t) := |h|Hs(x̃) +

[(s+1)/2]∑
i=0

|∂ith|L2(x̃) (3.12)

for the outflow case, and similarly

Bh(t) := |h|Hs(x̃) +

[(s+1)/2]∑
i=0

|∂ith2|L2(x̃) +
s∑
i=0

|∂ith1|L2(x̃) (3.13)

for the inflow case.

Combining Theorem 3.1.4 and Proposition 3.1.2, we obtain the following small-

amplitude stability result, applying in particular to the motivating situation of Ex-

ample 1.2.1.

Corollary 3.1.5. Assuming (A1)-(A3), (H0)-(H4), (B) for some fixed endstate (or

compact set of endstates) U+, boundary layers with amplitude

‖Ū − U+‖L∞[0,+∞]

sufficiently small are linearly and nonlinearly stable in the sense of Theorems 3.1.3

and 3.1.4.

Remark 3.1.6. The obtained rate of decay in L2 may be recognized as that of a

(d − 1)-dimensional heat kernel, and the obtained rate of decay in L∞ as that of a

d-dimensional heat kernel. We believe that the sharp rate of decay in L2 is rather

that of a d-dimensional heat kernel and the sharp rate of decay in L∞ dependent on

the characteristic structure of the associated inviscid equations, as in the constant-

coefficient case [20, 21].

Remark 3.1.7. In one dimension, strong spectral stability is necessary for linearized

asymptotic stability; see Theorem 2.1.3. However, in multi-dimensions, it appears

likely that, as in the shock case [59], there are intermediate possibilities between strong

and weak spectral stability for which linearized stability might hold with degraded

rates of decay. In any case, the gap between the necessary weak spectral and the

sufficient strong spectral stability conditions concerns only pure imaginary spectra
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<λ = 0 on the boundary between strictly stable and unstable half-planes, so this

should not interfere with investigation of physical stability regions.

3.1.4 Discussion

The large-amplitude asymptotic stability result of Theorem 3.1.4 extends to multi di-

mensions corresponding one-dimensional results of [56, 45] or Theorem 2.1.3, reducing

the problem of stability to verification of a numerically checkable Evans condition.

See also the related, but technically rather different, work on the small viscosity limit

in [42, 19, 18]. By a combination of numerical Evans function computations and

asymptotic ODE estimates, spectral stability has been checked for arbitrary ampli-

tude noncharacteristic boundary layers of the one-dimensional isentropic compressible

Navier–Stokes equations in [9]. Extensions to the nonisentropic and multi-dimensional

case should be possible by the methods used in [26] and [25] respectively to treat the

related shock stability problem.

This (investigation of large-amplitude spectral stability) would be a very interest-

ing direction for further investigation. In particular, note that it is large-amplitude

stability that is relevant to drag-reduction at flight speeds, since the transverse rela-

tive velocity (i.e., velocity parallel to the airfoil) is zero at the wing surface and flight

speed outside a thin boundary layer, so that variation across the boundary layer is

substantial. We discuss this problem further in Appendix B.1 for the model isentropic

case.

Our method of analysis follows the basic approach introduced in [58, 59, 57] for

the study of multi-dimensional shock stability and we are able to make use of much

of that analysis without modification. However, there are some new difficulties to be

overcome in the boundary-layer case.

The main new difficulty is that the boundary-layer case is analogous to the under-

compressive shock case rather than the more favorable Lax shock case emphasized in

[59], in that Gy1 6∼ t−1/2G as in the Lax shock case but rather Gy1 ∼ (e−θ|y1|+t−1/2)G,

θ > 0, as in the undercompressive case. This is a significant difficulty; indeed, for this

reason, the undercompressive shock analysis was carried out in [59] only in nonphys-

ical dimensions d ≥ 4. On the other hand, there is no translational invariance in the

boundary layer problem, so no zero-eigenvalue and no pole of the resolvent kernel at

the origin for the one-dimensional operator, and in this sense G is somewhat better

92



in the boundary layer than in the shock case.

Thus, the difficulty of the present problem is roughly intermediate to that of the

Lax and undercompressive shock cases. Though the undercompressive shock case is

still open in multi-dimensions for d ≤ 3, the slight advantage afforded by lack of

pole terms allows us to close the argument in the boundary-layer case. Specifically,

thanks to the absence of pole terms, we are able to get a slightly improved rate of

decay in L∞(x1) norms, though our L2(x1) estimates remain the same as in the shock

case. By keeping track of these improved sup norm bounds throughout the proof,

we are able to close the argument without using detailed pointwise bounds as in the

one-dimensional analyses of [23, 50].

Other difficulties include the appearance of boundary terms in integrations by

parts, which makes the auxiliary energy estimates by which we control high-frequency

effects considerably more difficult in the boundary-layer than in the shock-layer case,

and the treatment of boundary perturbations. In terms of the homogeneous Green

function G, boundary perturbations lead by a standard duality argument to con-

tributions consisting of integrals on the boundary of perturbations against various

derivatives of G, and these are a bit too singular as time goes to zero to be absolutely

integrable. Following the strategy introduced in [56, 45], we instead use duality to

convert these to less singular integrals over the whole space, that are absolutely in-

tegrable in time. However, we make a key improvement here over the treatment in

[56, 45], integrating against an exponentially decaying test function to obtain terms

of exactly the same form already treated for the homogeneous problem. This is nec-

essary for us in the multi-dimensional case, for which we have insufficient information

about individual parts of the solution operator to estimate them separately as in

[56, 45], but makes things much more transparent also in the one-dimensional case.

Among physical systems, our hypotheses here appear to apply to and essentially

only to the case of compressible Navier–Stokes equations with inflow or outflow bound-

ary conditions. In Chapter 4, we will establish an extension to more general situations

such as MHD equations by a rather different technique: the method of Kreiss’ sym-

metrizers. In addition, the above technical assumption (H4) which appears to be

crucial in current analyses can be dropped in our analysis of Chapter 4. See also

[19, 18] for the recent results on the related small-viscosity problem.

Finally, as pointed out in Remark 3.1.7, the strong spectral stability condition

does not appear to be necessary for asymptotic stability. It would be interesting to
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develop a refined stability condition similarly as was done in [54, 58, 59, 57] for the

shock case.

3.2 Resolvent kernel: construction and low-frequency

bounds

In this section, we briefly recal the construction of resolvent kernel and then establish

the pointwise low-frequency bounds on Gξ̃,λ, by appropriately modifying the proof in

[59] in the boundary layer context [56, 45] or Chapter 2.

3.2.1 Construction

We construct a representation for the family of elliptic Green distributionsGξ̃,λ(x1, y1),

Gξ̃,λ(·, y1) := (Lξ̃ − λ)−1δy1(·), (3.14)

associated with the ordinary differential operators (Lξ̃ − λ), i.e. the resolvent kernel

of the Fourier transform Lξ̃ of the linearized operator L of (3.7). To do so, we study

the homogeneous eigenvalue equation (Lξ̃ − λ)U = 0, or

L0U︷ ︸︸ ︷
(B11U ′)′ − (A1U)′−i

∑
j 6=1

AjξjU + i
∑
j 6=1

Bj1ξjU
′

+ i
∑
k 6=1

(B1kξkU)′ −
∑
j,k 6=1

BjkξjξkU − λU = 0,

(3.15)

with boundary conditions (translated from those in W -coordinates)(
A1

11 − A1
12(b11

2 )−1b11
1 0

b11
1 b11

2

)
U(0) ≡

(
∗
0

)
(3.16)

where ∗ = 0 for the inflow case and is arbitrary for the outflow case.

Define

Λξ̃ :=
n⋂
j=1

Λ+
j (ξ̃)

where Λ+
j (ξ̃) denote the open sets bounded on the left by the algebraic curves λ+

j (ξ1, ξ̃)
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determined by the eigenvalues of the symbols −ξ2B+− iξA+ of the limiting constant-

coefficient operators

Lξ̃+w := B+w
′′ − A+w

′

as ξ1 is varied along the real axis, with ξ̃ held fixed. The curves λ+
j (·, ξ̃) comprise the

essential spectrum of operators Lξ̃+. Let Λ denote the set of (ξ̃, λ) such that λ ∈ Λξ̃.

For (ξ̃, λ) ∈ Λξ̃, introduce locally analytically chosen (in ξ̃, λ) matrices

Φ+ = (φ+
1 , · · · , φ+

k ), Φ0 = (φ0
k+1, · · · , φ0

n+r), (3.17)

and

Φ = (Φ+,Φ0), (3.18)

whose columns span the subspaces of solutions of (4.67) that, respectively, decay

at x = +∞ and satisfy the prescribed boundary conditions at x = 0, and locally

analytically chosen matrices

Ψ0 = (ψ0
1, · · · , ψ0

k), Ψ+ = (ψ+
k+1, · · · , ψ

+
n+r) (3.19)

and

Ψ = (Ψ0,Ψ+). (3.20)

whose columns span complementary subspaces. The existence of such matrices is

guaranteed by the general Evans function framework of [1, 14, 36]; see in particular

[59, 45]. That dimensions sum to n + r follows by a general result of [19]; see also

[54].

The Evans function

Following [1, 14, 54], we define on Λ the Evans function

DL(ξ̃, λ) := det(Φ0,Φ+)|x=0. (3.21)

Evidently, eigenfunctions decaying at +∞ and satisfying the prescribed boundary

conditions at x1 = 0 occur precisely when the subspaces span Φ0 and span Φ+ inter-

sect, i.e., at zeros of the Evans function

DL(ξ̃, λ) = 0.

95



The Evans function as constructed here is locally analytic in (ξ̃, λ), which is all

that we need for our analysis; we prescribe different versions of the Evans function as

needed on different neighborhoods of Λ. Note that Λ includes all of {ξ̃ ∈ Rd−1, <λ ≥
0}\{0}, so that Definition 3.1.1 is well-defined and equivalent to simple nonvanishing,

away from the origin (ξ̃, λ) = (0, 0). To make sense of this definition near the origin,

we must insist that the matrices Φj in (3.21) remain uniformly bounded, a condition

that can always be achieved by limiting the neighborhood of definition.

For the class of equations we consider, the Evans function may in fact be extended

continuously along rays through the origin [51, 42, 19, 18].

Basic representation formulae

Define the solution operator from y1 to x1 of ODE (Lξ̃−λ)U = 0, denoted by Fy1→x1 ,

as

Fy1→x1 = Φ(x1, λ)Φ−1(y1, λ)

and the projections Π0
y1
,Π+

y1
on the stable manifolds at 0,+∞ as

Π+
y1

=
(

Φ+(y1) 0
)

Φ−1(y1), Π0
y1

=
(

0 Φ0(y1)
)

Φ−1(y1).

We define also the dual subspaces of solutions of (L∗
ξ̃
− λ∗)W̃ = 0. We denote

growing solutions

Φ̃0 = (φ̃0
1, · · · , φ̃0

k), Φ̃+ = (φ̃+
k+1, · · · , φ̃

+
n+r), (3.22)

Φ̃ := (Φ̃0, Φ̃+) and decaying solutions

Ψ̃0 = (ψ̃0
1, · · · , ψ̃+

k ), Ψ̃+ = (ψ̃+
k+1, · · · , ψ̃

+
n+r), (3.23)

and Ψ̃ := (Ψ̃0, Ψ̃+), satisfying the relations(
Ψ̃ Φ̃

)∗
0,+
S̄ ξ̃
(

Ψ Φ
)

0,+
≡ I, (3.24)
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where

S̄ ξ̃ =

−A1 + iB1ξ̃ + iB ξ̃1

(
0

Ir

)
(
−(b11

2 )−1b11
I −Ir

)
0

 . (3.25)

With these preparations, the construction of the Resolvent kernel goes exactly as

in the construction performed in [60, 36, 59] on the whole line and [56, 45] on the half

line, yielding the following basic representation formulae; for a proof, see [36, 45] or

Lemma 2.2.13 and Proposition 2.2.14.

Proposition 3.2.1. We have the following representation

Gξ̃,λ(x1, y1) =

(In, 0)Fy1→x1Π+
y1

(S̄ ξ̃)−1(y1)(In, 0)tr, for x1 > y1,

−(In, 0)Fy1→x1Π0
y1

(S̄ ξ̃)−1(y1)(In, 0)tr, for x1 < y1.
(3.26)

Proposition 3.2.2. The resolvent kernel may alternatively be expressed as

Gξ̃,λ(x1, y1) =

(In, 0)Φ+(x1;λ)M+(λ)Ψ̃0∗(y1;λ)(In, 0)tr x1 > y1,

−(In, 0)Φ0(x1;λ)M0(λ)Ψ̃+∗(y1;λ)(In, 0)tr x1 < y1,

where

M(λ) := diag(M+(λ),M0(λ)) = Φ−1(z;λ)(S̄ ξ̃)−1(z)Ψ̃−1∗(z;λ). (3.27)

Scattering decomposition

From Propositions 3.2.1 and 3.2.2, we obtain the following scattering decomposition,

generalizing the Fourier transform representation in the constant-coefficient case, from

which we will obtain pointwise bounds in the low-frequency regime.

Corollary 3.2.3. On Λξ̃ ∩ ρ(Lξ̃),

Gξ̃,λ(x1, y1) =
∑
j,k

d+
jkφ

+
j (x1;λ)ψ̃+

k (y1;λ)∗ +
∑
k

φ+
k (x1;λ)φ̃+

k (y1;λ)∗ (3.28)

for 0 ≤ y1 ≤ x1, and

Gξ̃,λ(x1, y1) =
∑
j,k

d0
jkφ

+
j (x1;λ)ψ̃+

k (y1;λ)∗ −
∑
k

ψ+
k (x1;λ)ψ̃+

k (y1;λ)∗ (3.29)
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for 0 ≤ x1 ≤ y1, where

d0,+
jk (λ) = (I, 0)

(
Φ+ Φ0

)−1

Ψ+. (3.30)

Proof. For 0 ≤ x1 ≤ y1, we obtain the preliminary representation

Gξ̃,λ(x1, y1) =
∑
j,k

d0
jk(λ)φ+

j (x1;λ)ψ̃+
k (y1;λ)∗ +

∑
jk

e0
jkψ

+
j (x1;λ)ψ̃+

k (y1;λ)∗

from which, together with duality (3.24), representation (3.26), and the fact that

Π0 = I − Π+, we have(
d0

e0

)
= −

(
Φ̃+ Ψ̃+

)∗
AΠ0Ψ+

= −
(

Φ+ Ψ+
)−1 [

I −
(

Φ+ 0
)(

Φ+ Φ0
)−1 ]

Ψ+

=

(
0

−Ik

)
+

(
In−k 0

0 0

)(
Φ+ Φ0

)−1

Ψ+.

(3.31)

Similarly, for 0 ≤ y1 ≤ x1, we obtain the preliminary representation

Gξ̃,λ(x1, y1) =
∑
j,k

d+
jk(λ)φ+

j (x1;λ)ψ̃+
k (y1;λ)∗ +

∑
jk

e+
jkφ

+
j (x1;λ)φ̃+

k (y1;λ)∗

from which, together with duality (3.24) and representation (3.26), we have(
d+

e+

)
= Φ̃+∗AΠ+

(
Ψ+ Φ+

)
= (Φ+)−1

(
Φ+ 0

)(
Φ+ Φ0

)−1 (
Ψ+ Φ+

)
=
(
I 0

)(
Φ+ Φ0

)−1 (
Ψ+ Φ+

)
=

(
In−k 0

0 0

)(
Φ+ Φ0

)−1

Ψ+ +

(
0 0

Ik 0

)(
0 Ik

0 0

)
.

(3.32)

Remark 3.2.4. In the constant-coefficient case, with a choice of common bases
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Ψ0,+ = Φ+,0 at 0,+∞, the above representation reduces to the simple formula

Gξ̃,λ(x1, y1) =


∑N

j=k+1 φ
+
j (x1;λ)φ̃+∗

j (y1;λ) x1 > y1,

−
∑k

j=1 ψ
+
j (x1;λ)ψ̃+∗

j (y1;λ) x1 < y1.
(3.33)

3.2.2 Pointwise low-frequency bounds

We obtain pointwise low-frequency bounds on the resolvent kernel Gξ̃,λ(x1, y1) by

appealing to the detailed analysis of [58, 59, 17] in the viscous shock case. Restrict

attention to the surface

Γξ̃ := {λ : <eλ = −θ1(|ξ̃|2 + |=mλ|2)}, (3.34)

for θ1 > 0 sufficiently small.

Proposition 3.2.5 ([59]). Under the hypotheses of Theorem 3.1.4, for λ ∈ Γξ̃ and

ρ := |(ξ̃, λ)|, θ1 > 0, and θ > 0 sufficiently small, there hold:

|Gξ̃,λ(x1, y1)| ≤ Cγ2e
−θρ2|x1−y1|. (3.35)

and

|∂βy1Gξ̃,λ(x1, y1)| ≤ Cγ2(ρβ + βe−θy1)e−θρ
2|x1−y1| (3.36)

where

γ2 := 1 +
∑
j

[
ρ−1|=mλ− η+

j (ξ̃)|+ ρ
]1/sj−1

, (3.37)

and sj, η
+
j (ξ̃) are as defined in (H4).

Proof. This follows by a simplified version of the analysis of [59], Section 5 in the

viscous shock case, replacing Φ−, Ψ− with Φ0, Ψ0, omitting the refined derivative

bounds of Lemmas 5.23 and 5.27 describing special properties of the Lax and over-

compressive shock case (not relevant here), and setting ` = 0, or γ̃ ≡ 1 in definition

(5.128). Here, ` is the multiplicity to which the Evans function vanishes at the origin,

(ξ̃, λ) = (0, 0), evidently zero under assumption (D2). The key modes Φ+, Ψ+ at plus

spatial infinity are the same for the boundary-layer as for the shock case.

This leads to the pointwise bounds (5.37)–(5.38) given in Proposition 5.10 of [59]

in case α = 1, γ1 ≡ 1 corresponding to the uniformly stable undercompressive shock
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case, but without the first O(ρ−1), or “pole”, terms appearing on the righthand side,

which derive from cases γ̃ ∼ ρ−1 not arising here. But, these are exactly the claimed

bounds (3.35)–(3.37).

We omit the (substantial) details of this computation, referring the reader to [59].

However, the basic idea is, starting with the scattering decomposition of Corollary

3.2.1, to note, first, that the normal modes Φj, Ψj, Φ̃j, Ψ̃j can be approximated up

to an exponentially trivial coordinate change by solutions of the constant-coefficient

limiting system at x → +∞ (the conjugation lemma of [42]) and, second, that the

coefficients Mjk, djk may be well-estimated through formulae (3.27) and (3.30) using

Kramer’s rule and the assumed lower bound on the Evans function |D| appearing

in the denominator. This is relatively straightforward away from the branch points

=λ = ηj(ξ̃) or “glancing set” of hyperbolic theory; the treatment near these points

involves some delicate matrix perturbation theory applied to the limiting constant-

coefficient system at x → +∞ followed by careful bookkeeping in the application of

Kramer’s rule.

3.3 Linearized estimates

We next establish estimates on the linearized inhomogeneous problem

Ut − LU = f (3.38)

with initial data U(0) = U0 and Dirichlet boundary conditions as usual in W̃ -

coordinates:

W (0, x̃, t) := (wI , wII)T (0, x̃, t) = h (3.39)

for the inflow case, and

wII(0, x̃, t) = h (3.40)

for the outflow case, with x = (x1, x̃) ∈ Rd.

3.3.1 Resolvent bounds

Our first step is to estimate solutions of the resolvent equation with homogeneous

boundary data ĥ ≡ 0.
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Proposition 3.3.1 (High-frequency bounds). Given (A1)-(A2), (H0)-(H2), and ho-

mogeneous boundary conditions (B), for some R,C sufficiently large and θ > 0 suffi-

ciently small,

|(Lξ̃ − λ)−1f̂ |Ĥ1(x1) ≤ C|f̂ |Ĥ1(x1), (3.41)

and

|(Lξ̃ − λ)−1f̂ |L2(x1) ≤
C

|λ|1/2
|f̂ |Ĥ1(x1), (3.42)

for all |(ξ̃, λ)| ≥ R and <eλ ≥ −θ, where f̂ is the Fourier transform of f in variable

x̃ and |f̂ |Ĥ1(x1) := |(1 + |∂x1|+ |ξ̃|)f̂ |L2(x1).

Proof. First observe that a Laplace-Fourier transformed version with respect to vari-

ables (λ, x̃) of the nonlinear energy estimate in Section 3.4 with s = 1, carried out on

the linearized equations written in W -coordinates, yields

(<eλ+ θ1)|(1 + |ξ̃|+ |∂x1|)W |2 ≤ C
(
|W |2 + (1 + |ξ̃|2)|W ||f̂ |+ |∂x1W ||∂x1 f̂ |

)
(3.43)

for some C big and θ1 > 0 sufficiently small, where |.| denotes |.|L2(x1). Applying

Young’s inequality, we obtain

(<eλ+ θ1)|(1 + |ξ̃|+ |∂x1 |)W |2 ≤ C|W |2 + C|(1 + |ξ̃|+ |∂x1|)f̂ |2. (3.44)

On the other hand, taking the imaginary part of the L2 inner product of U against

λU = f + LU , we have also the standard estimate

|=mλ||U |2L2 ≤ C|U |2H1 + C|f |2L2 , (3.45)

and thus, taking the Fourier transform in x̃, we obtain

|=mλ||W |2 ≤ C|f̂ |2 + C|(1 + |ξ̃|+ |∂x1|)W |2. (3.46)

Therefore, taking θ = θ1/2, we obtain from (3.44) and (3.46)

|(1 + |λ|1/2 + |ξ̃|+ |∂x1|)W |2 ≤ C|W |2 + C|(1 + |ξ̃|+ |∂x1|)f̂ |2, (3.47)

for any <eλ ≥ −θ. Now take R sufficiently large such that |W |2 on the right hand

side of the above can be absorbed into the left hand side, and thus, for all |(ξ̃, λ)| ≥ R
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and <eλ ≥ −θ,

|(1 + |λ|1/2 + |ξ̃|+ |∂x1|)W |2 ≤ C|(1 + |ξ̃|+ |∂x1|)f̂ |2, (3.48)

for some large C > 0, which gives the result.

We next have the following:

Proposition 3.3.2 (Mid-frequency bounds). Given (A1)-(A2), (H0)-(H2), and strong

spectral stability (D2),

|(Lξ̃ − λ)−1|Ĥ1(x1) ≤ C, for R−1 ≤ |(ξ̃, λ)| ≤ R and <eλ ≥ −θ, (3.49)

for any R and C = C(R) sufficiently large and θ = θ(R) > 0 sufficiently small, where

|f̂ |Ĥ1(x1) is defined as in Proposition 3.3.1.

Proof. Immediate, by compactness of the set of frequencies under consideration to-

gether with the fact that the resolvent (λ − Lξ̃)−1 is analytic with respect to H1 in

(ξ̃, λ); see Proposition 4.8, [57].

We next obtain the following resolvent bound for low-frequency regions as a direct

consequence of pointwise bounds on the resolvent kernel, obtained in Proposition

3.2.5.

Proposition 3.3.3 (Low-frequency bounds). Under the hypotheses of Theorem 3.1.4,

for λ ∈ Γξ̃ and ρ := |(ξ̃, λ)|, θ1 sufficiently small, there holds the resolvent bound

|(Lξ̃ − λ)−1∂βx1
f̂ |Lp(x1) ≤ Cγ2ρ

−2/p
[
ρβ|f̂ |L1(x1) + β|f̂ |L∞(x1)

]
(3.50)

for all 2 ≤ p ≤ ∞, β = 0, 1, where γ2 is as defined in (3.37).

Proof. Using the convolution inequality |g ∗ h|Lp ≤ |g|Lp |h|L1 and noticing that

|∂βy1Gξ̃,λ(x1, y1)| ≤ Cγ2(ρβ + βe−θy1)e−θρ
2|x1−y1|,
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we obtain

|(Lξ̃ − λ)−1∂βx1
f̂ |Lp(x1)

=
∣∣∣ ∫ ∂βy1Gξ̃,λ(x1, y1)f̂(y1, ξ̃) dy1

∣∣∣
Lp(x1)

+ β|Gξ̃,λ(x1, 0)f̂(0, ξ̃)|Lp(x1)

≤
∣∣∣ ∫ Cγ2(ρβ + βe−θy1)e−θρ

2|x1−y1||f̂(y1, ξ̃)| dy1

∣∣∣
Lp

+ Cγ2β|f̂(0, ξ̃)||e−θρ2x1|Lp(x1)

≤ Cγ2ρ
−2/p

[
ρβ|f̂ |L1(x1) + β|f̂ |L∞(x1)

]
as claimed.

Remark 3.3.4. The above Lp bounds may alternatively be obtained directly by

the argument of Section 12, [17], using quite different Kreiss symmetrizer techniques,

again omitting pole terms arising from vanishing of the Evans function at the origin,

and also the auxiliary problem construction of Section 12.6 used to obtain sharpened

bounds in the Lax or overcompressive shock case (not relevant here).

3.3.2 Estimates on homogeneous solution operators

Define low- and high-frequency parts of the linearized solution operator S(t) of the

linearized problem with homogeneous boundary and forcing data, f , h ≡ 0, as

S1(t) :=
1

(2πi)d

∫
|ξ̃|≤r

∮
Γξ̃∩{|λ|≤r}

eλt+iξ̃·x̃(Lξ̃ − λ)−1dλdξ̃ (3.51)

and

S2(t) := eLt − S1(t). (3.52)

Then we obtain the following:

Proposition 3.3.5 (Low-frequency estimate). Under the hypotheses of Theorem

3.1.4, for β = (β1, β
′) with β1 = 0, 1,

|S1(t)∂βxf |L2
x
≤C(1 + t)−(d−1)/4−|β|/2|f |L1

x
+ Cβ1(1 + t)−(d−1)/4|f |L1,∞

x̃,x1

,

|S1(t)∂βxf |L2,∞
x̃,x1

≤C(1 + t)−(d+1)/4−|β|/2|f |L1
x

+ Cβ1(1 + t)−(d+1)/4|f |L1,∞
x̃,x1

,

|S1(t)∂βxf |L∞x̃,x1 ≤C(1 + t)−d/2−|β|/2|f |L1
x

+ Cβ1(1 + t)−d/2|f |L1,∞
x̃,x1

,

(3.53)

where | · |Lp,qx̃,x1 denotes the norm in Lp(x̃;Lq(x1)).
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Proof. The proof will follow closely the treatment of the shock case in [59]. Let

û(x1, ξ̃, λ) denote the solution of (Lξ̃−λ)û = f̂ , where f̂(x1, ξ̃) denotes Fourier trans-

form of f , and

u(x, t) := S1(t)f =
1

(2πi)d

∫
|ξ̃|≤r

∮
Γξ̃∩{|λ|≤r}

eλt+iξ̃·x̃(Lξ̃ − λ)−1f̂(x1, ξ̃)dλdξ̃.

Recalling the resolvent estimates in Proposition 3.3.3, we have

|û(x1, ξ̃, λ)|Lp(x1) ≤ Cγ2ρ
−2/p|f̂ |L1(x1) ≤ Cγ2ρ

−2/p|f |L1(x)

where γ2 is as defined in (3.37).

Therefore, using Parseval’s identity, Fubini’s theorem, and the triangle inequality,

we may estimate

|u|2L2(x1,x̃)(t) =
1

(2π)2d

∫
x1

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

eλtû(x1, ξ̃, λ)dλ
∣∣∣2dξ̃dx1

=
1

(2π)2d

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

eλtû(x1, ξ̃, λ)dλ
∣∣∣2
L2(x1)

dξ̃

≤ 1

(2π)2d

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλt|û(x1, ξ̃, λ)|L2(x1)dλ
∣∣∣2dξ̃

≤ C|f |2L1(x)

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλtγ2ρ
−1dλ

∣∣∣2dξ̃.
Specifically, parametrizing Γξ̃ by

λ(ξ̃, k) = ik − θ1(k2 + |ξ̃|2), k ∈ R,

and observing that by (3.37),

γ2ρ
−1 ≤ (|k|+ |ξ̃|)−1

[
1 +

∑
j

( |k − τj(ξ̃)|
ρ

)1/sj−1]
≤ (|k|+ |ξ̃|)−1

[
1 +

∑
j

( |k − τj(ξ̃)|
ρ

)ε−1]
,

(3.54)

where ε := 1
maxj sj

(0 < ε < 1 chosen arbitrarily if there are no singularities), we
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estimate∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλtγ2ρ
−1dλ

∣∣∣2dξ̃ ≤ ∫
ξ̃

∣∣∣ ∫
R
e−θ1(k2+|ξ̃|2)tγ2ρ

−1dk
∣∣∣2dξ̃

≤
∫
ξ̃

e−2θ1|ξ̃|2t|ξ̃|−2ε
∣∣∣ ∫

R
e−θ1k

2t|k|ε−1dk
∣∣∣2dξ̃

+
∑
j

∫
ξ̃

e−2θ1|ξ̃|2t|ξ̃|−2ε
∣∣∣ ∫

R
e−θ1k

2t|k − τj(ξ̃)|ε−1dk
∣∣∣2dξ̃

≤
∫
ξ̃

e−2θ1|ξ̃|2t|ξ̃|−2ε
∣∣∣ ∫

R
e−θ1k

2t|k|ε−1dk
∣∣∣2dξ̃

≤ Ct−(d−1)/2.

Likewise, we have

|u|2
L2,∞
x̃,x1

(t) =
1

(2π)2d

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

eλtû(x1, ξ̃, λ)dλ
∣∣∣2
L∞(x1)

dξ̃

≤ 1

(2π)2d

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλt|û(x1, ξ̃, λ)|L∞(x1)dλ
∣∣∣2dξ̃

≤ C|f |2L1(x)

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλtγ2dλ
∣∣∣2dξ̃

where∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλtγ2dλ
∣∣∣2dξ̃ ≤ ∫

ξ̃

e−2θ1|ξ̃|2t
∣∣∣ ∫

R
e−θ1k

2tdk
∣∣∣2dξ̃

+
∑
j

∫
ξ̃

e−2θ1|ξ̃|2t|ξ̃|2−2ε
∣∣∣ ∫

R
e−θ1k

2t|k − τj(ξ̃)|ε−1dk
∣∣∣2dξ̃

≤ Ct−(d+1)/2 + C

∫
ξ̃

e−2θ1|ξ̃|2t|ξ̃|2−2ε
∣∣∣ ∫

R
e−θ1k

2t|k|ε−1dk
∣∣∣2dξ̃

≤ Ct−(d+1)/2.

Similarly, we estimate

|u|L∞x̃,x1 (t) ≤ 1

(2π)d

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

eλtû(x1, ξ̃, λ)dλ
∣∣∣
L∞(x1)

dξ̃

≤ 1

(2π)d

∫
ξ̃

∮
Γξ̃∩{|λ|≤r}

e<eλt|û(x1, ξ̃, λ)|L∞(x1)dλdξ̃

≤ C|f |L1(x)

∫
ξ̃

∮
Γξ̃∩{|λ|≤r}

e<eλtγ2dλdξ̃
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where as above we have∫
ξ̃

∮
Γξ̃∩{|λ|≤r}

e<eλtγ2dλdξ̃ ≤
∫
ξ̃

e−θ1|ξ̃|
2t

∫
R
e−θ1k

2tdkdξ̃

+
∑
j

∫
ξ̃

e−θ1|ξ̃|
2t|ξ̃|1−ε

∫
R
e−θ1k

2t|k − τj(ξ̃)|ε−1dkdξ̃

≤ Ct−d/2 + C

∫
ξ̃

e−θ1|ξ̃|
2t|ξ̃|1−ε

∫
R
e−θ1k

2t|k|ε−1dkdξ̃

≤ Ct−d/2.

The x1-derivative bounds follow similarly by using the resolvent bounds in Propo-

sition 3.3.3 with β1 = 1. The x̃-derivative bounds are straightforward by the fact that

∂̂β̃x̃f = (iξ̃)β̃ f̂ .

Finally, each of the above integrals is bounded by C|f |L1(x) as the product of

|f |L1(x) times the integral quantities γ2ρ
−1, γ2 over a bounded domain, hence we may

replace t by (1 + t) in the above estimates.

Next, we obtain estimates on the high-frequency part S2(t) of the linearized solu-

tion operator. Recall that S2(t) = S(t)− S1(t), where

S(t) =
1

(2πi)d

∫
Rd−1

eiξ̃·x̃eLξ̃tdξ̃

and

S1(t) =
1

(2πi)d

∫
|ξ̃|≤r

∮
Γξ̃∩{|λ|≤r}

eλt+iξ̃·x̃(Lξ̃ − λ)−1dλdξ̃.

Then according to [57, Corollary 4.11], we can write

S2(t)f =
1

(2πi)d
P.V.

∫ −θ1+i∞

−θ1−i∞

∫
Rd−1

χ|ξ̃|2+|=mλ|2≥θ1+θ2

× eiξ̃·x̃+λt(λ− Lξ̃)
−1f̂(x1, ξ̃)dξ̃dλ.

(3.55)

Proposition 3.3.6 (High-frequency estimate). Given (A1)-(A2), (H0)-(H2), (D2),

and homogeneous boundary conditions (B), for 0 ≤ |α| ≤ s− 3, s as in (H0),

|S2(t)f |L2
x
≤ Ce−θ1t|f |H3

x
,

|∂αxS2(t)f |L2
x
≤ Ce−θ1t|f |

H
|α|+3
x

.
(3.56)
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Proof. The proof starts with the following resolvent identity, using analyticity on the

resolvent set ρ(Lξ̃) of the resolvent (λ− Lξ̃)−1, for all f ∈ D(Lξ̃),

(λ− Lξ̃)
−1f = λ−1(λ− Lξ̃)

−1Lξ̃f + λ−1f. (3.57)

Using this identity and (3.55), we estimate

S2(t)f =
1

(2πi)d
P.V.

∫ −θ1+i∞

−θ1−i∞

∫
Rd−1

χ|ξ̃|2+|=mλ|2≥θ1+θ2

× eiξ̃·x̃+λtλ−1(λ− Lξ̃)
−1Lξ̃f̂(x1, ξ̃)dξ̃dλ

+
1

(2πi)d
P.V.

∫ −θ1+i∞

−θ1−i∞

∫
Rd−1

χ|ξ̃|2+|=mλ|2≥θ1+θ2

× eiξ̃·x̃+λtλ−1f̂(x1, ξ̃)dξ̃dλ

=: S1 + S2,

(3.58)

where, by Plancherel’s identity and Propositions 3.3.6 and 3.3.2, we have

|S1|L2(x̃,x1) ≤ C

∫ −θ1+i∞

−θ1−i∞
|λ|−1|eλt||(λ− Lξ̃)

−1Lξ̃f̂ |L2(ξ̃,x1)|dλ|

≤ Ce−θ1t
∫ −θ1+i∞

−θ1−i∞
|λ|−3/2

∣∣∣(1 + |ξ̃|)|Lξ̃f̂ |H1(x1)

∣∣∣
L2(ξ̃)
|dλ|

≤ Ce−θ1t|f |H3
x

and

|S2|L2
x
≤ 1

(2π)d

∣∣∣P.V.

∫ −θ1+i∞

−θ1−i∞
λ−1eλtdλ

∫
Rd−1

eix̃·ξ̃f̂(x1, ξ̃)dξ̃
∣∣∣
L2

+
1

(2π)d

∣∣∣P.V.

∫ −θ1+ir

−θ1−ir
λ−1eλtdλ

∫
Rd−1

eix̃·ξ̃f̂(x1, ξ̃)dξ̃
∣∣∣
L2

≤ Ce−θ1t|f |L2
x
,

(3.59)

by direct computations, noting that the integral in λ in the first term is identi-

cally zero. This completes the proof of the first inequality stated in the proposition.

Derivative bounds follow similarly.

Remark 3.3.7. Here, we have used the λ1/2 improvement in (3.42) over (3.41)

together with modifications introduced in [35] to greatly simplify the original high-
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frequency argument given in [59] for the shock case.

3.3.3 Boundary estimates

For the purpose of studying the nonzero boundary perturbation, we need the following

proposition. For h := h(x̃, t), define

Dh(t) := (|ht|+ |hx̃|+ |hx̃x̃|)(t), (3.60)

and

Γh(t) :=

∫ t

0

∫
Rd−1

(∑
k

GykB
k1 +GA1

)
(x, t− s; 0, ỹ)h(ỹ, s) dỹds, (3.61)

where G(x, t; y) is the Green function of ∂t−L. This boundary term will appear when

we write down the Duhamel formulas for the linearized and nonlinear equations (see

(3.73) and (3.130)). Noting that for the outflow case, the fact that G(x, t; 0, ỹ) ≡ 0

simplifies Γh to

Γh(t) =

∫ t

0

∫
Rd−1

Gy1(x, t− s; 0, ỹ)B11h dỹds. (3.62)

Therefore when dealing with the outflow case, instead of putting assumptions on

h itself as in the inflow case, we make assumptions on B11h, matching with the

hypotheses on W -coordinates.

Proposition 3.3.8. Assume that h = h(x̃, t) satisfies

|h(t)|L2
x̃
≤ E0(1 + t)−(d+1)/4,

|h(t)|L∞x̃ ≤ E0(1 + t)−d/2

|Dh(t)|L1
x̃∩H

|γ|+3
x̃
≤ E0(1 + t)−d/2−ε,

(3.63)

for some positive constant E0; here |γ| = [(d− 1)/2] + 2, and ε > 0 is arbitrary small

for d = 2 and ε = 0 for d ≥ 3. For the outflow case, we replace these assumptions on
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h by those on B11h. Then we obtain

|Γh(t)|L2 ≤ CE0(1 + t)−(d−1)/4,

|Γh(t)|L2,∞
x̃,x1

≤ CE0(1 + t)−(d+1)/4,

|Γh(t)|L∞ ≤ CE0(1 + t)−d/2,

(3.64)

and derivative bounds

|∂xΓh(t)|L2,∞
x̃,x1

≤ CE0(1 + t)−(d+1)/4,

|∂2
x̃Γh(t)|L2,∞

x̃,x1

≤ CE0(1 + t)−(d+1)/4,
(3.65)

for all t ≥ 0.

Proof. We first recall that G(x, t− s; y) is a solution of (∂s − Ly)∗G∗ = 0, that is,

−Gs −
∑
j

(GAj)yj +
∑
j

GAjyj =
∑
jk

(GykB
kj)yj . (3.66)

Integrating this on Rd
+ × [0, t] against

g(y1, ỹ, s) := e−y1h(ỹ, s), (3.67)

and integrating by parts twice, we obtain

Γh = −
∫ t

0

∫
Rd+

(∑
jk

GykB
kj +

∑
j

GAj
)
gyjdyds

−
∫ t

0

∫
Rd+

(
−Gs +

∑
j

GAjyj

)
g(y, s)dyds

where, recalling that

S(t)f(x) =

∫
Rd+
G(x, t; y)f(y)dy,

we get

−
∫ t

0

∫
Rd+

∑
jk

(
GykB

kj +
∑
j

GAj
)
gyjdyds

= −
∫ t

0

S(t− s)
(
−
∑
jk

(Bkjgxj)xk +
∑
j

Ajgxj

)
ds
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and

−
∫ t

0

∫
Rd+

(
−Gs +

∑
j

GAjyj

)
g(y, s)dyds

= −
∫ t

0

S(t− s)
(
gs +

∑
j

Ajxjg
)
ds+ g(x, t)− S(t)g(x, 0).

Therefore combining all these estimates yields

Γh = g(x, t)− S(t)g0 −
∫ t

0

S(t− s)(gs − Lxg(x, s))ds (3.68)

with g0(x) := g(x, 0) and Lxg = −
∑

j(A
jg)xj +

∑
jk(B

jkgxk)xj .

Now we are ready to employ estimates obtained in the previous section on the

solution operator S(t) = S1(t) + S2(t). Noting that

|g|Lpx ≤ C|h|Lpx̃ ,

we estimate

|Γh|L2 ≤ |g|L2 + |S1(t)g0|L2 + |S2(t)g0|L2

+

∫ t

0

|S1(t− s)(gs − Lg)|L2 + |S2(t− s)(gs − Lg)|L2ds

≤ |h(t)|L2
x̃

+ C(1 + t)−
d−1
4 |g0|L1 + Ce−ηt|g0|H3

+

∫ t

0

(1 + t− s)−(d−1)/4(|gs|+ |Lg|)L1 + e−θ(t−s)(|gs|+ |Lg|)H3ds

≤ |h(t)|L2
x̃

+ C(1 + t)−
d−1
4 |h0|L1

x̃∩H
3
x̃

+

∫ t

0

(1 + t− s)−(d−1)/4|Dh(s)|L1
x̃

+ e−θ(t−s)|Dh(s)|H3
x̃
ds

≤ CE0(1 + t)−
d−1
4

and similarly we also obtain

|Γh|L2,∞
x̃,x1

≤ |h(t)|L2
x̃

+ C(1 + t)−
d+1
4 |h0|L1

x̃∩H
4
x̃

+ C

∫ t

0

(1 + t− s)−(d+1)/4|Dh(s)|L1
x̃

+ e−θ(t−s)|Dh(s)|H4
x̃
ds

≤ CE0(1 + t)−
d+1
4

(3.69)
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and

|Γh|L∞ ≤ |h(t)|L∞x̃ + C(1 + t)−
d
2 |h0|L1

x̃∩H
|γ|+3
x̃

+ C

∫ t

0

(1 + t− s)−d/2|Dh(s)|L1
x̃

+ e−θ(t−s)|Dh(s)|H|γ|+3
x̃

ds

≤ CE0(1 + t)−
d
2 .

(3.70)

Similar bounds hold for derivatives.

This completes the proof of the proposition.

3.3.4 Duhamel formula

The following integral representation formula expresses the solution of the inhomoge-

neous equation (3.38) in terms of the homogeneous solution operator S for f , h ≡ 0.

Lemma 3.3.9 (Integral formulation). Solutions U of (3.38) may be expressed as

U(x, t) =S(t)U0 +

∫ t

0

S(t− s)f(·, s) + ΓU(0, x̃, t) (3.71)

where U(x, 0) = U0(x),

ΓU(0, x̃, t) :=

∫ t

0

∫
Rd−1

(
∑
j

GyjB
j1 +GA1)(x, t− s; 0, ỹ)U(0, ỹ, s) dỹds, (3.72)

and G(·, t; y) = S(t)δy(·) is the Green function of ∂t − L.

Proof. Integrating on Rd
+ the linearized equations

(∂s − Ly)U = f

against G(x, t− s; y) and using the fact that by duality

(∂s − Ly)∗G∗(x, t− s; y) ≡ 0,

we easily obtain the lemma as in the one-dimensional case (see [56, 45]), recalling

that

S(t)f =

∫
Rd+
G(x, t; y)f(y)dy.
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3.3.5 Proof of linearized stability

Proof of Theorem 3.1.3. Writing the Duhamel formula for the linearized equations

U(x, t) =S(t)U0 + Γh(x̃, t), (3.73)

with Γh defined in (3.61), where U(x, 0) = U0(x) and U(0, x̃, t) = h(x̃, t), and applying

estimates on low- and high-frequency operators S1(t) and S2(t), we obtain

|U(t)|L2 ≤ |S1(t)U0|L2 + |S2(t)U0|L2 + |Γh(t)|L2

≤ C(1 + t)−
d−1
4 |U0|L1 + Ce−ηt|U0|H3 + CE0(1 + t)−(d−1)/4

≤ C(1 + t)−
d−1
4 (|U0|L1∩H3 + E0)

(3.74)

and

|U(t)|L∞ ≤ |S1(t)U0|L∞ + |S2(t)U0|L∞ + |Γh(t)|L∞

≤ C(1 + t)−
d
2 |U0|L1 + C|S2(t)U0|H[(d−1)/2]+2 + CE0(1 + t)−d/2

≤ C(1 + t)−
d
2 |U0|L1 + Ce−ηt|U0|H[(d−1)/2]+5 + CE0(1 + t)−d/2

≤ C(1 + t)−
d
2 (|U0|L1∩H[(d−1)/2]+5 + E0).

(3.75)

These prove the bounds as stated in the theorem for p = 2 and p =∞. For 2 < p <∞,

we use the interpolation inequality between L2 and L∞.

3.4 Energy estimates

For the analysis of nonlinear stability, we need the following energy estimate adapted

from [37, 45, 57]. Define the nonlinear perturbation variables U = (u, v) by

U(x, t) := Ũ(x, t)− Ū(x1). (3.76)

Proposition 3.4.1. Under the hypotheses of Theorem 3.1.4, let U0 ∈ Hs and U =

(u, v)T be a solution of (3.2) and (3.76). Suppose that, for 0 ≤ t ≤ T , the W 2,∞
x

112



norm of the solution U remains bounded by a sufficiently small constant ζ > 0. Then

|U(t)|2Hs ≤ Ce−θt|U0|2Hs + C

∫ t

0

e−θ(t−τ)
(
|U(τ)|2L2 + |Bh(τ)|2

)
dτ (3.77)

for all 0 ≤ t ≤ T , where the boundary term Bh is defined as in Theorem 3.1.4.

Proof. Observe that a straightforward calculation shows that |U |Hr ∼ |W |Hr ,

W = W̃ − W̄ := W (Ũ)−W (Ū), (3.78)

for 0 ≤ r ≤ s, provided |U |W 2,∞ remains bounded, hence it is sufficient to prove a

corresponding bound in the special variable W . We first carry out a complete proof

in the more straightforward case with conditions (A1)-(A3) replaced by the following

global versions, indicating afterward by a few brief remarks the changes needed to

carry out the proof in the general case.

(A1’) Ãj(W̃ ), Ã0, Ã1
11 are symmetric, Ã0 ≥ θ0 > 0,

(A2’) Same as (A2),

(A3’) W̃ =

(
w̃I

w̃II

)
, B̃jk = B̃kj =

(
0 0

0 b̃jk

)
,
∑
ξjξkb̃

jk ≥ θ|ξ|2, and G̃ ≡ 0.

Substituting (3.78) into (3.4), we obtain the quasilinear perturbation equation

A0Wt +
∑
j

AjWxj =
∑
jk

(BjkWxk)xj +M1W̄x1 +
∑
j

(M j
2W̄x1)xj (3.79)

where A0 := A0(W + W̄ ) is symmetric positive definite, Aj := Aj(W + W̄ ) are

symmetric,

M1 = A1(W + W̄ )− A1(W̄ ) =
(∫ 1

0

dA1(W̄ + θW )dθ
)
W,

M j
2 = Bj1(W + W̄ )−Bj1(W̄ ) =

(
0 0

0 (
∫ 1

0
dbj1(W̄ + θW )dθ)W

)
.
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As shown in [37], we have bounds

|A0| ≤ C, |A0
t | ≤ C|Wt| ≤ C(|Wx|+ |wIIxx|) ≤ Cζ, (3.80)

|∂xA0|+ |∂2
xA

0| ≤ C(
2∑

k=1

|∂kxW |+ |W̄x1|) ≤ C(ζ + |W̄x1|). (3.81)

We have the same bounds for Aj, Bjk, and also due to the form of M1,M2,

|M1|, |M2| ≤ C(ζ + |W̄x1|)|W |. (3.82)

Note that thanks to Lemma A.1.1 we have the bound on the profile: |W̄x1| ≤
Ce−θ|x1|, as x1 → +∞.

The following results assert that hyperbolic effects can compensate for degenerate

viscosity B, as revealed by the existence of a compensating matrix K.

Lemma 3.4.2 ([34]). Assuming (A1’), condition (A2’) is equivalent to the following:

(K1) There exist smooth skew-symmetric “compensating matrices” K(ξ), homo-

geneous degree one in ξ, such that

<e
(∑

j,k

ξjξkB
jk −K(ξ)(A0)−1

∑
k

ξkA
k
)

(W+) ≥ θ2|ξ|2 > 0 (3.83)

for all ξ ∈ Rd \ {0}.

Define α by the ODE

αx1 = −sign(A1
11)c∗|W̄x1|α, α(0) = 1 (3.84)

where c∗ > 0 is a large constant to be chosen later. Note that we have

(αx1/α)A1
11 ≤ −c∗θ1|W̄x1 | =: −ω(x1) (3.85)

and

|αx1/α| ≤ c∗|W̄x1| = θ−1
1 ω(x1). (3.86)
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In what follows, we shall use 〈·, ·〉 as the α-weighted L2 inner product defined as

〈f, g〉 = 〈αf, g〉L2(Rd+)

and

‖f‖s =
s∑
i=0

∑
|α|=i

〈
∂αx f, ∂

α
x f
〉1/2

as the norm in weighted Hs space. Note that for any symmetric operator S,

〈Sfxj , f〉 = −1

2
〈Sxjf, f〉, j 6= 1

〈Sfx1 , f〉 = −1

2
〈(Sx1 + (αx1/α)S)f, f〉 − 1

2
〈Sf, f〉0,

where 〈·, ·〉0 denotes the integration on Rd
0 := {x1 = 0} × Rd−1. Also we define

‖f‖0,s = ‖f‖Hs(Rd0) =
s∑
i=0

∑
|α|=i

〈
∂αx̃ f, ∂

α
x̃ f
〉1/2

0
.

Note that in what follows, we shall pay attention to keeping track of c∗. For

constants independent of c∗, we simply write them as C. Also, for simplicity, the sum

symbol will sometimes be dropped where it is no confusion. We write ‖fx‖ =
∑

j ‖fxj‖
and ‖∂kxf‖ =

∑
|α|=k ‖∂αx f‖.

Zeroth order “Friedrichs-type” estimate

First, by integration by parts and estimates (3.80), (3.81), and then (3.85), we obtain

for j 6= 1,

−〈AjWxj ,W 〉 =
1

2
〈AjxjW,W 〉 ≤ C〈(ζ + |W̄x1|)wI , wI〉+ C‖wII‖2

0

and for j = 1,

−〈A1Wx1 ,W 〉 =
1

2
〈(A1

x1
+ (αx1/α)A1)W,W 〉+

1

2
〈A1W,W 〉0

≤ 1

2
〈(αx1/α)A1

11w
I , wI〉+ C〈(ζ + |W̄x1|)|W |+ ω(x1)|wII |, |W |〉+ J0

b

≤ −1

2
〈ω(x)wI , wI〉+ C〈(ζ + |W̄x1|)wI , wI〉+ C(c∗)‖wII‖2

0 + J0
b ,
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where J0
b denotes the boundary term 1

2
〈A1W,W 〉0. The term 〈|W̄x1|wI , wI〉 may be

easily absorbed into the first term of the right-hand side, since for c∗ sufficiently large,

〈|W̄x1|wI , wI〉 ≤ (c∗θ1)−1〈ω(x1)wI , wI〉 ≤ 1

4C
〈ω(x1)wI , wI〉. (3.87)

Also, integration by parts yields

〈(BjkWxk)xj ,W 〉 = −〈BjkWxk ,Wxj〉 − 〈(αx1/α)B1kWxk ,W 〉 − 〈B1kWxk ,W 〉0
≤ −θ‖wIIx ‖2

0 + C〈ω(x1)wIIx , w
II〉 − 〈b1kwIIxk , w

II〉
0

≤ −θ‖wIIx ‖2
0 + C(c∗)‖wII‖2

0 − 〈b1kwIIxk , w
II〉

0
.

where we used the fact that BjkWx · W = bjkwIIx · wII , noting that B has block-

diagonal form with the first block identical to zero. Similarly, recalling that M j
2 =

Bj1(W + W̄ )−Bj1(W̄ ), we have

〈(M j
2W̄x1)xj ,W 〉 = −〈M j

2W̄x1 ,Wxj〉 − 〈(αx1/α)M1
2 W̄x1 ,W 〉 − 〈M1

2 W̄x1 ,W 〉0
≤ C〈|W̄x1||W |, |wIIx |〉+ C〈ω(x1)|W |, wII〉 − 〈m1

2W̄x1 , w
II〉0

≤ ξ‖wIIx ‖2
0 + C

(
ε〈ω(x1)wI , wI〉+ C(c∗)‖wII‖2

0

)
− 〈m1

2W̄x1 , w
II〉0

for any small ξ, ε. Note that C is independent of c∗. Therefore, for ξ = θ/2 and c∗

sufficiently large, combining all above estimates, we obtain

1

2

d

dt
〈A0W,W 〉 = 〈A0Wt,W 〉+

1

2
〈A0

tW,W 〉

= 〈−AjWxj + (BjkWxk)xj +M1W̄x1 + (M j
2W̄x1)xj ,W 〉+

1

2
〈A0

tW,W 〉

≤ −1

4
[〈ω(x1)wI , wI〉+ θ‖wIIx ‖2

0] + Cζ‖wI‖2
0 + C(c∗)‖wII‖2

0 + I0
b

(3.88)

where the boundary term

I0
b :=

1

2
〈A1W,W 〉0 − 〈b

1kwIIxk , w
II〉

0
− 〈m1

2W̄x1 , w
II〉0 (3.89)

which, in the outflow case (thanks to the negative definiteness of A1
11), is estimated

as

I0
b ≤ −

θ1

2
‖wI‖2

0,0 + C(‖wII‖2
0,0 + ‖wIIx ‖0,0‖wII‖0,0), (3.90)
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and similarly in the inflow case, estimated as

I0
b ≤ C(‖W‖2

0,0 + ‖wIIx ‖0,0‖wII‖0,0). (3.91)

Here we recall that ‖ · ‖0,s := ‖ · ‖Hs(Rd0).

First order “Friedrichs-type” estimate

Similarly as above, we need the following key estimate, computing by the use of

integration by parts, (3.87), and c∗ being sufficiently large,

−
∑
j

〈Wxi , A
jWxixj〉

=
1

2

∑
j

〈Wxi , A
j
xj
Wxi〉+

1

2
〈Wxi , (αx1/α)A1Wxi〉+

1

2
〈Wxi , A

1Wxi〉0

≤ −1

4
〈ω(x1)wIx, w

I
x〉+ Cζ‖wIx‖2

0 + Cc2
∗‖wIIx ‖2

0 +
1

2
〈Wxi , A

1Wxi〉0.

(3.92)

We deal with the boundary term later. Now let us compute

1

2

d

dt
〈A0Wxi ,Wxi〉 = 〈Wxi , (A

0Wt)xi〉 − 〈Wxi , A
0
xi
Wt〉+

1

2
〈A0

tWxi ,Wxi〉. (3.93)

We control each term in turn. By (3.80) and (3.81), we first have

〈A0
tWxi ,Wxi〉 ≤ Cζ‖Wx‖2

0

and by multiplying (A0)−1 into (3.79),

|〈Wxi , A
0
xi
Wt〉| ≤C〈(ζ + |W̄x1|)|Wx|, (|Wx|+ |wIIxx|+ |W |)〉

≤ξ‖wIIxx‖2
0 + C〈(ζ + |W̄x1|)wIx, wIx〉+ C〈(ζ + |W̄x1|)wI , wI〉+ C‖wII‖2

1,
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where the term 〈|W̄x1|wIx, wIx〉 may be treated in the same way as was 〈|W̄x1|wI , wI〉
in (3.87). Using (3.79), we write the first term in the right-hand side of (3.93) as

〈Wxi , (A
0Wt)xi〉 =〈Wxi , [−AjWxj + (BjkWxk)xj +M1W̄x1 + (M j

2W̄x1)xj ]xi〉

=− 〈Wxi , A
jWxixj〉+ 〈Wxi ,−AjxiWxj + (M1W̄x1)xi〉

− 〈Wxixj , [(B
jkWxk)xi + (M j

2W̄x1)xi ]〉

− 〈(αx1/α)Wxi , [(B
1kWxk)xi + (M1

2 W̄x1)xi ]〉

− 〈Wxi , [(B
1kWxk)xi + (M1

2 W̄x1)xi ]〉0

≤− 1

4

[
〈ω(x1)wIx, w

I
x〉+ θ‖wIIxx‖2

0

]
+ C

[
ζ‖wI‖2

1 + C(c∗)‖wIIx ‖2
0 + 〈|W̄x1|wI , wI〉

]
+ I1

b

where I1
b denotes the boundary terms

I1
b : =

1

2
〈Wxi , A

1Wxi〉0 − 〈Wxi , [(B
1kWxk)xi + (M1

2 W̄x1)xi ]〉0

=
1

2
〈Wxi , A

1Wxi〉0 − 〈w
II
xi
, [(b1kwIIxk)xi + (m1

2W̄x1)xi ]〉0,
(3.94)

and we have used (A3) for each fixed i and ξj = (Wxi)xj to get∑
jk

〈Wxixj , B
jkWxkxi〉 ≥ θ

∑
j

‖Wxixj‖2
0, (3.95)

and estimates (3.92),(3.87) for wI , wIx, and Young’s inequality to obtain:

〈Wx,−AjxWx + (M1W̄x1)x〉 ≤ C〈(ζ + |W̄x1|)|Wx|, |Wx|+ |W |〉.

−〈Wxx + (αx1/α)Wx, (B
jkWx)x〉 ≤

−θ‖wIIxx‖2
0 + C〈|wIIxx|+ ω(x1)|wIIx |, (ζ + |W̄x1|)|wIIx |〉

−〈Wxx + (αx1/α)Wx, (M
j
2W̄x1)x〉 ≤

C〈|wIIxx|+ ω(x1)|wIIx |, (ζ + |W̄x1|)(|Wx|+ |W |)〉.
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Putting these estimates together into (3.93), we have obtained

1

2

d

dt
〈A0Wx,Wx〉+

1

4
θ‖wIIxx‖2

0 +
1

4
〈ω(x1)wIx, w

I
x〉

≤ C
[
ζ‖wI‖2

1 + 〈|W̄x1|wI , wI〉+ C(c∗)‖wII‖2
1

]
+ I1

b . (3.96)

Let us now treat the boundary term. First observe that using the parabolic equations,

noting that A0 is the diagonal-block form, we can estimate

(bjkwIIxk)xj(0, x̃, t) ≤ C
(
|wIIt |+ |Wxj |+ |W |

)
(0, x̃, t) (3.97)

and thus for i 6= 1

〈wIIxi , [(b
1kwIIxk)xi + (m1

2W̄x1)xi ]〉0

≤
∫

Rd0
|wIIxixi |

(
|W |+ |wIIxk |

)
≤ C

∫
Rd0

(
|W |2 + |wIIx |2 + |wIIx̃x̃|2

) (3.98)

and for i = 1, using b1k = bk1, (3.97), and recalling here that we always use the sum

convention,

∑
k

(b1kwIIxk)x1 =
1

2

(
(b1kwIIxk)x1 + (bj1wIIx1

)xj + b1k
x1
wIIxk − b

j1
xj
wIIx1

)
=

1

2

(
(bjkwIIxk)xj + b1k

x1
wIIxk − b

j1
xj
wIIx1
−

∑
j 6=1; k 6=1

(bjkwIIxk)xj

)
≤ C

(
|wIIt |+ |W |+ |Wxj |+ |wIIx̃x̃|

)
.

(3.99)

Therefore

〈wIIx1
,[(b1kwIIxk)x1 + (m1

2W̄x1)x1 ]〉0

≤ ε

∫
Rd0
|wIx|2 + C

∫
Rd0

(
|wIIt |2 + |W |2 + |wIIx |2 + |wIIx̃x̃|2

)
For the first term in I1

b , we consider each inflow/outflow case separately. For the
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outflow case, since A1
11 ≤ −θ1 < 0, we get

A1Wx ·Wx ≤ −
θ1

2
|wIx|2 + C|wIIx |2.

Therefore

I1
b ≤ −

θ1

2

∫
Rd0
|wIx|2 +

∫
Rd0

(
|W |2 + |wIIx |2 + |wIIt |2 + |wIIx̃x̃|2

)
. (3.100)

Meanwhile, for the inflow case, since A1
11 ≥ θ1 > 0, we have

|A1Wx ·Wx| ≤ C|Wx|2.

In this case, the invertibility of A1
11 allows us to use the hyperbolic equation to derive

|wIx1
| ≤ C(|wIt |+ |wIIx |+ |wIx̃|).

Therefore we get

I1
b ≤

∫
Rd0

(
|W |2 + |Wt|2 + |wIx̃|2 + |wIIx |2 + |wIIx̃x̃|2

)
. (3.101)

Now apply the standard Sobolev inequality

|w(0)|2 ≤ C‖w‖L2(R)(‖wx‖L2(R) + ‖w‖L2(R)) (3.102)

to control the term |wIIx1
(0)|2 in I1

b in both cases. We get∫
Rd0
|wIIx1
|2 ≤ ε′‖wIIxx‖2

0 + C‖wIIx ‖2
0. (3.103)

Using this with ε′ = θ/8, (3.94), and (3.100), the estimate (3.96) reads

d

dt
〈A0Wx,Wx〉+ ‖wIIxx‖2

0 + 〈ω(x1)wIx, w
I
x〉

≤ C
(
ζ‖wI‖2

1 + 〈|W̄x1 |wI , wI〉+ C(c∗)‖wII‖2
1

)
+ I1

b

(3.104)
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where the (new) boundary term I1
b satisfies

I1
b ≤ −

θ1

2

∫
Rd0
|wIx|2 + C

∫
Rd0

(
|W |2 + |wIIx̃ |2 + |wIIt |2 + |wIIx̃x̃|2

)
(3.105)

for the outflow case, and

I1
b ≤

∫
Rd0

(
|W |2 + |Wt|2 + |Wx̃|2 + |wIIx̃x̃|2

)
(3.106)

for the inflow case.

Higher order “Friedrichs-type” estimate

For any fixed multi-index α = (αx1 , · · · , αxd), α1 = 0, 1, |α| = k = 2, ..., s, by

computing d
dt
〈A0∂αxW,∂

α
xW 〉 and following the same spirit as the above subsection,

we easily obtain

d

dt
〈A0∂αxW,∂

α
xW 〉+ θ‖∂α+1

x wII‖2
0 + 〈ω(x1)∂αxw

I , ∂αxw
I〉

≤ C
(
C(c∗)‖wII‖2

k + ζ‖wI‖2
k +

k−1∑
i=1

〈|W̄x1|∂ixwI , ∂ixwI〉
)

+ Iαb

(3.107)

where

∂αx : = ∂α1
x1
· · · ∂αdxd , ∂α+1

x :=
∑
j

∂α1
x1
· · · ∂αdxd ∂xj , ∂ix =

∑
|β|=i

∂β1
x1
· · · ∂βdxd

and the boundary term Iαb satisfies

Iαb ≤ −
θ1

2

∫
Rd0
|∂αxwI |2 + C

∫
Rd0

( [(k+1)/2]∑
i=1

|∂itwII |2 +
k−1∑
i=0

|∂ixwI |2 +
k∑
i=0

|∂ix̃wII |2
)

(3.108)

for the outflow case, and

Iαb ≤
∫

Rd0

( k∑
i=0

|∂itwI |2 +

[(k+1)/2]∑
i=1

|∂itwII |2 +
k∑
i=0

|∂ix̃W |2
)

(3.109)

for the inflow case.
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Now for α with α1 = 2, ..., s we observe that the estimate (3.107) still holds.

Indeed, using integration by parts and computing d
dt
〈A0∂αxW,∂

α
xW 〉 as above leaves

the boundary terms as

Iαb :=
1

2
〈∂αxW,A1∂αxW 〉0 − 〈∂

α
xw

II , ∂αx [(b1kwIIxk) + (m1
2W̄x1)]〉0. (3.110)

Then we can use the parabolic equations to solve

wIIx1x1
= (b11)−1

(
A0

2w
II
t + Aj2Wxj − (bjkwIIxk)xj − b

11
x1
wIIx1
−M1W̄x1 − (mj

2W̄x1)xj

)
.

Using this we can reduce the order of derivative with respect to x1 in ∂αx to one, with

the same spirit as (3.98) and (3.99). Finally we use the Sobolev embedding similar

to (3.103) to obtain the estimate for the normal derivative ∂x1 , and get the estimate

for Iαb as claimed in (3.108) and (3.109).

We recall next the following Kawashima-type estimate, presented in [59], to bound

the term ‖wI‖2
k appearing on the left hand side of (3.107).

“Kawashima-type” estimate

Let K(ξ) be the skew-symmetry in (3.83). Using Plancherel’s identity and the equa-

tions (3.79), we compute

1

2

d

dt
〈K(∂x)∂

r
xW,∂

r
x〉 =

1

2

d

dt
〈iK(ξ)(iξ)rŴ , (iξ)rŴ 〉

= 〈iK(ξ)(iξ)rŴ , (iξ)rŴt〉

= 〈(iξ)rŴ ,−K(ξ)(A0
+)−1

∑
j

ξjA
j
+(iξ)rŴ 〉

+ 〈iK(ξ)(iξ)rŴ , (iξ)rĤ〉,

(3.111)

where

H :=
∑
j

(
(A0

+)−1Aj+ − (A0)−1Aj
)
Wxj

+ (A0)−1
(∑

jk

(BjkWxk)xj +M1W̄x1 +
∑
j

(M j
2W̄x1)xj

)
.

(3.112)

By using the fact that |(A0
+)−1Aj+ − (A0)−1Aj| = O(ζ + |W̄x1|), we can easily
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obtain

‖∂rxH‖2
0 ≤ C‖wII‖2

r+2 + C
r+1∑
k=0

〈(ζ + |W̄x1|)∂kxwI , ∂kxwI〉.

Meanwhile, applying (3.83) into the first term of the last line in (3.111), we get

〈(iξ)rŴ ,−K(ξ)(A0
+)−1

∑
j

ξjA
j
+(iξ)rŴ 〉

≥ θ‖|ξ|r+1Ŵ‖2
0 − C‖|ξ|r+1ŵII‖2

0

= θ‖∂r+1
x wI‖2

0 − C‖∂r+1
x wII‖2

0.

Putting these estimates together into (3.111), we have obtained the high order

“Kawashima-type” estimate:

d

dt
〈K(∂x)∂

r
xW,∂

r
xW 〉 ≤ − θ‖∂r+1

x wI‖2
0 + C‖wII‖2

r+2

+ C
r+1∑
i=0

〈(ζ + |W̄x1|)∂ixwI , ∂ixwI〉
(3.113)

Final estimates

We are ready to conclude our result. First combining the estimate (3.104) with (3.88),

we easily obtain

1

2

d

dt

(
〈A0Wx,Wx〉+M〈A0W,W 〉

)
≤−

(θ
8
‖wIIxx‖2

0 +
1

4
〈ω(x1)wIx, w

I
x〉
)

+ C
(
ζ‖wI‖2

1 + 〈|W̄x1|wI , wI〉+ C(c∗)‖wII‖2
1

)
+ I1

b

− M

4

(
〈ω(x1)wI , wI〉+ θ‖wIIx ‖2

0

)
+ CMζ‖wI‖2

0 +MC(c∗)‖wII‖2
0 +MI0

b

By choosingM sufficiently large such thatMθ � C(c∗), and noting that c∗θ1|W̄x1| ≤
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ω(x1), we get

1

2

d

dt

(
〈A0Wx,Wx〉+M〈A0W,W 〉

)
≤−

(
θ‖wII‖2

2 + 〈ω(x1)wI , wI〉+ 〈ω(x1)wIx, w
I
x〉
)

+ C
(
ζ‖wI‖2

1 + C(c∗)‖wII‖2
0

)
+ I1

b +MI0
b .

(3.114)

We shall treat the boundary terms later. Now we use the estimate (3.113) (for r = 0)

to absorb the term ‖∂xwI‖0 into the left hand side. Indeed, fixing c∗ large as above,

adding (3.114) with (3.113) times ε, and choosing ε, ζ sufficiently small such that

εC(c∗)� θ, ε� 1 and ζ � εθ2, we obtain

1

2

d

dt

(
〈A0Wx,Wx〉+M〈A0W,W 〉+ ε〈KWx,W 〉

)
≤−

(
θ‖wII‖2

2 + 〈ω(x1)wI , wI〉+ 〈ω(x1)wIx, w
I
x〉
)

+ C
(
ζ‖wI‖2

1 + C(c∗)‖wII‖2
0

)
− θ2ε

2
‖wIx‖2

0

+ Cε
(
‖wII‖2

2 + ζ‖wI‖2
0 + 〈ω(x1)wI , wI〉+ 〈ω(x1)wIx, w

I
x〉
)

+ I1
b +MI0

b

≤− 1

2

(
θ‖wII‖2

2 + θ2ε‖wIx‖2
0

)
+ C(c∗)‖W‖2

0 + Ib

where Ib := I1
b +MI0

b .

In view of boundary terms I0
b and I1

b , we treat the term Ib in each inflow/outflow

case separately. Recall the inequality (3.103), ‖wIIx1
‖0,0 ≤ C‖wII‖2. Thus, using this,

for the inflow case we have

I0
b ≤ C(‖W‖2

0,0 + ‖wIIx ‖0,0‖wII‖0,0) ≤ C(‖W‖2
0,0 + ‖wIIx̃ ‖2

0,0 + ε‖wII‖2
2) (3.115)

and for the outflow case,

I0
b ≤ −

θ1

2
‖wI‖2

0,0 + C(‖wII‖2
0,0 + ‖wIIx ‖0,0‖wII‖0,0)

≤ −θ1

2
‖wI‖2

0,0 + C(‖wII‖2
0,0 + ‖wIIx̃ ‖2

0,0 + ε‖wII‖2
2).

(3.116)

Therefore these together with (3.105) and (3.106), using the good estimate of
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‖wIIxx‖2
0, yield

Ib ≤ −
θ1

2

∫
Rd0

(|wI |2 + |wIx|2) + C

∫
Rd0

(
|wII |2 + |wIIx̃ |2 + |wIIt |2 + |wIIx̃x̃|2

)
(3.117)

for the outflow case, and

I1
b ≤

∫
Rd0

(
|W |2 + |Wt|2 + |Wx̃|2 + |wIIx̃x̃|2

)
(3.118)

for the inflow case.

Now by Cauchy-Schwarz’s inequality, |K(ξ)| ≤ C|ξ|, and positive definiteness of

A0, it is easy to see that

E : = 〈A0Wx,Wx〉+M〈A0W,W 〉+ ε〈K(∂x)W,W 〉 ∼ ‖W‖2
H1
α
∼ ‖W‖2

H1 . (3.119)

The last equivalence is due to the fact that α is bounded above and below away from

zero. Thus the above yields

d

dt
E(W )(t) ≤ −θ3E(W )(t) + C(c∗)

(
‖W (t)‖2

L2 + |B1(t)|2
)
,

for some positive constant θ3, which by the Gronwall inequality implies

‖W (t)‖2
H1 ≤ Ce−θt‖W0‖2

H1 + C(c∗)

∫ t

0

e−θ(t−τ)
(
‖W (τ)‖2

L2 + |B1(τ)|2
)
dτ, (3.120)

where W (x, 0) = W0(x) and

|B1(τ)|2 :=

∫
Rd0

(
|W |2 + |Wt|2 + |Wx̃|2 + |wIIx̃x̃|2

)
(3.121)

for the inflow case, and

|B1(τ)|2 :=

∫
Rd0

(
|wII |2 + |wIIx̃ |2 + |wIIt |2 + |wIIx̃x̃|2

)
(3.122)

for the outflow case.

Similarly, by induction, we can derive the same estimates for W in Hs. To do
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that, let us define

E1(W ) := 〈A0Wx,Wx〉+M〈A0W,W 〉+ ε〈KWx,W 〉

Ek(W ) := 〈A0∂kxW,∂
k
xW 〉+MEk−1(W ) + ε〈K∂kxW,∂k−1

x W 〉, k ≤ s.

Then similarly by the Cauchy-Schwarz inequality, Es(W ) ∼ ‖W‖2
Hs , and by in-

duction, we obtain

d

dt
Es(W )(t) ≤ −θ3Es(W )(t) + C(c∗)(‖W (t)‖2

L2 + |Bh(t)|2),

for some positive constant θ3, which by the Gronwall inequality yields

‖W (t)‖2
Hs ≤ Ce−θt‖W0‖2

Hs + C(c∗)

∫ t

0

e−θ(t−τ)(‖W (τ)‖2
L2 + |Bh(τ)|2)dτ, (3.123)

where W (x, 0) = W0(x), and Bh are defined as in (3.12) and (3.13).

The general case

Following [37, 59], the general case that hypotheses (A1)-(A3) hold can easily be

covered via following simple observations. First, we may express matrix A in (3.79)

as

Aj(W + W̄ ) = Âj + (ζ + |W̄x1|)

(
0 O(1)

O(1) O(1)

)
, (3.124)

where Âj is a symmetric matrix obeying the same derivative bounds as described for

Aj, Â1 identical to A1 in the 11 block and obtained in other blocks kl by

A1
kl(W + W̄ ) = A1

kl(W̄ ) + A1
kl(W + W̄ )− A1

kl(W̄ )

= A1
kl(W+) +O(|Wx|+ |W̄x1|)

= A1
kl(W+) +O(ζ + |W̄x1|)

(3.125)

and meanwhile, Âj, j 6= 1, obtained by Aj = Aj(W+) +O(ζ + |W̄x1 |), similarly as in

(3.125).

Replacing Aj by Âj in the kth order Friedrichs-type bounds above, we find that
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the resulting error terms may be expressed as

〈∂kxO(ζ + |W̄x1|)|W |, |∂k+1
x wII |〉,

plus lower order terms, easily absorbed using Young’s inequality, and boundary terms

O(
k∑
i=0

|∂ixwII(0)||∂kxwI(0)|)

resulting from the use of integration by parts as we deal with the 12-block. However

these boundary terms were already treated somewhere as before. Hence we can

recover the same Friedrichs-type estimates obtained above. Thus we may relax (A1′)

to (A1).

Next, to relax (A3′) to (A3), first we show that the symmetry condition Bjk = Bkj

is not necessary. Indeed, by writing

∑
jk

(BjkWxk)xj =
∑
jk

(1

2
(Bjk +Bkj)Wxk

)
xj

+
1

2

∑
jk

(Bjk −Bkj)xjWxk ,

we can just replace Bjk by B̃jk := 1
2
(Bjk +Bkj), satisfying the same (A3′), and thus

still obtain the energy estimates as before, with a harmless error term (last term in

the above identity). Next notice that the term g(W̃x) − g(W̄x1) in the perturbation

equation may be Taylor expanded as(
0

g1(W̃x, W̄x1) + g1(W̄x1 , W̃x)

)
+

(
0

O(|Wx|2)

)

The first term, since it vanishes in the first component and since |W̄x| decays at plus

spatial infinity, yields by Young’s inequality the estimate

〈( 0

g1(W̃x, W̄x1) + g1(W̄x1 , W̃x)

)
,

(
wIx

wIIx

)〉
≤ C

(
〈(ζ + |W̄x1|)wIx, wIx〉+ ‖wIIx ‖2

0

)
which can be treated in the Friedrichs-type estimates. The (0, O(|Wx|2)T nonlinear

term may be treated as other source terms in the energy estimates. Specifically, the
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worst-case term

〈
∂kxW,∂

k
x

(
0

O(|Wx|2)

)〉
= −〈∂k+1

x wII , ∂k−1
x O(|Wx|2)〉 − ∂kxwII(0)∂k−1

x O(|Wx|2)(0)

may be bounded by

‖∂k+1
x wII‖L2‖W‖W 2,∞‖W‖Hk − ∂kxwII(0)∂k−1

x O(|Wx|2)(0).

The boundary term will contribute to energy estimates in the form (3.110) of Iαb , and

thus we may use the parabolic equations to get rid of this term as we did in (3.98),

(3.99). Thus, we may relax (A3′) to (A3), completing the proof of the general case

(A1)− (A3) and the proposition.

3.5 Nonlinear stability

Defining the perturbation variable U := Ũ − Ū , we obtain the nonlinear perturbation

equations

Ut − LU =
∑
j

Qj(U,Ux)xj , (3.126)

where

Qj(U,Ux) = O(|U ||Ux|+ |U |2)

Qj(U,Ux)xj = O(|U ||Ux|+ |U ||Uxx|+ |Ux|2)

Qj(U,Ux)xjxk = O(|U ||Uxx|+ |Ux||Uxx|+ |Ux|2 + |U ||Uxxx|)

(3.127)

so long as |U | remains bounded.

For boundary conditions written in U -coordinates, (B) gives

h = h̃− h̄ = (W̃ (U + Ū)− W̃ (Ū))(0, x̃, t)

= (∂W̃/∂Ũ)(Ū0)U(0, x̃, t) +O(|U(0, x̃, t)|2).
(3.128)
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in inflow case, where (∂W̃/∂Ũ)(Ū0) is constant and invertible, and

h = h̃− h̄ = (w̃II(U + Ū)− w̃II(Ū))(0, x̃, t)

= (∂w̃II/∂Ũ)(Ū0)U(0, x̃, t) +O(|U(0, x̃, t)|2)

= m
(
b̄1 b̄2

)
(Ū0)U(0, x̃, t) +O(|U(0, x̃, t)|2)

= mB(Ū0)U(0, x̃, t) +O(|U(0, x̃, t)|2)

(3.129)

for some invertible constant matrix m.

Applying Lemma 3.3.9 to (3.126), we obtain

U(x, t) =S(t)U0 +

∫ t

0

S(t− s)
∑
j

∂xjQ
j(U,Ux)ds+ ΓU(0, x̃, t) (3.130)

where U(x, 0) = U0(x),

ΓU(0, x̃, t) :=

∫ t

0

∫
Rd−1

(
∑
j

GyjB
j1 +GA1)(x, t− s; 0, ỹ)U(0, ỹ, s) dỹds, (3.131)

and G is the Green function of ∂t − L.

Proof of Theorem 3.1.4. Define

ζ(t) := sup
s

(
|U(s)|L2

x
(1 + s)

d−1
4 + |U(s)|L∞x (1 + s)

d
2

+ (|U(s)|+ |Ux(s)|+ |∂2
x̃U(s)|)L2,∞

x̃,x1

(1 + s)
d+1
4

)
.

(3.132)

We shall prove here that for all t ≥ 0 for which a solution exists with ζ(t) uniformly

bounded by some fixed, sufficiently small constant, there holds

ζ(t) ≤ C(|U0|L1∩Hs + E0 + ζ(t)2). (3.133)

This bound together with continuity of ζ(t) implies that

ζ(t) ≤ 2C(|U0|L1∩Hs + E0) (3.134)

for t ≥ 0, provided that |U0|L1∩Hs + E0 < 1/4C2. This would complete the proof of

the bounds as claimed in the theorem, and thus give the main theorem.
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By standard short-time theory/local well-posedness in Hs, and the standard prin-

ciple of continuation, there exists a solution U ∈ Hs on the open time-interval for

which |U |Hs remains bounded, and on this interval ζ(t) is well-defined and continuous.

Now, let [0, T ) be the maximal interval on which |U |Hs remains strictly bounded by

some fixed, sufficiently small constant δ > 0. By Proposition 3.4.1, and the Sobolev

embeding inequality |U |W 2,∞ ≤ C|U |Hs , we have

|U(t)|2Hs ≤ Ce−θt|U0|2Hs + C

∫ t

0

e−θ(t−τ)
(
|U(τ)|2L2 + |Bh(τ)|2

)
dτ

≤ C(|U0|2Hs + E2
0 + ζ(t)2)(1 + t)−(d−1)/2.

(3.135)

and so the solution continues so long as ζ remains small, with bound (3.134), yielding

existence and the claimed bounds.

Thus, it remains to prove the claim (3.133). First by (3.130), we obtain

|U(t)|L2 ≤|S(t)U0|L2 +

∫ t

0

|S1(t− s)∂xjQj(s)|L2ds

+

∫ t

0

|S2(t− s)∂xjQj(s)|L2ds+ |ΓU(0, x̃, t)|L2

≤I1 + I2 + I3 + |ΓU(0, x̃, t)|L2

(3.136)

where

I1 : = |S(t)U0|L2 ≤ C(1 + t)−
d−1
4 |U0|L1∩H3 ,

I2 : =

∫ t

0

|S1(t− s)∂xjQj(s)|L2ds

≤ C

∫ t

0

(1 + t− s)−
d−1
4
− 1

2 |Qj(s)|L1 + (1 + s)−
d−1
4 |Qj(s)|L1,∞

x̃,x1

ds

≤ C

∫ t

0

(1 + t− s)−
d−1
4
− 1

2 |U |2H1 + (1 + t− s)−
d−1
4

(
|U |2

L2,∞
x̃,x1

+ |Ux|2L2,∞
x̃,x1

)
ds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0

[
(1 + t− s)−

d−1
4
− 1

2 (1 + s)−
d−1
2

+ (1 + t− s)−
d−1
4 (1 + s)−

d+1
2

]
ds

≤ C(1 + t)−
d−1
4 (|U0|2Hs + ζ(t)2)
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and

I3 : =

∫ t

0

|S2(t− s)∂xjQj(s)|L2ds

≤
∫ t

0

e−θ(t−s)|∂xjQj(s)|H3ds

≤ C

∫ t

0

e−θ(t−s)(|U |L∞ + |Ux|L∞)|U |H5ds

≤ C

∫ t

0

e−θ(t−s)|U |2Hsds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0

e−θ(t−s)(1 + s)−
d−1
2 ds

≤ C(1 + t)−
d−1
2 (|U0|2Hs + ζ(t)2).

Meanwhile, for the boundary term |ΓU(0, x̃, t)|L2 , we treat two cases separately. First

for the inflow case, then by (3.128) we have

|U(0, x̃, t)| ≤ C|h(x̃, t)|+O(|U(0, x̃, t)|2),

and thus |U(0, x̃, t)| ≤ C|h(x̃, t)|, provided that |h| is sufficiently small. Therefore

under the hypotheses on h in Theorem 3.1.4, Proposition 3.3.8 yields

|ΓU(0, ·, ·)|L2
x
≤ CE0(1 + t)−

d−1
4 .

Now for the outflow case, recall that in this case G(x, t; 0, ỹ) ≡ 0. Thus (3.131)

simplifies to

ΓU(0, x̃, t) =

∫ t

0

∫
Rd−1

Gy1(x, t− s; 0, ỹ)B11U(0, ỹ, s) dỹds. (3.137)

To deal with this term, we shall use Proposition 3.3.8 as in the inflow case. In view

of (3.129),

|B11U(0, ỹ, s)| ≤ C|h(ỹ, t)|+O(|U(0, ỹ, s)|2),

and assumptions on h are imposed as in Theorem 3.1.3, so that (3.63) is satisfied. To

check the last term O(|U(0)|2), using the definition (3.132) of ζ(t), we have

|O(|U(0, ỹ, s)|2)|L2 ≤ C|U |L∞ |U |L2,∞
x̃,x1

≤ Cζ2(t)(1 + s)−
d
2
− d+1

4

|O(|U(0, ỹ, s)|2)|L∞ ≤ C|U |2L∞ ≤ Cζ2(t)(1 + s)−d
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and for the term Dh with h replaced by O(|U(0, ỹ, s)|2), using the standard Hölder

inequality to get

|Dh|L1
x̃
≤ C(|U |2L2,∞ + |Ux|2L2,∞ + |Ux̃x̃|2L2,∞) ≤ Cζ2(t)(1 + s)−

d+1
2

|Dh|H[(d−1)/2]+5
x̃

≤ C|U |L∞|U |Hs ≤ Cζ2(t)(1 + s)−d/2−(d−1)/4.

We remark here that Sobolev bounds (3.135) are not good enough for estimates of

Dh in L1, requiring a decay at rate (1 + t)−d/2−ε for the two-dimensional case (see

Proposition 3.3.8). This is exactly why we have to keep track of Ux̃x̃ in L2,∞ norm in

ζ(t) as well, to gain a bound as above for Dh.
Therefore applying Proposition 3.3.8, we also obtain (3.137) for the outflow case.

Combining these above estimates yields

|U(t)|L2(1 + t)
d−1
4 ≤ C(|U0|L1∩Hs + E0 + ζ(t)2). (3.138)

Next, we estimate

|U(t)|L2,∞
x̃,x1

≤|S(t)U0|L2,∞
x̃,x1

+

∫ t

0

|S1(t− s)∂xjQj(s)|L2,∞
x̃,x1

ds

+

∫ t

0

|S2(t− s)∂xjQj(s)|L2,∞
x̃,x1

ds+ |ΓU(0, x̃, t)|L2,∞
x̃,x1

≤J1 + J2 + J3 + |ΓU(0, x̃, t)|L2,∞
x̃,x1

(3.139)

where

J1 : = |S(t)U0|L2,∞
x̃,x1

≤ C(1 + t)−
d+1
4 |U0|L1∩H4

J2 : =

∫ t

0

|S1(t− s)∂xjQj(s)|L2,∞
x̃,x1

ds

≤ C

∫ t

0

(1 + t− s)−
d+1
4
− 1

2 |Qj(s)|L1 + (1 + s)−
d+1
4 |Qj(s)|L1,∞

x̃,x1

ds

≤ C

∫ t

0

(1 + t− s)−
d+1
4
− 1

2 |U |2H1 + (1 + t− s)−
d+1
4

(
|U |2

L2,∞
x̃,x1

+ |Ux|2L2,∞
x̃,x1

)
ds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0

(1 + t− s)−
d+1
4
− 1

2 (1 + s)−
d−1
2

+ (1 + t− s)−
d+1
4 (1 + s)−

d+1
2 ds

≤ C(1 + t)−
d+1
4 (|U0|2Hs + ζ(t)2)
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and (by Moser’s inequality)

J3 : =

∫ t

0

|S2(t− s)∂xjQj(s)|L2,∞
x̃,x1

ds

≤ C

∫ t

0

e−θ(t−s)|∂xjQj(s)|H4ds

≤ C

∫ t

0

e−θ(t−s)|U |L∞x |U |H6ds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0

e−θ(t−s)(1 + s)−
d
2 (1 + s)−

d−1
4 ds

≤ C(1 + t)−
d+1
4 (|U0|2Hs + ζ(t)2).

These estimates together with similar treatment for the boundary term yield

|U(t)|L2,∞
x̃,x1

(1 + t)
d+1
4 ≤ C(|U0|L1∩Hs + E0 + ζ(t)2). (3.140)

Similarly, we have the same estimate for |Ux(t)|L2,∞
x̃,x1

. Indeed, we have

|Ux(t)|L2,∞
x̃,x1

≤|∂xS(t)U0|L2,∞
x̃,x1

+

∫ t

0

|∂xS1(t− s)∂xjQj(s)|L2,∞
x̃,x1

ds

+

∫ t

0

|∂xS2(t− s)∂xjQj(s)|L2,∞
x̃,x1

ds+ |∂xΓU(0, x̃, t)|L2,∞
x̃,x1

≤K1 +K2 +K3 + |∂xΓU(0, x̃, t)|L2,∞
x̃,x1

(3.141)

where K2 and K3 are treated exactly in the same way as the treatment of J2, J3, yet

in the first term of K2 it is a bit better by a factor t−1/2. Similar bounds hold for |Ux̃x̃|
in L2,∞, noting that there are no higher derivatives in x1 involved and thus similar to

those in (3.139).

Finally, we estimate the L∞ norm of U . By Duhamel’s formula (3.130), we obtain

|U(t)|L∞ ≤|S(t)U0|L∞ +

∫ t

0

|S1(t− s)∂xjQj(s)|L∞ds

+

∫ t

0

|S2(t− s)∂xjQj(s)|L∞ds+ |ΓU(0, x̃, t)|L∞

≤L1 + L2 + L3 + |ΓU(0, x̃, t)|L∞

(3.142)

where the boundary term is treated in the same way as above, and for |γ| = [(d −

133



1)/2] + 2,

L1 : = |S(t)U0|L∞ ≤ C(1 + t)−
d
2 |U0|L1∩H|γ|+3 ,

L2 : =

∫ t

0

|S1(t− s)∂xjQj(s)|L∞ds

≤ C

∫ t

0

(1 + t− s)−
d
2
− 1

2 |Qj(s)|L1 + (1 + s)−
d
2 |Qj(s)|L1,∞

x̃,x1

ds

≤ C

∫ t

0

(1 + t− s)−
d
2
− 1

2 |U |2H1 + (1 + t− s)−
d
2

(
|U |2

L2,∞
x̃,x1

+ |Ux|2L2,∞
x̃,x1

)
ds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0

[
(1 + t− s)−

d
2
− 1

2 (1 + s)−
d−1
2

+ (1 + t− s)−
d
2 (1 + s)−

d+1
2

]
ds

≤ C(1 + t)−
d
2 (|U0|2Hs + ζ(t)2)

and (again by Moser’s inequality),

L3 : =

∫ t

0

|S2(t− s)∂xjQj(s)|L∞ds

≤
∫ t

0

|S2(t− s)∂xjQj(s)|H|γ|ds

≤
∫ t

0

e−θ(t−s)|∂xQj(s)|H|γ|+3ds

≤ C

∫ t

0

e−θ(t−s)|U |L∞|U |H|γ|+5ds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0

e−θ(t−s)(1 + s)−
d
2 (1 + s)−

d−1
4 ds

≤ C(1 + t)−
d
2 (|U0|2Hs + ζ(t)2).

Therefore we have obtained

|U(t)|L∞x (1 + t)
d
2 ≤ C(|U0|L1∩Hs + E0 + ζ(t)2) (3.143)

and thus completed the proof of claim (3.133), and the main theorem.
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Chapter 4

STABILITY FOR SYSTEMS

WITH VARIABLE

MULTIPLICITIES

4.1 Introduction

4.1.1 Refined assumptions

Multi–dimensional stability results obtained in previous chapter do not apply to MHD

layers for which the constant multiplicity assumption (H3) always fails to hold in

dimensions d ≥ 2. In this chapter, we are able to extend previous results to certain

MHD layers where the following alternative hypothesis (H3′) holds.

Alternative Hypothesis H3′. We assume that

(H3′) The eigenvalues of
∑

j ξjdF
j(U+) are either semisimple and of constant

multiplicity or totally nonglancing in the sense of [18], Definition 4.3.

Remark 4.1.1. Here we stress that we are able to drop the structural assumption

(H4), which is needed for the earlier analyses of [58, 59, 57, 46] or Chapter 3.

In the treatment of the three–dimensional case, the analysis turns out to be quite

delicate and we are able to establish the stability under the following additional

(generic) hypothesis.

Additional Hypothesis H4′ (in 3D). We assume that
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(H4′) In the case the eigenvalue λk(ξ) of
∑

j ξjdF
j(U+) is semisimple and of con-

stant multiplicity, we assume further that ∇ξ̃λk 6= 0 when ∂ξ1λk = 0, ξ 6= 0.

Remark 4.1.2. Genericity of our additional structural assumption (H4′) is clear.

Indeed, violation of the condition would require d equations: ∂ξjλk(ξ) = 0 for all

j = 1, · · · , d, whereas only d − 1 parameters in ξ ∈ Rd \ {0} are varied as ξ may be

constrained in the unit sphere Sd by homogeneity of λ(ξ) in ξ. For further discussion,

see Remark 4.3.4.

However, we have the following counterexample of K. Zumbrun in the two–dimensional

case for which the hypothesis (H4′) fails. Counterexamples for higher–dimensional

cases can be constructed similarly.

Counterexample 4.1.3. Let

A1 :=

(
0 1

1 0

)
A2 :=

(
0 0

0 1

)
. (4.1)

Then both A1 and A2 are clearly symmetric and do not commute. However, at ξ1 = 0,

the matrix ξ1A1 + ξ2A2 has an eigenvalue (λ(ξ) ≡ 0) such that ∇λ = 0, violating

(H4′).

4.1.2 Multi-dimensional results II

Our main results are as follows.

Theorem 4.1.4 (Linearized stability). Assuming (A1)-(A3), (H0)-(H2), (H3′), (H4′),

(B), and (D2), we obtain the asymptotic L1∩H [(d−1)/2]+2 → Lp stability in dimensions

d ≥ 3, and any 2 ≤ p ≤ ∞, with rates of decay

|U(t)|L2 ≤ C(1 + t)−
d−2
4
−ε|U0|L1∩L2 ,

|U(t)|Lp ≤ C(1 + t)−
d−1
2

(1−1/p)+ 1
2p
−ε|U0|L1∩H[(d−1)/2]+2 ,

(4.2)

for some ε > 0, provided that the initial perturbations U0 are in L1 ∩H [(d−1)/2]+2, and

zero boundary perturbations.

Theorem 4.1.5 (Nonlinear stability). Assuming (A1)-(A3), (H0)-(H2), (H3′), (H4′),

(B), and (D2), we obtain the asymptotic L1 ∩Hs → Lp ∩Hs stability in dimensions
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d ≥ 3, for s ≥ s(d) as defined in (H0), and any 2 ≤ p ≤ ∞, with rates of decay

|Ũ(t)− Ū |Lp ≤ C(1 + t)−
d−1
2

(1−1/p)+ 1
2p
−ε|U0|L1∩Hs

|Ũ(t)− Ū |Hs ≤ C(1 + t)−
d−2
4
−ε|U0|L1∩Hs ,

(4.3)

for some ε > 0, provided that the initial perturbations U0 := Ũ0 − Ū are sufficiently

small in L1 ∩Hs and zero boundary perturbations.

Remark 4.1.6. As will be seen in the proof, the assumption (H4′) can be dropped

in the case d ≥ 4, though we then lose the factor t−ε in the decay rate.

Our final main result gives the stability for the two–dimensional case that is not

covered by the above theorems. We remark here that as shown in [58, 59], Hypothesis

(H4) is automatically satisfied in dimensions d = 1, 2 and in any dimension for rota-

tionally invariant problems. Thus, in treating the two–dimensional case, we assume

this hypothesis without making any further restriction on structure of the systems.

Also since the proof does not depend on dimension d, we state the theorem in a

general form as follows.

Theorem 4.1.7 (Two-dimensional case or cases with (H4)). Assume (A1)-(A3),

(H0)-(H2), (H3′), (H4), (B), and (D2). We obtain asymptotic L1 ∩ Hs → Lp ∩ Hs

stability of Ū as a solution of (3.2) in dimension d ≥ 2, for s ≥ s(d) as defined in

(H0), and any 2 ≤ p ≤ ∞, with rates of decay

|Ũ(t)− Ū |Lp ≤ C(1 + t)−
d
2

(1−1/p)+1/2p|U0|L1∩Hs

|Ũ(t)− Ū |Hs ≤ C(1 + t)−
d−1
4 |U0|L1∩Hs ,

(4.4)

provided that the initial perturbations U0 := Ũ0 − Ū are sufficiently small in L1 ∩Hs

and zero boundary perturbations. Similar statement holds for linearized stability.

Remark 4.1.8. The same results can be also obtained for nonzero boundary per-

turbations as treated in Chapter 3. In fact, though a bit of tricky, it was shown

that estimates on solution operator (see Proposition 4.2.1) for homogenous boundary

conditions are enough to treat nonzero boundary perturbations. Thus for sake of

simplicity, we only treat zero boundary perturbations in this chapter.

Combining Theorems 4.1.4, 4.1.5, 4.1.7 and Proposition 3.1.2, we obtain the fol-

lowing small-amplitude stability result.
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Corollary 4.1.9. Assuming (A1)-(A3), (H0)-(H2), (H3′), (B) for some fixed end-

state (or compact set of endstates) U+, boundary layers with amplitude

‖Ū − U+‖L∞[0,+∞]

sufficiently small are linearly and nonlinearly stable in the sense of Theorems 4.1.4,

4.1.5, and 4.1.7.

4.2 Nonlinear stability

The linearized equations of (3.2) about the profile Ū are

Ut = LU :=
∑
j,k

(BjkUxk)xj −
∑
j

(AjU)xj (4.5)

with initial data U(0) = U0. Then, we obtain the following proposition, extending

Proposition 3.5 of [46] under our weaker assumptions.

Proposition 4.2.1. Under the hypotheses of Theorem 4.1.5, the solution operator

S(t) := eLt of the linearized equations may be decomposed into low frequency and high

frequency parts (see below) as S(t) = S1(t) + S2(t) satisfying

|S1(t)∂β1
x1
∂β̃x̃f |L2

x
≤C(1 + t)−(d−2)/4−ε/2−|β|/2|f |L1

x
+ C(1 + t)−(d−2)/4−ε/2|f |L1,∞

x̃,x1

|S1(t)∂β1
x1
∂β̃x̃f |L2,∞

x̃,x1

≤C(1 + t)−(d−1)/4−ε/2−|β|/2|f |L1
x

+ C(1 + t)−(d−1)/4−ε/2|f |L1,∞
x̃,x1

|S1(t)∂β1
x1
∂β̃x̃f |L∞x ≤C(1 + t)−(d−1)/2−ε/2−|β|/2|f |L1

x
+ C(1 + t)−(d−1)/2−ε/2|f |L1,∞

x̃,x1

(4.6)

for some ε > 0 and β = (β1, β̃) with β1 = 0, 1, and

|∂γ1x1
∂γ̃x̃S2(t)f |L2 ≤ Ce−θ1t|f |H|γ1|+|γ̃|+3 , (4.7)

for γ = (γ1, γ̃) with γ1 = 0, 1.

We shall give a proof of Proposition 4.2.1 in Section 4.3. For the rest of this

section, we give a rather straightforward proof of the first two main theorems using

estimates of the solution operator stated in Proposition 4.2.1, following nonlinear

arguments of [59, 46].
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4.2.1 Proof of linearized stability

Applying estimates on low- and high-frequency operators S1(t) and S2(t) obtained in

Proposition 4.2.1, we obtain

|U(t)|L2 ≤ |S1(t)U0|L2 + |S2(t)U0|L2

≤ C(1 + t)−
d−2
4
− ε

2 [|U0|L1 + |U0|L1,∞
x̃,x1

] + Ce−ηt|U0|H3

≤ C(1 + t)−
d−2
4
− ε

2 |U0|L1∩H3

(4.8)

and (together with Sobolev embedding)

|U(t)|L∞ ≤ |S1(t)U0|L∞ + |S2(t)U0|L∞

≤ C(1 + t)−
d−1
2
− ε

2 [|U0|L1 + |U0|L1,∞
x̃,x1

] + C|S2(t)U0|H[(d−1)/2]+2

≤ C(1 + t)−
d−1
2
− ε

2 [|U0|L1 + |U0|L1,∞
x̃,x1

] + Ce−ηt|U0|H[(d−1)/2]+2

≤ C(1 + t)−
d−1
2
− ε

2 |U0|L1∩H[(d−1)/2]+2 .

(4.9)

These prove the bounds as stated in the theorem for p = 2 and p =∞. For 2 < p <∞,

we use the interpolation inequality between L2 and L∞.

4.2.2 Proof of nonlinear stability

Defining the perturbation variable U := Ũ − Ū , we obtain the nonlinear perturbation

equations

Ut − LU =
∑
j

Qj(U,Ux)xj , (4.10)

where
Qj(U,Ux) = O(|U ||Ux|+ |U |2)

Qj(U,Ux)xj = O(|U ||Ux|+ |U ||Uxx|+ |Ux|2)

Qj(U,Ux)xjxk = O(|U ||Uxx|+ |Ux||Uxx|+ |Ux|2 + |U ||Uxxx|)

(4.11)

so long as |U | remains bounded.

Applying the Duhamel principle to (4.10), we obtain

U(x, t) =S(t)U0 +

∫ t

0

S(t− s)
∑
j

∂xjQ
j(U,Ux)ds (4.12)
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where U(x, 0) = U0(x).

Proof of Theorem 4.1.5. Define

ζ(t) := sup
s

(
|U(s)|L2

x
(1 + s)

d−2
4

+ε + |U(s)|L∞x (1 + s)
d−1
2

+ε

+ (|U(s)|+ |Ux(s)|)L2,∞
x̃,x1

(1 + s)
d−1
4

+ε
)
.

(4.13)

We shall prove here that for all t ≥ 0 for which a solution exists with ζ(t) uniformly

bounded by some fixed, sufficiently small constant, there holds

ζ(t) ≤ C(|U0|L1∩Hs + ζ(t)2). (4.14)

This bound together with continuity of ζ(t) implies that

ζ(t) ≤ 2C|U0|L1∩Hs (4.15)

for t ≥ 0, provided that |U0|L1∩Hs < 1/4C2. This would complete the proof of the

bounds as claimed in the theorem, and thus give the main theorem.

By standard short-time theory/local well-posedness in Hs, and the standard prin-

ciple of continuation, there exists a solution U ∈ Hs on the open time-interval for

which |U |Hs remains bounded, and on this interval ζ(t) is well-defined and continuous.

Now, let [0, T ) be the maximal interval on which |U |Hs remains strictly bounded by

some fixed, sufficiently small constant δ > 0. Recalling the following energy estimate

obtained in Proposition 3.4.1 and the Sobolev embeding inequality |U |W 2,∞ ≤ C|U |Hs ,

we have

|U(t)|2Hs ≤ Ce−θt|U0|2Hs + C

∫ t

0

e−θ(t−τ)|U(τ)|2L2dτ

≤ C(|U0|2Hs + ζ(t)2)(1 + t)−(d−2)/2−2ε.

(4.16)

and so the solution continues so long as ζ remains small, with bound (4.15), yielding

existence and the claimed bounds.

Thus, it remains to prove the claim (4.14). First by (4.12), we obtain

|U(t)|L2 ≤|S(t)U0|L2 +

∫ t

0

|S1(t− s)∂xjQj(s)|L2ds

+

∫ t

0

|S2(t− s)∂xjQj(s)|L2ds

(4.17)
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where |S(t)U0|L2 ≤ C(1 + t)−
d−1
4
−ε|U0|L1∩H3 and∫ t

0

|S1(t− s)∂xjQj(s)|L2ds

≤ C

∫ t

0

(1 + t− s)−
d−2
4
− 1

2
−ε|Qj(s)|L1 + (1 + s)−

d−2
4
−ε|Qj(s)|L1,∞

x̃,x1

ds

≤ C

∫ t

0

(1 + t− s)−
d−2
4
− 1

2
−ε|U |2H1 + (1 + t− s)−

d−2
4
−ε
(
|U |2

L2,∞
x̃,x1

+ |Ux|2L2,∞
x̃,x1

)
ds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0

[
(1 + t− s)−

d−2
4
− 1

2
−ε(1 + s)−

d−2
2
−2ε

+ (1 + t− s)−
d−2
4
−ε(1 + s)−

d−1
2
−2ε
]
ds

≤ C(1 + t)−
d−2
4
−ε(|U0|2Hs + ζ(t)2)

and ∫ t

0

|S2(t− s)∂xjQj(s)|L2ds

≤
∫ t

0

e−θ(t−s)|∂xjQj(s)|H3ds

≤ C

∫ t

0

e−θ(t−s)|U |2Hsds

≤ C(|U0|2Hs + ζ(t)2)

∫ t

0

e−θ(t−s)(1 + s)−
d−2
2
−2εds

≤ C(1 + t)−
d−2
2
−2ε(|U0|2Hs + ζ(t)2).

Therefore, combining these above estimates yields

|U(t)|L2(1 + t)
d−2
4

+ε ≤ C(|U0|L1∩Hs + ζ(t)2). (4.18)

Similarly, we can obtain estimates for other norms of U in definition of ζ, and

finish the proof of claim (4.14) and thus the main theorem.

Remark 4.2.2. The decaying factor t−ε is crucial in above analysis when d = 3. In

fact, the main difficulty here comparing with the shock cases in [43] is to obtain a

refined bound of solutions in L∞. See further discussion in Section 4.3 below.
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4.3 Linearized estimates

In this section, we shall give a proof of Proposition 4.2.1 or bounds on S1(t) and S2(t),

where we use the same decomposition of solution operator S(t) = S1(t) + S2(t) as in

[58, 59].

4.3.1 High–frequency estimate

We first observe that our relaxed Hypothesis (H3′) and the dropped Hypothesis (H4)

only play a role in low–frequency regimes. Thus, in course of obtaining the high–

frequency estimate (4.7), we make here the same assumptions as were made in the

previous chapter, and therefore the same estimate remains valid as claimed in (4.7)

under our current assumptions. We omit to repeat its proof here, and refer the reader

to Proposition 3.3.6.

In the remaining of this section, we shall focus on proving the bounds on low-

frequency part S1(t) of linearized solution operator.

Taking the Fourier transform in x̃ := (x2, . . . , xd) of linearized equation (4.5), we

obtain a family of eigenvalue ODE

λU = Lξ̃U :=

L0U︷ ︸︸ ︷
(B11U

′)′ − (A1U)′−i
∑
j 6=1

AjξjU + i
∑
j 6=1

Bj1ξjU
′

+ i
∑
k 6=1

(B1kξkU)′ −
∑
j,k 6=1

BjkξjξkU.

(4.19)

4.3.2 The GMWZ’s L2 stability estimate

Let U = (uI , uII)T be a solution of resolvent equation (Lξ̃ − λ)U = f . Following

[59, 18], consider the variable W as usual

W :=

wI

wII

wIIx1
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with wI := A∗u
I , wII := b11

1 u
I + b11

2 u
II , A∗ := A1

11−A1
12(b11

2 )−1b11
1 . Then we can write

equations of W as a first order system

∂x1W = G(x1, λ, ξ̃)W + F

ΓW = 0 on x1 = 0.
(4.20)

For small or bounded frequencies (λ, ξ̃), we use the MZ conjugation lemma (see

[42, 41]). That is, given any (λ, ξ̃) ∈ Rd+1, there is a smooth invertible matrix

Φ(x1, λ, ξ̃) for x1 ≥ 0 and (λ, ξ̃) in a small neighborhood of (λ, ξ̃), such that (4.20) is

equivalent to

∂x1Y = G+(λ, ξ̃)Y + F̃ , Γ̃(λ, ξ̃)Y = 0 (4.21)

where G+(λ, ξ̃) := G̃(+∞, λ, ξ̃),W = ΦY, F̃ = Φ−1F and Γ̃Y := ΓΦY .

Next, there are smooth matrices V (λ, ξ̃) such that

V −1G+V =

(
H 0

0 P

)
(4.22)

with blocks H(λ, ξ̃) and P (λ, ξ̃) satisfying the eigenvalues µ of P in {|<eµ| ≥ c > 0}
and

H(λ, ξ̃) = H0(λ, ξ̃) +O(ρ2)

H0(λ, ξ̃) : = −(A1
+)−1

(
(iτ + γ)A0

+ +
d∑
j=2

iξjA
j
+

)
,

with λ = γ+ iτ. We later often use the polar coordinate notation ζ = (τ, γ, ξ̃), ζ = ρζ̂,

where ζ̂ = (τ̂ , γ̂, ˆ̃ξ) and ζ̂ ∈ Sd.
Define variables Z = (uH , uP )T as W = ΦY = ΦV Z, Γ̄Z := ΓΦV Z, and

(fH , fP )T = V −1F̃ . We have

∂x1

(
uH

uP

)
=

(
H 0

0 P

)(
uH

uP

)
+

(
fH

fP

)
, Γ̄Z = 0. (4.23)

Then the maximal stability estimate for the low frequency regimes in [18] states

that

(γ + ρ2)|uH |2L2 + |uP |2L2 + |uH(0)|2 + |uP (0)|2 . 〈|fH |, |uH |〉+ 〈|fP |, |uP |〉, (4.24)
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where 〈·, ·〉 denotes the standard L2 product over [0,∞), that is,

〈f, g〉 =

∫ ∞
0

f(x1)g(x1)dx1, ∀ f, g ∈ L2(0,∞).

We note that in the final step there in [17], the standard Young’s inequality has

been used to absorb all terms of (uH , uP ) into the left-hand side, leaving the L2 norm

of F alone in the right hand side. For our purpose, we shall keep it as stated in (4.24).

Here, by f . g, we mean f ≤ Cg, for some C independent of parameter ρ.

We remark here that the Kreiss’ symmetrizers in [18] were constructed in a full

neighborhood of the basepoint (ξ, λ) even for <λ = 0 (see, e.g., Theorem 3.7, [18]).

Thus, the estimate (4.24) is in fact available in any region of

γ ≥ −θ(|τ |2 + |ξ̃|2) (4.25)

for θ sufficiently small. In what follows, we shall always assume that λ remains in the

general region of (4.25).

In addition, as shown in [17], all of coordinate transformation matrices are uni-

formly bounded. Thus a bound on Z = (uH , uP )T would yield a corresponding bound

on the solution U .

4.3.3 L2 and L∞ resolvent bounds

Changing variables as above and taking the inner product of each equation in (4.23)

against uH and uP , respectively, and integrating the results over [0, x1], for x1 > 0,

we obtain

1

2
|uH(x1)|2 =

1

2
|uH(0)|2 + <e

∫ x1

0

(H(λ, ξ̃)uH · uH + fH · uH)dz,

1

2
|uP (x1)|2 =

1

2
|uP (0)|2 + <e

∫ x1

0

(P (λ, ξ̃)uP · uP + fP · uP )dz.

(4.26)

This together with the facts that |H| ≤ Cρ and |P | ≤ C yields

|uH |2L∞(x1) . |uH(0)|2 + ρ|uH |2L2 + 〈|fH |, |uH |〉,

|uP |2L∞(x1) . |uP (0)|2 + |uP |2L2 + 〈|fP |, |uP |〉,
(4.27)
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and thus in view of (4.24) gives

(γ + ρ2)|uH |2L2 + |uP |2L2 + ρ|uH |2L∞ + |uP |2L∞ . 〈|fH |, |uH |〉+ 〈|fP |, |uP |〉. (4.28)

Now applying the Young’s inequality, we get

〈|fH |, |uH |〉+ 〈|fP |, |uP |〉 ≤ (ε|uP |2L∞ + Cε|fP |2L1) +
(
ε(γ̂ + ρ)|uH |2L∞ +

Cε
γ̂ + ρ

|fH |2L1

)
and thus for ε sufficiently small, together with (4.28),

(γ + ρ2)|uH |2L2 + |uP |2L2 + (γ̂ + ρ)|uH |2L∞ + |uP |2L∞ .
1

γ̂ + ρ
|fH |2L1 + |fP |2L1 . (4.29)

Therefore in term of Z = (uH , uP )t,

|Z|L∞(x1) ≤ C(γ̂ + ρ)−1|f |L1 and |Z|L2(x1) ≤ C(γ̂ + ρ)−3/2|f |L1 . (4.30)

Unfortunately, unlike the shock cases (see [43]), bounds (4.30) are not enough for

our need to close the analysis in dimension d = 3. See Remark 4.2.2. In the following

subsection, we shall derive better bounds for Z in both L∞ and L2 norms.

4.3.4 Refined L2 and L∞ resolvent bounds

With the same notations as above, we prove in this subsection that there hold refined

resolvent bounds:
|Z|L∞(x1) . (γ̂ + ρ)−1+ε(|f |L1 + |f |L∞)

|Z|L2(x1) . (γ̂ + ρ)−3/2+ε(|f |L1 + |f |L∞)
(4.31)

for some small ε > 0. We stress here that a refined factor ρε in L∞ is crucial in our

analysis for three-dimensional case. See Remark 4.2.2.

Assumption (H3′) implies the following block structure (see [41, 18]).

Proposition 4.3.1 (Block structure; [18]). For all ζ̂ with γ̂ ≥ 0 there is a neighbor-

hood ω of (ζ̂ , 0) in Sd×R+ and there are C∞ matrices T (ζ̂ , ρ) on ω such that T−1H0T

has the block diagonal structure

T−1H0T = HB(ζ̂ , ρ) = ρĤB(ζ̂ , ρ) (4.32)
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with

ĤB(ζ̂ , ρ) =


Q1 0

0
. . . 0

0 Qp

 (ζ̂ , ρ) (4.33)

with diagonal blocks Qk of size νk × νk such that:

(i) (Elliptic modes) <Qk is either positive definite or negative definite.

(ii) (Hyperbolic modes) νk = 1, <Qk = 0 when γ̂ = ρ = 0, and ∂γ̂(<Qk)∂ρ(<Qk) >

0.

(iii) (Glancing modes) νk > 1, Qk has the following form:

Qk(ζ̂ , ρ) = i(µ
k
Id + J) + iσQ′k(

ˆ̃ξ) +O(γ̂ + ρ), (4.34)

where σ := | ˆ̃ξ − ˆ̃ξ|,

J :=


0 1 0

0 0
. . . 0

. . . . . . 1

0 0

 , Q′k(
ˆ̃ξ) :=


q1 0 · · · 0

q2 0 · · · 0

· · ·
qνk 0 · · · 0

 (4.35)

qνk 6= 0, and the lower left hand corner a of Qk satisfies ∂γ̂(<a)∂ρ(<a) > 0.

(iv) (Totally nonglancing modes) νk > 1, eigenvalue of Qk, when γ̂ = ρ = 0, is

totally nonglancing, see Definition 4.3, [18].

Proof. For a proof, see for example [40], Theorem 8.3.1. It is also straightforward to

see that for the case (iii),

qνk(
ˆ̃ξ) = |∇ξ̃Dk(ζ, ξ1

)| = c|∇ξ̃λk(ξ)|,

where c is a nonzero constant, Dk(ζ, ξ1) is defined as det(iQk(ζ) + ξ1Id), and λk(ξ)

is the zero of Dk(ζ, ξ1) (recalling ζ = (λ, ξ̃)) satisfying

∂ξ1λk = ... = ∂νk−1
ξ1

λk = 0, ∂νkξ1 λk 6= 0 at (ξ̃, ξ
1
).

Thus, assumption (H4′) guarantees the nonvanishing of qνk . We skip the proof of

other facts.
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We shall treat each mode in turn. The following simple lemma may be found

useful.

Lemma 4.3.2. Let U be a solution of ∂zU = QU + F with U(+∞) = 0. Assume

that there is a positive [resp., negative] symmetric matrix S such that

<SQ :=
1

2
(SQ+Q∗S∗) ≥ θId (4.36)

for some θ > 0, and S ≥ Id [resp., −S ≥ Id]. Then there holds

|U |2L∞ + θ|U |2L2 . |F |2L1

[resp., |U |2L∞ + θ|U |2L2 . |U(0)|2 + |F |2L1 ].
(4.37)

Proof. Taking the inner product of the equation of U against SU and integrating the

result over [x1,∞] for the first case [resp., [0, x1] for the second case], we easily obtain

the lemma.

Thanks to Proposition 4.3.1, we can decompose U as follows

U = uP + uHe + uHh + uHg + uHt , (4.38)

corresponding to parabolic, elliptic, hyperbolic, glancing, or totally nonglancing modes.

Parabolic modes

Since spectrum of P is away from the imaginary axis, we can assume that

P (λ, ξ̃) =

(
P+ 0

0 P−

)

with ±<P± ≥ c > 0. Therefore applying Lemma 4.3.2 with S = Id or −Id yields

|uP+ |2L∞ + |uP+|2L2 . |FP+|2L1 ,

|uP−|2L∞ + |uP−|2L2 . |uP−(0)|2 + |FP−|2L1 .
(4.39)
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Elliptic modes

This is case (i) in Proposition 4.3.1 when the spectrum of Qk lies in

{<eµ > δ} [resp., {<eµ < −δ}].

In this case, there are positive symmetric matrices Sk(ζ̂ , ρ), C∞ on a neighborhood

ω of (ζ̂ , 0) and such that

<SkQk ≥ cId [resp., −<SkQk ≥ cId]

for c > 0. Thus, Lemma 4.3.2 again yields

|uHe+|2L∞ + ρ|uHe+|2L2 . |FHe+ |2L1 ,

|uHe−|2L∞ + ρ|uHe−|2L2 . |uHe−(0)|2 + |FHe− |2L1 .
(4.40)

Hyperbolic modes

This is case (ii) in Proposition 4.3.1. In this case, as shown in [40] we can write

Qk(ζ̂ , ρ) = qk(ζ̂)Id+ ρRk(ζ̂ , ρ) (4.41)

where qk is purely imaginary when γ̂ = 0, q̇k := ∂γ̂<eqk(ζ̂) does not vanish, and the

spectrum of q̇kRk(ζ̂ , 0) is contained in the half space {<eµ > 0}. Therefore, when

q̇k > 0 [resp., q̇k < 0] and (ζ, γ̂) is sufficiently close to (ζ̂ , 0)we have positive symmetric

matrices Sk(ζ̂ , ρ) satisfying

<SkQk ≥ c(γ̂ + ρ)Id [resp., −<SkQk ≥ c(γ̂ + ρ)Id]

for c > 0. Thus, again by Lemma 4.3.2, we obtain

|uHh+
|2L∞ + (γ + ρ2)|uHh+

|2L2 . |FHh+
|2L1 ,

|uHh−|2L∞ + (γ + ρ2)|uHh− |2L2 . |uHh−(0)|2 + |FHh− |2L1 .
(4.42)

Totally nonglancing modes

This is case (iv) in Proposition 4.3.1. As constructed in [18], there exist symmetrizers

Sk that are positive [resp. negative] definite when the mode is totally incoming [resp.
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outgoing]. Denote uHt+ [resp., uHt− ] associated with totally incoming [resp. outgoing]

modes. Then similarly as in above, we also have

|uHt+|2L∞ + (γ + ρ2)|uHt+ |2L2 . |FHt+|2L1 ,

|uHt−|2L∞ + (γ + ρ2)|uHt− |2L2 . |uHt−(0)|2 + |FHt− |2L1 .
(4.43)

Thus, putting these estimates together with noting that the stability estimate

(4.24) already gives a bound on |u(0)|, we easily obtain sharp bounds on u in L∞ and

L2 for all above cases:

|uk|2L∞ + ρ2|uk|2L2 . |f |2L1 + |uHg |L∞ |f |L1 , (4.44)

for all k = P,He, Hh, Ht.

Glancing modes

Hence, we remain to consider the final case: case (iii) in Proposition 4.3.1. Recall

(4.34)

Qk(ζ̂ , ρ) = i(µ
k
Id + J) + iσQ′k(

ˆ̃ξ) +O(γ̂ + ρ) (4.45)

on a neighborhood of (ζ̂ , 0), where σ = | ˆ̃ξ − ˆ̃ξ|. We consider two cases.

Case a. σ . (γ̂ + ρ)ε for some small ε > 0. Recall that we consider the reduced

system:

∂x1uk = ρQk(ζ̂ , ρ)uk + fk (4.46)

with Qk(ζ̂ , ρ) having a form as in (4.45). It is clear that the Lp norm of uk remains

unchanged under the transformation uk to uke
−iµ

k
x1 . Thus, we can assume that

µ
k

= 0. Note that we have the following bounds by (4.30)

|uk|L∞(x1) . (γ̂ + ρ)−1|f |L1 and |uk|L2(x1) . (γ̂ + ρ)−3/2|f |L1 . (4.47)

To prove the refined bounds (4.31), we first observe that

|∂x1uk|L∞ . ρ|uk|L∞ + |fk|L∞ . |f |L1 + |f |L∞ ,

where the last inequality is due to (4.47). Now, write uk = (uk,1, · · · , uk,νk). Thanks

149



to the special form of Qk in (4.45), we have

∂x1uk,νk = iρσQ′k(
ˆ̃ξ)uk +O(γ + ρ2)uk + fk. (4.48)

Taking inner product of the equation (4.48) against ∂x1uk,νk , we easily obtain by

applying the standard Young’s inequality:

|∂x1uk,νk |2L2 . ρ2(γ̂+ρ)2ε|uk|2L2 +|fk|L1|∂x1uk,νk |L∞ . (γ̂+ρ)−1+2ε|f |2L1 +|f |2L∞ . (4.49)

Similarly, for uk,νk−1 satisfying

∂x1uk,νk−1 = iρσQ′k(
ˆ̃ξ)uk + iρuk,νk +O(γ + ρ2)uk + fk,

we have

|∂x1uk,νk−1|2L2 . ρ2(γ̂ + ρ)2ε|uk|2L2 + ρ| < uk,νk , ∂x1uk,νk−1 > |+ |fk|L1 |∂x1uk,νk |L∞ .
(4.50)

Here, integration by parts and Young’s inequality yield

ρ| < uk,νk , ∂x1uk,νk−1 > | . ρ|∂x1uk,νk |L2|uk,νk−1|L2 + ρ|uk(0)|2.

Thus, using the refined bound (4.49) and noting that

|uk(0)|2 . | < f, uk > | . |f |L1|uk|L∞ . (γ̂ + ρ)−1|f |2L1 ,

we obtain

ρ| < uk,νk , ∂x1uk,νk−1 > | . ρ(γ̂ + ρ)−2+ε(|f |2L1 + |f |2L∞)

Therefore, applying this estimate into (4.50), we get

|∂x1uk,νk−1|2L2 . (γ̂ + ρ)−1+ε(|f |2L1 + |f |2L∞). (4.51)

Using this refined bound, we can estimate the same for uk,νk−2, uk,νk−3, and so on.

Thus, we obtain a refined bound for uk:

|∂x1uk|2L2 . ρ−1+ε(|f |2L1 + |f |2L∞) (4.52)
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where ε may be changed in each finite step and smaller than the original one. This

and the standard Sobolev imbedding yield

|uk|2L∞ . |uk|L2|∂x1uk|L2 . (γ̂ + ρ)−2+ε(|f |2L1 + |f |2L∞) (4.53)

which proves the L∞ refined bound in (4.31) for Z. Using (4.53) into (4.28), we also

obtain the refined bound in L2 as claimed in (4.31):

|uk|2L2 . (γ̂ + ρ)−3+ε(|f |2L1 + |f |2L∞), (4.54)

for some ε > 0.

Case b. σ & (γ̂ + ρ)ε for some small ε in (0, 1/2). We shall diagonalize this block.

Recall that

Qk(ζ̂ , ρ) = iµ
k
Id + i


0 1 0

0 0
. . . 0

. . . . . . 1

σqνk 0 0

+O(σ). (4.55)

Following [58, 59, 17], we diagonalize this glancing block by

u′Hg := T−1
Hg
uHg ,

where uHg := uHg+ + uHg− . Here uHg± are defined as the projections of uHg onto the

growing (resp. decaying) eigenspaces of Qk(ζ̂ , ρ) in (4.55). We recall the following

whose proof can be found in [58, 59] or Lemma 12.1, [17].

Lemma 4.3.3 (Lemma 12.1, [17]). The diagonalizing transformation THg may be

chosen so that

|THg | ≤ C, |T−1
Hg
| ≤ Cβ, |T−1

Hg |Hg−
| ≤ Cα (4.56)

where α, β are defined as

β := σ−1+1/νk , α := σ(1−[(νk+1)/2])/νk , (4.57)

and T−1
Hg |Hg−

denotes the restriction of T−1
Hg

to subspace Hg−. In particular, βα−2 ≥ 1.
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Simple calculations show that eigenvalues of Qk are

αk,j = iµk + πk,j + o(σ1/νk), j = 0, 1, ..., s− 1. (4.58)

Here, πk,j = εji(qνkσ)1/νk , with ε = 11/νk . We can further change of coordinates if

necessary to assume that

Q′k := T−1
Hg
QkTHg = diag(αk,1, · · · , αk,l, αk,l+1, · · · , αk,νk) (4.59)

with
−<e αk,j > 0, j = 1, ..., l,

<e αk,j > 0, j = l + 1, ..., νk.
(4.60)

Hence, applying Lemma 4.3.2 to equations of u′Hg with S = Id or S = −Id, we

easily obtain

|u′Hg+ |
2
L∞ + ρmin

j
|<e αk,j||u′Hg+|

2
L2 . |F ′Hg+|

2
L1 ,

|u′Hg− |
2
L∞ + ρmin

j
|<e αk,j||u′Hg−|

2
L2 . |u′Hg−(0)|2 + |F ′Hg−|

2
L1 .

(4.61)

The diagonalized boundary condition Γ′ := ΓaTHg . By computing, we observe that

|Γ′u′Hg− | = |ΓuHg− | ≥ C−1|uHg−| ≥
C−1|u′Hg− |
|T−1
Hg |Hg−

|
≥ C−1α−1||u′Hg− |.

Thus,

|u′Hg−| ≤ Cα|Γ′u′Hg− | ≤ Cα(|Γ′u′|+ |Γ′u′+|) ≤ Cα|u′+|. (4.62)

Using this estimate, (4.56), and (4.44), the estimate (4.61) yields

α−2|uHg |2L∞ + ρα−2 min
j
|<e αk,j||uHg |2L2 . β2|f |2L1 . (4.63)

Recalling that α, β are defined as in (4.57) and the fact that we are in the case of

σ ≥ ρε for some small ε > 0, we get

|uHg |L∞ ≤ Cαβ|f |L1 ≤ C(γ̂ + ρ)−2ε|f |L1 , (4.64)

from which we obtain the refined bounds (4.31) for this case as well.
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Remark 4.3.4. In case b) above, we use the nonvanishing of qνk to make sure that

σqνk is order of σ in the neighborhood ω of (ζ̂ , 0) so that the lower left hand entry of

Qk dominates and thus we can be sure to diagonalize the block. Otherwise, the other

entries of Qk in (4.55) may dominate and the behavior is not clear. The nonvanishing

of qνk is guaranteed by our additional Hypothesis (H4′) as shown in the proof of

Proposition 4.3.1. This is only place in the paper where the assumption (H4′) is used.

4.3.5 L1 → Lp estimates

We establish the L1 → Lp resolvent bounds for solutions of eigenvalue equations

(Lξ̃ − λ)U = f in the low frequency regime; specifically, we are interested in regime

of parameters restricting to the surface

Γξ̃ := {λ : <eλ = −θ1(|ξ̃|2 + |=mλ|2)}, (4.65)

for θ1 > 0 and |(ξ̃, λ)| sufficiently small. The curve Γξ̃ was introduced in [58, equation

(4.26)]. Introducing Γξ̃ is in fact regarded as a key to the analysis of long-time stability

in multidimensions. The main point here is that even though λ enters into the stable

complex half-plane ({<eλ < 0}), Γξ̃ remains outside of the essential spectrum of

limiting linearized operators Lξ̃,±; see [59, Lemma 2.21].

We obtain the following:

Proposition 4.3.5 (Low-frequency bounds). Under the hypotheses of Theorem 4.1.5,

for λ ∈ Γξ̃ and ρ := |(ξ̃, λ)|, θ1 sufficiently small, there holds the resolvent bound

|(Lξ̃ − λ)−1∂βx1
f |Lp(x1) ≤ Cρ−1−1/p+ε[ρβ|f |L1(x1) + |f |L∞(x1)], (4.66)

for all 2 ≤ p ≤ ∞, β = 0, 1, and ε > 0.

Proof. Recalling that W = ΦV Z and all coordinate transformation matrices are

uniformly bounded, the refined bounds of Z therefore imply improved bounds for W

and thus U . Bounds for Lp, 2 < p < ∞, are obtained by interpolation inequality

between L2 and L∞. Hence, we have proved the bounds for β = 0 as claimed.

For β = 1, we expect that ∂x1f plays a role as “ρf” forcing. Recall that the
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eigenvalue equations (Lξ̃ − λ)U = ∂x1f read

L0U︷ ︸︸ ︷
(B11Ux1)x1 − (A1U)x1 −i

∑
j 6=1

AjξjU + i
∑
j 6=1

Bj1ξjUx1

+ i
∑
k 6=1

(B1kξkU)x1 −
∑
j,k 6=1

BjkξjξkU − λU = ∂x1f.

(4.67)

Now modifying the nice argument of Kreiss-Kreiss presented in [30, 17], we write

U = V + U1, where V satisfies

(L0 − λ0)V = ∂x1f, x1 ≥ 0, (4.68)

for λ0 = ρ. Noting that A1 and B11 depend on x1 only, we thus can apply here the

one–dimensional Green kernel bounds investigated in [56, 45].

Let G0
λ0

be the Green kernel of λ0−L0. Observe that our assumptions as projected

on one–dimensional situations (i.e., ξ̃ = 0) are still the same as those in [45]. Thus,

we apply Proposition 2.22 in [45] for (4.68), noting that λ0 = ρ is sufficiently small.

After a simplification, we simply obtain

|∂y1G0
λ0

(x1, y1)| ≤ Ce−ρ|x1−y1|(ρ+ e−θ|y1|). (4.69)

Hence, employing Hausdorff-Young’s inequality, we obtain

|V |Lp(x1) + |Vx1 |Lp(x1) ≤ Cρ−1/p[ρ|f |L1(x1) + |f |L∞(x1)], (4.70)

for all 1 ≤ p ≤ ∞.

Now from U1 = U − V and equations of U and V , we observe that U1 satisfies

(Lξ̃ − λ)U1 = L(V, Vx1), (4.71)

where

L(V, Vx1) : = i
∑
j 6=1

AjξjV − i
∑
j 6=1

Bj1ξjVx1 − i
∑
k 6=1

(B1kξkV )x1 +
∑
j,k 6=1

BjkξjξkV + (λ− λ0)V

= ρO(|V |+ |Vx1|).
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Therefore applying the result which we just proved for β = 0 to the equations

(4.71), we obtain

|U1|Lp(x1) ≤ Cρ−1−1/p+ε
[
|L(V, Vx1)|L1(x1) + |L(V, Vx1)|L∞(x1)

]
≤ Cρ−1−1/p+ερ

[
|V |Lq + |Vx1|Lq

]
≤ Cρ−1/p+ε[|f |L1(x1) + ρ−1|f |L∞(x1)].

(4.72)

Bounds on V and U1 clearly give our claimed bounds on U by triangle inequality:

|U |Lp ≤ |V |Lp + |U1|Lp .

We obtain the proposition for the case β = 1, and thus complete the proof.

4.3.6 Estimates on the solution operator

In this subsection, we complete the proof of Proposition 4.2.1. As mentioned earlier,

it suffices to prove the bounds for S1(t), where the low frequency solution operator

S1(t) is defined as

S1(t) :=
1

(2πi)d

∫
|ξ̃|≤r

∮
Γξ̃
eλt+iξ̃·x̃(Lξ̃ − λ)−1dλdξ̃. (4.73)

Proof of bounds on S1(t). Let û(x1, ξ̃, λ) denote the solution of (Lξ̃ −λ)û = f̂ , where

f̂(x1, ξ̃) denotes Fourier transform of f , and

u(x, t) := S1(t)f =
1

(2πi)d

∫
|ξ̃|≤r

∮
Γξ̃
eλt+iξ̃·x̃(Lξ̃ − λ)−1f̂(x1, ξ̃)dλdξ̃.

Using Parseval’s identity, Fubini’s theorem, the triangle inequality, and Proposi-
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tion 4.3.5, we may estimate

|u|2L2(x1,x̃)(t) =
1

(2π)2d

∫
x1

∫
ξ̃

∣∣∣ ∮
Γξ̃
eλtû(x1, ξ̃, λ)dλ

∣∣∣2dξ̃dx1

≤ 1

(2π)2d

∫
ξ̃

∣∣∣ ∮
Γξ̃
e<eλt|û(x1, ξ̃, λ)|L2(x1)dλ

∣∣∣2dξ̃
≤ C[|f |L1(x) + |f |L1,∞

x̃,x1

]2
∫
ξ̃

∣∣∣ ∮
Γξ̃
e<eλtρ−3/2+εdλ

∣∣∣2dξ̃.
Specifically, parametrizing Γξ̃ by

λ(ξ̃, k) = ik − θ1(k2 + |ξ̃|2), k ∈ R,

we estimate∫
ξ̃

∣∣∣ ∮
Γξ̃
e<eλtρ−3/2+εdλ

∣∣∣2dξ̃ ≤ ∫
ξ̃

∣∣∣ ∫
R
e−θ1(k2+|ξ̃|2)tρ−3/2+εdk

∣∣∣2dξ̃
≤
∫
ξ̃

e−2θ1|ξ̃|2t|ξ̃|−1
∣∣∣ ∫

R
e−θ1k

2t|k|ε−1dk
∣∣∣2dξ̃

≤ Ct−(d−2)/2−ε,

noting that
∫

Rd−1 e
−θ|x|2|x|−αdx is finite, provided α < d− 1.

Similarly, we estimate

|u|2
L2,∞
x̃,x1

(t) ≤ 1

(2π)2d

∫
ξ̃

∣∣∣ ∮
Γξ̃
e<eλt|û(x1, ξ̃, λ)|L∞(x1)dλ

∣∣∣2dξ̃
≤ C[|f |L1(x) + |f |L1,∞

x̃,x1

]2
∫
ξ̃

∣∣∣ ∮
Γξ̃
e<eλtρ−1+εdλ

∣∣∣2dξ̃
where, parametrizing Γξ̃ as above, we have∫

ξ̃

∣∣∣ ∮
Γξ̃
e<eλtρ−1+εdλ

∣∣∣2dξ̃ ≤ ∫
ξ̃

e−θ1|ξ̃|
2t
∣∣∣ ∫

R
e−θ1k

2t|k|ε−1dk
∣∣∣2dξ̃

≤ Ct−(d−1)/2−ε.
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Finally, we estimate

|u|L∞x̃,x1 (t) ≤ 1

(2π)d

∫
ξ̃

∮
Γξ̃
e<eλt|û(x1, ξ̃, λ)|L∞(x1)dλdξ̃

≤ C[|f |L1(x) + |f |L1,∞
x̃,x1

]

∫
ξ̃

∮
Γξ̃
e<eλtρ−1+εdλdξ̃

where, parametrizing Γξ̃ as above, we have∫
ξ̃

∮
Γξ̃
e<eλtρ−1+εdλdξ̃ ≤

∫
ξ̃

e−θ1|ξ̃|
2t

∫
R
e−θ1k

2t|k|ε−1dkdξ̃

≤ Ct−(d−1)/2−ε/2.

The x1−derivative bounds follow similarly by using the version of the L1 → Lp

estimates for β1 = 1. The x̃−derivative bounds are straightforward by the fact that

∂̂β̃x̃f = (iξ̃)β̃ f̂ .

4.4 Two–dimensional case or cases with (H4)

In this section, we give an immediate proof of Theorem 4.1.7. Notice that the only

assumption we make here that differs from those in Chapter 3 is the relaxed Hypoth-

esis (H3′), treating the case of totally nonglancing characteristic roots, which is only

involved in low–frequency estimates. That is to say, we only need to establish the

L1 → Lp bounds in low-frequency regimes for this new case.

Proposition 4.4.1 (Low-frequency bounds; Proposition 3.3.3). Under the hypotheses

of Theorem 4.1.7, for λ ∈ Γξ̃ (see (3.37)) and ρ := |(ξ̃, λ)|, θ1 sufficiently small, there

holds the resolvent bound

|(Lξ̃ − λ)−1∂βx1
f |Lp(x1) ≤ Cγ2ρ

−2/p
[
ρβ|f̂ |L1(x1) + β|f̂ |L∞(x1)

]
, (4.74)

for all 2 ≤ p ≤ ∞, β = 0, 1, and γ2 is the diagonalization error (see [59], (5.40))

defined as

γ2 := 1 +
∑
j,±

[
ρ−1|=mλ− η±j (ξ̃)|+ ρ

]1/sj−1

, (4.75)

with η±j , sj as in (H4).
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Proof. We only need to treat the new case: the totally nonglancing blocks Qk
t . But

this is already treated in our previous subsection, Subsection 4.3.4, yielding

|uHt+|2L∞ + ρ2|uHt+|2L2 . |FHt+|2L1 ,

|uHt−|2L∞ + ρ2|uHt−|2L2 . |uHt−(0)|2 + |FHt−|2L1 ,
(4.76)

where the boundary term |uHt−(0)|2 can be treated by applying the L2 stability esti-

mate (4.24). Thus, together with a use of the standard interpolation inequality, we

have obtained

|uHt |Lp(x1) ≤ Cγ2ρ
−1|f |L1(x1), (4.77)

for all 2 ≤ p ≤ ∞ and γ2 defined as in (4.75), yielding (4.74) for β = 0. For β = 1, we

can follow the Kreiss–Kreiss trick as done in the proof of Proposition 4.3.5, completing

the proof of Proposition 4.4.1.

Proof of Theorem 4.1.7. Proposition 4.4.1 is Proposition 3.3.3 in Chapter 3 with an

extension to the totally nonglancing cases. Thus, the theorem follows word by word

from the proof in the previous chapter.
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Chapter 5

SPECTRAL STABILITY OF

ISENTROPIC NAVIER–STOKES

LAYERS

In this final chapter, we rigorously establish the Result 4 formally stated in the

Introduction. The materials presented below are taken from [9].

5.1 Introduction

Consider the isentropic compressible Navier-Stokes equations

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + p(ρ)x = uxx
(5.1)

on the quarter-plane x, t ≥ 0, where ρ > 0, u, p denote density, velocity, and pressure

at spatial location x and time t, with γ-law pressure function

p(ρ) = a0ρ
γ, a0 > 0, γ ≥ 1, (5.2)

and noncharacteristic constant “inflow” or “outflow” boundary conditions

(ρ, u)(0, t) ≡ (ρ0, u0), u0 > 0 (5.3)
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or

u(0, t) ≡ u0 u0 < 0 (5.4)

as discussed in [54, 19, 18]. The sign of the velocity at x = 0 determines whether

characteristics of the hyperbolic transport equation ρt + uρx = f enter the domain

(considering f := −ρux as a lower-order forcing term), and thus whether ρ(0, t) should

be prescribed. The variable-coefficient parabolic equation ρut − uxx = g requires

prescription of u(0, t) in either case, with g := −ρ(u2/2)x − p(ρ)x.

By comparison, the purely hyperbolic isentropic Euler equations

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + p(ρ)x = 0
(5.5)

have characteristic speeds a = u±
√
p′(ρ), hence, depending on the values of (ρ, u)(0, t),

may have one, two, or no characteristics entering the domain, hence require one, two,

or no prescribed boundary values, respectively. In particular, there is a discrepancy

between the number of prescribed boundary values for (5.1) and (5.5) in the case

of mild inflow u0 > 0 small (two for (5.1), one for (5.5)) or strong outflow u0 < 0

large (one for (5.1), none for (5.5)), indicating the possibility of boundary layers, or

asymptotically-constant stationary solutions of (5.1):

(ρ, u)(x, t) ≡ (ρ̂, û)(x), lim
z→+∞

(ρ̂, û)(z) = (ρ+, u+). (5.6)

Indeed, existence of such solutions is straightforward to verify by direct computations

on the (scalar) stationary-wave ODE; see [42, 54, 39, 33, 18, 19] or Section 5.2.3. These

may be either of “expansive” type, resembling rarefaction wave solutions on the whole

line, or “compressive” type, resembling viscous shock solutions.

A fundamental question is whether or not such boundary layer solutions are stable

in the sense of PDE. For the expansive inflow case, it has been shown in [39] that

all boundary layers are stable, independent of amplitude, by energy estimates similar

to those used to prove the corresponding result for rarefactions on the whole line.

Here, we concentrate on the complementary, compressive case (though see discussion,

Section 5.1.1).

Linearized and nonlinear stability of general (expansive or compressive) small-

amplitude noncharacteristic boundary layers of (5.1) have been established in [39, 52,
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33, 19]. More generally, it has been shown in [19, 56, 45] that linearized and nonlinear

stability are equivalent to spectral stability, or nonexistence of nonstable (nonnegative

real part) eigenvalues of the linearized operator about the layer, for boundary layers

of arbitrary amplitude. However, up to now the spectral stability of large-amplitude

compressive boundary layers has remained largely undetermined.1

We resolve this question in the present paper by carrying out a systematic global

study classifying the stability of all possible compressive boundary-layer solutions of

(5.1). Our method of analysis is by a combination of asymptotic ODE techniques

and numerical Evans function computations, following a basic approach introduced

recently in [3, 24] for the study of the closely related shock wave case. Here, there are

interesting complications associated with the richer class of boundary-layer solutions

as compared to possible shock solutions, the delicate stability properties of the in-

flow case, and, in the outflow case, the nonstandard eigenvalue problem arising from

reduction to Lagrangian coordinates.

As in [24], our strategy is to carry out rigorous analyses of asymptotic limits in

the parameter space, thus truncating the computational domain, then as in [3] carry

out an exhaustive numerical study on the remaining compact parameter regime. In

the course of the first, analytical, step, we obtain convergence of the Evans function

in the shock- and large-amplitude limits, and stability in the large-amplitude limit,

for all γ ≥ 1, the first rigorous stability result for other than the nearly-constant case.

For a detailed description of our results both analytical and numerical see Section

5.3.

Our ultimate conclusions are, for both inflow and outflow conditions, that com-

pressive boundary layers that are uniformly noncharacteristic in a sense to be made

precise later (specifically, v+ bounded away from 1, in the terminology of Section

5.2.3) are unconditionally stable, independent of amplitude, on the physical range

γ ∈ [1, 3] considered in our numerical computations. We show by energy estimates

that outflow boundary layers are stable also in the characteristic limit. The omitted

characteristic limit in the inflow case, analogous to the small-amplitude limit for the

shock case should be treatable by the singular perturbation methods used in [49, 11]

to treat the small-amplitude shock case; however, we do not consider this case here.

In the inflow case, our results, together with those of [39], completely resolve the

1See, however, the investigations of [54] on stability index, or parity of the number of nonstable
eigenvalues of the linearized operator about the layer.
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question of stability of isentropic (expansive or compressive) uniformly noncharac-

teristic boundary layers for γ ∈ [1, 3], yielding unconditional stability independent of

amplitude or type. In the outflow case, we show stability of all compressive boundary

layers without the assumption of uniform noncharacteristicity.

5.1.1 Discussion and open problems

The small-amplitude results obtained in [39, 33, 52, 19] are of “general type”, making

little use of the specific structure of the equations. Essentially, they all require that

the difference between the boundary layer solution and its constant limit at |x| =∞
be small in L1 (alternatively, as in [39, 52], the more or less equivalent condition that

xv̂′(x) be small in L1; for monotone profiles,
∫ +∞

0
|v̂ − v+|dx = ±

∫ +∞
0

(v̂ − v+)dx =

∓
∫ +∞

0
xv̂′dx). As pointed out in [19], this is the “gap lemma” regime in which

standard asymptotic ODE estimates show that behavior is essentially governed by

the limiting constant-coefficient equations at infinity, and thus stability may be con-

cluded immediately from stability (computable by exact solution) of the constant

layer identically equal to the limiting state. These methods do not suffice to treat

either the (small-amplitude) characteristic limit or the large-amplitude case, which

require more refined analyses. In particular, up to now, there was no analysis con-

sidering boundary layers approaching a full viscous shock profile, not even a profile of

vanishingly small amplitude. Our analysis of this limit indicates why: the appearance

of a small eigenvalue near zero prevents uniform estimates such as would be obtained

by usual types of energy estimates.

By contrast, the large-amplitude results obtained here and (for expansive layers)

in [39] make use of the specific form of the equations. In particular, both analyses

make use of the advantageous structure in Lagrangian coordinates. The possibility

to work in Lagrangian coordinates was first pointed out by Matsumura–Nishihara

[39] in the inflow case, for which the stationary boundary transforms to a moving

boundary with constant speed. Here we show how to convert the outflow problem

also to Lagrangian coordinates, by converting the resulting variable-speed boundary

problem to a constant-speed one with modified boundary condition. This trick seems

of general use. In particular, it might be possible that the energy methods of [39]

applied in this framework would yield unconditional stability of expansive boundary-

layers, completing the analysis of the outflow case. Alternatively, this case could be
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attacked by the methods of the present paper. These are two interesting directions

for future investigation.

In the outflow case, a further transformation to the “balanced flux form” intro-

duced in [49], in which the equations take the form of the integrated shock equations,

allows us to establish stability in the characteristic limit by energy estimates like

those of [38] in the shock case. The treatment of the characteristic inflow limit by

the methods of [49, 11] seems to be another extremely interesting direction for future

study.

Finally, we point to the extension of the present methods to full (nonisentropic)

gas dynamics and multidimensions as the two outstanding open problems in this area.

New features of the present analysis as compared to the shock case considered

in [3, 24] are the presence of two parameters, strength and displacement, indexing

possible boundary layers, vs. the single parameter of strength in the shock case,

and the fact that the limiting equations in several asymptotic regimes possess zero

eigenvalues, making the limiting stability analysis much more delicate than in the

shock case. The latter is seen, for example, in the limit as a compressive boundary

layer approaches a full stationary shock solution, which we show to be spectrally

equivalent to the situation of unintegrated shock equations on the whole line. As

the equations on the line possess always a translational eigenvalue at λ = 0, we may

conclude existence of a zero at λ = 0 for the limiting equations and thus a zero near

λ = 0 as we approach this limit, which could be stable or unstable. Similarly, the

Evans function in the inflow case is shown to converge in the large-strength limit to a

function with a zero at λ = 0, with the same conclusions; see Section 5.3 for further

details.

To deal with this latter circumstance, we find it necessary to make use also of

topological information provided by the stability index of [48, 14, 54], a mod-two

index counting the parity of the number of unstable eigenvalues. Together with the

information that there is at most one unstable zero, the parity information provided

by the stability index is sufficient to determine whether an unstable zero does or

does not occur. Remarkably, in the isentropic case we are able to compute explicitly

the stability index for all parameter values, recovering results obtained by indirect

argument in [54], and thereby completing the stability analysis in the presence of a

single possibly unstable zero.
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5.2 Preliminaries

We begin by carrying out a number of preliminary steps similar to those carried out

in [3, 24] for the shock case, but complicated somewhat by the need to treat the

boundary and its different conditions in the inflow and outflow case.

5.2.1 Lagrangian formulation.

The analyses of [24, 3] in the shock wave case were carried out in Lagrangian coor-

dinates, which proved to be particularly convenient. Our first step, therefore, is to

convert the Eulerian formulation (5.1) into Lagrangian coordinates similar to those

of the shock case. However, standard Lagrangian coordinates in which the spatial

variable x̃ is constant on particle paths are not appropriate for the boundary-value

problem with inflow/outflow. We therefore introduce instead “psuedo-Lagrangian”

coordinates

x̃ :=

∫ x

0

ρ(y, t) dy, t̃ := t, (5.7)

in which the physical boundary x = 0 remains fixed at x̃ = 0.

Straightforward calculation reveals that in these coordinates (5.1) becomes

vt − svx̃ − ux̃ = σ(t)vx̃

ut − sux̃ + p(v)x̃ −
(ux̃
v

)
x̃

= σ(t)ux̃
(5.8)

on x̃ > 0, where

s = −u0

v0

, σ(t) = m(t)− s, m(t) := −ρ(0, t)u(0, t) = −u(0, t)/v(0, t), (5.9)

so that m(t) is the negative of the momentum at the boundary x = x̃ = 0. From now

on, we drop the tilde, denoting x̃ simply as x.

Inflow case

For the inflow case, u0 > 0 so we may prescribe two boundary conditions on (5.8),

namely

v|x=0 = v0 > 0, u|x=0 = u0 > 0 (5.10)

where both u0, v0 are constant.
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Outflow case

For the outflow case, u0 < 0 so we may prescribe only one boundary condition on

(5.8), namely

u|x=0 = u0 < 0. (5.11)

Thus v(0, t) is an unknown in the problem, which makes the analysis of the outflow

case more subtle than that of the inflow case.

5.2.2 Rescaled coordinates

Our next step is to rescale the equations in such a way that coefficients remain

bounded in the strong boundary-layer limit. Consider the change of variables

(x, t, v, u)→ (−εsx, εs2t, v/ε,−u/(εs)), (5.12)

where ε is chosen so that

0 < v+ < v− = 1, (5.13)

where v+ is the limit as x → +∞ of the boundary layer (stationary solution) (v̂, û)

under consideration and v− is the limit as x → −∞ of its continuation into x < 0

as a solution of the standing-wave ODE (discussed in more detail just below). Under

the rescaling (5.12), (5.8) becomes

vt + vx − ux = σ(t)vx,

ut + ux + (av−γ)x = σ(t)ux +
(ux
v

)
x
,

(5.14)

where a = a0ε
−γ−1s−2, σ = −u(0, t)/v(0, t) + 1, on respective domains

x > 0 (inflow case) x < 0 (outflow case).

5.2.3 Stationary boundary layers

Stationary boundary layers

(v, u)(x, t) = (v̂, û)(x)
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of (5.14) satisfy

(a) v̂′ − û′ = 0

(b) û′ + (av̂−γ)′ =

(
û′

v̂

)′
(c) (v̂, û)|x=0 = (v0, u0)

(d) lim
x→±∞

(v̂, û) = (v, u)±,

(5.15)

where (d) is imposed at +∞ in the inflow case, −∞ in the outflow case and (imposing

σ = 0) u0 = v0. Using (5.15)(a) we can reduce this to the study of the scalar ODE,

v̂′ + (av̂−γ)′ =

(
v̂′

v̂

)′
(5.16)

with the same boundary conditions at x = 0 and x = ±∞ as above. Taking the

antiderivative of this equation yields

v̂′ = HC(v̂) = v̂(v̂ + av̂−γ + C), (5.17)

where C is a constant of integration.

Noting that HC is convex, we find that there are precisely two rest points of

(5.17) whenever boundary-layer profiles exist, except at the single parameter value

on the boundary between existence and nonexistence of solutions, for which there is

a degenerate rest point (double root of HC). Ignoring this degenerate case, we see

that boundary layers terminating at rest point v+ as x → +∞ must either continue

backward into x < 0 to terminate at a second rest point v− as x → −∞, or else

blow up to infinity as x → −∞. The first case we shall call compressive, the second

expansive.

In the first case, the extended solution on the whole line may be recognized as a

standing viscous shock wave; that is, for isentropic gas dynamics, compressive bound-

ary layers are just restrictions to the half-line x ≥ 0 [resp. x ≤ 0] of standing shock

waves. In the second case, as discussed in [39], the boundary layers are somewhat

analogous to rarefaction waves on the whole line. From here on, we concentrate

exclusively on the compressive case.

With the choice v− = 1, we may carry out the integration of (5.16) once more,
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this time as a definite integral from −∞ to x, to obtain

v̂′ = H(v̂) = v̂(v̂ − 1 + a(v̂−γ − 1)), (5.18)

where a is found by letting x→ +∞, yielding

a = − v+ − 1

v−γ+ − 1
= vγ+

1− v+

1− vγ+
; (5.19)

in particular, a ∼ vγ+ in the large boundary layer limit v+ → 0. This is exactly the

equation for viscous shock profiles considered in [24].

5.2.4 Eigenvalue equations

Linearizing (5.14) about (v̂, û), we obtain

ṽt + ṽx − ũx =
ṽ(0, t)

v0

v̂′

ũt + ũx −
(
h(v̂)

v̂γ+1
ṽ

)
x

−
(
ũx
v̂

)
x

=
ṽ(0, t)

v0

û′

(ṽ, ũ)|x=0 = (ṽ0(t), 0)

lim
x→+∞

(ṽ, ũ) = (0, 0),

(5.20)

where v0 = v̂(0),

h(v̂) = −v̂γ+1 + a(γ − 1) + (a+ 1)v̂γ (5.21)

and ṽ, ũ denote perturbations of v̂, û.

Inflow case

In the inflow case, ũ(0, t) = ṽ(0, t) ≡ 0, yielding

λv + vx − ux = 0

λu+ ux −
(
h(v̂)

v̂γ+1
v

)
x

=
(ux
v̂

)
x

(5.22)

on x > 0, with full Dirichlet conditions (v, u)|x=0 = (0, 0).
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Outflow case

Letting Ũ := (ṽ, ũ)T , Û := (v̂, û)T , and denoting by L the operator associated to the

linearization about boundary-layer (v̂, û),

L := −∂xA(x) + ∂xB(x)∂x, (5.23)

where

A(x) =

(
1 −1

−h(v̂)/v̂γ+1 1

)
, B(x) =

(
0 0

0 v̂−1

)
, (5.24)

we have Ũt − LŨ = ṽ0(t)
v0
Û ′(x), with associated eigenvalue equation

λŨ − LŨ =
ṽ(0, λ)

v0

Û ′(x), (5.25)

where Ū ′ = (v̂′, û′).

To eliminate the nonstandard inhomogeneous term on the righthand side of (5.25),

we introduce a “good unknown” (c.f. [2, 10, 16, 29])

U := Ũ − λ−1 ṽ(0, λ)

v0

Û ′(x). (5.26)

Since LŪ ′ = 0 by differentiation of the boundary-layer equation, the system expressed

in the good unknown becomes simply

λU − LU = 0 in x < 0, (5.27)

or, equivalently, (5.22) with boundary conditions

U |x=0 =
ṽ(0, λ)

v0

(1− λ−1v̂′(0), −λ−1û′(0))T

lim
x→+∞

U = 0.
(5.28)

Solving for u|x=0 in terms of v|x=0 and recalling that v̂′ = û′ by (5.18), we obtain

finally

u|x=0 = α(λ)v|x=0, α(λ) :=
−v̂′(0)

λ− v̂′(0)
. (5.29)

Remark 5.2.1. Problems (5.25) and (5.27)–(5.22) are evidently equivalent for all
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λ 6= 0, but are not equivalent for λ = 0 (for which the change of coordinates to good

unknown becomes singular). For, U = Û ′ by inspection is a solution of (5.27), but

is not a solution of (5.25). That is, we have introduced by this transformation a

spurious eigenvalue at λ = 0, which we shall have to account for later.

5.2.5 Preliminary estimates

Proposition 5.2.2 ([3]). For each γ ≥ 1, 0 < v+ ≤ 1/12 < v0 < 1, (5.18) has a

unique (up to translation) monotone decreasing solution v̂ decaying to endstates v±

with a uniform exponential rate for v+ uniformly bounded away from v− = 1. In

particular, for 0 < v+ ≤ 1/12,

|v̂(x)− v+| ≤ Ce−
3(x−δ)

4 x ≥ δ, (5.30a)

|v̂(x)− v−| ≤ Ce
(x−δ)

2 x ≤ δ, (5.30b)

where δ is defined by v̂(δ) = (v− + v+)/2.

Proof. Existence and monotonicity follow trivially by the fact that (5.18) is a scalar

first-order ODE with convex righthand side. Exponential convergence as x → +∞

follows by H(v, v+) = (v − v+)
(
v −

(
1−v+
1−vγ+

)(
1−
(
v+
v

)γ
1−
(
v+
v

) )), whence v − γ ≤ H(v,v+)
v−v+ ≤

v − (1 − v+) by 1 ≤ 1−xγ
1−x ≤ γ for 0 ≤ x ≤ 1. Exponential convergence as x → −∞

follows by a similar, but more straightforward calculation, where, in the “centered”

coordinate x̃ := x − δ, the constants C > 0 are uniform with respect to v+, v0. See

[3] for details.

The following estimates are established in Appendices C.1 and C.2.

Proposition 5.2.3. Nonstable eigenvalues λ of (5.22), i.e., eigenvalues with non-

negative real part, are confined for any 0 < v+ ≤ 1 to the region

Λ := {λ : <e(λ) + |=m(λ)| ≤ 1

2

(
2
√
γ + 1

)2

} (5.31)

for the inflow case, and to the region

Λ := {λ : <e(λ) + |=m(λ)| ≤ max{3
√

2

2
, 3γ +

3

8
} (5.32)
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for the outflow case.

5.2.6 Evans function formulation

Setting w := u′

v̂
+ h(v̂)

v̂γ+1v − u, we may express (5.22) as a first-order system

W ′ = A(x, λ)W, (5.33)

where

A(x, λ) =

0 λ λ

0 0 λ

v̂ v̂ f(v̂)− λ

 , W =

 w

u− v
v

 , ′ = d

dx
, (5.34)

where

f(v̂) = v̂ − v̂−γh(v̂) = 2v̂ − a(γ − 1)v̂−γ − (a+ 1), (5.35)

with h as in (5.21) and a as in (5.19), or, equivalently,

f(v̂) = 2v̂ − (γ − 1)
(1− v+

1− vγ+

)(v+

v̂

)γ
−
(1− v+

1− vγ+

)
vγ+ − 1. (5.36)

Remark 5.2.4. The coefficient matrix A may be recognized as a rescaled version of

the coefficient matrix A appearing in the shock case [3, 24], with

A =

1 0 0

0 1 0

0 0 λ

A

1 0 0

0 1 0

0 0 1/λ

 .

The choice of variables (w, u − v, v)T may be recognized as the modified flux form of

[49], adapted to the hyperbolic–parabolic case.

Eigenvalues of (5.22) correspond to nontrivial solutions W for which the boundary

conditions W (±∞) = 0 are satisfied. Because A(x, λ) as a function of v̂ is asymptot-

ically constant in x, the behavior near x = ±∞ of solutions of (5.34) is governed by

the limiting constant-coefficient systems

W ′ = A±(λ)W, A±(λ) := A(±∞, λ), (5.37)

from which we readily find on the (nonstable) domain <λ ≥ 0, λ 6= 0 of interest
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that there is a one-dimensional unstable manifold W−
1 (x) of solutions decaying at

x = −∞ and a two-dimensional stable manifold W+
2 (x)∧W+

3 (x) of solutions decaying

at x = +∞, analytic in λ, with asymptotic behavior

W±
j (x, λ) ∼ eµ±(λ)xV ±j (λ) (5.38)

as x → ±∞, where µ±(λ) and V ±j (λ) are eigenvalues and associated analytically

chosen eigenvectors of the limiting coefficient matrices A±(λ). A standard choice

of eigenvectors V ±j [14, 8, 5, 27], uniquely specifying W±
j (up to constant factor) is

obtained by Kato’s ODE [32], a linear, analytic ODE whose solution can be alterna-

tively characterized by the property that there exist corresponding left eigenvectors

Ṽ ±j such that

(Ṽj · Vj)± ≡ constant, (Ṽj · V̇j)± ≡ 0, (5.39)

where “ ˙ ” denotes d/dλ; for further discussion, see [32, 14, 27].

Inflow case

In the inflow case, 0 ≤ x ≤ +∞, we define the Evans function D as the analytic

function

Din(λ) := det(W 0
1 ,W

+
2 ,W

+
3 )|x=0, (5.40)

where W+
j are as defined above, and W 0

1 is a solution satisfying the boundary condi-

tions (v, u) = (0, 0) at x = 0, specifically,

W 0
1 |x=0 = (1, 0, 0)T . (5.41)

With this definition, eigenvalues of L correspond to zeroes of D both in location and

multiplicity; moreover, the Evans function extends analytically to λ = 0, i.e., to all

of <λ ≥ 0. See [1, 14, 36, 59] for further details.

Equivalently, following [48, 3], we may express the Evans function as

Din(λ) =
(
W̃+

1 ·W 0
1

)
|x=0

, (5.42)

where W̃+
1 (x) spans the one-dimensional unstable manifold of solutions decaying at

x = +∞ (necessarily orthogonal to the span of W+
2 (x) and W+

3 (x)) of the adjoint
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eigenvalue ODE

W̃ ′ = −A(x, λ)∗W̃ . (5.43)

The simpler representation (5.42) is the one that we shall use here.

Outflow case

In the outflow case, −∞ ≤ x ≤ 0, we define the Evans function as

Dout(λ) := det(W−
1 ,W

0
2 ,W

0
3 )|x=0, (5.44)

where W−
1 is as defined above, and W 0

j are a basis of solutions of (5.33) satisfying

the boundary conditions (5.29), specifically,

W 0
2 |x=0 = (1, 0, 0)T , W 0

3 |x=0 =
(

0,− λ

λ− v̂′(0)
, 1
)T
, (5.45)

or, equivalently, as

Dout(λ) =
(
W̃ 0

1 ·W−
1

)
|x=0

, (5.46)

where

W̃ 0
1 =

(
0,−1,− λ̄

λ̄− v̂′(0)

)T
(5.47)

is the solution of the adjoint eigenvalue ODE dual to W 0
2 and W 0

3 .

Remark 5.2.5. As discussed in Remark 5.2.1, Dout has a spurious zero at λ = 0

introduced by the coordinate change to “good unknown”.

5.3 Main results

We can now state precisely our main results.
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5.3.1 The strong layer limit

Taking a formal limit as v+ → 0 of the rescaled equations (5.14) and recalling that

a ∼ vγ+, we obtain a limiting evolution equation

vt + vx − ux = 0,

ut + ux =
(ux
v

)
x

(5.48)

corresponding to a pressureless gas, or γ = 0.

The associated limiting profile equation v′ = v(v − 1) has explicit solution

v̂0(x) =
1− tanh

(
x−δ

2

)
2

, (5.49)

v̂0(0) = 1−tanh(−δ/2)
2

= v0; the limiting eigenvalue system is

W ′ = A0(x, λ)W, A0(x, λ) =

 0 λ λ

0 0 λ

v̂0 v̂0 f 0(v̂0)− λ

 , (5.50)

where f 0(v̂0) = 2v̂0 − 1 = − tanh
(
x−δ

2

)
.

Convergence of the profile and eigenvalue equations is uniform on any interval

v̂0 ≥ ε > 0, or, equivalently, x−δ ≤ L, for L any positive constant, where the sequence

of coefficient matrices is therefore a regular perturbation of its limit. Following [24],

we call x ≤ L + δ the “regular region”. For v̂0 → 0 on the other hand, or x → ∞,

the limit is less well-behaved, as may be seen by the fact that ∂f/∂v̂ ∼ v̂−1 as

v̂ → v+, a consequence of the appearance of
(
v+
v̂

)
in the expression (5.36) for f .

Similarly, A(x, λ) does not converge to A+(λ) as x→ +∞ with uniform exponential

rate independent of v+, γ, but rather as Cv̂−1e−x/2. As in the shock case, this makes

problematic the treatment of x ≥ L+δ. Following [24] we call x ≥ L+δ the “singular

region”.

To put things in another way, the effects of pressure are not lost as v+ → 0, but

rather pushed to x = +∞, where they must be studied by a careful boundary-layer

analysis. (Note: this is not a boundary-layer in the same sense as the background

solution, nor is it a singular perturbation in the usual sense, at least as we have

framed the problem here.)
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Remark 5.3.1. A significant difference from the shock case of [24] is the appearance

of the second parameter v0 that survives in the v+ → 0 limit.

Inflow case

Observe that the limiting coefficient matrix

A0
+(λ) := A0(+∞, λ) =

0 λ λ

0 0 λ

0 0 −1− λ

 , (5.51)

is nonhyperbolic (in ODE sense) for all λ, having eigenvalues 0, 0,−1−λ; in particular,

the stable manifold drops to dimension one in the limit v+ → 0, and so the prescription

of an associated Evans function is underdetermined.

This difficulty is resolved by a careful boundary-layer analysis in [24], determining

a special “slow stable” mode

V2 := (1, 0, 0)T

augmenting the “fast stable” mode

V3 := (λ/µ)(λ/µ+ 1), λ/µ, 1)T

associated with the single stable eigenvalue µ = −1 − λ of A0
+. This determines a

limiting Evans function D0
in(λ) by the prescription (5.40), (5.38) of Section 5.2.6, or

alternatively via (5.42) as

D0
in(λ) =

(
W̃ 0+

1 ·W 00
1

)
|x=0

, (5.52)

with W̃ 0+
1 defined analogously as a solution of the adjoint limiting system lying asymp-

totically at x = +∞ in direction

Ṽ1 := (0,−1, λ̄/µ̄)T (5.53)

orthogonal to the span of V2 and V3, where “ ¯ ” denotes complex conjugate, and

W 00
1 defined as the solution of the limiting eigenvalue equations satisfying boundary

condition (5.41), i.e., (W 00
1 )|x=0 = (1, 0, 0)T .
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Outflow case

We have no such difficulties in the outflow case, since A0
− = A0(−∞) remains uni-

formly hyperbolic, and we may define a limiting Evans function D0
out directly by

(5.44), (5.38), (5.47), at least so long as v0 remains bounded from zero. (As perhaps

already hinted by Remark 5.3.1, there are complications associated with the double

limit (v0, v+)→ (0, 0).)

5.3.2 Analytical results

With the above definitions, we have the following main theorems characterizing the

strong-layer limit v+ → 0 as well as the limits v0 → 0, 1.

Theorem 5.3.2. For v0 ≥ η > 0 and λ in any compact subset of <λ ≥ 0, Din(λ)

and Dout(λ) converge uniformly to D0
in(λ) and D0

out(λ) as v+ → 0.

Theorem 5.3.3. For λ in any compact subset of <λ ≥ 0 and v+ bounded from

1, Din(λ), appropriately renormalized by a nonvanishing analytic factor, converges

uniformly as v0 → 1 to the Evans function for the (unintegrated) eigenvalue equations

of the associated viscous shock wave connecting v− = 1 to v+; likewise, Dout(λ),

appropriately renormalized, converges uniformly as v0 → 0 to the same limit for λ

uniformly bounded away from zero.

By similar computations, we obtain also the following direct result.

Theorem 5.3.4. Inflow boundary layers are stable for v0 sufficiently small.

We have also the following parity information, obtained by stability-index com-

putations as in [54].2

Lemma 5.3.5 (Stability index). For any γ ≥ 1, v0, and v+, Din(0) 6= 0, hence

the number of unstable roots of Din is even; on the other hand D0
in(0) = 0 and

limv0→0D
0
in(λ) ≡ 0. Likewise, (D0

in)′(0), D′out(0) 6= 0, (D0
out)

′(0) 6= 0, hence the

number of nonzero unstable roots of D0
in, Dout, D

0
out is even.

Finally, we have the following auxiliary results established by energy estimates in

Appendices C.3, C.4, C.5, and C.6.

2Indeed, these may be deduced from the results of [54], taking account of the difference between
Eulerian and Lagrangian coordinates.
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Proposition 5.3.6. The limiting Evans function D0
in is nonzero for λ 6= 0 on <eλ ≥

0, for all 1 > v0 > 0. The limiting Evans function D0
out is nonzero for λ 6= 0 on

<eλ ≥ 0, for 1 > v0 > v∗, where v∗ ≈ 0.0899 is determined by the functional equation

v∗ = e−2/(1−v∗)2.

Proposition 5.3.7. Compressive outflow boundary layers are stable for v+ suffi-

ciently close to 1.

Proposition 5.3.8 ([39]). Expansive inflow boundary layers are stable for all param-

eter values.

Collecting information, we have the following analytical stability results.

Corollary 5.3.9. For v0 or v+ sufficiently small, compressive inflow boundary layers

are stable. For v0 sufficiently small, v+ sufficiently close to 1, or v0 > v∗ ≈ .0899

and v+ sufficiently small, compressive outflow layers are stable. Expansive inflow

boundary layers are stable for all parameter values.

Stability of inflow boundary layers in the characteristic limit v+ → 1 is not treated

here, but should be treatable analytically by the asymptotic ODE methods used in

[49, 11] to study the small-amplitude (characteristic) shock limit. This would be an

interesting direction for future investigation. The characteristic limit is not accessible

numerically, since the exponential decay rate of the background profile decays to

zero as |1 − v+|, so that the numerical domain of integration needed to resolve the

eigenvalue ODE becomes infinitely large as v+ → 1.

Remark 5.3.10. Stability in the noncharacteristic weak layer limit v0 → v+ [resp. 1]

in the inflow [outflow] case, for v+ bounded away from the strong and characteristic

limits 0 and 1 has already been established in [19, 52]. Indeed, it is shown in [19]

that the Evans function converges to that for a constant solution, and this is a regular

perturbation.

Remark 5.3.11. Stability of D0
in, D0

out may also be determined numerically, in par-

ticular in the region v0 ≤ v∗ not covered by Proposition 5.3.6.

5.3.3 Numerical results

The asymptotic results of Section 5.3.2 reduce the problem of (uniformly nonchar-

acteristic, v+ bounded away from v− = 1) boundary layer stability to a bounded
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parameter range on which the Evans function may be efficiently computed numeri-

cally in a way that is uniformly well-conditioned; see [8]. Specifically, we may map a

semicircle

∂
(
{<λ ≥ 0} ∩ {|λ| ≤ 10}

)
enclosing Λ for γ ∈ [1, 3] by D0

in, D0
out, Din, Dout and compute the winding number

of its image about the origin to determine the number of zeroes of the various Evans

functions within the semicircle, and thus within Λ. For details of the numerical

algorithm, see [3, 8].

In all cases, we obtain results consistent with stability; that is, a winding number

of zero or one, depending on the situation. In the case of a single nonzero root, we

know from our limiting analysis that this root may be quite near λ = 0, making

delicate the direct determination of its stability; however, in this case we do not

attempt to determine the stability numerically, but rely on the analytically computed

stability index to conclude stability. See Section 5.6 for further details.

5.3.4 Conclusions

As in the shock case [3, 24], our results indicate unconditional stability of uniformly

noncharacteristic boundary-layers for isentropic Navier–Stokes equations (and, for

outflow layer, in the characteristic limit as well), despite the additional complexity

of the boundary-layer case. However, two additional comments are in order, perhaps

related. First, we point out that the apparent symmetry of Theorem 5.3.3 in the

v0 → 0 outflow and v0 → 1 inflow limits is somewhat misleading. For, the limiting,

shock Evans function possesses a single zero at λ = 0, indicating that stability of inflow

boundary layers is somewhat delicate as v0 → 1: specifically, they have an eigenvalue

near zero, which, though stable, is (since vanishingly small in the shock limit) not

“very” stable. Likewise, the limiting Evans function D0
in as v+ → 0 possesses a zero

at λ = 0, with the same conclusions.

By contrast, the Evans functions of outflow boundary layers possess a spurious zero

at λ = 0, so that convergence to the shock or strong-layer limit in this case implies the

absence of any eigenvalues near zero, or “uniform” stability as v+ → 0. In this sense,

strong outflow boundary layers appear to be more stable than inflow boundary layers.

One may make interesting comparisons to physical attempts to stabilize laminar flow

along an air- or hydro-foil by suction (outflow) along the boundary. See, for example,
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the interesting treatise [53].

Second, we point out the result of instability obtained in [54] for inflow boundary-

layers of the full (nonisentropic) ideal-gas equations for appropriate ratio of the co-

efficients of viscosity and heat conduction. This suggests that the small eigenvalues

of the strong inflow-layer limit may in some cases perturb to the unstable side. It

would be very interesting to make these connections more precise, as we hope to do

in future work.

5.4 Boundary-layer analysis

Since the structure of (5.34) is essentially the same as that of the shock case, we may

follow exactly the treatment in [24] analyzing the flow of (5.34) in the singular region

x → +∞. As we shall need the details for further computations (specifically, the

proof of Theorem 5.3.4), we repeat the analysis here in full.

Our starting point is the observation that

A(x, λ) =

0 λ λ

0 0 λ

v̂ v̂ f(v̂)− λ

 (5.54)

is approximately block upper-triangular for v̂ sufficiently small, with diagonal blocks(
0 λ

0 0

)
and

(
f(v̂)− λ

)
that are uniformly spectrally separated on <eλ ≥ 0, as

follows by

f(v̂) ≤ v̂ − 1 ≤ −3/4. (5.55)

We exploit this structure by a judicious coordinate change converting (5.34) to a

system in exact upper triangular form, for which the decoupled “slow” upper lefthand

2× 2 block undergoes a regular perturbation that can be analyzed by standard tools

introduced in [49]. Meanwhile, the fast, lower righthand 1×1 block, since scalar, may

be solved exactly.
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5.4.1 Preliminary transformation

We first block upper-triangularize by a static (constant) coordinate transformation

the limiting matrix

A+ = A(+∞, λ) =

 0 λ λ

0 0 λ

v+ v+ f(v+)− λ

 (5.56)

at x = +∞ using special block lower-triangular transformations

R+ :=

(
I 0

v+θ+ 1

)
, L+ := R−1

+ =

(
I 0

−v+θ+ 1

)
, (5.57)

where I denotes the 2× 2 identity matrix and θ+ ∈ C1×2 is a 1× 2 row vector.

Lemma 5.4.1. On any compact subset of <eλ ≥ 0, for each v+ > 0 sufficiently

small, there exists a unique θ+ = θ+(v+, λ) such that Â+ := L+A+R+ is upper block-

triangular,

Â+ =

(
λ(J + v+11θ+) λ11

0 f(v+)− λ− λv+θ+11

)
, (5.58)

where J =

(
0 1

0 0

)
and 11 =

(
1

1

)
, satisfying a uniform bound

|θ+| ≤ C. (5.59)

Proof. Setting the 2− 1 block of Â+ to zero, we obtain the matrix equation

θ+(aI − λJ) = −11T + λv+θ+11θ+,

where a = f(v+)− λ, or, equivalently, the fixed-point equation

θ+ =
(
− 11T + λv+θ+11θ+

)
(aI − λJ)−1. (5.60)

By det(aI − λJ) = a2 6= 0, (aI − λJ)−1 is uniformly bounded on compact subsets of

<eλ ≥ 0 (indeed, it is uniformly bounded on all of <eλ ≥ 0), whence, for |λ| bounded

and v+ sufficiently small, there exists a unique solution by the Contraction Mapping
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Theorem, which, moreover, satisfies (5.59).

5.4.2 Dynamic triangularization

Defining now Y := L+W and

Â(x, λ) = L+A(x, λ)R+ = λ(J + v+11θ+) λ11

(v̂ − v+)11T − v+(f(v̂)− f(v+))θ+ f(v̂)− λ− λv+θ+11

 ,

we have converted (5.34) to an asymptotically block upper-triangular system

Y ′ = Â(x, λ)Y, (5.61)

with Â+ = Â(+∞, λ) as in (5.58). Our next step is to choose a dynamic transforma-

tion of the same form

R̃ :=

(
I 0

Θ̃ 1

)
, L̃ := R̃−1 =

(
I 0

−Θ̃ 1

)
, (5.62)

converting (5.61) to an exactly block upper-triangular system, with Θ̃ uniformly

exponentially decaying at x = +∞: that is, a regular perturbation of the identity.

Lemma 5.4.2. On any compact subset of <eλ ≥ 0, for L sufficiently large and

each v+ > 0 sufficiently small, there exists a unique Θ̃ = Θ̃(x, λ, v+) such that Ã :=

L̃Â(x, λ)R̃ + L̃′R̃ is upper block-triangular,

Ã =

(
λ(J + v+11θ+ + 11Θ̃) λ11

0 f(v̂)− λ− λv+θ+11− λΘ̃11

)
, (5.63)

and Θ̃(L) = 0, satisfying a uniform bound

|Θ̃(x, λ, v+)| ≤ Ce−ηx, η > 0, x ≥ L, (5.64)

independent of the choice of L, v+.
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Proof. Setting the 2− 1 block of Ã to zero and computing

L̃′R̃ =

(
0 0

−Θ̃′ 0

)(
I 0

Θ̃ I

)
=

(
0 0

−Θ̃′ 0,

)

we obtain the matrix equation

Θ̃′ − Θ̃
(
aI − λ(J + v+11θ+)

)
= ζ + λΘ̃11Θ̃, (5.65)

where a(x) := f(v̂)− λ− λv+θ+11 and the forcing term

ζ := −(v̂ − v+)11T + v+(f(v̂)− f(v+))θ+

by derivative estimate df/dv̂ ≤ Cv̂−1 together with the Mean Value Theorem is

uniformly exponentially decaying:

|ζ| ≤ C|v̂ − v+| ≤ C2e
−ηx, η > 0. (5.66)

Initializing Θ̃(L) = 0, we obtain by Duhamel’s Principle/Variation of Constants

the representation (supressing the argument λ)

Θ̃(x) =

∫ x

L

Sy→x(ζ + λΘ̃11Θ̃)(y) dy, (5.67)

where Sy→x is the solution operator for the homogeneous equation

Θ̃′ − Θ̃
(
aI − λ(J + v+11θ+)

)
= 0,

or, explicitly,

Sy→x = e
∫ x
y a(y)dye−λ(J+v+11θ+)(x−y).

For |λ| bounded and v+ sufficiently small, we have by matrix perturbation theory

that the eigenvalues of −λ(J + v+11θ+) are small and the entries are bounded, hence

|e−λ(J+v+11θ+)z| ≤ Ceεz

for z ≥ 0. Recalling the uniform spectral gap <e(a) = f(v̂) − <eλ ≤ −1/2 for
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<eλ ≥ 0, we thus have

|Sy→x| ≤ Ce−η(x−y) (5.68)

for some C, η > 0. Combining (5.66) and (5.68), we obtain∣∣∣ ∫ x

L

Sy→xζ(y) dy
∣∣∣ ≤ ∫ x

L

C2e
−η(x−y)e−(η/2)ydy

= C3e
−(η/2)x.

(5.69)

Defining Θ̃(x) =: θ̃(x)e−(η/2)x and recalling (5.67) we thus have

θ̃(x) = f + e(η/2)x

∫ x

L

Sy→xe−ηyλθ̃11θ̃(y) dy, (5.70)

where f := e(η/2)x
∫ x
L
Sy→xζ(y) dy is uniformly bounded, |f | ≤ C3, and e(η/2)x

∫ x
L
Sy→xe−ηyλθ̃11θ̃(y) dy

is contractive with arbitrarily small contraction constant ε > 0 in L∞[L,+∞) for

|θ̃| ≤ 2C3 for L sufficiently large, by the calculation∣∣∣e(η/2)x

∫ x

L

Sy→xe−ηyλθ̃111θ̃1(y)− e(η/2)x

∫ x

L

Sy→xe−ηyλθ̃211θ̃2(y)
∣∣∣

≤
∣∣∣e(η/2)x

∫ x

L

Ce−η(x−y)e−ηy dy
∣∣∣|λ|‖θ̃1 − θ̃2‖∞max

j
‖θ̃j‖∞

≤ e−(η/2)L
∣∣∣ ∫ x

L

Ce−(η/2)(x−y) dy
∣∣∣|λ|‖θ̃1 − θ̃2‖∞max

j
‖θ̃j‖∞

= C3e
−(η/2)L|λ|‖θ̃1 − θ̃2‖∞max

j
‖θ̃j‖∞.

It follows by the Contraction Mapping Principle that there exists a unique solution θ̃

of fixed point equation (5.70) with |θ̃(x)| ≤ 2C3 for x ≥ L, or, equivalently (redefining

the unspecified constant η), (5.64).

5.4.3 Fast/Slow dynamics

Making now the further change of coordinates

Z = L̃Y
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and computing

(L̃Y )′ = L̃Y ′ + L̃′Y = (L̃A+ + L̃′)Y,

= (L̃A+R̃ + L̃′R̃)Z,

we find that we have converted (5.61) to a block-triangular system

Z ′ = ÃZ =

(
λ(J + v+11θ+ + 11Θ̃) λ11

0 f(v̂)− λ− λv+θ+11− λΘ̃11

)
Z, (5.71)

related to the original eigenvalue system (5.34) by

W = LZ, R := R+R =

(
I 0

Θ 1

)
, L := R−1 =

(
I 0

−Θ 1

)
, (5.72)

where

Θ = Θ̃ + v+θ+. (5.73)

Since it is triangular, (5.71) may be solved completely if we can solve the compo-

nent systems associated with its diagonal blocks. The fast system

z′ =
(
f(v̂)− λ− λv+θ+11− λΘ̃11

)
z

associated to the lower righthand block features rapidly-varying coefficients. However,

because it is scalar, it can be solved explicitly by exponentiation.

The slow system

z′ = λ(J + v+11θ+ + 11Θ̃)z (5.74)

associated to the upper lefthand block, on the other hand, by (5.64), is an exponen-

tially decaying perturbation of a constant-coefficient system

z′ = λ(J + v+11θ+)z (5.75)

that can be explicitly solved by exponentiation, and thus can be well-estimated by

comparison with (5.75). A rigorous version of this statement is given by the conju-

gation lemma of [42]:

Proposition 5.4.3 ([42]). Let M(x, λ) = M+(λ) + Θ(x, λ), with M+ continuous in

λ and |Θ(x, λ)| ≤ Ce−ηx, for λ in some compact set Λ. Then, there exists a globally
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invertible matrix P (x, λ) = I + Q(x, λ) such that the coordinate change z = Pv

converts the variable-coefficient ODE z′ = M(x, λ)z to a constant-coefficient equation

v′ = M+(λ)v,

satisfying for any L, 0 < η̂ < η a uniform bound

|Q(x, λ)| ≤ C(L, η̂, η,max |(M+)ij|, dimM+)e−η̂x for x ≥ L. (5.76)

Proof. See [42, 59], or Appendix C, [24].

By Proposition 5.4.3, the solution operator for (5.74) is given by

P (y, λ)eλ(J+v+11θ+(λ,v+))(x−y)P (x, λ)−1, (5.77)

where P is a uniformly small perturbation of the identity for x ≥ L and L > 0

sufficiently large.

5.5 Proof of the main theorems

With these preparations, we turn now to the proofs of the main theorems.

5.5.1 Boundary estimate

We begin by recalling the following estimates established in [24] on W̃+
1 (L+ δ), that

is, the value of the dual mode W̃+
1 appearing in (5.42) at the boundary x = L + δ

between regular and singular regions. For completeness, and because we shall need

the details in further computations, we repeat the proof in full.

Lemma 5.5.1 ([24]). For λ on any compact subset of <eλ ≥ 0, and L > 0 sufficiently

large, with W̃+
1 normalized as in [14, 49, 3],

|W̃+
1 (L+ δ)− Ṽ1| ≤ Ce−ηL (5.78)

as v+ → 0, uniformly in λ, where C, η > 0 are independent of L and

Ṽ1 := (0,−1, λ̄/µ̄)T
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is the limiting direction vector (5.53) appearing in the definition of D0
in.

Corollary 5.5.2 ([24]). Under the hypotheses of Lemma 5.5.1,

|W̃ 0+
1 (L+ δ)− Ṽ1| ≤ Ce−ηL (5.79)

and

|W̃+
1 (L+ δ)− W̃ 0+

1 (L+ δ)| ≤ Ce−ηL (5.80)

as v+ → 0, uniformly in λ, where C, η > 0 are independent of L and W̃ 0+
1 is the

solution of the limiting adjoint eigenvalue system appearing in definition (5.52) of

D0.

Proof of Lemma 5.5.1. First, make the independent coordinate change x→ x−δ nor-

malizing the background wave to match the shock-wave case. Making the dependent

coordinate-change

Z̃ := R∗W̃ , (5.81)

R as in (5.72), reduces the adjoint equation W̃ ′ = −A∗W̃ to block lower-triangular

form,

Z̃ ′ = −Ã∗Z̃ =(
−λ̄(JT + v+11θ+ + 11Θ̃)∗ 0

−λ̄11T −f(v̂) + λ̄+ λ̄(v+θ+11 + Θ̃11)∗

)
Z,

(5.82)

with “¯” denoting complex conjugate.

Denoting by Ṽ +
1 a suitably normalized element of the one-dimensional (slow)

stable subspace of −Ã∗, we find readily (see [24] for further discussion) that, without

loss of generality,

Ṽ +
1 → (0, 1, λ̄(γ + λ̄)−1)T (5.83)

as v+ → 0, while the associated eigenvalue µ̃+
1 → 0, uniformly for λ on an compact

subset of <eλ ≥ 0. The dual mode Z̃+
1 = R∗W̃+

1 is uniquely determined by the

property that it is asymptotic as x → +∞ to the corresponding constant-coefficient

solution eµ̃
+
1 xṼ +

1 (the standard normalization of [14, 49, 3]).

By lower block-triangular form (5.82), the equations for the slow variable z̃T :=
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(Z̃1, Z̃2) decouples as a slow system

z̃′ = −
(
λ(J + v+11θ+ + 11Θ̃)

)∗
z̃ (5.84)

dual to (5.74), with solution operator

P ∗(x, λ)−1e−λ̄(J+v+11θ+)∗)(x−y)P (y, λ)∗ (5.85)

dual to (5.77), i.e. (fixing y = L, say), solutions of general form

z̃(λ, x) = P ∗(x, λ)−1e−λ̄(J+v+11θ+)∗)(x−y)ṽ, (5.86)

ṽ ∈ C2 arbitrary.

Denoting by

Z̃+
1 (L) := R∗W̃+

1 (L),

therefore, the unique (up to constant factor) decaying solution at +∞, and ṽ+
1 :=

((Ṽ +
1 )1, (Ṽ

+
1 )2)T , we thus have evidently

z̃+
1 (x, λ) = P ∗(x, λ)−1e−λ̄(J+v+11θ+)∗)xṽ+

1 ,

which, as v+ → 0, is uniformly bounded by

|z̃+
1 (x, λ)| ≤ Ceεx (5.87)

for arbitrarily small ε > 0 and, by (5.83), converges for x less than or equal to X − δ
for any fixed X simply to

lim
v+→0

z̃+
1 (x, λ) = P ∗(x, λ)−1(0, 1)T . (5.88)

Defining by q̃ := (Z̃+
1 )3 the fast coordinate of Z̃+

1 , we have, by (5.82),

q̃′ +
(
f(v̂)− λ̄− (λv+θ+11 + λΘ̃11)∗

)
q̃ = λ̄11T z̃+

1 ,
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whence, by Duhamel’s principle, any decaying solution is given by

q̃(x, λ) =

∫ +∞

x

e
∫ x
y a(z,λ,v+)dzλ̄11T z+

1 (y) dy,

where

a(y, λ, v+) := −
(
f(v̂)− λ̄− (λv+θ+11 + λΘ̃11)∗

)
.

Recalling, for <eλ ≥ 0, that <ea ≥ 1/2, combining (5.87) and (5.88), and noting that

a converges uniformly on y ≤ Y as v+ → 0 for any Y > 0 to

a0(y, λ) := −f0(v̂) + λ̄+ (λΘ̃011)∗

= (1 + λ̄) +O(e−ηy)

we obtain by the Lebesgue Dominated Convergence Theorem that

q̃(L, λ)→
∫ +∞

L

e
∫ L
y a0(z,λ)dzλ̄11T (0, 1)T dy

= λ̄

∫ +∞

L

e(1+λ̄)(L−y)+
∫ L
y O(e−ηz)dz dy

= λ̄(1 + λ̄)−1(1 +O(e−ηL)).

Recalling, finally, (5.88), and the fact that

|P − Id|(L, λ), |R− Id|(L, λ) ≤ Ce−ηL

for v+ sufficiently small, we obtain (5.78) as claimed.

Proof of Corollary 5.5.2. Again, make the coordinate change x→ x− δ normalizing

the background wave to match the shock-wave case. Applying Proposition 5.4.3 to

the limiting adjoint system

W̃ ′ = −(A0)∗W̃ =

 0 0 0

−λ̄ 0 0

−λ̄ −λ̄ 1 + λ̄

 W̃ +O(e−ηx)W̃ ,

we find that, up to an Id+O(e−ηx) coordinate change, W̃ 0+
1 (x) is given by the exact
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solution W̃ ≡ Ṽ1 of the limiting, constant-coefficient system

W̃ ′ = −(A0
+)∗W̃ =

 0 0 0

−λ̄ 0 0

−λ̄ −λ̄ 1 + λ̄

 W̃ .

This yields immediately (5.79), which, together with (5.78), yields (5.80).

5.5.2 Convergence to D0

The rest of our analysis is standard.

Lemma 5.5.3. On x ≤ L − δ for any fixed L > 0, there exists a coordinate-change

W = TZ conjugating (5.34) to the limiting equations (5.50), T = T (x, λ, v+), satis-

fying a uniform bound

|T − Id| ≤ C(L)v+ (5.89)

for all v+ > 0 sufficiently small.

Proof. Make the coordinate change x → x − δ normalizing the background profile.

For x ∈ (−∞, 0], this is a consequence of the Convergence Lemma of [49], a variation

on Proposition 5.4.3, together with uniform convergence of the profile and eigenvalue

equations. For x ∈ [0, L], it is essentially continuous dependence; more precisely,

observing that |A − A0| ≤ C1(L)v+ for x ∈ [0, L], setting S := T − Id, and writing

the homological equation expressing conjugacy of (5.34) and (5.50), we obtain

S ′ − (AS − SA0) = (A− A0),

which, considered as an inhomogeneous linear matrix-valued equation, yields an ex-

ponential growth bound

S(x) ≤ eCx(S(0) + C−1C1(L)v+)

for some C > 0, giving the result.

Proof of Theorem 5.3.2: inflow case. Make the coordinate change x→ x− δ normal-

izing the background profile. Lemma 5.5.3, together with convergence as v+ → 0 of

the unstable subspace of A− to the unstable subspace of A0
− at the same rate O(v+) (as
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follows by spectral separation of the unstable eigenvalue of A0 and standard matrix

perturbation theory) yields

|W 0
1 (0, λ)−W 00

1 (0, λ)| ≤ C(L)v+. (5.90)

Likewise, Lemma 5.5.3 gives

|W̃+
1 (0, λ)− W̃ 0+

1 (0, λ)| ≤ C(L)v+|W̃+
1 (0, λ)|

+ |SL→0
0 ||W̃+

1 (L, λ)− W̃ 0+
1 (L, λ)|,

(5.91)

where Sy→x0 denotes the solution operator of the limiting adjoint eigenvalue equation

W̃ ′ = −(A0
+)∗W̃ . Applying Proposition 5.4.3 to the limiting system, we obtain

|SL→0
0 | ≤ C2|e−A

0
+L| ≤ C2L|λ|

by direct computation of e−A
0
+L, where C2 is independent of L > 0. Together with

(5.80) and (5.91), this gives

|W̃+
1 (0, λ)− W̃ 0+

1 (0, λ)| ≤ C(L)v+|W̃+
1 (0, λ)|+ L|λ|C2Ce

−ηL,

hence, for |λ| bounded and v+ sufficiently small relative to C(L),

|W̃+
1 (0, λ)− W̃ 0+

1 (0, λ)| ≤ C3(L)v+|W̃ 0+
1 (0, λ)|+ LC4e

−ηL

≤ C5(L)v+ + LC4e
−ηL.

(5.92)

Taking first L → ∞ and then v+ → 0, we obtain therefore convergence of W 0
1 (0, λ)

and W̃+
1 (0, λ) to W 00

1 (0, λ) and W̃ 0+
1 (0, λ), yielding convergence by definitions (5.42)

and (5.52).

This convergence, however, is between Evans functions with profiles shifted by

δ = δ(v+). This shift changes the initializing asymptotic behavior at +∞ of W̃+
1 ,

modifying the value of the Evans function by a nonvanishing factor e−δµ̃1(λ), where

µ̃1(λ) is the decay rate associated with mode W̃+
1 ; for similar computations, see the

proof of Theorem 5.3.3. In particular, the value of D0 is unaffected by a shift, since

µ̃1 ≡ 0. Noting that δ(v+) is uniformly bounded as v+ → 0 (indeed, it approaches

a limit δ0 as v+ → 0, determined by v̂0(δ0) = v−/2 = 1/2, as follows by continuous

dependence of solutions of ODE), while µ̃1(λ) → 0 uniformly on compact subsets
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of <λ ≥ 0, we thus find that both shifted and unshifted versions of D(λ) approach

D0(λ) as v+ → 0, uniformly on compact subsets of <λ ≥ 0.

Proof of Theorem 5.3.2: outflow case. Straightforward, following the previous argu-

ment in the regular region only.

5.5.3 Convergence to the shock case

Proof of Theorem 5.3.3: inflow case. First make the coordinate change x → x − δ

normalizing the background profile location to that of the shock wave case, where

δ → +∞ as v0 → 1. By standard duality properties,

Din = W̃+
1 ·W 0

1 |x=x0

is independent of x0, so we may evaluate at x = 0 as in the shock case. Denote by

W−1 , W̃+
1 the corresponding modes in the shock case, and

D = W̃+
1 · W−1 |x=0

the resulting Evans function.

Noting that W̃1
+ and W̃ 1

+ are asymptotic to the unique stable mode at +∞ of the

(same) adjoint eigenvalue equation, but with translated decay rates, we see immedi-

ately that W̃+
1 = W̃ 1

+e
−δµ̃+

1 . On the other hand, W 0
1 is initialized at at x = −δ (in the

new coordinates x̃ = x− δ) as

W 0
1 (−δ) = (1, 0, 0)T ,

whereas W−1 is the unique unstable mode at −∞ decaying as eµ
−
1 xV −1 , where V −1 is

the unstable right eigenvector of

A− =

0 λ λ

0 0 λ

1 1 f(1)− λ

 .

Denote by Ṽ −1 the associated dual unstable left eigenvector and

Π−1 := V −1 (Ṽ −1 )T
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the eigenprojection onto the stable vector V −1 . By direct computation,

Ṽ −1 = c(λ)(1, 1 + λ/µ−1 , µ
−
1 )T , c(λ) 6= 0,

yielding

Π−1 W
0
1 =: β(λ) = c(λ) 6= 0 (5.93)

for <λ ≥ 0, on which <µ−1 > 0.

Once we know (5.93), we may finish by a standard argument, concluding by

exponential attraction in the positive x-direction of the unstable mode that other

modes decay exponentially as x → 0, leaving the contribution from β(λ)V −1 plus

a negligible O(e−ηδ) error, η > 0, from which we may conclude that W−1 |x=0 ∼
β−1e−δµ

−
1 W 0

1 |x=0. Collecting information, we find that

D(λ) = β(λ)−1e−δ(µ̄
−
1 +µ̃+

1 )(λ)Din(λ) +O(e−ηδ),

η > 0, yielding the claimed convergence C(λ, δ)Din(λ)→ D(λ) as v0 → 1, δ → +∞,

with C(λ, δ) := β(λ)−1e−δ(µ̄
−
1 +µ̃+

1 )(λ) 6= 0.

Proof of Theorem 5.3.3: outflow case. For λ uniformly bounded from zero, W̃ 0
1 =

(0,−1,−λ̄/(λ̄− v̂′(0)))T converges uniformly as v0 → 0 to

(0,−1,−1)T ,

whereas the shock Evans function D is initiated by W̃+
1 proportional to

Ṽ+
1 = (0,−1,−1− λ̄)T

agreeing in the first two coordinates with W̃ 0
1 . By the boundary-layer analysis of

Section 5.5.1, the backward (i.e., decreasing x) evolution of the adjoint eigenvalue

ODE reduces in the asymptotic limit v+ → 0 (forced by v0 → 0) to a decoupled slow

flow

w̃′ =

(
0 0

−λ̄ 0

)
w̃, w̃ ∈ C2

in the first two coordinates, driving an exponentially slaved fast flow in the third

coordinate. From this, we may conclude that solutions agreeing in the first two
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coordinates converge exponentially as x decreases. Performing an appropriate nor-

malization, as in the inflow case just treated, we thus obtain the result. We omit the

details, which follow what has already been done in previous cases.

5.5.4 The stability index

Following [54, 19], we note that Din(λ) is real for real λ, and nonvanishing for real

λ sufficiently large, hence sgnDin(+∞) is well-defined and constant on the entire

(connected) parameter range. The number of roots of Din on <λ ≥ 0 is therefore

even or odd depending on the stability index

sgn[Din(0)Din(+∞)].

Similarly, recalling that Dout(0) ≡ 0, we find that the number of roots of Dout on

<λ ≥ 0 is even or odd depending on

sgn[D′out(0)Dout(+∞)].

Proof of Lemma 5.3.5: inflow case. Examining the adjoint equation at λ = 0,

W̃ ′ = −A∗W̃ , −A∗(x, 0) =

0 0 −v̂
0 0 −v̂
0 0 −f(v̂)

 ,

−f(v+) > 0, we find by explicit computation that the only solutions that are bounded

as x → +∞ are the constant solutions W̃ ≡ (a, b, 0)T . Taking the limit Ṽ +
1 (0) as

λ→ 0+ along the real axis of the unique stable eigenvector of −A∗+(λ), we find (see,

e.g., [59]) that it lies in the direction (1, 2+a+
j , 0)T , where a+

j > 0 is the positive char-

acteristic speed of the hyperbolic convection matrix

(
1 −1

−h(v+)/vγ+1
+ 1

)
, i.e., Ṽ +

1 =

c(v0, v+)(1, 2 + a+
j , 0)T , c(v0, v+) 6= 0. Thus, Din(0) = Ṽ +

1 · (1, 0, 0)T = c̄(v0, v+) 6= 0

as claimed. On the other hand, the same computation carried out for D0
in(0) yields

D0
in(0) ≡ 0. (Note: aj ∼ v

−1/2
+ → +∞ as v+ → 0.) Similarly, as v0 → 0,

D0
in(λ)→ (0,−1, ∗)T · (1, 0, 0)T ≡ 0.
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Finally, note Din(0) 6= 0 implies that the stability index, since continuously varying

so long as it doesn’t vanish and taking discrete values ±1, must be constant on the

connected set of parameter values. Since inflow boundary layers are known to be

stable on some part of the parameter regime by energy estimates (Theorem 5.3.4),

we may conclude that the stability index is identically one and therefore there are an

even number of unstable roots for all 1 > v0 ≥ v+ > 0.

To establish that (D0
in)′(0) 6= 0, we compute

D0
in
′(0) = W̃ 0+

1 · (∂λW 00
1 ) + (∂λ̄W̃

0+
1 ) ·W 00

1 . (5.94)

Since W 00
1 ≡ (1, 0, 0) is independent of λ, this reduces to

D0
in
′(0) = ∂λ̄W̃

0+
1,1 |x=0, (5.95)

so we need only show that the first component of ∂λ̄W̃
0+
1 is nonzero. Note that ∂λ̄W̃

0+
1

solves the limiting adjoint variational equations

(∂λ̄W̃
0+
1 )′(0) + (A0)∗(x, 0)∂λ̄W̃

0+
1 = b(x) (5.96)

with b(x) := −∂λ̄(A0)∗(x, 0)W̃ 0+
1 (x, 0), W̃ 0+

1 (x, 0) = (0,−1, 0)T ,

(A0)∗(x, 0) =

0 0 v̂0

0 0 v̂0

0 0 f 0(v̂0)

 , ∂λ̄(A
0)∗(x, 0) =

0 0 0

1 0 0

1 1 −1

 .

Thus b(x) = (0, 0, 1)T . By (5.53), and the fact that ∂λ̄µ̃
0+
1 ≡ 0, ∂λ̄W̃

0+
1 (x) is chosen

so that asymptotically at x = +∞ it lies in the direction of ∂λ̄Ṽ1 = (0, 0, 1). Set

∂λ̄W̃
0+
1 = (∂λ̄W̃

0+
1, 1, ∂λ̄W̃

0+
1, 2, ∂λ̄W̃

0+
1, 3)T . Then the third component solves

(∂λ̄W̃
0+
1, 3)′ + f 0(v̂0)∂λ̄W̃

0+
1, 3 = 1,

where f 0(v̂0) = 2v̂0 − 1. Define Z(x) := e−x∂λ̄W̃
0+
1, 3(x, 0). Then Z solves

Z ′ + 2v̂0Z = e−x, Z(+∞) = 0,
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which has solution

Z(x) = −
∫ ∞
x

Sy→xZ e−ydy

where

Sy→xZ = e2
∫ y
x v̂

0(z)dz,

denoting the solution operator of Z ′ + 2v̂0Z = 0. Integrating the equation (5.96) for

the first component of ∂λ̄W̃
0+
1 with ∂λ̄W̃

0+
1, 1(+∞) = 0 yields

∂λ̄W̃
0+
1, 1(x) = ∂λ̄W̃

0+
1, 1(+∞) +

∫ ∞
x

v̂0(y)∂λ̄W̃
0+
1, 3(y)dy

= −
∫ ∞
x

v̂0(y)ey
∫ ∞
y

Sz→yZ e−zdzdy

and thus

∂λ̄W̃
0+
1, 1|x=0 = −

∫ ∞
0

v̂0(y)ey
∫ ∞
y

Sz→yZ e−zdzdy.

Finally, note that for all y, v̂0(y), Sz→yZ ≥ 0. Therefore by (5.95),

D0
in
′(0) = ∂λ̄W̃

0+
1, 1|x=0 6= 0.

Remark 5.5.4. The result Din(0) 6= 0 at first sight appears to contradict that of

Theorem 5.3.3, since D(0) = 0 for the shock wave case. This apparent contradiction

is explained by the fact that the normalizing factor e−δ(µ̄
−
1 +µ̃+

1 ) is exponentially decaying

in δ for λ = 0, since µ̃+
1 (0) = 0, while <µ−1 > 0. Recalling that δ → +∞ as v0 → 1,

we recover the result of Theorem 5.3.3.

Proof of Lemma 5.3.5: outflow case. Similarly, we compute

D′out(0) = W̃ 0
1 · ∂λW−

1 + ∂λ̄W̃
0
1 ·W−

1 ,

where ∂λW
−
1 |λ=0 satisfies the variational equation L∂λU

−
1 (0) = ∂λA(x, 0)U−1 ,or, writ-

ten as a first-order system,

(∂λW
−
1 )′ − A(x, 0)∂λW

−
1 =

 ûx

v̂x

−v̂x

 , A(x, 0) =

0 0 0

0 0 0

v̂ v̂ f(v̂)

 ,
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which may be solved exactly for the unique solution decaying at −∞ of

W−
1 (0) =

0

0

v̂′

 , (∂λW
−
1 )(0) =

û− u−v̂ − v−
∗

 .

Recalling from (5.47) that W̃ 0
1 (λ) = (0,−1,−λ̄/(λ̄− v̂′(0)))T , hence

W̃ 0
1 (0) = (0,−1, 0)T , ∂λ̄W̃

0
1 (0) = (0, 0, 1/v̂′(0))T ,

we thus find that

D′out(0) = W̃ 0
1 (0) · ∂λW−

1 (0) + ∂λ̄W̃
0
1 (0) ·W−

1 (0)

= −(v̂(0)− 1) + 1 = 2− v0 6= 0

as claimed. The proof that (D0
out)

′(0) 6= 0 goes similarly.

Finally, as in the proof of the inflow case, we note that nonvanishing implies that

the stability index is constant across the entire (connected) parameter range, hence we

may conclude that it is identically one by existence of a stable case (Corollary 5.3.9),

and therefore that the number of nonzero unstable roots is even, as claimed.

5.5.5 Stability in the shock limit

Proof of Corollary 5.3.9: inflow case. By Proposition 5.3.6 we find that Din has at

most a single zero in <λ ≥ 0. However, by our stability index results, Theorem 5.3.5,

the number of eigenvalues in <λ ≥ 0 is even. Thus, it must be zero, giving the

result.

Proof of Corollary 5.3.9: outflow case. By Theorem 5.3.3, Dout, suitably renormal-

ized, converges as v0 → 0 to the Evans function for the (unintegrated) shock wave

case. But, the shock Evans function by the results of [3, 24] has just a single zero

at λ = 0 on <λ ≥ 0, already accounted for in Dout by the spurious root at λ = 0

introduced by recoordinatization to “good unknown”.
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5.5.6 Stability for small v0

Finally, we treat the remaining, “corner case” as v+, v0 simultaneously approach zero.

The fact (Lemma 5.3.5) that

lim
v0→0

lim
v+→0

Din(λ) ≡ 0

shows that this limit is quite delicate; indeed, this is the most delicate part of our

analysis.

Proof of Theorem 5.3.4: inflow case. Consider again the adjoint system

W̃ ′ = −A∗(x, λ)W̃ , A∗(x, λ) =

0 0 v̂

λ̄ 0 v̂

λ̄ λ̄ f(v̂)− λ̄

 .

By the boundary analysis of Section 5.5.1,

W̃ =
(
α, 1,

αµ̃− λ̄(α + 1)

−f(v̂) + λ̄

)T
+O(e−η|x−δ|),

where α := µ̃+

µ̃++λ̄
, and µ̃ is the unique stable eigenvalue of A∗+, satisfying (by matrix

perturbation calculation)

µ̃ = λ̄(v
1/2
+ +O(v+))

and thus α = v
1/2
+ +O(v+) as v0 → 0 (hence v+ → 0) on bounded subsets of <λ ≥ 0.

Combining these expansions, we have

W̃1(+∞) = v
1/2
+ (1 + o(1)), W̃3 =

−λ̄
−f(v̂) + λ̄

(1 + o(1))

for v0 sufficiently small.

From the W̃1 equation W̃ ′
1 = v̂W̃3, we thus obtain

W̃1(0) = W̃1(+∞)−
∫ +∞

0

v̂W̃3(y) dy

= (1 + o(1))×
(
v

1/2
+ +

∫ +∞

0

λ̄v̂

−f(v̂) + λ̄
(y) dy

)
.
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Observing, finally, that, for <λ ≥ 0, the ratio of real to imaginary parts of λ̄v̂
−f(v̂)+λ̄

(y)

is uniformly positive, we find that <W̃1(0) 6= 0 for v0 sufficiently small, which yields

nonvanishing of Din(λ) on <λ ≥ 0 as claimed.

5.6 Numerical computations

In this section, we show, through a systematic numerical Evans function study, that

there are no unstable eigenvalues for

(γ, v+) ∈ [1, 3]× (0, 1],

in either inflow or outflow cases. As defined in Section 5.2.6, the Evans function is

analytic in the right-half plane and reports a value of zero precisely at the eigenval-

ues of the linearized operator (5.20). Hence we can use the argument principle to

determine if there are any unstable eigenvalues for this system. Our approach closely

follows that of [3, 24] for the shock case with only two major differences. First, our

shooting algorithm is only one sided as we have the boundary conditions (5.41) and

(5.47) for the inflow and outflow cases, respectfully. Second, we “correct” for the

displacement in the boundary layer when v0 ≈ 1 in the inflow case and v0 ≈ 0 in

the outflow case so that the Evans function converges to the shock case as studied in

[3, 24] (see discussion in Section 5.6.3).

The profiles were generated using Matlab’s bvp4c routine, which is an adaptive

Lobatto quadrature scheme. The shooting portion of the Evans function computa-

tion was performed using Matlab’s ode45 package, which is the standard 4th order

adaptive Runge-Kutta-Fehlberg method (RKF45). The error tolerances for both the

profiles and the shooting were set to AbsTol=1e-6 and RelTol=1e-8. We remark

that Kato’s ODE (see Section 5.2.6 and [32, 27] for details) is used to analytically

choose the initial eigenbasis for the stable/unstable manifolds at the numerical values

of infinity at L = ±18. Finally in Section 5.6.4, we carry out a numerical convergence

study similar to that in [3].

5.6.1 Winding number computations

The high-frequency estimates in Proposition 5.2.3 restrict the set of admissible un-

stable eigenvalues to a fixed compact triangle Λ in the right-half plane (see (5.31) and
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Figure 5.1: Typical examples of the inflow case, showing convergence to the limiting
Evans function as v+ → 0 for a monatomic gas, γ = 5/3, with (a) v0 = 0.1, (b)
v0 = 0.2, (c) v0 = 0.4, and (d) v0 = 0.7. The contours depicted, going from inner to
outer, are images of the semicircle φ under D for v+ = 1e−2, 1e−3, 1e−4, 1e−5, 1e−6,
with the outer-most contour given by the image of φ under D0, that is, when v+ = 0.
Each contour consists of 60 points in λ.

(5.32) for the inflow and outflow cases, respectively). We reiterate the remarkable

property that Λ does not depend on the choice of v+ or v0. Hence, to demonstrate

stability for a given γ, v+ and v0, it suffices to show that the winding number of

the Evans function along a contour containing Λ is zero. Note that in our region of

interest, γ ∈ [1, 3], the semi-circular contour given by

φ := ∂({λ | <eλ ≥ 0} ∩ {λ | |λ| ≤ 10}),

contains Λ in both the inflow and outflow cases. Hence, for consistency we use this

same semicircle for all of our winding number computations.

A remarkable feature of the Evans function for this system, and one that is shared
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Figure 5.2: Typical examples of the outflow case, showing convergence to the limiting
Evans function as v+ → 0 for a monatomic gas, γ = 5/3, with (a) v0 = 0.2, (b)
v0 = 0.4, (c) v0 = 0.6, and (d) v0 = 0.8. The contours depicted are images of the
semicircle φ under D for v+ = 1e−2, 1e−3, 1e−4, 1e−5, 1e−6, and the limiting case
v+ = 0. Interestingly the contours are essentially (visually) indistinguishable in this
parameter range. Each contour consists of 60 points in λ

with the shock case in [3, 24], is that the Evans function has limiting behavior as

the amplitude increases, Section 5.3.2. For the inflow case, we see in Figure 5.1, the

mapping of the contour φ for the monatomic case (γ = 5/3), for several different

choices of v0, as v+ → 0. We remark that the winding numbers for 0 ≤ v+ ≤ 1 are

all zero, and the limiting contour touches zero due to the emergence of a zero root in

the limit. Note that the limiting case contains the contours of all other amplitudes.

Hence, we have spectral stability for all amplitudes.

The outflow case likewise has a limiting behavior, however, all contours cross

through zero due to the eigenvalue at the origin. Nonetheless, since the contours only

wind around once, we can likewise conclude that these profiles are spectrally stable.

We remark that the outflow case converges to the limiting case faster than the inflow
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Figure 5.3: Typical examples of the Evans function evaluated along the positive real
axis. The (a) inflow case is computed for v0 = 0.7 and v0 = 0 and (b) the outflow
case is computed for v0 = 0.3 and v+ = 0.001. Not the transversality at the origin in
both cases. Both graphs consist of 50 points in λ.

case as is clear from Figure 5.2. Indeed, v+ = 1e−2 and the limiting case v+ = 0, as

well as all of the values of v+ in between, are virtually indistinguishable.

In our study, we systematically varied v0 in the interval [.01, .99] and took the

v+ → 0 limit at each step, starting from a v+ = .9 (or some other appropriate value,

for example when v0 < .9) on the small-amplitude end and decreased v+ steadily

to 10−k for k = 1, 2, 3, . . . , 6, followed by evaluation at v+ = 0. For both inflow and

outflow cases, over 2000 contours were computed. We remark that in the v+ → 0 limit,

the system becomes pressureless, and thus all of the contours in the large-amplitude

limit look the same regardless of the value of γ chosen.

5.6.2 Nonexistence of unstable real eigenvalues

As an additional verification of stability, we computed the Evans function along the

unstable real axis on the interval [0, 15] for varying parameters to show that there are

no real unstable eigenvalues. Since the Evans function has a root at the origin in the

limiting system for the inflow case, and for all values of v+ in the outflow case, we

can perform in these cases a sort of numerical stability index analysis to verify that

the Evans function cuts transversely through the origin and is otherwise nonzero,

indicating that there are no unstable real eigenvalues as expected. In Figure 5.3,

we see a typical example of (a) the inflow and (b) outflow cases. Note that in both

images, the Evans function cuts transversally through the origin and is otherwise
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Figure 5.4: Shock limit for (a) inflow and (b) outflow cases, both for γ = 5/3. Note
that the images look very similar to those of [3, 24].

nonzero as λ increases.

5.6.3 The shock limit

When v0 is far from the midpoint (1−v+)/2 of the end states, the the Evans function

of the boundary layer is similar to the Evans function of the shock case evaluated

at the displacement point x0. Hence, when we compute the boundary layer Evans

function near the shock limits, v0 ≈ 1 for the inflow case and v0 ≈ 0 for the outflow

case, we multiply for the correction factor c(λ) so that our output looks close to that

of the shock case studied in [3, 24]. The correction factors are

c(λ) = e(−µ+−µ̄−)x0

for the inflow case and

c(λ) = e(−µ̄+−µ−)x0 ,

for the outflow case, where µ− is the growth mode of A−(λ) and µ+ is the decay

mode of A+(λ). In Figure 5.4, we see that these highly displaced profiles appear to

be very similar to the shock cases with one notable difference. These images have a

small dimple near λ = 0 to account for the eigenvalue there, whereas those in the

shock case [3, 24] were computed in integrated coordinates and thus have no root at

the origin.
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Inflow Case
L γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0
8 7.8(-1) 8.4(-1) 9.2(-1) 1.0(0) 1.2(0) 1.3(0)
10 1.4(-1) 1.2(-1) 9.2(-2) 6.8(-2) 4.4(-2) 2.8(-2)
12 1.4(-2) 7.9(-3) 3.6(-3) 1.3(-3) 3.1(-4) 7.3(-5)
14 1.3(-3) 4.9(-4) 1.3(-4) 2.4(-5) 8.7(-6) 8.2(-6)
16 1.2(-4) 3.0(-5) 4.7(-6) 2.8(-6) 2.7(-6) 2.6(-6)
18 1.1(-5) 5.8(-6) 8.0(-6) 8.1(-6) 8.0(-6) 8.0(-6)

Outflow Case
L γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0
8 5.4(-3) 5.4(-3) 5.4(-3) 5.4(-3) 5.4(-3) 5.4(-3)
10 9.2(-4) 9.1(-4) 9.1(-4) 9.1(-4) 9.1(-4) 9.1(-4)
12 1.5(-4) 1.5(-4) 1.5(-4) 1.5(-4) 1.5(-4) 1.5(-4)
14 2.5(-5) 2.7(-5) 2.0(-5) 2.0(-5) 2.0(-5) 2.0(-5)
16 2.3(-6) 2.6(-6) 2.6(-6) 2.5(-6) 2.5(-6) 2.5(-6)
18 6.6(-6) 3.6(-6) 8.7(-6) 8.7(-6) 8.7(-6) 8.7(-6)

Table 5.1: Relative errors in D(λ) for the inflow and outflow cases are computed by
taking the maximum relative error for 60 contour points evaluated along the semicircle
φ. Samples were taken for varying L and γ, leaving v+ fixed at v+ = 10−4 and v0 = 0.6.
We used L = 8, 10, 12, 14, 16, 18, 20 and γ = 1.2, 1.4, 1.666, 2.0. Relative errors were
computed using the next value of L as the baseline.

5.6.4 Numerical convergence study

As in [3], we carry out a numerical convergence study to show that our results are

accurate. We varied the absolute and relative error tolerances, as well as the length

of the numerical domain [−L,L]. In Tables 1–2, we demonstrate that our choices of

L = 18, AbsTol=1e-6 and RelTol=1e-8 provide accurate results.
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Inflow Case

Abs/Rel γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0
10−3/10−5 5.4(-4) 4.1(-4) 4.0(-4) 5.0(-4) 3.4(-4) 8.6(-4)
10−4/10−6 3.1(-5) 4.6(-5) 3.4(-5) 3.3(-5) 3.3(-5) 3.2(-5)
10−5/10−7 2.9(-6) 3.6(-6) 3.9(-6) 6.8(-6) 2.7(-6) 2.5(-6)
10−6/10−8 4.6(-7) 9.9(-7) 1.1(-6) 6.0(-7) 2.9(-7) 3.2(-7)

Outflow Case
Abs/Rel γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0

10−3/10−5 9.2(-4) 9.2(-4) 9.1(-4) 9.1(-4) 9.1(-4) 9.2(-4)
10−4/10−6 5.3(-5) 4.9(-5) 5.3(-5) 5.3(-5) 5.3(-5) 5.3(-5)
10−5/10−7 6.7(-5) 6.7(-5) 6.7(-5) 6.7(-5) 6.7(-5) 6.7(-5)
10−6/10−8 2.9(-6) 2.9(-6) 2.9(-6) 2.9(-6) 2.9(-6) 2.9(-6)

Table 5.2: Relative errors in D(λ) for the inflow and outflow cases are computed by
taking the maximum relative error for 60 contour points evaluated along the semicircle
φ. Samples were taken for varying the absolute and relative error tolerances and γ
in the ODE solver, leaving L = 18 and γ = 1.666, v+ = 10−4, and v0 = 0.6 fixed.
Relative errors were computed using the next run as the baseline.

203



Appendix A

Appendix to Chapter 2

A.1 Profiles

Lemma A.1.1 ([36, 59, 19]). Given (A1)-(A3) and (H0)-(H2), a standing wave

solution (2.1) of (2.2), (B) satisfies∣∣∣(d/dx)k(Ū − U+)
∣∣∣ ≤ Ce−θx, k = 0, ..., 4, (A.1)

as x → +∞. Moreover, a solution, if it exists, is in the inflow or strictly parabolic

case unique; in the outflow case it is locally unique.

Proof. As in the shock case [37, 59], (A.1) follows by the observation that, under

hypotheses (A1)-(A3) and (H0)-(H2), U+ is a hyperbolic rest point of the layer profile

ODE; see also [19].

Uniqueness follows by the observation [36] that the standing-wave ODE may be

integrated from x to +∞ and rearranged to yield

F 1(U) ≡ F 1(U+),

(b1, b2)(U)U ′ = C(U,U+),
(A.2)

and thereby the first-order ODE(
u

v

)′
=

(
F 1
u F 1

v

b1 b2

)−1(
0

C(U,U+)

)
. (A.3)

In the strictly parabolic or inflow case, U(0) is specified by the boundary conditions
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at x = 0, thus determining a unique solution for all x ≥ 0 through (A.3). In the

outflow case, we observe, comparing U and W equations, that (A.2) can be rewritten

alternatively as

F 1(W ) ≡ F 1(W+),

(wII)′ = D(wI , wII),
(A.4)

where the first equation may by the Implicit Function Theorem be locally solved

for wI as a function of wII . Substituting in the second equation, and noting that

wII(0) is specified by the boundary conditions at x1 = 0, we again obtain uniqueness,

this time only local, by uniqueness of solutions of the initial-value problem for ODE

(wII)′ = D(wI , wII). We omit the details. (Local uniqueness is here essentially a

remark, as it is a consequence, by Rousset’s Lemma [51, 42, 19, 18], of our later

assumption (D1) of Evans stability.)

A.2 Convolution estimates

For sake of completeness, in this section we recall the proof of the convolution es-

timates given in [23, 22, 50] which were used in Section 2.5.2. First, let us recall

notations defined in Chapter 2:

θ(x, t) :=
∑
a+
j >0

(1 + t)−1/2e−|x−a
+
j t|

2/Mt, (A.5)

ψ1(x, t) := χ(x, t)
∑
a+
j >0

(1 + |x|+ t)−1/2(1 + |x− a+
j t|)−1/2,

(A.6)

and

ψ2(x, t) := (1− χ(x, t))(1 + |x− a+
n t|+ t1/2)−3/2, (A.7)
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where χ(x, t) = 1 for x ∈ [0, a+
n t] and χ(x, t) = 0 otherwise and M > 0 is a sufficiently

large constant. Recall also Green’s function bounds (2.29):

|∂γx∂αy G̃(x, t; y)| ≤ Ce−η(|x−y|+t)

+ C(t−(|α|+|γ|)/2 + |α|e−η|y| + |γ|e−η|x|)
( n∑
k=1

t−1/2e−(x−y−a+
k t)

2/Mt

+
∑

a+
k <0, a+

j >0

χ{|a+
k t|≥|y|}

t−1/2e−(x−a+
j (t−|y/a+

k |))
2/Mt

)
,

(A.8)

0 ≤ |α|, |γ| ≤ 1, for some η, C, M > 0, where indicator function χ{|a+
k t|≥|y|}

is 1 for

|a+
k t| ≥ |y| and 0 otherwise.

Lemma A.2.1 (Linear estimates I). Under the assumptions of Theorem 2.1.4,∫ +∞

0

|G̃(x, t; y)|(1 + |y|)−3/2 dy ≤ C(θ + ψ1 + ψ2)(x, t),∫ +∞

0

|G̃x(x, t; y)|(1 + |y|)−3/2 dy ≤ C(θ + ψ1 + ψ2)(x, t),

(A.9)

for 0 ≤ t ≤ +∞ and some C > 0.

Proof. In view of (A.8), we shall give only a proof of the first estimate in (A.9). In

addition, the fast-decaying term e−η(|x−y|+t) will be neglected in our computations

below.

Convection estimate. We first estimate∫ ∞
0

t−1/2e−
(x−y−a+

k
t)2

Mt (1 + |y|)−3/2dy. (A.10)

In what follows we shall often obtain estimates by first writing

x− y − a+
k t = (x− a+

k t)− y

and then deriving a so–called balance estimate by considering y linearly close to or

away from |x− a+
k t|, i.e., y ∈ (1

2
|x− a+

k t|, 3
2
|x− a+

k t|) or otherwise,

t−1/2e−
(x−y−a+

k
t)2

Mt (1 + |y|)−3/2

≤ Ct−1/2e−
|x−a+

k
t|2

Mt (1 + |y|)−3/2 + Ct−1/2e−
(x−y−a+

k
t)2

Mt (1 + |x− a+
k t|)

−3/2.

(A.11)
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For the first term, by integrability of (1 + |y|)−3/2, we have the integral (A.10) is

bounded by

C(1 + t)−1/2e−
|x−a+

k
t|2

Mt

which is subsumed into Cθ(x, t) in case a+
k > 0 and into C(ψ1+ψ2)(x, t) in case a+

k < 0.

(We remark that the possible blow-up of (A.11) as t→ 0 is treated by integrating the

Gaussian kernel e−
(x−y−a+

k
t)2

Mt in y, yielding an extra factor t1/2). Meanwhile, for the

second term, (noting that y ∈ (1
2
|x − a+

k t|, 3
2
|x − a+

k t|)), by integrating the Gaussian

kernel, we get

∫ 3
2
|x−a+

k t|

1
2
|x−a+

k t|
t−1/2e−

(x−y−a+
k
t)2

Mt (1 + |y|)−3/2dy ≤ Ct−1/2(1 + |x− a+
k t|)

−3/2 min{|x− a+
k t|, t

1/2},

which is then bounded by (1+ |x−a+
k t|)−3/2 ≤ C(ψ1 +ψ2)(x, t) when |x−a+

k t| ≥ C
√
t

and by (1 + t)−1/2 ≤ Cθ(x, t) when |x− a+
k t| ≤ C

√
t.

Reflection estimate. We estimate

∫ ∞
0

t−1/2e−
(x−

a+
j

a+
k

y−a+
j
t)2

Mt (1 + |y|)−3/2dy,
(A.12)

by first applying a change of variable y := −a+
j y/a

+
k and then treating the resulting

integral as above, yielding the estimate (A.9) as claimed.

We next give a proof of Lemma 2.5.5 ([23, Lemma 4]). The proof is quite lengthy,

and thus we divide the task into three following lemmas.

Lemma A.2.2 (Nonlinearity θ2). Under the assumptions of Theorem 2.1.4,∫ t

0

∫ +∞

0

|G̃y(x, t− s; y)|θ2(y, s) dyds ≤ C(θ + ψ1 + ψ2)(x, t), (A.13)

for 0 ≤ t ≤ +∞, some C > 0.

Proof. We shall give an estimate involving the convection term in ∂yG̃:

t−1/2(t−1/2 + e−ηy)e−
(x−y−a+

k
t)2

Mt . (A.14)

The other terms can be estimated similarly. By completing the appropriate square,
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we first estimate the integral∫ t

0

∫ ∞
0

(t− s)−1e−
(x−y−a+

k
(t−s))2

M(t−s) (1 + s)−1e−
(y−a+

j
s)2

Ms dyds,

=

∫ t

0

∫ ∞
0

(t− s)−1(1 + s)−1e−
(x−a+

k
(t−s)−a+

j
s)2

Mt e−
t

Ms(t−s) (y−
xs−(a+

k
−a+
j

)s(t−s)
Mt

)2dyds

≤ Ct−1/2

∫ t

0

(t− s)−1/2(1 + s)−1/2e−
(x−a+

k
(t−s)−a+

j
s)2

Mt ds.

(A.15)

First observe that for x > a+
n t, by writing

x− a+
k (t− s)− a+

j s = (x− a+
k t) + (a+

k − a
+
j )s

for a+
k ≥ a+

j or

x− a+
k (t− s)− a+

j s = (x− a+
j t)− (a+

k − a
+
j )(t− s)

for a+
k < a+

j , there is no cancellation in these expressions and thus we can estimate

the Gaussian kernel by e−(x−a+
k t)

2/Mt or e−(x−a+
j t)

2/Mt. Hence, in this case, the integral

(A.15) is estimated by

t−1/2e−
(x−a+

k
t)2

Mt

∫ t

0

(t− s)−1/2(1 + s)−1/2ds ≤ C(1 + t)−1/2e−
(x−a+

k
t)2

Mt ,

which is subsumed into Cθ(x, t).

To estimate the integral for x ≤ a+
n t, we divide the analysis into two cases: s ∈

[0, t/2] and s ∈ [t/2, t]. For s ∈ [0, t/2], by writing

x− a+
k (t− s)− a+

j s = (x− a+
k t) + (a+

k − a
+
j )s.

and thus deriving a balance estimate

(1+s)−1/2e−
((x−a+

k
t)+(a+

k
−a+
j

)s)2

Mt

≤ C
[
(1 + |x− a+

k t|)
−1/2e−

((x−a+
k
t)+(a+

k
−a+
j

)s)2

Mt + (1 + s)−1/2e−
(x−a+

k
t)2

Mt

]
,
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we can estimate

t−1

∫ t/2

0

(1 + s)−1/2e−
(x−a+

k
(t−s)−a+

j
s)2

Mt ds

≤ Ct−1

∫ t/2

0

[
(1 + |x− a+

k t|)
−1/2e−

((x−a+
k
t)+(a+

k
−a+
j

)s)2

Mt + (1 + s)−1/2e−
(x−a+

k
t)2

Mt

]
ds

≤ Ct−1
[
t1/2(1 + |x− a+

k t|)
−1/2 + (1 + t)1/2e−

(x−a+
k
t)2

Mt

]
≤ C(1 + t)−1/2(1 + |x− a+

k t|)
−1/2 + C(1 + t)−1/2e−

(x−a+
k
t)2

Mt ,

where the first term in the last inequality above is bounded by Cψ1(x, t) and the

second term is clearly subsumed in Cθ(x, t).

For s ∈ [t/2, t], we can argue similarly, beginning with the relation

x− a+
k (t− s)− a+

j s = (x− a+
j t)− (a+

k − a
+
j )(t− s)

and the balance estimate

(t− s)−1/2e−
((x−a+

j
t)−(a+

k
−a+
j

)(t−s))2

Mt

≤ C
[
|x− a+

j t|−1/2e−
((x−a+

j
t)−(a+

k
−a+
j

)(t−s))2

Mt + (t− s)−1/2e−
(x−a+

j
t)2

Mt

]
.

Next, we estimate the integral which involves the decaying term e−ηy in (A.14):∫ t

0

∫ ∞
0

(t− s)−1/2e−ηye−
(x−y−a+

k
(t−s))2

M(t−s) (1 + s)−1e−
(y−a+

j
s)2

Ms dyds, (A.16)

for which we observe the inequality

e−ηye−
(y−a+

j
s)2

Ms ≤ Ce−η1ye−η2s.

We can now proceed similarly as above to yield a desired estimate for (A.16), taking

advantage of the integrability of e−η1y in y and the integrability of e−η2s in s. This

concludes the analysis of the nonlinearity θ2.

Lemma A.2.3 (Nonlinearity ψ2
1). Under the assumptions of Theorem 2.1.4,∫ t

0

∫ +∞

0

|G̃y(x, t− s; y)|ψ2
1(y, s) dyds ≤ C(θ + ψ1 + ψ2)(x, t), (A.17)

209



for 0 ≤ t ≤ +∞, some C > 0.

Proof. We consider convolutions of the form∫ t

0

∫ ∞
0

(t− s)−1/2((t− s)−1/2 + e−ηy)e−
(x−y−a+

k
(t−s))2

M(t−s) ψ2
1dyds. (A.18)

We first estimate∫ t

0

∫ a+
n s

0

(t− s)−1e−
(x−y−a+

k
(t−s))2

M(t−s) (1 + |y|+ s)−1(1 + |y − a+
j s|)−1dyds. (A.19)

In following estimates, we always integrate (1 + |y − a+
j s|)−1/2 in y in the case s ∈

(0, t/2) and the Gaussian kernel e−
(y−a)2
M(t−s) in the case s ∈ (t/2, t), yielding an extra

factor (1 + s)1/2 or (t− s)1/2, respectively, and give bounds to other remaining terms.

Let us first consider the case x > a+
n t. By writing

x− y − a+
k (t− s) = (x− a+

n t) + (−(y − a+
n s)) + (−(a+

k − a
+
n )(t− s)), (A.20)

we observe that in this case values in each bracket on the right hand side of (A.20)

have the same sign and thus there is no cancellation in this expression. Hence, we

get an estimate of (A.18) by

e−
|x−a+n t|

2

Mt

[ ∫ t/2

0

t−1(1 + s)−1/2ds+

∫ t

t/2

(t− s)−1/2(1 + t)−1ds
]

≤ C(1 + t)−1/2e−
|x−a+n t|

2

Mt .

Now consider the case x ≤ a+
n t. By writing

x− y − a+
k (t− s) = (x− a+

j t)− (a+
k − a

+
j )(t− s)− (y − a+

j s)

and deriving a balance estimate with (y − a+
j s) linearly close to or away from (x −
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a+
j t)− (a+

k − a
+
j )(t− s), we estimate (A.19) by

∫ t

0

∫ a+
n s

0

(t− s)−1(1 + |y|+ s)−1(1 + |y − a+
j s|)−1/2

×
[
(1 + |x− a+

k (t− s)− a+
j s|)−1/2e−

(x−y−a+
k

(t−s))2

M(t−s)

+ (1 + |y − a+
j s|)−1/2e−

(x−a+
k

(t−s)−a+
j
s)2

M(t−s) e−
(x−y−a+

k
(t−s))2

M(t−s)

]
dyds.

(A.21)

Again, as before, we integrate (1+ |y−a−j s|)−1/2 in y on the interval s ∈ [0, t/2], while

on the interval s ∈ [t/2, t] we integrate the Gaussian kernel. For the second piece of

the integral (A.21), we obtain an estimate

C

∫ t/2

0

t−1(1 + s)−1/2e
−

(x−a+
k

(t−s)−a+
j
s)2

M′(t−s) ds+ C

∫ t

t/2

(1 + t)−1(t− s)−1/2e
−

(x−a+
k

(t−s)−a+
j
s)2

M′(t−s) ds

≤ Ct−1/2

∫ t

0

(t− s)−1/2(1 + s)−1/2e−
(x−a+

k
(t−s)−a+

j
s)2

M′t ds,

which is identical to (A.15) whose estimate is given above. Meanwhile, for the first

piece of the integral (A.21), we estimate in a same way, yielding

C

∫ t/2

0

t−1(1 + s)−1/2(1 + |x− a+
k (t− s)− a+

j s|)−1/2ds

+ C

∫ t

t/2

(1 + t)−1(t− s)−1/2(1 + |x− a+
k (t− s)− a+

j s|)−1/2ds.

(A.22)

In the case s ∈ [0, t/2], by writing

x− a+
k (t− s)− a+

j s = (x− a+
k t)− (a+

k − a
+
j )s,

and deriving a balance estimate with (a+
k − a

+
j )s linearly close to or away from (x−

a+
k t):

(1 + s)−1/2(1 + |x− a+
k (t− s)− a+

j s|)−1/2

≤ C(1 + |x− a+
k t|)

−1/2
[
(1 + s)−1/2 + (1 + |x− a+

k (t− s)− a+
j s|)−1/2

]
,
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we easily estimate the first term in (A.22) by

C(1 + t)−1/2(1 + |x− a+
k t|)

−1/2,

which is subsumed into Cψ1(x, t), noting that we are in the case x ≤ a+
n t.

In the case s ∈ [t/2, t], we write

x− a+
k (t− s)− a+

j s = (x− a+
j t)− (a+

k − a
+
j )(t− s),

for which we have a balance estimate

(t− s)−1/2(1 + |x− a+
k (t− s)− a+

j s|)−1/2

≤ C
[
|x− a+

j t|−1/2(1 + |x− a+
k (t− s)− a+

j s|)−1/2 + (t− s)−1/2(1 + |x− a+
j t|)−1/2

]
Thus, we easily estimate the second term in (A.22) by

C(1 + t)−1/2
[
|x− a+

j t|−1/2 + (1 + |x− a+
j t|)−1/2

]
,

which is again subsumed into Cψ1(x, t). We remark that the apparent blow-up at

x = a+
j t is an artifact of the approach and can be removed by the observation that

for |x − a+
j t| ≤ C

√
t, we can proceed by alternative estimates to get decay of form

θ(x, t).

Now consider the integral involving the term e−ηy in (A.18):

∫ t

0

∫ a+
n s

0

(t− s)−1/2e−ηye−
(x−y−a+

k
(t−s))2

M(t−s) (1 + |y|+ s)−1(1 + |y − a+
j s|)−1dyds.

(A.23)

We observe here the inequality

e−ηy(1 + |y − a+
j s|)−1 ≤ C

[
e−η1ye−η2s + e−ηy(1 + s)−1

]
.

We can now proceed similarly as in the analysis of the above case. This concludes

the analysis for the nonlinearity ψ2
1.

Lemma A.2.4 (Nonlinearity ψ2
2). Under the assumptions of Theorem 2.1.4,∫ t

0

∫ +∞

0

|G̃y(x, t− s; y)|ψ2
2(y, s) dyds ≤ C(θ + ψ1 + ψ2)(x, t), (A.24)
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for 0 ≤ t ≤ +∞, some C > 0.

Proof. We consider convolutions of the form∫ t

0

∫ ∞
0

(t− s)−1/2((t− s)−1/2 + e−ηy)e−
(x−y−a+

k
(t−s))2

M(t−s) ψ2
2dyds. (A.25)

We first estimate∫ t

0

∫ ∞
a+
n s

(t− s)−1e−
(x−y−a+

k
(t−s))2

M(t−s) (1 + |y − a+
n s|+ s1/2)−3dyds. (A.26)

We derive an estimate for (A.26) in a same way as done in previous lemma for the

case of nonlinearity ψ2
1. First, the case x > a+

n t is now easily analyzed by considering

the relation (A.20) with no cancellation, yielding an estimate which will be subsumed

into Cθ(x, t).

For the case x ≤ a+
n t, by writing

x− y − a+
k (t− s) = (x− a+

k (t− s)− a+
n s)− (y − a+

n s),

we derive a balance estimate

(1 + |y − a+
n s|+ s1/2)−3/2e−

(x−y−a+
k

(t−s))2

M(t−s)

≤ C
[
(1 + |x− a+

k (t− s)− a+
n s|+ s1/2)−3/2e−

(x−y−a+
k

(t−s))2

M(t−s)

+ (1 + |y − a+
n s|+ s1/2)−3/2e

−
(x−a+

k
(t−s)−a+n s)

2

M′(t−s) e−
(x−y−a+

k
(t−s))2

M(t−s)

]
.

(A.27)

Again, we estimate (A.26) by integrating (1+ |y−a+
n s|+s1/2)−3/2 in y on the interval

s ∈ [0, t/2] and the Gaussian kernel on the interval s ∈ [t/2, t]. For the second piece

of (A.27), we obtain an estimate

C

∫ t/2

0

t−1(1 + s1/2)−1/2(1 + s1/2)−3/2e
−

(x−a+
k

(t−s)−a+n s)
2

M′(t−s) ds

+ C

∫ t

t/2

(1 + t1/2)−3/2(t− s)−1/2e
−

(x−a+
k

(t−s)−a+n s)
2

M′(t−s) ds

≤ Ct−1/2

∫ t

0

(t− s)−1/2(1 + s)−1/2e
−

(x−a+
k

(t−s)−a+n s)
2

M′(t−s) ds,
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which is identical to (A.15) whose estimate is given above. Meanwhile, for the first

piece of (A.27), we estimate in a same way, yielding

C

∫ t/2

0

t−1(1 + s1/2)−1/2(1 + |x− a+
k (t− s)− a+

n s|+ s1/2)−3/2ds

+ C

∫ t

t/2

(1 + t1/2)−3/2(t− s)−1/2(1 + |x− a+
k (t− s)− a+

n s|+ s1/2)−3/2ds.

(A.28)

We further estimate this as follows. In the case s ∈ [0, t/2], by writing

x− a+
k (t− s)− a+

n s = (x− a+
k t) + (a+

k − a
+
n )s,

and thus deriving a balance estimate:

(1 + |x−a+
k (t− s)− a+

n s|+ s1/2)−3/2

≤ C
[
(1 + |x− a+

k t|+ s1/2)−3/2 + (1 + |x− a+
k t|

1/2 + s1/2)−3/2
]

≤ C(1 + |x− a+
k t|

1/2 + s1/2)−3/2,

we easily give an estimate of the first integral in (A.28) by

Ct−1

∫ t/2

0

(1 + |x− a+
k t|

1/2 + s1/2)−3/2(1 + s1/2)−1/2ds

≤ Ct−1(1 + |x− a+
k t|)

−1/2

∫ t/2

0

(1 + s1/2)−1/2(1 + s1/2)−1/2ds

≤ C(1 + t)−1/2(1 + |x− a+
k t|)

−1/2

For s ∈ [t/2, t], by writing

x− a+
k (t− s)− a+

n s = (x− a+
n t)− (a+

k − a
+
n )(t− s),

and deriving a balance estimate:

(t− s)−1/2
(

1 + |x− a+
k (t− s)− a+

n s|+ s1/2
)−3/2

≤ C
[
|x− a+

n t|−1/2
(

1 + |x− a+
k (t− s)− a+

n s|+ s1/2
)−3/2

+ (t− s)−1/2
(

1 + |x− a+
n t|+ s1/2

)−3/2]
.
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we easily give an estimate of the second integral in (A.28) by

C(1+t1/2)−3/2
[
|x− a+

n t|−1/2

∫ t

t/2

(1 + |x− a+
k (t− s)− a+

n s|+ t1/2)−3/2ds

+ (1 + |x− a+
n t|+ t1/2)−3/2

∫ t

t/2

(t− s)−1/2ds
]

≤ C(1 + t)−1/2(1 + |x− a+
k t|)

−1/2 + C(1 + |x− a+
k t|+ t1/2)−3/2,

which can be subsumed into Cψ1(x, t).

This concludes the analysis for (A.26). For an estimate of (A.19) which involves

the term e−ηy, we proceed similarly as in previous lemma (see (A.23)), completing

the analysis for the nonlinearity ψ2
2.

Lemma A.2.5 (Nonlinear estimates II). Under the assumptions of Theorem 2.1.4,∫ t

t−1

∫ +∞

0

|G̃x(x, t− s; y)|Υ(y, s) dyds ≤ C(ψ1 + ψ2)(x, t) (A.29)

for all 1 ≤ t < +∞, some C > 0, where

Υ(y, s) := s−1/4(θ + ψ1 + ψ2)(y, s) (A.30)

Proof. We first observe that

|G̃x(x, t− s; y)| ≤ C(t− s)−1/2((t− s)−1/2 + e−ηx)e−
|x−y|2
M(t−s) (A.31)

for t− 1 ≤ s ≤ t; indeed, this is clear by (A.8) and

|x− y − a+
k (t− s)| ≥ |x− y| − C|t− s| ≥ |x− y| − C

|x− a+
j ((t− s)− |y/a+

k |)| ≥
∣∣∣x+

|a+
j |
|a+
k |
y
∣∣∣− C|t− s| ≥ min{1, |a+

j /a
+
k |}|x− y| − C

for all s such that t− 1 ≤ s ≤ t.

Now, using (A.31) and following the treatments as were done in the previous

lemmas corresponding to nonlinearities θ(x, t), ψ1(x, t), ψ2(x, t), we easily obtain the

lemma, omitting further details of the proof.
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Appendix B

Appendix to Chapter 3

B.1 Physical discussion in the isentropic case

In this appendix, we revisit in slightly more detail the drag-reduction problem sketched

in Examples 1.2.1–1.2.2, in the simplified context of the two-dimensional isentropic

case. Following the notation of [19], consider the two-dimensional isentropic com-

pressible Navier–Stokes equations

ρt + (ρu)x + (ρv)y = 0, (B.1)

(ρu)t + (ρu2)x + (ρuv)y + px = (2µ+ η)uxx + µuyy + (µ+ η)vxy, (B.2)

(ρv)t + (ρuv)x + (ρv2)y + py = µvxx + (2µ+ η)vyy + (µ+ η)uyx (B.3)

on the half-space y > 0, where ρ is density, u and v are velocities in x and y directions,

and p = p(ρ) is pressure, and µ > |η| ≥ 0 are coefficients of first (“dynamic”) and

second viscosity, making the standard monotone pressure assumption p′(ρ) > 0.

We imagine a porous airfoil lying along the x-axis, with constant imposed normal

velocity v(0) = V and zero transverse relative velocity u(0) = 0 imposed at the airfoil

surface, and seek a laminar boundary-layer flow (ρ, u, v)(y) with transverse relative

velocity u∞ a short distance away the airfoil, with |V | much less than the sound speed

c∞ and |u∞| of an order roughly comparable to c∞.
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B.1.1 Existence

The possible boundary-layer solutions have been completely categorized in this case

in Section 5.1 of [19]. We here cite the relevant conclusions, referring to [19] for the

(straightforward) justifying computations.

Outflow case (V < 0)

In the outflow case, the scenario described above corresponds to case (5.15) of [19],

in which it is found that the only solutions are purely transverse flows

(ρ, v) ≡ (ρ0, V ), u(y) = u∞(1− eρ0V y/µ), (B.4)

varying only in the tranverse velocity u. The drag force per unit length at the airfoil,

by Newton’s law of viscosity, is

µūy|y=0 = u∞ρ∞|V |, (B.5)

since momentum m := ρ0V = ρ∞V is constant throughout the layer, so that (ρ∞, u∞

being imposed by ambient conditions away from the wing) drag is proportional to the

speed |V | of the imposed normal velocity.

Inflow case (V > 0)

Consulting again [19] (p. 61), we find for V > 0 with specified (ρ, u, v)(0) of the

orders described above, the only solutions are purely normal flows,

u ≡ u(0), (ρ, v) = (ρ, v)(y), (B.6)

varying only in the normal velocity v. Thus, it is not possible to reconcile the velocity

u(0) at the airfoil with the velocity u∞ >> c some distance away.

As discussed in [38], the expected behavior in such a case consists rather of a

combination of a boundary-layer at y = 0 and one or more elementary planar shock,

rarefaction, or contact waves moving away from y = 0: in this case a shear wave

moving with normal fluid velocity V into the half-space, across which the transverse

velocity changes from zero to u∞. That is, a characteristic layer analogous to the

solid-boundary case detaches from the airfoil and travels outward into the flow field.
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In this case, one would not expect drag reduction compared to the solid-boundary

case, but rather some increase.

B.1.2 Stability

If we consider one-dimensional stability, or stability with respect to perturbations

depending only on y, we find that the linearized eigenvalue equations decouple into

the constant-coefficient linearized eigenvalue equations for (ρ, v) about a constant

layer (ρ, v) ≡ (ρ0, V ), and the scalar linearized eigenvalue equation

λρ̄u+muy = µuyy (B.7)

associated with the constant-coefficient convection-diffusion equation ρ̄ut + mu =

µuyy, m := ρ̄v̄ ≡ ρ0V , ρ̄ ≡ ρ0. As the constant layer (ρ0, V ) is stable by Corollary 3.1.2

or direct calculation (Fourier transform), and (B.7) is stable by direct calculation, we

may thus conclude that purely transverse layers are one-dimensionally stable.

Considered with respect to general perturbations, the equations do not decouple,

nor do they reduce to constant-coefficient form, but to a second order system whose

coefficients are quadratic polynomials in eρ0V y. It would be very interesting to try to

resolve the question of spectral stability by direct solution using this special form, or,

alternatively, to perform a numerical study as done in [25] for the multi-dimensional

shock wave case.

Remark B.1.1. For general laminar boundary layers (ρ̄, ū, v̄)(y), the one-dimensional

stability problem, now variable-coefficient, does not completely decouple, but has tri-

angular form, breaking into a system in (ρ, v) alone and an equation in u forced by

(ρ, v). Stability with respect to general perturbations, therefore, is equivalent to sta-

bility with respect to perturbations of form (ρ, 0, v) or (0, u, 0). For perturbations

(ρ, u, v) = (0, u, 0), the u equation again becomes (B.7), with µ, m still constant, but

ρ̄ varying in y. Taking the real part of the complex L2 inner product of u against

(B.7) gives

<λ‖u‖2
L2 + ‖uy‖2

L2 = 0,

hence for <λ ≥ 0, u ≡ constant = 0. Thus, the layer is one-dimensionally stable if and

only if the normal part (ρ̄, v̄) is stable with respect to perturbations (ρ, v). Stability

of normal layers was studied in [9] for a γ-law gas p(ρ) = aργ, 1 ≤ γ ≤ 3, with the
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conclusion that all layers are one-dimensionally stable, independent of amplitude,

in the general inflow and compressive outflow cases. Hence, we can make the same

conclusion for full layers (ρ̄, ū, v̄). In the present context, this includes all cases

except for suction with supersonic velocity |V | > c∞, which in the notation of [9]

is of expansive outflow type, since |v̄| is decreasing with y, so that density ρ̄ (since

m = ρ̄v̄ ≡ constant) is increasing.

B.1.3 Discussion

Note that we do not achieve by subsonic boundary suction an exact laminar flow

connecting the values (u, v) = (0, V ) at the wing to the values (u∞, 0) of the ambient

flow at infinity, but rather to an intermediate value (u∞, V ). That is, we trade a

large variation u∞ in shear for a possibly small variation V in normal velocity, which

appears now as a boundary condition for the outer, approximately Euler flow away

from the boundary layer. Whether the full solution is stable appears to be a question

concerning also nonstationary Euler flow. It is not clear either what is the optimal

outflux velocity V . From (B.5) and the discussion just above, it appears desirable

to minimize |V |, since this minimizes both drag and the imbalance between flow v∞

just outside the boundary layer and the ambient flow at infinity. On the other hand,

we expect that stability becomes more delicate in the characteristic limit V → 0−, in

the sense that the size of the basin of attraction of the boundary layer shrinks to zero

(recall, we have ignored throughout our analysis the size of the basin of attraction,

taking perturbations as small as needed without keeping track of constants). These

would be quite interesting issues for further investigation.
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Appendix C

Appendix to Chapter 5

C.1 Proof of preliminary estimate: inflow case

Our starting point is Remark 5.2.4, in which we observed that the first-order eigen-

system (5.34) in variable W = (w, u − v, v)T may be converted by the rescaling

W → W̃ := (w, u− v, λv)T to a system identical to that of the integrated equations

in the shock case; see [49]. Artificially defining (ũ, ṽ, ṽ′)T := W̃ , we obtain a system

λṽ + ṽ′ − ũ′ = 0, (C.1a)

λũ+ ũ′ − h(v̂)

v̂γ+1
ṽ′ =

ũ′′

v̂
. (C.1b)

identical to that in the integrated shock case [3], but with boundary conditions

ṽ(0) = ṽ′(0) = ũ′(0) = 0 (C.2)

imposed at x = 0. This new eigenvalue problem differs spectrally from (5.22) only

at λ = 0, hence spectral stability of (5.22) is implied by spectral stability of (C.1).

Hereafter, we drop the tildes, and refer simply to u, v.

With these coordinates, we may establish (5.31) by exactly the same argument

used in the shock case in [3, 24], for completeness reproduced here.
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Lemma C.1.1. The following inequality holds for <eλ ≥ 0:

(<e(λ) + |=m(λ)|)
∫

R+

v̂|u|2 +

∫
R+

|u′|2

≤
√

2

∫
R+

h(v̂)

v̂γ
|v′||u|+

√
2

∫
R+

v̂|u′||u|. (C.3)

Proof. We multiply (C.1b) by v̂ū and integrate along x. This yields

λ

∫
R+

v̂|u|2 +

∫
R+

v̂u′ū+

∫
R+

|u′|2 =

∫
R+

h(v̂)

v̂γ
v′ū.

We get (C.3) by taking the real and imaginary parts and adding them together, and

noting that |<e(z)|+ |=m(z)| ≤
√

2|z|.

Lemma C.1.2. The following identity holds for <eλ ≥ 0:∫
R+

|u′|2 = 2<e(λ)2

∫
R+

|v|2 + <e(λ)

∫
R+

|v′|2

v̂
+

1

2

∫
R+

[
h(v̂)

v̂γ+1
+

aγ

v̂γ+1

]
|v′|2 (C.4)

Proof. We multiply (C.1b) by v̄′ and integrate along x. This yields

λ

∫
R+

uv̄′ +

∫
R+

u′v̄′ −
∫

R+

h(v̂)

v̂γ+1
|v′|2 =

∫
R+

1

v̂
u′′v̄′ =

∫
R+

1

v̂
(λv′ + v′′)v̄′.

Using (C.1a) on the right-hand side, integrating by parts, and taking the real part

gives

<e
[
λ

∫
R+

uv̄′ +

∫
R+

u′v̄′
]

=

∫
R+

[
h(v̂)

v̂γ+1
+

v̂x
2v̂2

]
|v′|2 + <e(λ)

∫
R+

|v′|2

v̂
.

The right hand side can be rewritten as

<e
[
λ

∫
R+

uv̄′ +

∫
R+

u′v̄′
]

=
1

2

∫
R+

[
h(v̂)

v̂γ+1
+

aγ

v̂γ+1

]
|v′|2 + <e(λ)

∫
R+

|v′|2

v̂
. (C.5)
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Now we manipulate the left-hand side. Note that

λ

∫
R+

uv̄′ +

∫
R+

u′v̄′ = (λ+ λ̄)

∫
R+

uv̄′ −
∫

R+

u(λ̄v̄′ + v̄′′)

= −2<e(λ)

∫
R+

u′v̄ −
∫

R+

uū′′

= −2<e(λ)

∫
R+

(λv + v′)v̄ +

∫
R+

|u′|2.

Hence, by taking the real part we get

<e
[
λ

∫
R+

uv̄′ +

∫
R+

u′v̄′
]

=

∫
R+

|u′|2 − 2<e(λ)2

∫
R+

|v|2.

This combines with (C.5) to give (C.4).

Lemma C.1.3 ([3]). For h(v̂) as in (5.21), we have

sup
v̂

∣∣∣∣h(v̂)

v̂γ

∣∣∣∣ = γ
1− v+

1− vγ+
≤ γ, (C.6)

where v̂ is the profile solution to (5.18).

Proof. Defining

g(v̂) := h(v̂)v̂−γ = −v̂ + a(γ − 1)v̂−γ + (a+ 1), (C.7)

we have g′(v̂) = −1 − aγ(γ − 1)v̂−γ−1 < 0 for 0 < v+ ≤ v̂ ≤ v− = 1, hence the

maximum of g on v̂ ∈ [v+, v−] is achieved at v̂ = v+. Substituting (5.19) into (C.7)

and simplifying yields (C.6).

Proof of Proposition 5.2.3. Using Young’s inequality twice on right-hand side of (C.3)
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together with (C.6), we get

(<e(λ) + |=m(λ)|)
∫

R+

v̂|u|2 +

∫
R+

|u′|2

≤
√

2

∫
R+

h(v̂)

v̂γ
|v′||u|+

√
2

∫
R+

v̂|u′||u|

≤ θ

∫
R+

h(v̂)

v̂γ+1
|v′|2 +

(
√

2)2

4θ

∫
R+

h(v̂)

v̂γ
v̂|u|2 + ε

∫
R+

v̂|u′|2 +
1

4ε

∫
R+

v̂|u|2

< θ

∫
R+

h(v̂)

v̂γ+1
|v′|2 + ε

∫
R+

|u′|2 +

[
γ

2θ
+

1

2ε

] ∫
R+

v̂|u|2.

Assuming that 0 < ε < 1 and θ = (1− ε)/2, this simplifies to

(<e(λ) + |=m(λ)|)
∫

R+

v̂|u|2 + (1− ε)
∫

R+

|u′|2

<
1− ε

2

∫
R+

h(v̂)

v̂γ+1
|v′|2 +

[
γ

2θ
+

1

2ε

] ∫
R+

v̂|u|2.

Applying (C.4) yields

(<e(λ) + |=m(λ)|)
∫

R+

v̂|u|2 <
[

γ

1− ε
+

1

2ε

] ∫
R+

v̂|u|2,

or equivalently,

(<e(λ) + |=m(λ)|) < (2γ − 1)ε+ 1

2ε(1− ε)
.

Setting ε = 1/(2
√
γ + 1) gives (5.31).

C.2 Proof of preliminary estimate: outflow case

Similarly as in the inflow case, we can convert the eigenvalue equations into the

integrated equations as in the shock case; see [49]. Artificially defining (ũ, ṽ, ṽ′)T :=

W̃ , we obtain a system

λṽ + ṽ′ − ũ′ = 0, (C.8a)

λũ+ ũ′ − h(v̂)

v̂γ+1
ṽ′ =

ũ′′

v̂
. (C.8b)

223



identical to that in the integrated shock case [3], but with boundary conditions

ṽ′(0) =
λ

α− 1
ṽ(0), ũ′(0) = αṽ′(0) (C.9)

imposed at x = 0. We shall write w0 for w(0), for any function w. This new eigenvalue

problem differs spectrally from (5.22) only at λ = 0, hence spectral stability of (5.22)

is implied by spectral stability of (C.8). Hereafter, we drop the tildes, and refer

simply to u, v.

Lemma C.2.1. The following inequality holds for <eλ ≥ 0:

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 − 1

2

∫
R−
v̂x|u|2 +

∫
R−
|u′|2 +

1

2
v̂0|u0|2

≤
√

2

∫
R−

h(v̂)

v̂γ
|v′||u|+

∫
R−
v̂|u′||u|+

√
2|α||v′0||u0|. (C.10)

Proof. We multiply (C.8b) by v̂ū and integrate along x. This yields

λ

∫
R−
v̂|u|2 +

∫
R−
v̂u′ū+

∫
R−
|u′|2 =

∫
R−

h(v̂)

v̂γ
v′ū+ u′0ū0.

We get (C.10) by taking the real and imaginary parts and adding them together, and

noting that |<e(z)|+ |=m(z)| ≤
√

2|z|.

Lemma C.2.2. The following inequality holds for <eλ ≥ 0:

1

2

∫
R−

[
h(v̂)

v̂γ+1
+

aγ

v̂γ+1

]
|v′|2 + <e(λ)

∫
R−

|v′|2

v̂
+
|v′0|2

4v̂0

+ 2<e(λ)2

∫
R−
|v|2

≤
∫

R−
|u′|2 + v̂0|u0|2. (C.11)

Proof. We multiply (C.8b) by v̄′ and integrate along x. This yields

λ

∫
R−
uv̄′ +

∫
R−
u′v̄′ −

∫
R−

h(v̂)

v̂γ+1
|v′|2 =

∫
R−

1

v̂
u′′v̄′ =

∫
R−

1

v̂
(λv′ + v′′)v̄′.

Using (C.8a) on the right-hand side, integrating by parts, and taking the real part

gives

<e
[
λ

∫
R−
uv̄′ +

∫
R−
u′v̄′
]

=

∫
R−

[
h(v̂)

v̂γ+1
+

v̂x
2v̂2

]
|v′|2 + <e(λ)

∫
R−

|v′|2

v̂
+
|v′0|2

2v̂0

.
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The right hand side can be rewritten as

<e
[
λ

∫
R−
uv̄′ +

∫
R−
u′v̄′
]

=
1

2

∫
R−

[
h(v̂)

v̂γ+1
+

aγ

v̂γ+1

]
|v′|2 + <e(λ)

∫
R−

|v′|2

v̂
+
|v′0|2

2v̂0

. (C.12)

Now we manipulate the left-hand side. Note that

λ

∫
R−
uv̄′ +

∫
R−
u′v̄′ = (λ+ λ̄)

∫
R−
uv̄′ +

∫
R−

(u′v̄′ − λ̄uv̄′)

= −2<e(λ)

∫
R−
u′v̄ + 2<eλu0v̄0 +

∫
R−
u′(v̄′ + λ̄v̄)− λ̄u0v̄0

= −2<e(λ)

∫
R−

(λv + v′)v̄ +

∫
R−
|u′|2 + 2<eλu0v̄0 − λ̄u0v̄0.

Hence, by taking the real part and noting that

<e(2<eλu0v̄0 − λ̄u0v̄0) = <eλ<e(u0v̄0)−=mλ=m(u0v̄0) = <e(λu0v̄0)

we get

<e
[
λ

∫
R−
uv̄′ +

∫
R−
u′v̄′
]

=

∫
R−
|u′|2 − 2<e(λ)2

∫
R−
|v|2 −<eλ|v0|2 + <e(λu0v̄0).

This combines with (C.12) to give

1

2

∫
R−

[
h(v̂)

v̂γ+1
+

aγ

v̂γ+1

]
|v′|2 + <e(λ)

∫
R−

|v′|2

v̂
+
|v′0|2

2v̂0

+ 2<e(λ)2

∫
R−
|v|2

+ <eλ|v0|2 =

∫
R−
|u′|2 + <e(λu0v̄0).

We get (C.11) by observing that (C.9) and Young’s inequality yield

|<e(λu0v̄0)| ≤ |α− 1||v′0v0| ≤ |v′0v0| ≤
|v′0|2

4v̂0

+ v̂0|u0|2.

Here we used |α− 1| = |λ|
|λ−v̂′0|

≤ 1. Note that <eλ ≥ 0 and v̂′0 ≤ 0.

Proof of Proposition 5.2.3. Using Young’s inequality twice on right-hand side of (C.10)

225



together with (C.6), and denoting the boundary term on the right by Ib, we get

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 − 1

2

∫
R−
v̂x|u|2 +

∫
R−
|u′|2 +

1

2
v̂0|u0|2

≤
√

2

∫
R−

h(v̂)

v̂γ
|v′||u|+

∫
R−
v̂|u′||u|+ Ib

≤ θ

∫
R−

h(v̂)

v̂γ+1
|v′|2 +

1

2θ

∫
R−

h(v̂)

v̂γ
v̂|u|2 + ε

∫
R−
v̂|u′|2 +

1

4ε

∫
R−
v̂|u|2 + Ib

< θ

∫
R−

h(v̂)

v̂γ+1
|v′|2 + ε

∫
R−
|u′|2 +

[
γ

2θ
+

1

4ε

] ∫
R−
v̂|u|2 + Ib.

Here we treat the boundary term by

Ib ≤
√

2|α||v′0||u0| ≤
θ

2

|v′0|2

v̂0

+
1

θ
|α|2v̂0|u0|2.

Therefore using (C.11), we simply obtain from the above estimates

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 + (1− ε)

∫
R−
|u′|2 +

1

2
v̂0|u0|2

< θ

∫
R−

h(v̂)

v̂γ+1
|v′|2 +

θ

2

|v′0|2

v̂0

+

[
γ

2θ
+

1

4ε

] ∫
R−
v̂|u|2 +

1

θ
|α|2v̂0|u0|2

< 2θ

∫
R−
|u′|2 +

[
γ

2θ
+

1

4ε

] ∫
R−
v̂|u|2 + Jb

where Jb := (1
θ
|α|2 + 2θ)v̂0|u0|2. Assuming that ε+ 2θ ≤ 1, this simplifies to

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 +

1

2
v̂0|u0|2 <

[
γ

2θ
+

1

4ε

] ∫
R−
v̂|u|2 + Jb.

Note that |α| ≤ −v̂′0
|λ| ≤

1
4|λ| . Therefore for |λ| ≥ 1

4θ
, we get |α| ≤ θ and Jb ≤

3θv̂0|u0|2. For sake of simplicity, choose θ = 1/6 and ε = 2/3. This shows that Jb can

be absorbed into the left by the term 1
2
v̂0|u0|2 and thus we get

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 <

[
γ

2θ
+

1

4ε

] ∫
R−
v̂|u|2 =

[
3γ +

3

8

] ∫
R−
v̂|u|2,

provided that |λ| ≥ 1/(4θ) = 3/2.
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This shows

(<e(λ) + |=m(λ)|) < max{3
√

2

2
, 3γ +

3

8
}.

C.3 Nonvanishing of D0
in

Working in (ṽ, ũ) variables as in (C.1), the limiting eigenvalue system and boundary

conditions take the form

λṽ + ṽ′ − ũ′ = 0, (C.13a)

λũ+ ũ′ − 1− v̂
v̂

ṽ′ =
ũ′′

v̂
(C.13b)

corresponding to a pressureless gas, γ = 0, with

(ũ, ũ′, ṽ, ṽ′)(0) = (d, 0, 0, 0), (ũ, ũ′, ṽ, ṽ′)(+∞) = (c, 0, 0, 0). (C.14)

Hereafter, we drop the tildes.

Proof of Proposition 5.3.6. Multiplying (C.13b) by v̂ū/(1 − v̂) and integrating on

[0, b] ⊂ R+, we obtain

λ

∫ b

0

v̂

1− v̂
|u|2dx+

∫ b

0

v̂

1− v̂
u′ūdx−

∫ b

0

v′ūdx =

∫ b

0

u′′ū

1− v̂
dx.

Integrating the third and fourth terms by parts yields

λ

∫ b

0

v̂

1− v̂
|u|2dx+

∫ b

0

[
v̂

1− v̂
+

(
1

1− v̂

)′]
u′ūdx

+

∫ b

0

|u′|2

1− v̂
dx+

∫ b

0

v(λv + v′)dx

=

[
vū+

u′ū

1− v̂

] ∣∣∣b
0
.

Integrating the second term by parts and taking the real part, we have
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<e(λ)

∫ b

0

(
v̂

1− v̂
|u|2 + |v|2

)
dx+

∫ b

0

g(v̂)|u|2dx+

∫ b

0

|u′|2

1− v̂
dx

= <e
[
vū+

u′ū

1− v̂
− 1

2

[
v̂

1− v̂
+

(
1

1− v̂

)′]
|u|2 − |v|

2

2

] ∣∣∣b
0
, (C.15)

where

g(v̂) = −1

2

[(
v̂

1− v̂

)′
+

(
1

1− v̂

)′′]
.

Note that

d

dx

(
1

1− v̂

)
= − (1− v̂)′

(1− v̂)2
=

v̂x
(1− v̂)2

=
v̂(v̂ − 1)

(1− v̂)2
= − v̂

1− v̂
.

Thus, g(v̂) ≡ 0 and the third term on the right-hand side vanishes, leaving

<e(λ)

∫ b

0

(
v̂

1− v̂
|u|2 + |v|2

)
dx+

∫ b

0

|u′|2

1− v̂
dx

=

[
<e(vū) +

<e(u′ū)

1− v̂
− |v|

2

2

] ∣∣∣b
0

=

[
<e(vū) +

<e(u′ū)

1− v̂
− |v|

2

2

]
(b).

We show finally that the right-hand side goes to zero in the limit as b → ∞. By

Proposition 5.4.3, the behavior of u, v near ±∞ is governed by the limiting constant–

coefficient systems W ′ = A0
±(λ)W , where W = (u, v, v′)T and A0

± = A0(±∞, λ). In

particular, solutions W asymptotic to (1, 0, 0) at x = +∞ decay exponentially in

(u′, v, v′) and are bounded in coordinate u as x→ +∞. Observing that 1− v̂ → 1 as

x → +∞, we thus see immediately that the boundary contribution at b vanishes as

b→ +∞.

Thus, in the limit as b→ +∞,

<e(λ)

∫ +∞

0

(
v̂

1− v̂
|u|2 + |v|2

)
dx+

∫ +∞

0

|u′|2

1− v̂
dx = 0. (C.16)

But, for <eλ ≥ 0, this implies u′ ≡ 0, or u ≡ constant, which, by u(0) = 1, implies
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u ≡ 1. This reduces (C.13a) to v′ = λv, yielding the explicit solution v = Ceλx. By

v(0) = 0, therefore, v ≡ 0 for <eλ ≥ 0. Substituting into (C.13b), we obtain λ = 0.

It follows that there are no nontrivial solutions of (C.13), (C.14) for <eλ ≥ 0 except

at λ = 0.

Remark C.3.1. The above energy estimate is essentially identical to that used in

[24] to treat the limiting shock case.

C.4 Nonvanishing of D0
out

Working in (ṽ, ũ) variables as in (C.1), the limiting eigenvalue system and boundary

conditions take the form

λṽ + ṽ′ − ũ′ = 0, (C.17a)

λũ+ ũ′ − 1− v̂
v̂

ṽ′ =
ũ′′

v̂
(C.17b)

corresponding to a pressureless gas, γ = 0, with

(ũ, ũ′, ṽ, ṽ′)(−∞) = (0, 0, 0, 0), (C.18)

ṽ′(0) =
λ

α− 1
ṽ(0), ũ′(0) = αṽ′(0). (C.19)

In particular,

ũ′(0) =
λα

α− 1
ṽ(0) = v̂′(0)ṽ(0) = (v0 − 1)v̂0ṽ(0). (C.20)

Hereafter, we drop the tildes.

Proof of Proposition 5.3.6. Multiplying (C.17b) by v̂ū/(1 − v̂) and integrating on

[a, 0] ⊂ R−, we obtain

λ

∫ 0

a

v̂

1− v̂
|u|2dx+

∫ 0

a

v̂

1− v̂
u′ūdx−

∫ 0

a

v′ūdx =

∫ 0

a

u′′ū

1− v̂
dx.
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Integrating the third and fourth terms by parts yields

λ

∫ 0

a

v̂

1− v̂
|u|2dx+

∫ 0

a

[
v̂

1− v̂
+

(
1

1− v̂

)′]
u′ūdx

+

∫ 0

a

|u′|2

1− v̂
dx+

∫ 0

a

v(λv + v′)dx

=

[
vū+

u′ū

1− v̂

] ∣∣∣0
a
.

Taking the real part, we have

<e(λ)

∫ 0

a

(
v̂

1− v̂
|u|2 + |v|2

)
dx+

∫ 0

a

g(v̂)|u|2dx+

∫ 0

a

|u′|2

1− v̂
dx

= <e
[
vū+

u′ū

1− v̂
− 1

2

[
v̂

1− v̂
+

(
1

1− v̂

)′]
|u|2 − |v|

2

2

] ∣∣∣0
a
, (C.21)

where

g(v̂) = −1

2

[(
v̂

1− v̂

)′
+

(
1

1− v̂

)′′]
≡ 0

and the third term on the right-hand side vanishes, as shown in Section C.3, leaving

<e(λ)

∫ 0

a

(
v̂

1− v̂
|u|2 + |v|2

)
dx+

∫ 0

a

|u′|2

1− v̂
dx

=

[
<e(vū) +

<e(u′ū)

1− v̂
− |v|

2

2

] ∣∣∣0
a
.

A boundary analysis similar to that of Section C.3 shows that the contribution at

a on the righthand side vanishes as a → −∞; see [24] for details. Thus, in the limit
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as a→ −∞ we obtain

<e(λ)

∫ 0

−∞

(
v̂

1− v̂
|u|2 + |v|2

)
dx+

∫ 0

−∞

|u′|2

1− v̂
dx

=

[
<e(vū) +

<e(u′ū)

1− v̂
− |v|

2

2

]
(0)

=

[
(1− v0)<e(vū)− |v|

2

2

]
(0),

≤
[
(1− v0)|v||u| − |v|

2

2

]
(0)

≤ (1− v0)2 |u(0)|2

2
,

where the second equality follows by (C.20) and the final line by Young’s inequality.

Next, observe the Sobolev-type bound

|u(0)|2 ≤
(∫ 0

−∞
|u′(x)|dx

)2

≤
∫ 0

−∞

|u′|2

1− v̂
(x)dx

∫ 0

−∞
(1− v̂)(x)dx,

together with∫ 0

−∞
(1− v̂)(x)dx =

∫ 0

−∞
− v̂
′

v̂
(x)dx =

∫ 0

−∞
(log v̂−1)′(x)dx = log v−1

0 ,

hence
∫ 0

−∞(1− v̂)(x)dx < 2
(1−v0)2

for v0 > v∗, where v∗ < e−2 is the unique solution of

v∗ = e−2/(1−v∗)2 . (C.22)

Thus, for v0 > v∗,

<e(λ)

∫ 0

−∞

(
v̂

1− v̂
|u|2 + |v|2

)
dx+ ε

∫ 0

−∞

|u′|2

1− v̂
dx ≤ 0, (C.23)

for ε := 1 − (1−v0)2

2

∫ 0

−∞(1 − v̂)(x)dx > 0. For <eλ ≥ 0, this implies u′ ≡ 0, or

u ≡ constant, which, by u(−∞) = 0, implies u ≡ 0. This reduces (C.17a) to v′ = λv,

yielding the explicit solution v = Ceλx. By v(0) = 0, therefore, v ≡ 0 for <eλ ≥ 0. It

follows that there are no nontrivial solutions of (C.17), (C.18) for <eλ ≥ 0 except at

λ = 0.

By iteration, starting with v∗ ≈ 0, we obtain first v∗ < e−2 ≈ 0.14 then v∗ >
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e2/(1−.14)2 ≈ .067, then v∗ < e2/(1−.067)2 ≈ .10, then v∗ > e2/(1−.10)2 ≈ .085, then

v∗ < e2/(1−.085) ≈ .091 and v∗ > e2/(1−.091) ≈ .0889, terminating with v∗ ≈ .0899.

Remark C.4.1. Our Evans function results show that the case v0 small not treated

corresponds to the shock limit for which stability is already known by [24]. This sug-

gests that a more sophisticated energy estimate combining the above with a boundary-

layer analysis from x = 0 back to x = L + δ might yield nonvanishing for all

1 > v0 > 0.

C.5 The characteristic limit: outflow case

We now show stability of compressive outflow boundary layers in the characteristic

limit v+ → 1, by essentially the same energy estimate used in [38] to show stability

of small-amplitude shock waves.

As in the above section on the outflow case, we obtain a system

λṽ + ṽ′ − ũ′ = 0, (C.24a)

λũ+ ũ′ − h(v̂)

v̂γ+1
ṽ′ =

ũ′′

v̂
(C.24b)

identical to that in the integrated shock case [3], but with boundary conditions

ṽ′(0) =
λ

α− 1
ṽ(0), ũ′(0) = αṽ′(0). (C.25)

In particular,

ũ′(0) =
λα

α− 1
ṽ(0) = v̂′(0)ṽ(0). (C.26)

This new eigenvalue problem differs spectrally from (5.22) only at λ = 0, hence

spectral stability of (5.22) is implied by spectral stability of (C.24). Hereafter, we

drop the tildes, and refer simply to u, v.

Proof of Proposition 5.3.7. We note that h(v̂) > 0. By multiplying (C.24b) by both

the conjugate ū and v̂γ+1/h(v̂) and integrating along x from −∞ to 0, we have∫ 0

−∞

λuūv̂γ+1

h(v̂)
dx+

∫ 0

−∞

u′ūv̂γ+1

h(v̂)
dx−

∫ 0

−∞
v′ūdx =

∫ 0

−∞

u′′ūv̂γ

h(v̂)
dx.
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Integrating the last two terms by parts and appropriately using (C.24a) to substitute

for u′ in the third term gives us∫ 0

−∞

λ|u|2v̂γ+1

h(v̂)
dx+

∫ 0

−∞

u′ūv̂γ+1

h(v̂)
dx+

∫ 0

−∞
v(λv + v′)dx+

∫ 0

−∞

v̂γ|u′|2

h(v̂)
dx

= −
∫ 0

−∞

(
v̂γ

h(v̂)

)′
u′ūdx+

[
vū+

vγu′ū

h(v̂)

] ∣∣∣
x=0

.

We take the real part and appropriately integrate by parts to get

<e(λ)

∫ 0

−∞

[
v̂γ+1

h(v̂)
|u|2 + |v|2

]
dx+

∫ 0

−∞
g(v̂)|u|2dx+

∫ 0

−∞

v̂γ

h(v̂)
|u′|2dx = G(0), (C.27)

where

g(v̂) = −1

2

[(
v̂γ+1

h(v̂)

)′
+

(
v̂γ

h(v̂)

)′′]
and

G(0) = −1

2

[
v̂γ+1

h(v̂)
+

(
v̂γ

h(v̂)

)′]
|u|2 + <e

[
vū+

vγu′ū

h(v̂)

]
− |v|

2

2

evaluated at x = 0. Here, the boundary term appearing on the righthand side is the

only difference from the corresponding estimate appearing in the treatment of the

shock case in [38, 3]. We shall show that as v+ → 1, the boundary term G(0) is

nonpositive. Observe that boundary conditions yield[
vū+

vγu′ū

h(v̂)

] ∣∣∣
x=0

= <e(v(0)ū(0))

[
1 +

v̂γ v̂′

h(v̂)

] ∣∣∣
x=0

.

We first note, as established in [38, 3], that g(v̂) ≥ 0 on [v+, 1], under certain

conditions including the case v+ → 1. Straightforward computation gives identities:

γh(v̂)− v̂h′(v̂) = aγ(γ − 1) + v̂γ+1 and (C.28)

v̂γ−1v̂x = aγ − h(v̂). (C.29)
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Using (C.28) and (C.29), we abbreviate a few intermediate steps below:

g(v̂) = − v̂x
2

[
(γ + 1)v̂γh(v̂)− v̂γ+1h′(v̂)

h(v̂)2
+

d

dv̂

[
γv̂γ−1h(v̂)− v̂γh′(v̂)

h(v̂)2
v̂x

]]
= − v̂x

2

[
v̂γ ((γ + 1)h(v̂)− v̂h′(v̂))

h(v̂)2
+

d

dv̂

[
γh(v̂)− v̂h′(v̂)

h(v̂)2
(aγ − h(v̂))

]]
= −av̂xv̂

γ−1

2h(v̂)3
×[

γ2(γ + 1)v̂γ+2 − 2(a+ 1)γ(γ2 − 1)v̂γ+1 + (a+ 1)2γ2(γ − 1)v̂γ

+ aγ(γ + 2)(γ2 − 1)v̂ − a(a+ 1)γ2(γ2 − 1)
]

= −av̂xv̂
γ−1

2h(v̂)3
[(γ + 1)v̂γ+2 + v̂γ(γ − 1) ((γ + 1)v̂ − (a+ 1)γ)2 (C.30)

+ aγ(γ2 − 1)(γ + 2)v̂ − a(a+ 1)γ2(γ2 − 1)]

≥ −av̂xv̂
γ−1

2h(v̂)3
[(γ + 1)v̂γ+2 + aγ(γ2 − 1)(γ + 2)v̂ − a(a+ 1)γ2(γ2 − 1)]

≥ −γ
2a3v̂x(γ + 1)

2h(v̂)3v+

[(
vγ+1

+

aγ

)2

+ 2(γ − 1)

(
vγ+1

+

aγ

)
− (γ − 1)

]
. (C.31)

This verifies g(v̂) ≥ 0 as v+ → 1.

Second, examine

G(0) = −1

2

[
v̂γ+1

h(v̂)
+

(
v̂γ

h(v̂)

)′]
|u(0)|2 +

[
1 +

v̂γ v̂′

h(v̂)

]
<e(v(0)ū(0))− |v(0)|2

2
.

Applying Young’s inequality to the middle term, we easily get

G(0) ≤ −1

2

[
v̂γ+1

h(v̂)
+

(
v̂γ

h(v̂)

)′
−
(

1 +
v̂γ v̂′

h(v̂)

)2
]
|u(0)|2 =: −1

2
I|u(0)|2.

Now observe that I can be written as

I =
v̂γ+1

h(v̂)
− 1 +

[
γv̂γ−1

h(v̂)
− 2v̂γ

h(v̂)
− v̂2γ v̂′

h2(v̂)

]
v̂′ − v̂γh′(v̂)

h2(v̂)
.

Using (C.28) and (C.29), we get

v̂γ+1

h(v̂)
− 1 = −(γ − 1)v̂γ−1v̂′ + v̂h′(v̂)

h(v̂)
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and thus

I = −(γ − 1)v̂γ−1v̂′ + v̂h′(v̂)

h(v̂)
+

[
γv̂γ−1

h(v̂)
− 2

v̂γ

h(v̂)
− v̂2γ v̂′

h2(v̂)

]
v̂′ − v̂γh′(v̂)

h2(v̂)
.

Now since h′(v̂) = −(γ + 1)v̂γ v̂′ + (a + 1)γv̂γ−1v̂′, as v+ → 1, I ∼ −v̂′ ≥ 0.

Therefore, as v+ is close to 1, G(0) ≤ 1
4
v̂′(0)|u(0)|2 ≤ 0. This, g(v̂) ≥ 0, and (C.27)

give, as v+ is close enough to 1,

<e(λ)

∫ 0

−∞

[
v̂γ+1

h(v̂)
|u|2 + |v|2

]
dx+

∫ 0

−∞

v̂γ

h(v̂)
|u′|2dx ≤ 0, (C.32)

which evidently gives stability as claimed.

C.6 Nonvanishing of Din: expansive inflow case

For completeness, we recall the argument of [39] in the expansive inflow case.

Profile equation. Note that, in the expansive inflow case, we assume v0 < v+.

Therefore we can still follow the scaling (5.12) to get

0 < v0 < v+ = 1.

Then the stationary boundary layer (v̂, û) satisfies (5.15) with v0 < v+ = 1. Now

by integrating (5.16) from x to +∞ with noting that v̂(+∞) = 1 and v̂′(+∞) = 0,

we get the profile equation

v̂′ = v̂(v̂ − 1 + a(v̂−γ − 1)).

Note that v̂′ > 0. We now follow the same method for compressive inflow case to

get the following eigenvalue system

λv + v′ − u′ = 0, (C.33a)

λu+ u′ − (fv)′ =

(
u′

v̂

)′
(C.33b)

with boundary conditions

u(0) = v(0) = 0, (C.34)
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where f(v̂) = h(v̂)
v̂γ+1 .

Proof of Proposition 5.3.8. Multiply the equation (C.33b) by ū and integrate along

x. By integration by parts, we get

λ

∫ ∞
0

|u|2dx+

∫ ∞
0

u′ū+ fvū′ +
|u′|2

v̂
dx = 0.

Using (C.33a) and taking the real part of the above yield

<eλ
∫ ∞

0

|u|2 + f |v|2dx− 1

2

∫ ∞
0

f ′|v|2dx+

∫ ∞
0

|u′|2

v̂
dx = 0. (C.35)

Note that

f ′ =

(
1 + a+

a(γ2 − 1)

v̂γ

)
−v̂′

v̂2
≤ 0

which together with (C.35) gives <eλ < 0, the proposition is proved.
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