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Abstract

Coherent structures are solutions to reaction-diffusion systems that are time-periodic in an appro-

priate moving frame and spatially asymptotic at x = ±∞ to spatially periodic travelling waves. This

paper is concerned with sources which are coherent structures for which the group velocities in the far

field point away from the core. Sources actively select wave numbers and therefore often organize the

overall dynamics in a spatially extended system. Determining their nonlinear stability properties is

challenging as localized perturbations may lead to a non-localized response even on the linear level due

to the outward transport. Using a Burgers-type equation as a model problem that captures some of the

essential features of sources, we show how this phenomenon can be analysed and asymptotic nonlinear

stability be established in this simpler context.

1 Introduction

In this paper, we analyse the long-time dynamics of solutions to the Burgers-type equation

φt + c tanh
(cx

2

)
φx = φxx + φ2x, c > 0 (1.1)

with small localized initial data, where x ∈ R, t > 0, and φ(x, t) is a scalar function. The key feature

of this equation as opposed to the usual Burgers equation is that the characteristic speeds are c > 0 at

spatial infinity and −c < 0 at spatial minus infinity: hence, transport is always directed away from the

shock interface at x = 0 and not towards x = 0 as would be the case for the Lax shocks of the standard

Burgers equation.

We are interested in (1.1) due to its close connection with the dynamics of coherent structures that arise

in reaction-diffusion systems

ut = Duxx + f(u), x ∈ R, u ∈ Rn. (1.2)
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Figure 1: Panel (i) shows the graph of a source u∗(x, t) as a function of x for fixed time t: the group

velocities of the asymptotic wave trains point away from the core of the coherent structure. Panel (ii) shows

the behaviour of small phase φ or wave number φx perturbations of a wave train: to leading order, they are

transported with speed given by the group velocity cg without changing their shape [2].

A coherent structure (or defect) is a solution u∗(x, t) of (1.2) that is time-periodic in an appropriate moving

frame y = x− c∗t and spatially asymptotic to wave-train solutions, which are spatially periodic travelling

waves of (1.2). Such structures have been observed in many experiments and in various reaction-diffusion

models, and we refer to [9] for references and to Figure 1 for an illustration of typical defect profiles. For

the sake of simplicity, we shall assume from now on that the speed c∗ of the defect we are interested in

vanishes, so that the coherent structure is time-periodic. Coherent structures can be classified into several

distinct types [3, 8, 9] that have different stability and multiplicity properties. This classification involves

the group velocities of the asymptotic wave trains, and we therefore briefly review their definition and

features. Wave trains of (1.2) are solutions of the form u(x, t) = uwt(kx−ωt; k), where the profile uwt(y; k)

is 2π-periodic in the y-variable. Thus, k and ω represent the spatial wave number and the temporal

frequency, respectively, of the wave train. Wave trains typically exist as one-parameter families, where the

frequency ω = ωnl(k) is a function, the so-called nonlinear dispersion relation, of the wave number k, which

varies in an open interval. The group velocity cg of the wave train with wave number k is defined as

cg :=
dωnl

dk
(k).

The group velocity is important as it is the speed with which small localized perturbations of a wave train

propagate as functions of time t, and we refer to Figure 1(ii) for an illustration and to [2] for a rigorous

justification of this statement. The classification of coherent structures mentioned above is based on the

group velocities c±g of the asymptotic wave trains at x = ±∞. We are interested in sources for which

c−g < 0 < c+g as illustrated in Figure 1(i) so that perturbations are transported away from the defect core

towards infinity. Sources are important as they actively select wave numbers in oscillatory media; examples

of sources are the Nozaki–Bekki holes of the complex Ginzburg–Landau equation. We note that the profile

u∗(x, t) of a source converges exponentially in x towards the asymptotic wave train profiles uwt(kx− ωt),
uniformly in t; see [9, Corollary 5.2].

From now on, we focus on a given source and discuss its stability properties with respect to the reaction-

diffusion system (1.2). Spectral stability of a source can be investigated through the Floquet spectrum of

the period map of the linearization of (1.2) about the time-periodic source. Spectral stability of sources

was investigated in [9], and we now summarize their findings. The Floquet spectrum of a spectrally stable

source will look as indicated in Figure 2(i). A source u∗(x, t) has two eigenvalues at the origin with

eigenfunctions u∗x(x, t) and u∗t (x, t); the associated adjoint eigenfunctions are necessarily exponentially

localized, so that the source has a well defined spatial position and temporal phase. There will also be two

curves of essential spectrum that touch the origin and correspond to phase and wave number modulations
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Figure 2: Panel (i) illustrates the Floquet spectrum of a spectrally stable source posed on C0: the two

eigenvalues at the origin correspond to translations in space and time. If exponentially growing perturbations

such as those in panel (iii) are allowed, then the essential spectrum moves into the open left half-plane, while

the spatial and temporal translation eigenvalues stay at the origin as indicated in panel (ii).

of the two asymptotic wave trains. It turns out that the two eigenvalues at the origin cannot be removed

by posing the linearized problem in exponentially weighted function spaces; the essential spectrum, on the

other hand, can be moved to the left by allowing functions to grow exponentially at infinity as indicated

in Figure 2.

The nonlinear stability of spectrally stable sources has not yet been established, and we now outline why

this is a challenging problem. From a purely technical viewpoint, an obvious difficulty is related to the fact

that there is no spectral gap between the essential spectrum and the imaginary axis. As discussed above,

such a gap can be created by posing the linear problem on function spaces that contain exponentially

growing functions, but the nonlinear terms will then not even be continuous. To see that these are not just

technical obstacles, it is illuminating to discuss the anticipated dynamics near a source from an intuitive

perspective. If a source is subjected to a localized perturbation, then one anticipated effect is that the

defect core adjusts its position and its temporal phase in response. From its new position, the defect will

continue to emit wave trains with the same selected wave number but there will now be a phase difference

between the asymptotic wave trains at infinity and those newly emitted near the core. In other words,

we expect to see two phase fronts that travel in opposite directions away from the core as illustrated in

Figure 3. The resulting phase dynamics can be captured by writing the perturbed solution u(x, t) as

u(x, t) = u∗(x, t+ φ(x, t)) + w(x, t), (1.3)

where we expect that the perturbation w(x, t) of the defect profile decays in time, while the phase φ(x, t)

resembles an expanding plateau as indicated in Figure 3 whose height depends on the initial perturbation

through the spatio-temporal displacement of the defect core.

The preceding heuristic arguments suggest that the overall response of a source to an initial perturbation

is organized by the defect core: the spatio-temporal displacement of the core causes a specific phase shift

in the emitted wave trains that then spreads into the far field, where its dynamics is governed by the phase

dynamics of the asymptotic wave trains. In particular, the height of the anticipated phase plateau shown

in Figures 3 and 4 is therefore determined by the dynamics near the core.

As a first step towards a general nonlinear stability result for sources in reaction-diffusion systems, our goal

is to identify a simpler model problem that captures the essential features and some of the key difficulties

that we outlined above. To simplify the problem, we focus exclusively on the dynamics of the phase

function φ(x, t) that we introduced in (1.3). If φ(x, t) varies slowly in space and time, then we expect

formally that it will satisfy a partial differential equation. For phase perturbations of wave trains, it was

indeed established formally in [4] and proved rigorously in [2] that the phase φ(x, t) satisfies an integrated
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Figure 3: The left panel contains a sketch of the space-time diagram of a perturbed source. The defect core

will adjust in response to an imposed perturbation, and the emitted wave trains, whose maxima are indicated

by the lines that emerge from the defect core, will therefore exhibit phase fronts that travel with the group

velocities of the asymptotic wave trains away from the core towards ±∞. The right panel illustrates the

profile of the anticipated phase function φ(x, t) defined in (1.3).

Figure 4: Shown are the graphs of the function errfn((−z+ ct)/
√

4t)− errfn((−z− ct)/
√

4t) for smaller and

larger values of t, which resemble plateaus of height approximately equal to one that spread outwards with

speed ±c, while the associated interfaces widen like
√
t.

viscous Burgers equation over long time intervals. The effect of the core of the source is that it adjusts

the advection terms in the Burgers equations associated with the asymptotic wave trains to account for

their outgoing group velocities. These considerations together with the property that the source converges

exponentially to the asymptotic wave trains leads us to consider the Burgers-type equation

φt + c tanh
(cx

2

)
φx = φxx + φ2x, c > 0 (1.4)

for the phase function φ(x, t) as the simplest possible model that incorporates both the dynamical effect of

the core and the correct far-field dynamics. We remark that, while the inhomogeneous advection term can

be thought of as fixing the position x = 0 of the core, equation (1.4) still has a family of constant solutions,

which correspond to different temporal phases of the underlying hypothetical sources: in particular, the

equation for the phase φ should depend only on φt and φx but not on φ itself. Thus, while (1.4) represents

a simplification, we feel that gaining a detailed understanding of its long-time dynamics for small localized

initial data will shed significant light on the expected dynamics of sources and on the techniques needed to

analyse their stability. We emphasize that even the dynamics of wave trains of reaction-diffusion systems

under non-localized phase perturbations was investigated only recently in [6, 7, 10]. We also remark that

the maximum principle or the Cole–Hopf transformation can be used to show that solutions of (1.4) stay

bounded; however, we are interested in identifying techniques that apply also to sources of reaction-diffusion

systems and that give more detailed information about the spatio-temporal decay of perturbations. Finally,

we note that, for nonlocalized solutions such as the phase fronts we are interested in, the nonlinear term

φ2x in (1.4) is not negligible compared to the linear diffusive term; see [2, §2] and references therein.
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To obtain insight into (1.4), we linearize it about the stationary solution φ = 0 to get

φ̃t = φ̃xx − c tanh
(cx

2

)
φ̃x. (1.5)

The spectrum of the operator on the right-hand side of (1.5) is as shown in Figure 2(i) except that there is

only one embedded eigenvalue at the origin: the associated eigenfunction is given by the constant function
c
4 , while the associated adjoint eigenfunction ψ is exponentially localized and given by

ψ(y) = sech2
(cy

2

)
.

The Green’s function of (1.5) can be computed explicitly1 and is given by

G(x, y, t) =
1√
4πt

e−
(x−y+ct)2

4t
1

1 + ecy
+

1√
4πt

e−
(x−y−ct)2

4t
1

1 + e−cy
(1.6)

+
c

4

[
errfn

(
y − x+ ct√

4t

)
− errfn

(
y − x− ct√

4t

)]
ψ(y),

where the error function is given by

errfn(z) =
1√
π

∫ z

−∞
e−s

2
ds.

Note that the first two terms in the Green’s function are Gaussians that move with speed ±c away from

the core and decay like 1/
√
t. The term comprised of the difference of the two error functions, on the other

hand, produces a plateau of constant height c
4 that spreads outward as indicated in Figure 4; this term

arises because of the zero eigenvalue of (1.5) and reflects therefore directly the source that underpins (1.4).

It is interesting that the overall contribution of the embedded translation eigenvalue at the origin to the

Green’s function is not a term of the form c
4 ·ψ(y), that is, the eigenfunction times its adjoint, but instead

a time-dependent phase plateau that captures how perturbations with support near the core spread into

the far field. This is, in fact, typical of problems without spectral gaps; see, for instance, [1].

For sufficiently localized initial data φ̃0(x), the solution φ̃(x, t) to the linear equation (1.5) is therefore

given by

φ̃(x, t) =

∫
R
G(x, y, t)φ̃0(y) dy,

and we see that φ̃(x, t) converges pointwise to a constant: for each fixed x, we have

φ̃(x, t) −→ c

4

∫
R
ψ(y)φ̃0(y) dy as t −→∞.

In fact, the same is true for the nonlinear equation (1.4): the Cole–Hopf transformation

φ̃(x, t) = eφ(x,t) − 1, φ(x, t) = log [1 + φ̃(x, t)] (1.7)

relates solutions φ(x, t) of (1.4) and solutions φ̃(x, t) of (1.5), and we conclude that solutions φ(x, t) of (1.4)

with localized initial data φ0(x) are given by

φ(x, t) = log

[
1 +

∫
R
G(x, y, t)φ0(y) dy

]
. (1.8)

1Note that (1.5) is the formal adjoint of the linearization of the standard viscous Burgers equation ut = uzz − 2uuz about

the Lax shock ū(x) = (c/2)[1 − tanh(cx/2)] with x = z − ct, whose Green’s function can be found via the linearized Cole–

Hopf transformation by setting w(x, t) = cosh(cx/2)
∫ x
−∞ u(y, t) dy. The Green’s function of (1.5) can then be constructed by

reversing the roles of x and y in the Green’s function for the Lax shock linearization.
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As t→∞, these solutions converge again pointwise in x to the constant

log

[
1 +

c

4

∫
R
ψ(y)(eφ0(y) − 1) dy

]
.

The representation (1.8) of solutions of (1.4) will not extend to more general equations, and we therefore

develop here a different approach to prove asymptotic stability that, we hope, will also be useful when

investigating the nonlinear stability of sources in general reaction-diffusion systems.

To analyse the long-time behaviour of solutions to (1.4), recall that the height of the anticipated phase

plateau shown in Figures 3 and 4 is determined by the dynamics near the core located near x = 0 and that

the phase plateau converges pointwise but certainly not uniformly in space to an asymptotic value as time

goes to infinity. This indicates that it will be important to extract the leading-order phase plateau from

the phase φ(x, t) to ensure that the remaining contributions to φ(x, t) decay in time. To accomplish this,

we define the solution B(x, t) of the linear problem (1.5) by

B(x, t) := G(x, 0, t+ 1),

where G(x, y, t) is the Green’s function defined in (1.6), and note that

φ∗(x, t, p) := log (1 + pB(x, t)) (1.9)

is then, by the Cole–Hopf transformation, a solution of (1.4) for each fixed p ∈ R. We emphasize that we

do not need that φ∗(x, t, p) satisfies (1.4) exactly: our analysis goes through provided B(x, t) can be chosen

such that φ∗(x, t, p) satisfies (1.4) approximately with an error that is bounded by (1 + t)−1 times a sum of

moving heat kernels: in other words, we only need to be able to find a sufficiently accurate approximation

of the Green’s function.

Next, we investigate the long-time dynamics of solutions to (1.4) with initial data φ(x, 0) = φ0(x) using

the ansatz

φ(x, t) = φ∗(x, t, p(t)) + v(x, t), (1.10)

where p(t) is a real-valued function, and v(x, t) is a remainder term; see also Figure 5. At time t = 0, we

normalize the decomposition in (1.10) by choosing p(0) = p0 such that∫
R
ψ(x)[φ0(x)− φ∗(x, 0, p0)] dx = 0.

We will prove in §2 that a unique p0 with this property exists for each sufficiently small localized initial

condition φ0. The main result of this paper is as follows.

Theorem 1. For each γ ∈ (0, 12), there exist constants ε0, η0, C0,M0 > 0 such that the following is true.

If φ0 ∈ C1 satisfies

ε := ‖ex2/M0φ0‖C1 ≤ ε0 (1.11)

then the solution φ(x, t) of (1.4) with φ(·, 0) = φ0 exists globally in time and can be written in the form

φ(x, t) = φ∗(x, t, p(t)) + v(x, t)

for appropriate functions p(t) and v(x, t) with φ∗ as in (1.9). Furthermore, there is a p∞ ∈ R with

|p∞| ≤ C0 such that

|p(t)− p∞| ≤ εC0e
−η0t,
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and v(x, t) satisfies

|v(x, t)| ≤ εC0

(1 + t)γ

(
e
− (x+ct)2

M0(t+1) + e
− (x−ct)2
M0(t+1)

)
, |vx(x, t)| ≤ εC0

(1 + t)γ+1/2

(
e
− (x+ct)2

M0(t+1) + e
− (x−ct)2
M0(t+1)

)
for all t ≥ 0. In particular, ‖v(·, t)‖Lr → 0 as t→∞ for each fixed r > 1

2γ .

Note that our result assumes that the initial condition is strongly localized in space. We believe that this

assumption can be relaxed significantly; for the purposes of this paper, however, phase fronts are created

even by highly localized initial data, and the key difficulties are therefore present already in the more

specialized situation of Theorem 1.

The exponential convergence of p(t) reflects the intuition that a source has a well-defined position due to

the exponential localization of the adjoint eigenfunction ψ, which in turn is a consequence of the property

that the group velocities point away from the core. In contrast, the position of Lax shocks, whose group

velocities point toward the core, relaxes typically only algebraically. The asymptotics of the perturbation

v is given by moving Gaussians that decay only like (1 + t)−γ for each fixed γ ∈ (0, 12), rather than with

(1 + t)−
1
2 as expected from the dynamics of the viscous Burgers equation. This weaker result is due to

the form (1.10) of our ansatz, which effectively creates a nonlinear term that is proportional to g(x)uux

for some function g(x). While this term resembles the term 2uux in Burgers equation, it does not respect

the conservation-law structure. Thus, we only obtain decay at the above rate. Although this may not be

optimal, it allows us to avoid terms that grow logarithmically in the nonlinear iteration in §2. We do not

know if it is possible to improve this rate to γ = 1
2 by adjusting our ansatz appropriately.

The remainder of this paper is organized as follows. Section 2 is devoted to the proof of Theorem 1, while

we comment in §3 on extensions of the general approach presented here to sources in Ginzburg–Landau

and reaction-diffusion systems.

2 Proof of the main theorem

We proceed as follows to prove Theorem 1. Recall that we decomposed solutions of (1.4) via

φ(x, t) = φ∗(x, t, p(t)) + v(x, t),

where the unknown function p(t) regulates the height of the phase plateau, which is determined implicitly

by the initial phase offset induced by the initial condition; see also Figure 5. Of course, this decomposition

is not unique: our goal is to evolve p(t) in such a way that the remainder v(x, t) decays in time. Inspecting

the Green’s function G(x, y, t) of the linearized equation introduced in (1.6), we see that it consists of two

parts, namely two counterpropagating heat kernels and an expanding phase plateau as indicated in Figure 4.

Therefore, if we rewrite the partial differential equation (1.4) as an integral equation using the Green’s

function, we could then collect the terms that involve the contributions coming from the nondecaying

phase plateau and use them to evolve p(t). The remaining terms in the integral equation involve only the

decaying counterpropagating heat kernels, which we use to evolve v(x, t) in time. Our expectation is then

that v(x, t) also behaves, at least to leading order, like two counterpropagating Gaussians, and we will

verify this by imposing weight functions on the function v(x, t) when we solve the integral equation.
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Figure 5: Shown is the leading-order behaviour of the function φ∗(x, t, p(t)) which resembles a plateau with

height log(1 + p(t)) of length 2ct that spreads outward with speed ±c.

As already mentioned, the approach outlined above requires knowledge of the nonlinear phase plateau

solution φ∗(x, t, p) for each constant p up to terms that decay at least like 1/t at t→∞. If the Cole–Hopf

transformation is not available, we expect that these solutions can be constructed using formal expansions

in powers of 1/
√
t. This will be discussed in more detail in §3.

Throughout the proof, we denote by C possibly different positive constants that depend only on the

underlying equation but not on the initial data or on space or time.

2.1 Derivation of an integral formulation

Substituting the ansatz

φ(x, t) = log (1 + p(t)B(x, t)) + v(x, t), B(x, t) := G(x, 0, t+ 1), (2.1)

into the Burgers-type equation

φt + c tanh
(cx

2

)
φx = φxx + φ2x, (2.2)

we find that (p, v) needs to satisfy the equation

vt = vxx − c tanh
(cx

2

)
vx + v2x −

ṗ

1 + c
4p
G(x, 0, t+ 1) +N (x, t, p, ṗ, vx), (2.3)

where the nonlinear function N is given by

N (x, t, p, ṗ, vx) :=
2pvxBx(x, t)

1 + pB(x, t)
+ ṗ

(
B(x, t)

1 + c
4p
− B(x, t)

1 + pB(x, t)

)
.

In the preceding substitution, we used that the logarithmic term in (2.1) is an exact solution of (2.2): if

this term solved (2.2) only up to certain remainder terms, then these would be subsumed in the function

N , and we shall see below what that our proof still works provided the remainder terms are small enough.

The idea is now to use an appropriate integral representation for v that will allow us to set up a nonlinear

iteration argument to show that solutions (p, v) of (2.3) exist and that they satisfy the desired decay

estimates in space and time. Recall from (1.6) the expression

G(x, y, t) =
1√
4πt

e−
(x−y+ct)2

4t
1

1 + ecy
+

1√
4πt

e−
(x−y−ct)2

4t
1

1 + e−cy
(2.4)

+
c

4

(
errfn

(
y − x+ ct√

4t

)
− errfn

(
y − x− ct√

4t

))
ψ(y)

for the Green’s function of the linear problem (1.5) and note that it satisfies the identity∫
R
G(x, y, t− s)G(y, 0, s+ 1) dy = G(x, 0, t+ 1).
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Using this identity and the variation-of-constants formula, we can rewrite (2.3) in integral form and obtain2

v(x, t) = −4

c
G(x, 0, t+ 1)

(
log

(
1 +

cp(t)

4

)
− log

(
1 +

cp(0)

4

))
(2.5)

+

∫
R
G(x, y, t)v0(y) dy +

∫ t

0

∫
R
G(x, y, t− s)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds.

The expression (2.4) of the Green’s function G(x, y, t) shows that the terms involving the error functions

do not provide any temporal decay. Since we want the solution v(x, t) to decay in time, the goal is therefore

to define p(t) in such a way that the contributions of the nondecaying parts of the Green’s function to

(2.5) cancel out; the remaining integrals would then contain only the time-decaying parts of the Green’s

function, which suggests that the solution v(x, t) may also decay in time as desired. To accomplish this,

we first write the Green’s function G(x, y, t) as

G(x, y, t) = E(x, y, t) + G̃(x, y, t),

where

E(x, y, t) = e(x, t)ψ(y), e(x, t) :=
c

4

(
errfn

(
x+ ct√

4t

)
− errfn

(
x− ct√

4t

))
and

G̃(x, y, t) := G(x, y, t)− E(x, y, t) (2.6)

=
1√
4πt

e−
(x−y+ct)2

4t
1

1 + ecy
+

1√
4πt

e−
(x−y−ct)2

4t
1

1 + e−cy

+

(
errfn

(
y − x+ ct√

4t

)
− errfn

(
y − x− ct√

4t

))
c

4
sech2(

cy

2
)

−
(

errfn

(
−x+ ct√

4t

)
− errfn

(
−x− ct√

4t

))
c

4
sech2(

cy

2
).

To verify that G̃(x, y, t) indeed decays in t, we calculate∣∣∣∣errfn

(
y − x± ct√

4t

)
− errfn

(
−x± ct√

4t

)∣∣∣∣ c4 sech2(
cy

2
) ≤ Ct−1/2

(
e−

(x−y+ct)2
4t + e−

(x−y−ct)2
4t

)
e−c|y|/4

and conclude that

|G̃(x, y, t)| ≤ Ct−1/2
(

e−
(x−y+ct)2

4t + e−
(x−y−ct)2

4t

)
. (2.7)

Before returning to the integral equation (2.5), we discuss in more detail the initial condition φ0(x) =

φ∗(x, 0, p(0)) + v0(x) for φ. If φ0 is sufficiently small in L∞, then we claim that p(0) = p0 can be chosen

such that ∫
R
ψ(y)v0(y) dy = 0

or, equivalently, ∫
R
ψ(y)[φ0(y)− φ∗(y, 0, p0)] dy = 0. (2.8)

To prove this claim, we observe that

φ∗(y, 0, p0) = log(1 + p0B(y, 0)) = p0G(y, 0, 1) + O(p20). (2.9)

2We shall often use the notation [f + g](x, t) to denote f(x, t) + g(x, t).
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We note that the term O(p20) in (2.9) is bounded uniformly in y ∈ R, and substitution into (2.8) therefore

gives the equation ∫
R
ψ(y)φ0(y) dy = p0

∫
R
ψ(y)G(y, 0, 1) dy + O(p20),

which can be solved uniquely for p0 = p(0) near zero for each φ0 ∈ L∞ for which ‖φ0‖L∞ is small enough.

In particular, there is a constant C > 0 such that the resulting initial value p(0) satisfies

|p(0)| ≤ C‖φ0‖L∞ ≤ Cε.

Using this information, the integral equation (2.5) becomes

v(x, t) = −4

c
G(x, 0, t+ 1)

(
log

(
1 +

cp(t)

4

)
− log

(
1 +

cp(0)

4

))
(2.10)

+

∫
R
G̃(x, y, t)v0(y) dy +

∫ t

0

∫
R
G(x, y, t− s)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds.

We will construct p(t) such that

ṗ(t) =

(
1 +

cp(t)

4

)∫
R
ψ(y)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, t) dy (2.11)

or, equivalently, that

log

(
1 +

cp(t)

4

)
= log

(
1 +

cp0
4

)
+
c

4

∫ t

0

∫
R
ψ(y)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds (2.12)

for all t ≥ 0. Substituting (2.12) into (2.10), we obtain the equation

v(x, t) = −4

c
G̃(x, 0, t+ 1)

(
log

(
1 +

cp(t)

4

)
− log

(
1 +

cp0
4

))
+

∫
R
G̃(x, y, t)v0(y) dy (2.13)

+

∫ t

0

∫
R
G̃(x, y, t− s)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds

+

∫ t

0

∫
R

(e(x, t− s)− e(x, t+ 1))ψ(y)
[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds

for v(x, t). It remains to solve (2.11) and (2.13) for p(t) and v(x, t). To show that the solution v(x, t)

decays, it is advantageous to anticipate the expected long-time spatio-temporal behaviour and enforce

it using appropriate weight functions. Equation (2.13) contains primarily contributions from G̃(x, y, t),

which, as shown in (2.7), is bounded in norm by two counterpropagating heat kernels. Our expectation is

that the nonlinear terms will essentially not change this behaviour, and we therefore expect that v(x, t) can

also be bounded by counterpropagating Gaussians. To account for the various interaction terms introduced

by the nonlinearity, we will choose slightly weaker weight functions: for each fixed choice of γ ∈ (0, 12) and

M > 0, define

θ1(x, t) =
1

(1 + t)γ

(
e
− (x−ct)2
M(t+1) + e

− (x+ct)2

M(t+1)

)
, θ2(x, t) =

1

(1 + t)γ+1/2

(
e
− (x−ct)2
M(t+1) + e

− (x+ct)2

M(t+1)

)
(2.14)

and let

h1(t) := sup
x∈R,0≤s≤t

[
|v|
θ1

+
|vx|
θ2

]
(x, s), h2(t) := sup

0≤s≤t
|ṗ(s)|ec2s/M , h(t) := h1(t) + h2(t).
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We will later pick M � 1. Note that we expect that vx(x, t) decays faster than v(x, t) as is the case for

the heat kernel.

We remark that we do know existence and smoothness of (v, p) for short times: Indeed, we can solve

the original PDE for φ(x, t) for short times and can substitute the resulting expression into (2.11) upon

using our ansatz (2.1). The resulting integral equation has a solution ṗ(t) for small times and, using again

(2.1), we find a smooth function v that then satisfies (2.13). Furthermore, using that φ0 satisfies (1.11)

by assumption, we see that h(t) is well defined and continuous for 0 < t� 1. Finally, standard parabolic

theory implies that h(t) retains these properties as long as h(t) stays bounded. The key issue is therefore

to show that h(t) stays bounded for all times t > 0, and this is what the following proposition asserts.

Proposition 2.1. For each γ ∈ (0, 12), there exist positive constants ε0, C0,M such that

h1(t) ≤ C0(ε+ h2(t) + h(t)2), h2(t) ≤ C0(ε+ h(t)2). (2.15)

for all t ≥ 0 and all initial data u0 with ε := ‖ex2/Mφ0‖C1 ≤ ε0.

Using this proposition, we can add the inequalities in (2.15) and eliminate h2 on the right-hand side to

obtain

h(t) ≤ C0(C0 + 1)(ε+ h(t)2).

Using this inequality and the continuity of h(t), we find that h(t) ≤ 2C0(C0 + 1)ε for all t ≥ 0 provided

0 < ε ≤ ε0 is sufficiently small. Thus, Theorem 1 will be proved once we establish Proposition 2.1. The

following sections will be devoted to proving this proposition.

2.2 Estimates of the nonlinear term

We begin by deriving estimates of the nonlinear term

N (x, t, p, ṗ, vx) =
2pvxBx(x, t)

1 + pB(x, t)
+ ṗ

(
B(x, t)

1 + c
4p
− B(x, t)

1 + pB(x, t)

)
that appears in (2.11) and (2.13). Recalling that

e(x, t) =
c

4

(
errfn

(
x+ ct√

4t

)
− errfn

(
x− ct√

4t

))
and using the definition of the error function, we see that∣∣∣e(x, t)( c

4
− e(x, t)

)∣∣∣ ≤ C (e−
(x+ct)2

8t + e−
(x−ct)2

8t

)
.

Since B(x, t) = e(x, t+ 1) + G̃(x, 0, t+ 1), we conclude from (2.7) that∣∣∣B(x, t)
( c

4
− B(x, t)

)∣∣∣ ≤ C (e
− (x+ct)2

8(t+1) + e
− (x−ct)2

8(t+1)

)
and thus

B(x, t)

1 + pB(x, t)
− B(x, t)

1 + c
4p
≤ C|p|

(
e
− (x+ct)2

8(t+1) + e
− (x−ct)2

8(t+1)

)
.

11



In addition, we have ∣∣∣∣ Bx(x, t)

1 + pB(x, t)

∣∣∣∣ ≤ C(1 + t)−1/2
(

e
− (x+ct)2

8(t+1) + e
− (x−ct)2

8(t+1)

)
.

Combining these estimates, we therefore obtain

|N (x, t, p, ṗ, vx)| ≤ C
(

(1 + t)−1/2|p||vx|+ |pṗ|
)(

e
− (x+ct)2

8(t+1) + e
− (x−ct)2

8(t+1)

)
(2.16)

uniformly in x ∈ R and t ≥ 0, provided p is sufficiently small. In the remainder of the proof, we shall use

only the preceding estimate (2.16) but not any other information about the nonlinearity.

2.3 Estimates for h2(t)

To establish the claimed estimate for h2(t), recall from (2.11) that

|ṗ(t)| ≤ C(1 + |p(t)|)
∫
R
ψ(y)

∣∣∣ [v2y +N (·, ·, p, ṗ, vy)
]

(y, t)
∣∣∣ dy. (2.17)

We shall show that there is a constant C1 = C1(M) such that

|ṗ(t)| ≤ C1e
−c2t/M (ε+ h2(t)), (2.18)

which then establishes the estimate for h2(t) stated in Proposition 2.1. To show (2.18), we note that the

definitions of p(t) and h2(t) imply that

|p(t)| ≤ |p(0)|+
∫ t

0
|ṗ(s)|ds ≤ |p(0)|+

∫ t

0
e−c

2s/Mh2(t) ds ≤ C1(ε+ h2(t)) (2.19)

and therefore

|p(t)ṗ(t)| ≤ C1e
−c2t/Mh2(t)(ε+ h2(t)) ≤ C1e

−c2t/M (ε+ h(t)2). (2.20)

Next, we use the estimate |ψ(y)| ≤ 2e−c|y|, the bound (2.16) on N , and the inequality

e−
c|y|
2 e
− (y±ct)2
M(1+t) ≤ C1e

− c|y|
4 e−

c2t
M ,

which holds for each M ≥ 8, to conclude that

|ψ(y)v2y(y, t)| ≤
C1

(1 + t)1+2γ
Ce−

c
2
|y|e−

2c2

M
th1(t)

2 (2.21)

and therefore

|ψ(y)N (y, t, p, ṗ, vy)| ≤ C1(1 + t)−1/2
(

e
− (x+ct)2

8(t+1) + e
− (x−ct)2

8(t+1)

)
ψ(y)|vy(y, t)||p(t)|

+C1

(
e
− (x+ct)2

8(t+1) + e
− (x−ct)2

8(t+1)

)
ψ(y)|p(t)ṗ(t)|

≤ C1(1 + t)−1/2e−
c
2
|y|− 2c2

M
th1(t)(ε+ h2(t)) + C1e

− c
2
|y|− 2c2

M
t(ε+ h(t)2)

≤ C1e
− c

2
|y|− 2c2

M
t(ε+ h(t)2). (2.22)

Using these estimates in (2.17), we arrive readily at (2.18), thus proving the estimate for h2(t) stated in

Proposition 2.1.
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2.4 Estimates for v(x, t) and vx(x, t)

In this section, we will establish the pointwise bounds

|v(x, t)| ≤ C1(ε+ h2(t) + h(t)2)θ1(x, t) (2.23)

|vx(x, t)| ≤ C1(ε+ h2(t) + h(t)2)θ2(x, t) (2.24)

for v(x, t) and vx(x, t), respectively, which taken together prove the inequality for h1(t) stated in Proposi-

tion 2.1. In particular, the proof of Proposition 2.1 is complete once the two estimates above are established.

We denote by C1 possibly different constants that depend only on the choice of γ,M so that C1 = C1(γ,M).

We focus first on v(x, t). From the integral formulation (2.13) for v(x, t), we find that

|v(x, t)| ≤ C1 (|p0|+ |p(t)|) G̃(x, 0, t+ 1) +

∫
R
G̃(x, y, t)|v0(y)|dy (2.25)

+

∫ t

0

∫
R

∣∣∣G̃(x, y, t− s)
[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s)

∣∣∣ dy ds

+

∫ t

0

∫
R

∣∣∣[e(x, t− s+ 1)− e(x, t+ 1)]ψ(y)
[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s)

∣∣∣dy ds.

In the remainder of this section, we will estimate the right-hand side of (2.25) term by term.

First, we note that (2.7) implies that there is a constant C1 = C1(M) so that G̃(x, 0, t + 1) ≤ C1θ1(x, t).

Using (2.19) and the fact that |p(0)| ≤ C1ε, we therefore obtain

(|p(0)|+ |p(t)|)G̃(x, 0, t+ 1) ≤ C1(ε+ h2(t))θ1(x, t),

which is the desired estimate for the first term on the right-hand side of (2.25).

Next, we consider the integral term in (2.25) that involves the initial data v0. Using (2.7) together with

our assumption (1.11) on φ0, and hence on v0, we see that∫
R
|G̃(x, y, t)v0(y)| dy ≤ Cε

∫
R
t−1/2

(
e−

(x−y+ct)2
4t + e−

(x−y−ct)2
4t

)
e−

y2

M dy, (2.26)

which is clearly bounded by εC1θ1(x, t) for t ≥ 1 upon using

e−
(x−y±ct)2

4t e−
y2

M ≤ C1e
− (x±ct)2

Mt e−
y2

2M .

For t ≤ 1, we can use the estimates

e−
(x−y±ct)2

8t e−
y2

M ≤ 2e−
(x−y)2

8t e−
y2

M ≤ C1e
− x2

2M∫
R
t−1/2

(
e−

(x−y+ct)2
8t + e−

(x−y−ct)2
8t

)
dy ≤ C1

to conclude that the integral in (2.26) is again bounded by εC1θ1(x, t).

We now consider the remaining two integrals in (2.25). Note that the definition of h1 gives

|vy(y, s)| ≤ θ2(y, s)h1(s).
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Using this fact together with the estimates (2.19) and (2.20) and the bound (2.16), we obtain

|N (y, s, p(s), ṗ(s), vy(y, s))| ≤ C1(1 + s)−1/2
(

e
− (y+cs)2

8(s+1) + e
− (y−cs)2

8(s+1)

)
|vy(y, s)||p(s)|

+C1

(
e
− (y+cs)2

8(s+1) + e
− (y−cs)2

8(s+1)

)
|p(s)ṗ(s)|

≤ C1(ε+ h2(t))h1(t)θ2(y, s)(1 + s)−1/2
(

e
− (y+cs)2

8(s+1) + e
− (y−cs)2

8(s+1)

)
+C1(ε+ h(t)2)e−

c2s
M

(
e
− (y+cs)2

8(s+1) + e
− (y−cs)2

8(s+1)

)
≤ C1(ε+ h(t)2)

[
(1 + s)γ−1/2θ1(y, s)θ2(y, s) + (1 + s)γθ1(y, s)e

− c
2s
M

]
.

In §2.5, we will prove the following result for our spatio-temporal template functions.

Lemma 2.2. For each sufficiently large M , there is a constant C1 so that∫ t

0

∫
R
|G̃(x, y, t− s)|

[
θ22 + (1 + s)γ−1/2θ1θ2 + (1 + s)γθ1e

−c2s/M
]

(y, s) dy ds ≤ C1θ1(x, t)∫ t

0

∫
R
|G̃x(x, y, t− s)|

[
θ22 + (1 + s)γ−1/2θ1θ2 + (1 + s)γθ1e

−c2s/M
]

(y, s) dy ds ≤ C1θ2(x, t).

Using this lemma and the above estimates for v2y +N , we obtain the desired estimate∫ t

0

∫
R
G̃(x, y, t− s)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds ≤ C1(ε+ h(t)2)θ1(x, t).

Finally, we have the following lemma, whose proof is again given in §2.5, which provides the desired estimate

for the last integral in (2.25).

Lemma 2.3. For each sufficiently large M , there is a constant C1 so that∫ t

0

∫
R
|e(x, t− s+ 1)− e(x, t+ 1)|ψ(y)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds ≤ C1(ε+ h(t)2)θ1(x, t)∫ t

0

∫
R
|ex(x, t− s+ 1)− ex(x, t+ 1)|ψ(y)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds ≤ C1(ε+ h(t)2)θ2(x, t).

In summary, combining the estimates obtained above, we have established the claimed estimate (2.23), and

it remains to derive the estimate (2.24) to complete the proof of Proposition 2.1. Taking the x-derivative

of equation (2.13), we see that

|vx(x, t)| ≤ (|p(0)|+ |p(t)|) G̃x(x, 0, t) +

∫
R
G̃x(x, y, t)v0(y) dy (2.27)

+

∫ t

0

∫
R
G̃x(x, y, t− s)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds

+

∫ t

0

∫
R

[ex(x, t− s+ 1)− ex(x, t+ 1)]ψ(y)
[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds.

Applying the second estimate in Lemmas 2.2 and 2.3 to (2.27) and using that G̃x(x, 0, t) ≤ Cθ2(x, t), we

immediately obtain (2.24).
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2.5 Proofs of Lemmas 2.2 and 2.3

It remains to prove the lemmas that we used in the preceding section.

Proof of Lemma 2.2. We need to show that for each large M there is a constant C1 so that∫ t

0

∫
R
|G̃(x, y, t− s)|

[
θ22 + (1 + s)γ−1/2θ1θ2 + (1 + s)γθ1e

−c2s/M
]

(y, s) dy ds ≤ C1θ1(x, t)

for all t ≥ 0. First, we note that there are constants C1, C̃1 > 0 such that

C̃1e
−y2/M ≤ |θ1(y, s)|+ |θ2(y, s)| ≤ C1e

−y2/M

for all 0 ≤ s ≤ t ≤ 1. Thus, for some constant C1 that may change from line to line, we have∫ t

0

∫
R
|G̃(x, y, t− s)|

[
θ22 + (1 + s)γ−1/2θ1θ2 + (1 + s)γθ1e

− c
2s
M

]
(y, s) dy ds

≤ C1

∫ t

0

∫
R

(t− s)−1/2e−
(x−y)2
4(t−s) e−

y2

M dy ds

≤ C1

∫ t

0

[∫
{|y|≥2|x|}

(t− s)−1/2e−
(x−y)2
8(t−s) e

− x2

8(t−s) dy +

∫
{|y|≤2|x|}

(t− s)−1/2e−
(x−y)2
4(t−s) e−

4x2

M dy

]
ds

≤ C1

∫ t

0

[
e
− x2

8(t−s) + e−
4x2

M

]
ds

≤ C1e
− 4x2

M

≤ C1

C̃1

θ1(x, t)

for all 0 ≤ t ≤ 1. An analogous computation can be carried out for the x-derivative since
∫ t
0 (t− s)−1/2 ds

is bounded uniformly in 0 ≤ t ≤ 1.

Thus, it remains to estimate the expression

θ1(x, t)
−1
∫ t

0

∫
R
|G̃(x, y, t− s)|

[
θ22 + (1 + s)γ−1/2θ1θ2 + (1 + s)γθ1e

−c2s/M
]

(y, s) dy ds

for t ≥ 1. Combining only the exponentials in this expression, we obtain terms that can be bounded by

exp

(
(x+ α3ct)

2

M(1 + t)
− (x− y + α1c(t− s))2

4(t− s)
− (y + α2cs)

2

M(1 + s)

)
(2.28)

with αj = ±c. To estimate this expression, we proceed as in [5, Proof of Lemma 7] and complete the

square of the last two exponents in (2.28). Written in a slightly more general form, we obtain

(x− y − α1(t− s))2

M1(t− s)
+

(y − α2s)
2

M2(1 + s)
=

(x− α1(t− s)− α2s)
2

M1(t− s) +M2(1 + s)

+
M1(t− s) +M2(1 + s)

M1M2(1 + s)(t− s)

(
y − xM2(1 + s)− (α1M2(1 + s) + α2M1s)(t− s)

M1(t− s) +M2(1 + s)

)2

and conclude that the exponent in (2.28) is of the form

(x+ α3t)
2

M(1 + t)
− (x− α1(t− s)− α2s)

2

4(t− s) +M(1 + s)
(2.29)

−4(t− s) +M(1 + s)

4M(1 + s)(t− s)

(
y − xM(1 + s)− (α1M(1 + s) + 4α2s)(t− s)

4(t− s) +M(1 + s)

)2

,
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with αj = ±c. Using that the maximum of the quadratic polynomial αx2 + βx+ γ is −β2/(4α) + γ, it is

easy to see that the sum of the first two terms in (2.29), which involve only x and not y, is less than or

equal to zero. Omitting this term, we therefore obtain the estimate

exp

(
(x± ct)2

M(1 + t)
− (x− yδ1c(t− s))2

4(t− s)
− (y − δ2cs)2

M(1 + s)

)
(2.30)

≤ exp

(
− 4(t− s) +Ms

4M(1 + s)(t− s)

(
y − xM(1 + s) + c(δ1M(1 + s) + 4δ2s)(t− s)

4(t− s) +M(1 + s)

)2
)

for δj = ±1. Using this result, we can now estimate the integral (2.28) term by term using the key

assumption that 0 < γ < 1
2 . The term involving θ22 can be estimated as follows using (2.30):

θ1(x, t)
−1
∫ t

0

∫
R
|G̃(x, y, t− s)|θ22(y, s) dy ds

≤ C1(1 + t)γ
∫ t

0

1√
t− s(1 + s)1+2γ

×
∫
R

exp

(
−4(t− s) +M(1 + s)

4M(1 + s)(t− s)

(
y − [xM(1 + s)± c(M(1 + s) + 4s)(t− s)]

4(t− s) +M(1 + s)

)2
)

dy ds

≤ C1(1 + t)γ
∫ t

0

1√
t− s(1 + s)1+2γ

√
4M(1 + s)(t− s)

4(t− s) +M(1 + s)
ds

≤ C1(1 + t)γ
∫ t/2

0

1

(1 + s)1/2+2γ

1

(1 + t)1/2
ds+ C1(1 + t)γ

∫ t

t/2

1

(1 + s)1+2γ
ds

≤ C1(1 + t)γ−1/2 + C1(1 + t)−γ ,

which is clearly bounded since γ < 1
2 . Similarly, we have

θ1(x, t)
−1
∫ t

0

∫
R
|G̃(x, y, t− s)|(1 + s)γ−1/2θ1θ2(y, s) dy ds

≤ C1(1 + t)γ
∫ t

0

1√
t− s(1 + s)γ+1

√
4M(1 + s)(t− s)

4(t− s) +M(1 + s)
ds

≤ C1(1 + t)γ
∫ t/2

0

1

(1 + s)γ+1/2

1

(1 + t)1/2
ds+ C1(1 + t)γ

∫ t

t/2

1

(1 + t)γ+1/2

1

(1 + s)1/2
ds

≤ C1(1 + t)γ−1/2 + C1,

which is again bounded due to γ < 1
2 . Finally, we estimate

θ1(x, t)
−1
∫ t

0

∫
R
|G̃(x, y, t− s)|(1 + s)γe−

c2s
M θ1(y, s) dy ds

≤ C1(1 + t)γ
∫ t

0

e−
c2s
M

√
t− s

√
4M(1 + s)(t− s)

4(t− s) +M(1 + s)
ds

≤ C1(1 + t)γ
∫ t/2

0
e−

c2s
M

1

(1 + t)1/2
ds+ C1(1 + t)γe−

c2t
2M

∫ t

t/2
ds

≤ C1(1 + t)γ−1/2 + C1(1 + t)γ+1e−
c2t
2M ,

which is bounded, again due to γ < 1
2 .
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It remains to verify the second inequality in Lemma 2.2 which involves G̃x. We shall check only the term

involving (1 + s)γ−1/2θ1θ2 as the other cases are similar and, in fact, easier. We have shown above that

the resulting integrals are bounded for 0 ≤ t ≤ 1 and therefore focus on the case t ≥ 1. Using that

|G̃x| ≤ Ct−1/2|G̃|, which follows by inspection, and employing again (2.30), we obtain

θ2(x, t)
−1
∫ t

0

∫
R
|G̃x(x, y, t− s)|(1 + s)γ−1/2θ1θ2(y, s) dy ds

≤ C1(1 + t)γ+1/2

∫ t

0

1

(t− s)(1 + s)γ+1

√
4M(1 + s)(t− s)

4(t− s) +M(1 + s)
ds

≤ C1(1 + t)γ+1/2

∫ t/2

0

1

t1/2(1 + s)γ+1/2

1

(1 + t)1/2
ds+ C1

∫ t

t/2

1

(t− s)1/2
1

(1 + t)1/2
ds

≤ C1(1 + t)γt−1/2 + C1,

which is bounded for t ≥ 1. This completes the proof of Lemma 2.2.

Proof of Lemma 2.3. We need to show that∫ t

0

∫
R
|e(x, t− s+ 1)− e(x, t+ 1)|ψ(y)[v2y +N (·, ·, p, ṗ, vy)](y, s) dy ds ≤ C1(ε+ h(t)2)θ1(x, t).

Intuitively, this integral should be small for the following reason. The difference e(x, t − s) − e(x, t + 1)

converges to zero as long as s is not too large, say on the interval s ∈ [0, t/2]. For s ∈ [t/2, t], on the other

hand, we will get exponential decay in s from the localization of ψ(y) in combination with the propagating

heat kernels that appear in the nonlinearity and forcing terms. To make this precise, we write

e(x, t− s)− e(x, t+ 1) = e(x, t− s)− e(x, t− s+ 1)︸ ︷︷ ︸
term I

+ e(x, t− s+ 1)− e(x, t+ 1)︸ ︷︷ ︸
term II

. (2.31)

We focus first on the term I and consider the cases t ≥ 1 and 0 ≤ t ≤ 1 separately. First, let t ≥ 1. For

0 ≤ s ≤ t − 1, we have |e(x, t − s) − e(x, t − s + 1)| ≤ CG̃(x, 0, t − s), and we can estimate the resulting

integral above in the same way as in the proof of Lemma 2.2; we omit the details. For t− 1 ≤ s ≤ t ≤ 1,

on the other hand, the definition of e(x, t− s) yields

|e(x, t− s)− e(x, t− s+ 1)| ≤ C
∫ x2

(t−s)

x2

(1+t−s)

e−z
2

dz ≤ Ce−x
2/2. (2.32)

Using (2.21)-(2.22), namely

|ψ(y)N (y, s, p, ṗ, vy)| ≤ Ce−
c
2
|y|− 2c2

M
s(ε+ h(t)2) (2.33)

for all s ≥ 0, we obtain∫ t

t−1

∫
R

[e(x, t− s)− e(x, t− s+ 1)]ψ(y)|N (y, s, p, ṗ, vy)|(y, s) dy ds

≤ C1(ε+ h(t)2)

∫ t

t−1
e−

x2

2 e−
2c2s
M ds ≤ C1(ε+ h(t)2)e−

x2

2 e−
2c2t
M ,

which is clearly bounded by C1θ1(x, t) since e−c
2t/M ≤ C1(1 + t)−γ and

(x+ ct)2

M(1 + t)
≤ 2x2

M
+

4c2

M
+
c2t

M
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for arbitrary M ≥ 4. In summary, we have established the desired estimates for the term I in (2.31) for

t ≥ 1. For t ≤ 1, the estimate (2.32) remains true since t− s is small, and proceeding as above yields∫ t

0

∫
R

[e(x, t− s)− e(x, t− s+ 1)]ψ(y)|N (y, s, p, ṗ, vy)| dy ds ≤ C(ε+ h(t)2)e−
x2

2 e−
2c2t
M ,

which is again bounded by C1θ1(x, t).

It remains to discuss the term II which involves the difference e(x, t− s+ 1)− e(x, t+ 1). We have

|e(x, t− s+ 1)− e(x, t+ 1)|

=

∣∣∣∣∫ t−s+1

t+1
eτ (x, τ) dτ

∣∣∣∣
≤

∫ t+1

t−s+1

∣∣∣∣ c√
4πτ

(
e−

(x−cτ)2
4τ + e−

(x+cτ)2

4τ

)
+

1

τ
√

4π

(
(x− cτ)√

4τ
e−

(x−cτ)2
4τ − (x+ cτ)√

4τ
e−

(x+cτ)2

4τ

)∣∣∣∣ dτ

≤ C

∫ t+1

t−s+1

(
1√
τ

+
1

τ

)(
e−

(x−cτ)2
8τ + e−

(x+cτ)2

8τ

)
dτ,

where we used in the last inequality that ze−z
2

is uniformly bounded in z. We now use the preceding

expression to estimate θ−11 (x, t)(e(x, t− s+ 1)− e(x, t+ 1)) and focus first on the single exponential term

e
(x−ct)2
M(1+t) e−

(x−cτ)2
8τ .

Combining these exponentials and completing the square in x in the resulting exponent, the latter becomes

− [M(t− τ + 1) + (M − 8)τ ]

8M(t+ 1)τ

[
x+

c(8−M)τ(t+ 1)

M(t− τ) + (M − 8)τ

]2
+

c2(t− τ + 1)2

M(t− τ + 1) + (M − 8)τ
.

Using that τ ≤ t and picking M ≥ 8, we can neglect the exponent resulting from the first expression that

involves in x and conclude that

e
(x−ct)2
M(1+t) e−

(x−cτ)2
8τ ≤ C1e

c2(t−τ)
M .

The remaining exponentials can be estimated similarly, and we obtain

θ−11 (x, t)|e(x, t− s+ 1)− e(x, t+ 1)| ≤ C1(1 + t)γ
∫ t+1

t−s+1

(
1√
τ

+
1

τ

)
e
c2(t−τ)
M dτ

≤ C1(1 + t)γ(1 + t− s)−1/2e
c2s
M .

Using this inequality together with (2.33) finally gives

θ1(x, t)
−1
∫ t

0

∫
R

[e(x, t− s+ 1)− e(x, t+ 1)]ψ(y)|N (y, s, p, ṗ, vy)|(y, s) dy ds

≤ C1(1 + t)γ(ε+ h(t)2)

∫ t

0
(1 + t− s)−1/2e

c2s
M e−

2c2s
M ds

≤ C1(1 + t)γ(ε+ h(t)2)

[
(1 + t)−1/2

∫ t/2

0
e−

c2s
M ds+ e−

c2t
2M

∫ t

t/2
(1 + t− s)−1/2 ds

]
≤ C1(ε+ h(t)2).

for M sufficiently large, which proves the first estimate in Lemma 2.3.
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It remains to prove the estimate∫ t

0

∫
R
|ex(x, t− s+ 1)− ex(x, t+ 1)|ψ(y)

[
v2y +N (·, ·, p, ṗ, vy)

]
(y, s) dy ds

≤ C1(ε+ h(t)2)θ2(x, t)

for the derivative in x. Since the derivative of e(x, t − s + 1) − e(x, t + 1) with respect to x generates an

extra decay term (1 + t)−1/2, we have

θ2(x, t)
−1
∫ t

0

∫
R

[ex(x, t− s+ 1)− ex(x, t+ 1)]ψ(y)|N (y, s, p, ṗ, vy)|(y, s) dy ds

≤ C1(ε
2 + h(t)2)(1 + t)γ+1/2

∫ t

0
(1 + t− s)−1e

c2s
M e−

2c2s
M ds

≤ C1(ε
2 + h(t)2)(1 + t)γ+1/2

[
(1 + t)−1

∫ t/2

0
e−

c2s
M ds+ e−

c2t
2M

∫ t

t/2
(1 + t− s)−1 ds

]
≤ C1(ε

2 + h(t)2),

which completes the proof of the lemma.

3 Discussion and outlook

In this paper, we considered the Burgers-type equation

φt + c tanh
(cx

2

)
φx = φxx + φ2x, c > 0 (3.1)

as a model for the evolution of phase perturbations of a source. We proved that solutions associated with

small localized initial data converge pointwise in x to a constant solution as t→∞. More precisely, since

the group velocities point toward infinity, solutions will evolve, up to terms that decay in time, like phase

plateaus whose width expands linearly in t and whose interfaces move away from the core toward x = ±∞,

while widening like
√
t. The plateau height is determined by the shape of the perturbation near the core

located at x = 0, which therefore plays a crucial role in determining the overall dynamics.

To prove this result, we made use of the facts that (i) the Green’s function G(x, y, t) of the linearization of

(3.1) about φ = 0 is given explicitly as the sum of two counterpropagating heat kernels plus an expanding

phase plateau and that (ii) the Cole–Hopf transformation then gives an explicit phase-plateau solution of

(3.1) for each given fixed height. In particular, the first term on the right-hand side of our ansatz

φ(x, t) = log (1 + p(t)G(x, 0, t+ 1)) + v(x, t)

for solutions of (3.1) satisfies (3.1) for each constant p, and our expectation is that v(x, t) can be bounded

by two counterpropagating heat kernels. Exploiting (i) and (ii) allowed us to show that the remainder

terms left in the equation for v after substituting our ansatz into (3.1) can be bounded from above by

|N (x, t, p, ṗ, vx)| ≤ C|p|
(

(1 + t)−1/2|vx|+ |ṗ|
)(

e
− (x+ct)2

8(t+1) + e
− (x−ct)2

8(t+1)

)
. (3.2)

This estimate is again based only on the properties (i) and (ii) stated above. From this point onward, our

analysis relied only on the estimate (3.2) and on the decomposition of the Green’s function into a phase
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plateau and terms that can be bounded by moving heat kernels. In particular, the decomposition of the

Green’s function together with (3.2) allowed us to use weights in the form of moving heat kernels to verify

that v(x, t) decays in time like a heat kernel, while p(t) approaches an appropriate finite limit exponentially

in time.

Before arguing why we believe that our approach is more broadly applicable, we revisit the properties (i)

and (ii) that we relied on in our study of (3.1). Our analysis showed that we can use the weight θ2(t) for

vx(x, t). Thus, inspecting (3.2), we see that it suffices that our ansatz for the phase plateau satisfies the

underlying PDE up to terms that can be bounded by (1 + t)−1 times a sum of moving heat kernels. This

also shows that adding terms of the form φmx with m ≥ 3 to (3.1) does not affect our arguments, so that

we need to account only for the leading-order terms.

We now return to the problem that motivated this paper, namely the nonlinear stability of sources in

reaction-diffusion systems

ut = Duxx + f(u), x ∈ R, u ∈ Rn. (3.3)

The Green’s function associated with the linearization of (3.3) about a time-periodic source u∗(x, t) can be

assessed analytically through the methods developed in [1]. In particular, we believe that the leading-order

terms in the Green’s function will be similar to (1.6). In contrast to (3.1), the linearization of (3.3) about

a source has two eigenvalues at the origin, which arise due to invariance under space and time shifts. To

account for these independent symmetries, we seek solutions u(x, t) of (3.3) in the form

u(x+ φ1(x, t), t+ φ2(x, t)) = u∗(x, t) + w(x, t) (3.4)

and expect that the evolution of the space and time shifts φj(x, t) is now described by two Burgers-type

equations; we remark that there are technical reasons for writing the ansatz in the form (3.4) instead

of using (1.3) and refer to [2, §5] for an explanation in the context of wave trains. We do not know

whether the resulting Burgers-type equations are exactly of the form (3.1). However, the only difference

we expect to encounter is that the coefficients in front of the advection and nonlinear terms may depend

on (x, t); since the source converges exponentially in x to the asymptotic wave trains, these coefficients will

approach time-independent limits exponentially in x. We therefore feel that it should be possible to derive

approximate phase-plateau solutions also in this case up to terms that can be bounded by (1 + t)−1 times

a sum of moving heat kernels. Thus, while there may be numerous technical difficulties that we did not

anticipate, we believe that the approach presented here is well suited to address the stability of sources for

(3.3).
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