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Abstract. We establish long-time stability of multi-dimensional viscous shocks of a gen-
eral class of symmetric hyperbolic–parabolic systems with variable multiplicities, notably
including the equations of compressible magnetohydrodynamics (MHD) in dimensions
d ≥ 2. This extends the existing result established by K. Zumbrun for systems with
characteristics of constant multiplicity to the ones with variable multiplicity, yielding the
first such a stability result for (fast) MHD shocks. At the same time, we are able to drop
a technical assumption on structure of the so–called glancing set that was necessarily used
in previous analyses. The key idea to the improvements is to introduce a new simple
argument for obtaining a L1 → Lp resolvent bound in low–frequency regimes by employ-
ing the recent construction of degenerate Kreiss’ symmetrizers by O. Guès, G. Métivier,
M. Williams, and K. Zumbrun. Thus, at the low-frequency resolvent bound level, our
analysis gives an alternative to the earlier pointwise Green’s function approach of K. Zum-
brun. High–frequency solution operator bounds have been previously established entirely
by nonlinear energy estimates.
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1. Introduction

We consider a general system of viscous conservation laws (d ≥ 2)

(1.1) Ũt +
∑
j

F j(Ũ)xj =
∑
jk

(Bjk(Ũ)Ũxk)xj , x ∈ Rd, t > 0,

Ũ , F j ∈ Rn, Bjk ∈ Rn×n, n ≥ 2, with initial data Ũ(x, 0) = Ũ0(x), and a planar viscous
shock, connecting the endstates U±:

(1.2) Ũ = Ū(x1), lim
x1→±∞

Ū(x1) = U±.

We study the long-time linearized and nonlinear stability of the viscous shock Ū un-
der multi-dimensional perturbations of initial data. The problem has been carefully and
successfully investigated by K. Zumbrun and his collaborators in [Z2, Z3, Z4, GMWZ1].
There, due to technical arguments of the analysis, the authors put assumptions on the mul-
tiplicity of hyperbolic characteristic roots and structure of the so-called glancing set (see
(H4)-(H5) below). The latter assumption (which is automatically satisfied in dimensions
d = 1, 2 and in any dimension for rotationally invariant problems) assures the glancing set
to be confined to a finite union of smooth curves on which the branching eigenvalue has
constant multiplicity. This is precisely to reduce the complexity of multi-variable matrix
perturbation problem when dealing with glancing blocks to a simplified form of a two-
variable perturbation problem. Whereas, the constant multiplicity assumption excludes an
important physical application, namely, the equations of magnetohydrodynamics (MHD)
in dimensions d ≥ 2. In the current paper, we are able to relax the assumption of constant
multiplicities to variable multiplicities, allowing (fast) MHD shocks to be treated and thus
yielding for the first time the long-time multi-dimensional stability for these shocks. In
addition, we are also able to drop the assumption on structure of the glancing set at a price
of having t1/4 slower in decay rates in dimensions d ≥ 3.

Our main improvements rely on recent remarkable and technical works of O. Guès, G.
Métivier, M. Williams, and K. Zumbrun [GMWZ5, GMWZ6] where the authors have ob-
tained the L2 stability estimates and small viscosity stability for the symmetric systems
with variable multiplicities via their construction of Kreiss’ symmetrizers. The idea is to
employ these available estimates to establish the long-time stability, or more precisely, to
derive a resolvent bound in low–frequency regimes. This will be the main contribution of our
present paper. High-frequency estimates are already established by K. Zumbrun via elegant
nonlinear energy estimates for a very general class of symmetrizable systems, including our
class under consideration.
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We would like to mention that the idea of using L2 stability estimates via the construc-
tion of degenerate Kreiss’ symmetrizers to attack the long-time stability problem has been
investigated in [GMWZ1]. There the authors obtain the result under (H4)-(H5) assump-
tions (and treat the strictly parabolic systems). In our analysis, we avoid these technical
assumptions, by introducing a rather simpler argument for L1 → Lp resolvent bounds in
low-frequency regimes, which turns out to be the key to the improvements. The analysis
works precisely for the case of dimensions d ≥ 3. In dimension d = 2 (the condition (H5)
is now always satisfied), the analysis of [GMWZ1] indeed works even for the MHD shocks
as we are considering here by combining their later work in [GMWZ6] (though it was not
stated there). In Section 4, we represent a slightly modified version of [GMWZ1] treat-
ing this two–dimensional case, or more generally, cases with (H5) in a more direct way.
Once these low–frequency resolvent bounds are obtained, the stability analysis follows in a
standard fashion [Z2, Z3, Z4]. See Section 1.6 for further discussions.

1.1. Equations and assumptions. We consider the general hyperbolic-parabolic system
of conservation laws (1.1) in conserved variable Ũ , with

Ũ =
(
ũI

ũII

)
, Bjk =

(
0 0
bjk1 bjk2

)
,

ũI ∈ Rn−r, ũII ∈ Rr, and

(1.3) <σ
∑
jk

bjk2 ξjξk ≥ θ|ξ|
2 > 0, ∀ξ ∈ Rn\{0}.

Following [Z3, Z4], we assume that equations (1.1) can be written, alternatively, after a
triangular change of coordinates

(1.4) W̃ := W̃ (Ũ) =
(

w̃I(ũI)
w̃II(ũI , ũII)

)
,

in the quasilinear, partially symmetric hyperbolic-parabolic form

(1.5) Ã0W̃t +
∑
j

ÃjW̃xj =
∑
jk

(B̃jkW̃xk)xj + G̃,

where

Ã0 =
(
Ã0

11 0
0 Ã0

22

)
, Ã1 =

(
Ã1

11 Ã1
12

Ã1
21 Ã1

22

)
, B̃jk =

(
0 0
0 b̃jk

)
and, defining W̃± := W̃ (U±),

(A1) Ãj(W̃±), Ã0, Ã1
11 are symmetric, Ã0 ≥ θ0 > 0,

(A2) for each ξ ∈ Rd \ {0}, no eigenvector of
∑

j ξjÃ
j(Ã0)−1(W̃±) lies in the kernel of∑

jk ξjξkB̃
jk(Ã0)−1(W̃±),

(A3) <σ
∑
b̃jkξjξk ≥ θ|ξ|2, and G̃ =

(
0
g̃

)
with g̃(W̃x, W̃x) = O(|W̃x|2).

Along with the above structural assumptions, we make the following technical hypotheses:
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(H0) F j , Bjk, Ã0, Ãj , B̃jk, W̃ (·), g̃(·, ·) ∈ Cs+1, for s ≥ [(d − 1)/2] + 2 in our analysis of
linearized stability, and s ≥ s(d) := [(d− 1)/2] + 4 in our analysis of nonlinear stability.

(H1) The eigenvalues of Ã1
11 are (i) distinct from the shock speed s = 0; (ii) of common

sign; and (iii) of constant multiplicity with respect to U .

(H2) det(dF 1(U±)) 6= 0.

(H3) Local to Ū(·), stationary solutions of (1.1), connecting U±, form a smooth manifold
{Ū δ(·)}, δ ∈ U ⊂ Rl.

(H4) The eigenvalues of
∑

j ξjdF
j(U±) have constant multiplicity with respect to ξ ∈ Rd,

ξ 6= 0.

Structural assumptions (A1)-(A3) and (H0)-(H2) are satisfied for gas dynamics and MHD;
see discussions in [MaZ4, Z3, Z4, GMWZ5, GMWZ6].

Alternative Hypothesis H4′. The constant multiplicity condition in Hypothesis (H4)
holds for the compressible Navier Stokes equations whenever is hyperbolic. However, the
condition fails always for the equations of viscous MHD. In the paper, we are able to treat
symmetric systems like the viscous MHD under the following relaxed hypothesis.

(H4’) The eigenvalues of
∑

j ξjdF
j(U±) are either semisimple and of constant multiplicity

or totally nonglancing in the sense of [GMWZ6], Definition 4.3.

Remark 1.1. There will be easily seen that our results also apply to the case where the
characteristic roots satisfy a (BS) condition1 (see Definition 4.9, [GMWZ6]), a more general
situation than the constant multiplicity condition, ensuring that a suitable generalized block
structure condition is satisfied. See Remark 2.3 for further discussion.

Remark 1.2. Here we stress that we are able to drop the following structural assumption,
which is needed for the analyses of [Z2, Z3, Z4, GMWZ1].

(H5) The set of branch points of the eigenvalues of (Ã1)−1(iτÃ0 +
∑

j 6=1 iξjÃ
j)±, τ ∈ R,

ξ̃ ∈ Rd−1 is the (possibly intersecting) union of finitely many smooth curves τ = η±q (ξ̃), on
which the branching eigenvalue has constant multiplicity sq (by definition ≥ 2).

1.2. Shock profiles. We recall the following classification of shock profiles.

Hyperbolic Classification. Let i+ denote the dimension of the stable subspace of
dF 1(U+), i− denote the dimension of the unstable subspace of dF 1(U−), and i := i+ + i−.
Indices i± count the number of incoming characteristics from the right/left of the shock,
while i counts the total number of incoming characteristics toward the shock. Then, the
hyperbolic classification of profile Ū(·), i.e., the classification of the associated hyperbolic
shock (U−, U+), is  Lax type if i = n+ 1,

Undercompressive if i ≤ n,
Overcompressive if i ≥ n+ 2.

1Thanks to one of the referees for his pointing out this extension.
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In case all characteristics are incoming on one side, i.e. i+ = n or i− = n, a shock is
called extreme.

Viscous Classification. A complete description of the viscous connection requires the
further compressibility index l, where l is defined as in (H3). In case the connection is
“maximally” transverse:

(1.6) l =
{

1 Lax or undercompressive case
i− n overcompressive case

we call the shock “pure” type, and classify it according to its hyperbolic type. Otherwise,
we call it “mixed” under/overcompressive type. Throughout this paper, we assume all vis-
cous profiles are of pure, hyperbolic type.

For further discussions, see [Z2, Section 1.2] or [Z3, Section 1.2], and the references
therein.

1.3. The uniform Evans stability condition. The linearized equations of (1.1) about
Ū are

(1.7) Ut = LU :=
∑
j,k

(BjkUxk)xj −
∑
j

(AjU)xj

with initial data U(0) = U0. Here, Bjk := Bjk(Ū(x1)) and AjU := dF j(Ū(x1))U −
[dBj1(Ū(x1))U ]Ūx1(x1).

A necessary condition for linearized stability is weak spectral stability, defined as nonexis-
tence of unstable spectra <λ > 0 of the linearized operator L about the wave. As described
in [Z2, Z3], this is equivalent to nonvanishing for all ξ̃ ∈ Rd−1, <λ > 0 of the Evans function

DL(ξ̃, λ),

(see equation (A.3) in Appendix A) a Wronskian associated with the Fourier-transformed

eigenvalue ODE. Let ζ = (ξ̃, λ). Introduce polar coordinates ζ = ρζ̂, with ζ̂ = (ˆ̃
ξ, λ̂) ∈ Sd.

We also define Sd+ = Sd
⋂
{<eλ̂ ≥ 0}.

Definition 1.3. We define strong spectral stability as uniform Evans stability:

(D) DL(ζ̂, ρ) vanishes to precisely lth order at ρ = 0 for all ζ̂ ∈ Sd+ and has no other zeros
in Sd+ × R̄+, where l is the compressibility index defined as in (H3) and (1.6).

The spectral stability of arbitrary-amplitude shocks can be checked efficiently by numer-
ical Evans computations as in [HLyZ1, HLyZ2].

1.4. The GMWZ result. We recall the recent result of Guès, Métivier, Williams, and
Zumbrun for low-frequency regimes, and refer the reader to their original papers for the
detail of statements and the proof.

Theorem 1.4 ([GMWZ6], Theorems 3.7 and 3.9; [GMWZ1], Section 8). Assume (A1)-
(A3), (H0)-(H3), and (H4’).

Then, the strong spectral stability condition (D) implies the L2 uniform stability estimate
for low-frequency regimes (precisely stated below, (2.13), Section 2.2).
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Example 1.5 ([GMWZ6], Section 8). Fast Lax’ shocks for viscous MHD equations satisfy
the structural assumptions of Theorem 1.4.

However, it is also shown that

Counterexample 1.6 ([GMWZ6], Section 8). Slow Lax’ shocks for viscous MHD equa-
tions do not satisfy the structural assumption (H4’), and thus Theorem 1.4 does not apply
to these cases.

1.5. Main results. Our main results are as follows.

Theorem 1.7 (Linearized stability). Assuming (A1)-(A3), (H0)-(H3), (H4’), and (D), we
obtain the asymptotic L1 ∩H [(d−1)/2]+2 → Lp stability of (1.7) for all three types of shocks
in dimensions d ≥ 3, for any 2 ≤ p ≤ ∞, with rates of decay

(1.8)
|U(t)|L2 ≤ C(1 + t)−

d−2
4 |U0|L1∩L2 ,

|U(t)|Lp ≤ C(1 + t)−
d−1
2

(1−1/p)+ 1
4 |U0|L1∩H[(d−1)/2]+2 ,

provided that the initial perturbations U0 are in L1 ∩ L2 for p = 2, or in L1 ∩H [(d−1)/2]+2

for p > 2.

Theorem 1.8 (Nonlinear stability). Assuming (A1)-(A3), (H0)-(H3), (H4’), and (D), we
obtain the asymptotic L1 ∩ Hs → Lp ∩ Hs stability for Lax or overcompressive shocks in
dimension d ≥ 3 and undercompressive shocks in dimensions d ≥ 5, for s ≥ s(d) as defined
in (H0), and any 2 ≤ p ≤ ∞, with rates of decay

(1.9)
|Ũ(t)− Ū |Lp ≤ C(1 + t)−

d−1
2

(1−1/p)+ 1
4 |U0|L1∩Hs

|Ũ(t)− Ū |Hs ≤ C(1 + t)−
d−2
4 |U0|L1∩Hs ,

provided that the initial perturbations U0 := Ũ0 − Ū are sufficiently small in L1 ∩Hs.

Remark 1.9. The price of dropping Hypothesis (H5) is that the obtained rate of decay
is degraded by t1/4 as comparing to those established in [Z2, Z3, Z4] or Theorem 1.10
below. Therefore the rates are possibly not sharp. In fact, we believe that the sharp rate
of decay in L2 is rather that of a d-dimensional heat kernel and the sharp rate of decay in
L∞ dependent on the characteristic structure of the associated inviscid equations, as in the
constant-coefficient case [HoZ1, HoZ2].

Our next main result addresses the stability for the two–dimensional case that is not
covered by the above theorems. We remark here that as shown in [Z3], page 321, Hypothesis
(H5) is automatically satisfied in dimensions d = 1, 2 and in any dimension for rotationally
invariant problems. Thus, in treating the two–dimensional case, we assume this hypothesis
without making any further restriction on structure of the systems. Also since it turns out
that the proof does not depend on the dimensions, we state (and prove) the theorem in a
general form as follows, recovering previous results of K. Zumbrun (see [Z3, Theorem 5.5])
for “uniformly inviscid stable” Lax or over–compressive shocks with same decay rates.
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Theorem 1.10 (Two-dimensional case or cases with (H5)). Assume the same hypotheses as
in Theorems 1.7 and 1.8 with additional assumption (H5). Then Lax or over–compressive
shocks are asymptotically nonlinearly L1 ∩Hs → Lp ∩Hs stable in dimensions d ≥ 2, for
any 2 ≤ p ≤ ∞, with rates of decay

(1.10)
|Ũ(t)− Ū |Lp ≤ C(1 + t)−

d−1
2

(1−1/p)|U0|L1∩Hs

|Ũ(t)− Ū |Hs ≤ C(1 + t)−
d−1
4 |U0|L1∩Hs ,

provided that the initial perturbations U0 := Ũ0−Ū are sufficiently small in L1∩Hs. Similar
statement can be stated for linearized stability with same decay rates.

1.6. Discussion and open problems. As observed in [Z3, Z4], the high-frequency esti-
mate on the solution operator has already been established without the structural assump-
tions (H4)-(H5), mainly relying on the damping energy estimates. Hence we shall use it here
as a black box. We would like to draw the reader’s attention to our recent work in [NZ2] for
a great simplification of this original high-frequency argument, requiring higher regularity
of the forcing f (to credit, the simplification was based on an argument introduced in [KZ]
for relaxation shocks).

The difficulty of relaxing Hypothesis (H4) and dropping (H5), extending results in [Z2,
Z3, Z4] obtained by pointwise bound approach, is that there and in [GMWZ1] the authors
apply the diagonalization of glancing blocks, where the hypotheses are required, to obtain
rather sharp bounds on resolvent kernel and resolvent solution. We rather use the L2

stability bound more directly, avoiding to get sharp bounds on the adjoint problem where
the diagonalization of glancing blocks must be applied (see Section 12, [GMWZ1]), and as a
consequence, avoiding the diagonalization error (denoted by β in [GMWZ1] or γ2 in [Z3]) at
the expense of slightly degraded decay, comparing to those reported in [Z2, Z3, GMWZ1].
However, the loss t1/4 of decay is still sufficient to close our analysis for dimensions d ≥ 3
in the Lax or overcompressive case and for d ≥ 5 in the undercompressive case. As already
mentioned at the beginning of the paper, this L1 → Lp resolvent bound will be the key to
the improvement.

Our analysis indeed applies to all applications covered by the GMWZ small viscosity
theory. Hence, the remaining open problem is to treat cases that are not covered by the
GMWZ theory, that is, the cases when the structural assumption (H4’) of Theorem 1.4 is not
satisfied or more generally when the generalized block structure fails. Counterexample 1.6
is showing one of such interesting but untreated cases, violating the structural assumption
(H4’).

It is also worth mentioning that the undercompressive shock analysis was carried out
in [Z3] only in nonphysical dimensions d ≥ 4, and thus still remains open in dimensions
for d ≤ 3 for systems with or without assumptions (H4)-(H5). Finally, in our forthcoming
paper [N2], we have been able to carry out the analysis for boundary layers in dimensions
d ≥ 2, extending our recent results in [NZ2] to systems with variable multiplicities. It turns
out that the analysis for the boundary layer case is quite more delicate than those for the
case of Lax or overcompressive shocks that we are studying here.
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2. Linearized estimates

The linearized equations of (1.1) about the profile Ū are

(2.1) Ut = LU :=
∑
j,k

(BjkUxk)xj −
∑
j

(AjU)xj

with initial data U(0) = U0.
Then, we obtain the following proposition.

Proposition 2.1. Under the hypotheses of Theorems 1.7 and 1.8, the solution operator
S(t) := eLt of the linearized equations may be decomposed into low frequency and high
frequency parts (defined precisely below) as S(t) = S1(t) + S2(t) satisfying

(2.2) |S1(t)∂β1
x1
∂β̃x̃f |Lpx ≤C(1 + t)−

d−1
2

(1−1/p)+ 1
4
− |β̃|

2
−(1−α)

β1
2 |f |L1

x

for all 2 ≤ p ≤ ∞, d ≥ 3, and β = (β1, β̃) with β1 = 0, 1 and α defined as

(2.3) α :=
{

0 for Lax or overcompressive case,
1 for undercompressive case,

and

(2.4) |∂γ1x1
∂γ̃x̃S2(t)f |L2 ≤ Ce−θ1t|f |H|γ1|+|γ̃| ,

for γ = (γ1, γ̃) with γ1 = 0, 1.

Here, we use the same decomposition of solution operator S(t) as in the article of K.
Zumbrun [Z3]; see (5.152)–(5.153) in [Z3] or (2.32) below.

2.1. High–frequency estimate. We observe that our relaxed Hypothesis (H4’) and the
dropped Hypothesis (H5) only play a role in low–frequency regimes. Thus, in course of
obtaining the high–frequency estimate (2.4), we make here the same assumptions as were
made in [Z3], and therefore the same estimate remains valid as claimed in (2.4) under our
current assumptions. We omit to repeat its proof here, and refer the reader to the article
[Z3], (5.16), Proposition 5.7, for the original proof. See also a great simplification in [NZ2],
Proposition 3.6 in treating the boundary layer case.

In the remaining of this section, we shall focus on proving the bounds on low-frequency
part S1(t) of the linearized solution operator.

Taking the Fourier transform in x̃ := (x2, . . . , xd) of linearized equation (2.1), we obtain
a family of eigenvalue ODE

(2.5)
λU = Lξ̃U :=

L0U︷ ︸︸ ︷
(B11U

′)′ − (A1U)′−i
∑
j 6=1

AjξjU + i
∑
j 6=1

Bj1ξjU
′

+ i
∑
k 6=1

(B1kξkU)′ −
∑
j,k 6=1

BjkξjξkU.
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2.2. L2 stability estimate for low frequencies. We briefly recall the procedure (see
[GMWZ1], page 75–85) of reducing the eigenvalue equations to the block structure equations
and stating the L2 estimate for low-frequency regimes by the construction of degenerate
symmetrizers.

Let U = (uI , uII)T a solution of eigenvalue equations, that is, (Lξ̃ − λ)U = f where Lξ̃
is defined as in (2.5). Following [Z3, Section 2.4], consider the variable W as usual

W :=

 uI

uII

z


with z := b11

1 u
I
x1

+ b11
2 u

II
x1

. Then we can write equations of W as a first order system

(2.6) ∂x1W = G(x1, λ, ξ̃)W + F,

with F := (A−1
∗ f I , 0, f II)tr, where f = (f I , f II)tr and A∗ := A1

11 − A1
12(b11

2 )−1b11
1 ; thus, in

particular, |F | ≤ C|f |, for some constant C. It is not necessary for us to carry out in detail
the form of G; though, see equation (2.65) of [Z3]. Indeed, we are only interested in the fact
that bounds in Lp of W will give those of U in the same norm.

We go further as in [GMWZ1, page 75] to write this (n+ r)× (n+ r) system on R as an
equivalent 2(n+ r)× 2(n+ r) “doubled” boundary problem on x1 ≥ 0:

(2.7)
∂x1W̃ = G̃(x1, λ, ξ̃)W̃ + F̃

ΓW̃ = 0 on x1 = 0

where

(2.8)

W̃ (x1, λ, ξ̃) = (W+,W−),

G̃(x1, λ, ξ̃) =
(
G+ 0
0 −G−

)
,

F̃ =
(
F+

−F−

)
,

ΓW̃ = W+ −W−

with F±(x1) := F (±x1).
For small or bounded frequencies (λ, ξ̃), we use the known MZ conjugation; see, for

example, [MeZ1] or [GMWZ1, Lemma 5.1]. That is, given any (λ, ξ̃) ∈ Rd+1, there is a
smooth invertible matrix Φ(x1, λ, ξ̃) for x1 ≥ 0 and (λ, ξ̃) in a small neighborhood of (λ, ξ̃),
such that (2.7) is equivalent to

(2.9) ∂x1Y = G+(λ, ξ̃)Y + ˜̃F, Γ̃(λ, ξ̃)Y = 0

where G+(λ, ξ̃) := G̃(+∞, λ, ξ̃), W̃ = ΦY, ˜̃F = Φ−1F̃ and Γ̃Y := ΓΦY .
Next, there are smooth matrices V (λ, ξ̃) such that

(2.10) V −1G+V =
(
H 0
0 P

)
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with blocks H(λ, ξ̃) and

(2.11) P (λ, ξ̃) =
(
P+ 0
0 P−

)
satisfying the eigenvalues µ of P± in {±<eµ ≥ c > 0} and

H(λ, ξ̃) = H0(λ, ξ̃) +O(ρ2)

H0(λ, ξ̃) : = −(A1
+)−1

(
(iτ + γ)A0

+ +
d∑
j=2

iξjA
j
+

)
.

Define variables Z = (uH , uP )T with uP := (uP+ , uP−)T as

W̃ = ΦY = ΦV Z, Γ̄Z := ΓΦV Z,

and (FH , FP )T = V −1 ˜̃F . We have

(2.12) ∂x1

(
uH
uP±

)
=
(
H 0
0 P±

)(
uH
uP±

)
+
(
FH
FP±

)
, Γ̄Z = 0.

Let 〈·, ·〉 denote the standard L2 product over [0,∞), that is,

〈f, g〉 =
∫ ∞

0
f(x1)ḡ(x1)dx1, ∀ f, g ∈ L2(0,∞),

where ḡ is the complex conjugate of g.
Then, recalling that ρ = |(ξ̃, λ)| and γ = <eλ, we obtain the maximal stability estimate

for the low frequency regimes ([GMWZ6, GMWZ1]):

(2.13)
(γ + ρ2)|uH |2L2 + |uP+ |2L2 + ρ2|uP− |2L2 + |uH(0)|2 + |uP+(0)|2 + ρ2|uP−(0)|2

. |〈SFP+ , uP+〉|+ |〈SFP− , uP−〉|+ |〈SFH , uH〉|
where S is the degenerate symmetrizer constructed in [GMWZ1] (see equations (8.2),(8.2),
and (6.18)) as follows

(2.14) S =
(
SP 0
0 SH

)
and

(2.15) SP =
(
K Id 0

0 −ρ2

)
for sufficiently large constant K (independent of small parameter ρ); here, Id is the identity
matrix and the two subblocks in SP have the same sizes as those of P± in (2.11), corre-
spondingly. Here and throughout the paper, by f . g, we mean f ≤ Cg, for some positive
constant C independent of ρ.

There are two possibly subtle points in quoting (2.13) that we would like to point out,
namely, (i) the estimate (2.13) was proved in Section 8, [GMWZ1], under the assumption
(H4), but not under the relaxed Hypothesis (H4’), and (ii) the estimate was obtained only
for the Lax shock case. However, in the first matter, the variable multiplicity assumption
is only involved in the hyperbolic part (the H block in (2.12)) and the parabolic blocks
P± remain the same. Thus, the degenerate Kreiss-type symmetrizers techniques (only
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involved in the parabolic blocks) introduced in [GMWZ1] can still be applicable here. For
the hyperbolic part, we now use the recent construction of Kreiss-type symmetrizers in
[GMWZ6] that applies to the relaxed Hypothesis (H4’), thus yielding the L2 estimate for
this block. In dealing with the second matter, we recall that a crucial step in the analysis
of [GMWZ1] for the Lax shock case was to proving the “right” degeneracy of the boundary
operator or Lemma 7.1 in [GMWZ1], connecting with the Evans stability condition (D). We
then observe that with slight modification of the proof, the lemma remains unchanged for
the under/over–compressive shock case, yielding the same result. For sake of completeness,
we shall recall the proof of Lemma 7.1, [GMWZ1], with a straightforward extension to other
cases than the Lax case in Appendix A.

In other words, with our above observations, we may use the estimate (2.13) as stated
under our current assumptions in treating all three types of shocks. In addition, thanks
to that fact that the symmetrizer S is degenerate with order ρ2 in the block P− (see
(2.14),(2.15) above), we can further estimate (2.13) as

(2.16)
(γ + ρ2)|uH |2L2 + |uP+ |2L2 + ρ2|uP− |2L2 + |uH(0)|2 + |uP+(0)|2 + ρ2|uP−(0)|2

. 〈|FP+ |, |uP+ |〉+ ρ2〈|FP− |, |uP− |〉+ 〈|FH |, |uH |〉.

We note that in a final step in [GMWZ1, equation (8.11)], the standard Young’s inequality
was used to absorb all terms of (uH , uP ) into the left-hand side, leaving the L2 norm of F
alone in the right hand side. For our purpose, we shall keep it as stated in (2.16).

We remark also that as shown in [GMWZ1], all of coordinate transformation matrices are
uniformly bounded. Thus a bound on Z = (uH , uP )T would yield a corresponding bound
on the solution U .

2.3. L1 → Lp estimates. We establish the L1 → Lp resolvent bounds for solutions of eigen-
value equations (Lξ̃ − λ)U = f in the low frequency regime; specifically, we are interested
in regime of parameters restricting to the surface

(2.17) Γξ̃ := {λ : <eλ = −θ1(|ξ̃|2 + |=mλ|2)},

for θ1 > 0 and |(ξ̃, λ)| sufficiently small. The curve Γξ̃ was introduced in [Z2, equation
(4.26)]. Introducing Γξ̃ is in fact regarded as a key to the analysis of long-time stability in
multidimensions. The main point here is that even though λ enters into the stable complex
half-plane ({<eλ < 0}), Γξ̃ remains outside of the essential spectrum of limiting linearized
operators Lξ̃,±; see [Z3, Lemma 2.21].

In addition, in a related matter, we would like to recall that the Kreiss’ symmetrizers
constructed by O. Guès, G. Métivier, M. Williams, and K. Zumbrun can be attained in a
full neighborhood of basepoint (ξ, λ) even for <λ = 0 (see, e.g., Theorem 3.7, [GMWZ6]).
Thus, the L2 estimate (2.16) is in fact still valid in any region of

γ ≥ −θ(|τ |2 + |ξ̃|2)

for θ sufficiently small. In particular, we shall use (2.16) for λ restricted on the curve Γξ̃.
We obtain the following:
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Proposition 2.2 (Low-frequency bounds). Under the hypotheses of Theorem 1.8, for λ ∈
Γξ̃ and ρ := |(ξ̃, λ)|, θ1 sufficiently small, there holds the resolvent bound

(2.18) |(Lξ̃ − λ)−1∂βx1
f |Lp(x1) ≤ Cρ−3/2+(1−α)β|f |L1(x1),

for all 2 ≤ p ≤ ∞, β = 0, 1, and α defined as in (2.3).

Proof. Changing variables as above subsection and taking the inner product of each equation
in (2.12) against uH and uP± , respectively, and integrating the results over [0, x1], for x1 > 0,
we obtain

(2.19)

1
2
|uH(x1)|2 =

1
2
|uH(0)|2 + <e

∫ x1

0
(H(λ, ξ̃)uH · uH + FH · uH)dz,

1
2
|uP±(x1)|2 =

1
2
|uP±(0)|2 + <e

∫ x1

0
(P±(λ, ξ̃)uP± · uP± + FP± · uP±)dz.

This together with use of Young’s inequality into the last terms involved in F and the
facts that |H| ≤ Cρ and |P±| ≤ C yields

(2.20)
|uH |2L∞(x1) . |uH(0)|2 + ρ|uH |2L2 + |FH |2L1 ,

|uP± |2L∞(x1) . |uP±(0)|2 + |uP± |2L2 + |FP± |2L1 .

We are now in position of applying the L2 stability estimate (2.16). In (2.20), multiplying
both sides of equations of uH by ρ, of uP+ by 1, and of uP− by ρ2, adding up results, and
applying (2.16), we obtain

(2.21)
ρ2(|uH |2L2 + |uP |2L2) + ρ|uH |2L∞ + |uP+ |2L∞ + ρ2|uP− |2L∞

. 〈|FP+ |, |uP+ |〉+ ρ2〈|FP− |, |uP− |〉+ 〈|FH |, |uH |〉+ |FH |2L1 + |FP |2L1 ,

(noting that ρ is assumed to be small; in particular, ρ ≤ 1.)
Applying again the standard Young’s inequality:

〈|FH |, |uH |〉+ 〈|FP+ |, |uP+ |〉+ ρ2〈|FP− |, |uP− |〉

. ε
[
ρ|uH |2L∞ + |uP+ |2L∞ + ρ2|uP− |2L∞

]
+ Cε

[
ρ−1|FH |2L1 + |FP+ |2L1 + ρ2|FP− |2L1

]
with ε > 0 being sufficiently small, from (2.21), we easily arrive at

(2.22)
ρ2(|uH |2L2 + |uP |2L2) + ρ|uH |2L∞ + |uP+ |2L∞ + ρ2|uP− |2L∞

. ρ−1|FH |2L1 + |FP+ |2L1 + ρ2|FP− |2L1 + |FH |2L1 + |FP |2L1 .

Therefore in term of Z = (uH , uP )t, simplifying the above yields

(2.23) ρ2|Z|2L2(x1) + ρ2|Z|2L∞(x1) ≤ Cρ
−1|F |2L1

Now from the change of variables Z = V −1Φ−1W̃ , we have the same estimates for W̃ and
thus U , because all coordinate transformation matrices are uniformly bounded. Hence, we
also obtain bounds (2.23) for U or by the interpolation inequality:

(2.24) |U |Lp(x1) ≤ Cρ−3/2|f |L1(x1).

This thus proves the proposition in the case of β = 0.
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For β = 1, we expect that ∂x1f plays a role as “ρf” forcing. Recall that the eigenvalue
equations (Lξ̃ − λ)U = ∂x1f read

(2.25)

L0U︷ ︸︸ ︷
(B11Ux1)x1 − (A1U)x1 −i

∑
j 6=1

AjξjU + i
∑
j 6=1

Bj1ξjUx1

+ i
∑
k 6=1

(B1kξkU)x1 −
∑
j,k 6=1

BjkξjξkU − λU = ∂x1f.

Now modifying the nice argument of Kreiss–Kreiss presented in [KK, GMWZ1], we write
U = V + U1, where V satisfies

(2.26) (L0 − λ0)V = ∂x1f, x1 ∈ R,

for λ0 = ρ. Noting that A1 and B11 depend on x1 only, we thus can apply here the one–
dimensional Green kernel bounds investigated by C. Mascia and K. Zumbrun as follows.

Let G0
λ0

be the Green kernel of λ0 − L0. Observe that our assumptions as projected
on one–dimensional situations (i.e., ξ̃ = 0) are still the same as those in [Z3]. Thus, we
apply Proposition 4.22 in [Z3] for (2.26), noting that λ0 = ρ is sufficiently small. After a
simplification, we simply obtain

(2.27) |G0
λ0

(x1, y1)| ≤ C[ρ−1e−θ|x1|e−ρ|y1| + e−ρ|x1−y1|],

and

(2.28) |∂y1G0
λ0

(x1, y1)| ≤ C[ρ−1e−θ|x1|(ρe−θρ|y1| + αe−θ|y1|) + e−ρ|x1−y1|(ρ+ αe−θ|y1|)],

where α is defined as in (2.3). We would like to remark here that Lemma 5.23, [Z3],
gives the estimate (2.28) with α = 0 only for the Lax or overcompressive shocks. For the
undercompressive shocks, we must have the weaker bound by the term e−θ|y1|, that is, α = 1
(for further discussion, see, e.g., equations below (5.106), [Z3]).

Hence, using (2.28) and applying the standard Hausdorff-Young’s inequality, we obtain

(2.29) |V |Lp(x1) + |Vx1 |Lp(x1) . |f |L1(x1) + αρ−1|f |L1(x1) . ρ
−α|f |L1(x1),

for all 1 ≤ p ≤ ∞ and α = 0 or 1 defined as in (2.3).
Now from U1 = U − V and equations of U and V , we observe that U1 satisfies

(2.30) (Lξ̃ − λ)U1 = L(V, Vx1),

where

L(V, Vx1) : = i
∑
j 6=1

AjξjV − i
∑
j 6=1

Bj1ξjVx1 − i
∑
k 6=1

(B1kξkV )x1

+
∑
j,k 6=1

BjkξjξkV + (λ− λ0)V

= ρO(|V |+ |Vx1 |).
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Therefore applying the result which we just proved for β = 0 to the equations (2.30), we
obtain

(2.31)
|U1|Lp(x1) ≤ Cρ−3/2|L(V, Vx1)|L1(x1) ≤ Cρ−3/2ρ

[
|V |L1 + |Vx1 |L1

]
≤ Cρ−3/2+(1−α)|f |L1(x1).

Bounds (2.29), (2.31) on V and U1 clearly give our claimed bounds on U by triangle
inequality:

|U |Lp ≤ |V |Lp + |U1|Lp .
We thus obtain the proposition. �

Remark 2.3. Under the general structural assumptions, our proof of the L1 → Lp bounds
above depends only on the L2 maximal estimate (2.16). As the GMWZ theory covers to a
more general case than (H4′), namely, the (BS) condition (Definition 4.9, [GMWZ6]), our
results thus apply to this case as well without any additional work.

Remark 2.4. In Appendices B and C, we will prove a slightly-weaker resolvent estimate
like (2.18) in which the Green kernel bounds (2.27), (2.28) will not be used. Thus, our
main results can in fact be derived completely independent of the pointwise Green function
estimates.

2.4. Estimates on the solution operator. In this subsection, we complete the proof of
Proposition 2.1. As mentioned earlier, it suffices to prove the bounds for S1(t), where the
low frequency solution operator S1(t) is defined as

(2.32) S1(t) :=
1

(2πi)d

∫
|ξ̃|≤r

∮
Γξ̃∩{|λ|≤r}

eλt+iξ̃·x̃(Lξ̃ − λ)−1dλdξ̃.

Proof of bounds on S1(t). We first prove (2.2) for β = 0. Let û(x1, ξ̃, λ) denote the solution
of (Lξ̃ − λ)û = f̂ , where f̂(x1, ξ̃) denotes Fourier transform of f , and

u(x, t) := S1(t)f =
1

(2πi)d

∫
|ξ̃|≤r

∮
Γξ̃∩{|λ|≤r}

eλt+iξ̃·x̃(Lξ̃ − λ)−1f̂(x1, ξ̃)dλdξ̃.

Using Parseval’s identity, Fubini’s theorem, the triangle inequality, and Proposition 2.2,
we may estimate

|u|2L2(x1,x̃)(t) =
1

(2π)2d

∫
x1

∫
|ξ̃|≤r

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

eλtû(x1, ξ̃, λ)dλ
∣∣∣2dξ̃dx1

≤ 1
(2π)2d

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλt|û(x1, ξ̃, λ)|L2(x1)dλ
∣∣∣2dξ̃

≤ C|f |2L1(x)

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλtρ−3/2dλ
∣∣∣2dξ̃.

Specifically, parametrizing Γξ̃ by

λ(ξ̃, k) = ik − θ1(k2 + |ξ̃|2), k ∈ R
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and noting that |dλ/dk| is bounded on Γξ̃ ∩ {|λ| ≤ r}, we estimate∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλtρ−3/2dλ
∣∣∣2dξ̃ ≤ C ∫

ξ̃

∣∣∣ ∫
R
e−θ1(k2+|ξ̃|2)tρ−3/2dk

∣∣∣2dξ̃
≤ C

∫
ξ̃
e−2θ1|ξ̃|2t|ξ̃|−1−2ε

∣∣∣ ∫
R
e−θ1k

2t|k|ε−1dk
∣∣∣2dξ̃

≤ Ct−(d−2)/2,

noting that
∫

Rd−1 e
−θ|x|2 |x|−αdx is finite, provided α < d− 1.

Similarly, parametrizing Γξ̃ as above, we estimate

|u|L∞x̃,x1 (t) ≤ 1
(2π)d

∫
ξ̃

∮
Γξ̃∩{|λ|≤r}

e<eλt|û(x1, ξ̃, λ)|L∞(x1)dλdξ̃

≤ C|f |L1(x)

∫
ξ̃

∮
Γξ̃∩{|λ|≤r}

e<eλtρ−3/2dλdξ̃

≤
∫
ξ̃
e−θ1|ξ̃|

2t|ξ̃|−1/2−ε
∫

R
e−θ1k

2t|k|ε−1dkdξ̃

≤ Ct−
d−1
2

+ 1
4 .

The x1−derivative bounds follow similarly by using the version of the L1 → Lp estimates
for β1 = 1, noting that in the undercompressive case, both β1 = 0 and β1 = 1 have the same

bounds. The x̃−derivative bounds are straightforward by the fact that ∂̂β̃x̃f = (iξ̃)β̃ f̂ . �

2.5. Proof of linearized stability. Applying estimates (2.2) and (2.4) on low- and high-
frequency operators S1(t) and S2(t) obtained in Proposition 2.1, we obtain

(2.33)

|U(t)|L2 ≤ |S1(t)U0|L2 + |S2(t)U0|L2

≤ C(1 + t)−
d−2
4 |U0|L1 + Ce−ηt|U0|L2

≤ C(1 + t)−
d−2
4 |U0|L1∩L2

and (together with the Sobolev embedding: |f |L∞(Rd) ≤ C|f |Hs(Rd) for s > d/2; see, for
example, [Z4, Lemma 1.4])

(2.34)

|U(t)|L∞ ≤ |S1(t)U0|L∞ + |S2(t)U0|L∞

≤ C(1 + t)−
d−1
2

+ 1
4 |U0|L1 + C|S2(t)U0|H[(d−1)/2]+2

≤ C(1 + t)−
d−1
2

+ 1
4 |U0|L1 + Ce−ηt|U0|H[(d−1)/2]+2

≤ C(1 + t)−
d−1
2

+ 1
4 |U0|L1∩H[(d−1)/2]+2 .

These prove the bounds as stated in the theorem for p = 2 and p =∞. For 2 < p <∞, we
use the interpolation inequality between L2 and L∞.
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3. Nonlinear stability

Defining the perturbation variable U := Ũ − Ū , we obtain the nonlinear perturbation
equations

(3.1) Ut − LU =
∑
j

Qj(U,Ux)xj ,

where

(3.2)
Qj(U,Ux) = O(|U ||Ux|+ |U |2)

Qj(U,Ux)xj = O(|U ||Ux|+ |U ||Uxx|+ |Ux|2)

so long as |U | remains bounded.

Proof of Theorem 1.8. We prove the theorem for the Lax or overcompressive case. The
undercompressive case follows very similarly. Define

(3.3) ζ(t) := sup
0≤s≤t

(
|U(s)|L2(1 + s)

d−2
4 + |U(s)|L∞(1 + s)

d−1
2
− 1

4

)
.

We shall prove here that for all t ≥ 0 for which a solution exists with ζ(t) uniformly
bounded by some fixed, sufficiently small constant, there holds

(3.4) ζ(t) ≤ C(|U0|L1∩Hs + ζ(t)2).

This bound together with continuity of ζ(t) implies that

(3.5) ζ(t) ≤ 2C|U0|L1∩Hs

for t ≥ 0, provided that |U0|L1∩Hs < 1/4C2. This would complete the proof of the bounds
as claimed in the theorem, and thus give the main theorem.

By standard short-time theory/local well-posedness in Hs, and the standard principle
of continuation, there exists a solution U ∈ Hs on the open time-interval for which |U |Hs

remains bounded, and on this interval ζ(t) is well-defined and continuous. Now, let [0, T ) be
the maximal interval on which |U |Hs remains strictly bounded by some fixed, sufficiently
small constant δ > 0. By an auxiliary energy estimate in [Z3, Proposition 5.9] and the
Sobolev embeding inequality |U |W 2,∞ ≤ C|U |Hs (again, see for example, [Z4, Lemma 1.4]),
we have

(3.6)
|U(t)|2Hs ≤ Ce−θt|U0|2Hs + C

∫ t

0
e−θ(t−τ)|U(τ)|2L2dτ

≤ C(|U0|2Hs + ζ(t)2)(1 + t)−(d−2)/2.

and so the solution continues so long as ζ remains small, with bound (3.5), yielding existence
and the claimed bounds.

Thus, it remains to prove the claim (3.4). By Duhamel formula

(3.7) U(x, t) =S(t)U0 +
∫ t

0
S(t− s)

∑
j

∂xjQ
j(U,Ux)ds,
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where U(x, 0) = U0(x), we obtain

(3.8) |U(t)|L2 ≤|S(t)U0|L2 +
∫ t

0
|S1(t− s)∂xjQj(s)|L2ds+

∫ t

0
|S2(t− s)∂xjQj(s)|L2ds

where |S(t)U0|L2 ≤ C(1 + t)−
d−2
4 |U0|L1∩L2 as in the proof of linearized stability,

∫ t

0
|S1(t− s)∂xjQj(s)|L2ds ≤ C

∫ t

0
(1 + t− s)−

d−2
4
− 1

2 |Qj(s)|L1ds

≤ C
∫ t

0
(1 + t− s)−

d−2
4
− 1

2 |U |2H1ds

≤ C(|U0|2Hs + ζ(t)2)
∫ t

0
(1 + t− s)−

d−2
4
− 1

2 (1 + s)−
d−2
2

≤ C(1 + t)−
d−2
4 (|U0|2Hs + ζ(t)2),

and

∫ t

0
|S2(t− s)∂xjQj(s)|L2ds ≤

∫ t

0
e−θ(t−s)|∂xjQj(s)|L2ds

≤ C
∫ t

0
e−θ(t−s)|U |2Hsds

≤ C(|U0|2Hs + ζ(t)2)
∫ t

0
e−θ(t−s)(1 + s)−

d−2
2 ds

≤ C(1 + t)−
d−2
2 (|U0|2Hs + ζ(t)2).

Thus, dividing by (1 + t)−
d−2
4 , we obtain

(3.9) |U(t)|L2(1 + t)
d−2
4 ≤ C(|U0|L1∩Hs + ζ(t)2).

Similarly, we estimate the L∞ norm of U . By Duhamel’s formula (3.7), we obtain

(3.10)
|U(t)|L∞ ≤|S(t)U0|L∞ +

∫ t

0
|S1(t− s)∂xjQj(s)|L∞ds

+
∫ t

0
|S2(t− s)∂xjQj(s)|L∞ds
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where |S(t)U0|L∞ ≤ C(1 + t)−
d−1
2

+ 1
4 |U0|L1∩H[(d−1)/2]+2 ,∫ t

0
|S1(t− s)∂xjQj(s)|L∞ds

≤ C
∫ t

0
(1 + t− s)−

d−1
2

+ 1
4
− 1

2 |Qj(s)|L1ds

≤ C
∫ t

0
(1 + t− s)−

d−1
2

+ 1
4
− 1

2 |U |2H1

≤ C(|U0|2Hs + ζ(t)2)
∫ t

0
(1 + t− s)−

d−1
2

+ 1
4
− 1

2 (1 + s)−
d−2
2

≤ C(1 + t)−
d−1
2

+ 1
4 (|U0|2Hs + ζ(t)2)

and (by the Moser inequality; see, for example, inequality (1.22), [Z4]),∫ t

0
|S2(t− s)∂xjQj(s)|L∞ds

≤
∫ t

0
|S2(t− s)∂xjQj(s)|H[(d−1)/2]+2ds

≤
∫ t

0
e−θ(t−s)|∂xQj(s)|H[(d−1)/2]+2ds

≤ C
∫ t

0
e−θ(t−s)|U |L∞ |U |H[(d−1)/2]+4ds

≤ C(|U0|2Hs + ζ(t)2)
∫ t

0
e−θ(t−s)(1 + s)−

d−1
2

+ 1
4 (1 + s)−

d−2
4 ds

≤ C(1 + t)−
d−1
2

+ 1
4 (|U0|2Hs + ζ(t)2).

Therefore we have obtained

(3.11) |U(t)|L∞(1 + t)
d−1
2
− 1

4 ≤ C(|U0|L1∩Hs + ζ(t)2)

and thus completed the proof of claim (3.4), and the theorem. �

4. Two–dimensional case or cases with (H5)

In this section, we give a proof of Theorem 1.10. Again, notice that the only assumption
we make here that differs from those in [Z3] is the relaxed Hypothesis (H4’), treating the
additional case of totally nonglancing characteristic roots, which is only involved in low–
frequency estimates. That is to say, we only need to establish the L1 → Lp bounds in
low-frequency regimes for this new case. We give the proof of these bounds by modifying
the proof in [GMWZ1, Section 12] and thus will not cite the estimate (2.16) in this section;
in fact, the proof is completely independent of previous sections. In addition, our proof is
somewhat more direct and simpler than those in [GMWZ1, Section 12] by not bypassing to
the dual problem.
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Proposition 4.1 (Low-frequency bounds; [Z3], Corollary 5.11). Under the hypotheses of
Theorem 1.10, for λ ∈ Γξ̃ (see (2.17)) and ρ := |(ξ̃, λ)|, θ1 sufficiently small, there holds
the resolvent bound

(4.1) |(Lξ̃ − λ)−1∂βx1
f |Lp(x1) ≤ Cγ2ρ

β−1|f |L1(x1),

for all 2 ≤ p ≤ ∞, β = 0, 1, and γ2 is the diagonalization error (see [Z3], (5.40)) defined as

(4.2) γ2 := 1 +
∑
j,±

[
ρ−1|=mλ− η±j (ξ̃)|+ ρ

]1/sj−1
,

with η±j , sj as in (H5).

We again perform the standard procedure (see Section 2.2) of writing the linearized
equations in form of the first order eigenvalue equations (2.12):

(4.3) ∂x1

(
UH
UP

)
=
(
H 0
0 P

)(
UH
UP

)
+
(
FH
FP

)
, Γ̄U = 0.

Locally, in a neighborhood of a base point X0 := (ζ, 0) with ζ = (τ, γ, ξ̃) and λ = γ + iτ ,
we further use the Assumption (H4’) to write H in block–diagonal structure (see [GMWZ1,
Proposition 6.1]) with appearance of a new mode, totally nonglancing, and decompose the
resolvent solution U into

(4.4) U = UP + UHe + UHh + UHg + UHt ,

corresponding to parabolic, elliptic, hyperbolic, glancing, or totally nonglancing blocks. We
further write

Ui = Ui+ + Ui−

for i = P,He, Hh, Hg, Ht, where Ui± are defined as the projections of Ui onto the growing
(resp. decaying) eigenspaces of G+ in (2.10) with respect to the corresponding blocks.

These first four blocks have been treated in [Z3, Corollary 5.11] or [GMWZ1, Corollary
12.2] for which the totally nonglancing modes are absent. For sake of completeness, we
treat these modes again here in a slightly different analysis, modifying those of [GMWZ1,
Section 12]. In fact, since each mode interacts with the other via the Evans condition (D)
or, more precisely, the boundary estimate (A.28), we cannot obtain (4.1) for each mode
separately.

We shall use the following simple lemma.

Lemma 4.2. Let U be a solution of ∂zU = QU + F with U(+∞) = 0. Assume that there
is a positive [resp., negative] symmetric matrix S such that

(4.5) <SQ :=
1
2

(SQ+Q∗S∗) ≥ θId

for some θ > 0, and S ≥ Id [resp., −S ≥ Id]. Then there holds

(4.6)
|U |2L∞ + θ|U |2L2 . |F |2L1

[resp., |U |2L∞ + θ|U |2L2 . |U(0)|2 + |F |2L1 ].
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Proof. Taking the real part of the inner product of the equation of U against SU and
integrating the result over [x1,∞] for the first case [resp., [0, x1] for the second case], we
easily obtain the lemma. �

Proof of Proposition 4.1. As in [GMWZ1, Section 12.2], the first step is to put blocks into
a diagonal form; indeed, parabolic blocks are already diagonal as in (2.11); hyperbolic
blocks are 1 × 1 blocks with real part vanishing at the base point X0, but with real part
> 0 (resp. < 0) when ρ > 0 in polar coordinates (thus, vanishing at order ρ2 in original
coordinates); elliptic blocks are those Qk with <eQk positive or negative definite at the base
point (thus, vanishing at order ρ); and finally glancing blocks are of size larger than 1 × 1
whose components are purely imaginary at the base point. We recall the following lemma
in [GMWZ1], diagonalizing these glancing blocks.

Lemma 4.3 (Lemma 12.1, [GMWZ1]). Diagonalize the glancing blocks Qk by the transfor-
mation THg , where THg may be chosen so that

(4.7) |THg | ≤ C, |T−1
Hg
| ≤ Cγ2, |T−1

Hg |Hg−
| ≤ Cγ1

where γ2 is defined as in (4.2) and γ1 is defined as

(4.8) γ1 := max
k

[
ρ−1|=mλ− η±k (ξ̃)|+ ρ

](1−[(νk+1)/2])/νk
,

and T−1
Hg |Hg−

denotes the restriction of T−1
Hg

to subspace Hg−.

In addition, after a further transformation if necessary,

(4.9) Q′k := T−1
Hg
QkTHg = diag(αk,1, · · · , αk,l, αk,l+1, · · · , αk,νk)

with

(4.10)
−γ−2

1 <e αk,j ≥ Cρ
2, j = 1, ..., l,

γ−2
1 <e αk,j ≥ Cρ

2, j = l + 1, ..., νk.

Remark 4.4. γ1, γ2 are identical to α, β in [GMWZ1], respectively, and (4.10) was calcu-
lated in [GMWZ1, equation (12.40)].

We now can work in diagonalized coordinates:

U ′ := T−1
Hg
U

where THg are obtained as in Lemma 4.3 for glancing blocks and identity matrices for
the other blocks. In these coordinates, since blocks are diagonal and growing/decaying
subspaces (at least for the first four modes) are separated, we apply Lemma 4.2 for each
block with S = ±Id, yielding

(4.11)
|U ′i+|2L∞ + θi|U ′i+|2L2 . |F ′i |2L1 ,

|U ′i−|2L∞ + θi|U ′i−|2L2 . |U ′i−(0)|2 + |F ′i−|2L1 ,

where θi = 1, ρ, ρ2,minj |<e αk,j | for i = P,He, Hh, Hg.
For the totally nonglancing blocks Qkt , as constructed in [GMWZ6], Lemma 5.3, there

exist symmetrizers Sk that are definite positive [resp., negative] when the mode is totally
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incoming [resp., outgoing]. Denote U ′Ht+ [resp., U ′Ht− ] associated with totally incoming
[resp. outgoing] modes. Then by applying Lemma 4.2 with θ = ρ2, we obtain

(4.12)
|U ′Ht+ |

2
L∞ + ρ2|U ′Ht+ |

2
L2 . |F ′Ht+ |

2
L1 ,

|U ′Ht− |
2
L∞ + ρ2|U ′Ht− |

2
L2 . |U ′Ht−(0)|2 + |F ′Ht− |

2
L1 .

To finish the proof, we only need to deal with the boundary terms |U ′i−(0)|2 and |UHt−(0)|2
in (4.11),(4.12). We could use a more detailed version of the L2 stability estimate (2.16),
corresponding to each diagonal blocks (see [GMWZ6]), yielding bounds on these boundary
terms. However, let us now follow the boundary treatment presented in [GMWZ1, Section
12.3] instead, being rather independent of (2.16).

The diagonalized boundary condition is Γ′ := ΓTHg . By computing, we observe that

|Γ′U ′Hg− | = |ΓUHg− | ≥ C
−1|UHg− | ≥

C−1|U ′Hg− |
|T−1
Hg |Hg−

|
≥ C−1γ−1

1 |U
′
Hg− |.

Thus, together with (A.28)

(4.13) |Γ′U ′−| = |ΓU−| ≥ C−1
[
|U ′He− |+ |U

′
Hh−
|+ |U ′Ht− |+ γ−1

1 |U
′
Hg− |+ ρ|U ′P− |

]
.

Meanwhile, we have at x1 = 0

(4.14) |Γ′U ′−| ≤ |Γ′U ′|+ |Γ′U ′+| . |U ′+(0)| ≤ |U ′+|L∞ .
Now, multiplying the first equations in (4.11), (4.12) by a sufficiently large constant k

and the second equations by 1, γ−2
1 , or ρ2, corresponding to each block with its boundary

degeneracy of order in (4.13), and adding up the results, we easily obtain

(4.15)
|U ′P+|2L∞ + |U ′P+|2L2 + |U ′H+|2L∞ + ρ2|U ′H+|2L2+

ρ2|U ′P−|2L∞ + ρ2|U ′P−|2L2 + γ−2
1 |U

′
H−|2L∞ + ρ2|U ′H−|2L2

. |F ′|2L1 ,

(noting that ρ ≤ 1, ρ ≤ γ−1
1 ≤ 1, and γ−2

1 minj |<e αk,j | & ρ2 by (4.10)). This yields

(4.16) ρ2|U ′|2L∞ + ρ2|U ′|2L2 . |F ′|2L1

or equivalently,

(4.17) |U ′|Lp . ρ−1|F ′|L1 , ∀ p ≥ 2.

Thus, by recalling that U = THgU
′ and F ′ = T−1

Hg
F , (4.17) and (4.7) immediately yield the

proposition for β = 0. For β = 1, we can follow the Kreiss–Kreiss trick as presented in the
proof of Proposition 2.2, thus completing the proof of Proposition 4.1. �

Proof of Theorem 1.10. Proposition 4.1 is the Corollary 5.1 in [Z3] with an extension to the
totally nonglancing cases. Thus, we can now follow word by word the proof in [Z3], yielding
the theorem. �

Remark 4.5. We have seen in the above argument that the existence of positive/negative
Kreiss’ symmetrizers with an appropriate constant θ (in Lemma 4.2) is sufficient to obtain
the result. Though, proving the existence of such symmetrizers is a highly-technical task in
general for variable multiplicity blocks. See [GMWZ5, GMWZ6].
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Appendix A. Evans function for the doubled boundary problem

For sake of completeness, we recall here the proof of Lemma 7.1, [GMWZ1] and its
straightforward extension to the case of over- and under-compressive shocks.

Consider the 2N × 2N doubled boundary problem (2.7) (with N := n+ r)

(A.1)
{

Ux −G(x, ζ)U = F,
ΓU = 0 on x = 0,

where U = (U+, U−) and ΓU = U+ − U−, with U+ = (U1, . . . , UN ), U− = (UN+1, . . . , U2N ).
Let E−(ζ̂, ρ), for γ̂ > 0 and ρ > 0, be the space of boundary values at x = 0 of decaying

solutions to the homogeneous problem

Ux −G(x, ζ)U = 0.

As shown, for example, in [GMWZ6, Theorem 3.7], the space E−(ζ̂, ρ) has a continuous
extension to a small neighborhood of γ̂ = 0, ρ ≥ 0. Then the Evans function for (A.1) is
defined as the 2N × 2N determinant:

(A.2) D(ζ̂, ρ) = det(ker Γ, E−)|x=0.

Meanwhile, the Evans function DL for the problem (2.6) is defined as

(A.3) DL(ζ̂, ρ) = det(UR1 , . . . ,URk ,ULk+1, . . . ,ULN )|x=0

which is analytic for <eλ > 0 and can be continuously extended to a small neighborhood
of <eλ = 0 (see, e.g., Lemma 5.24, [Z3]). Now let φj , j = 1, . . . , l be the derivative of
the profile Ū δ with respect to δj , where l is the dimension of the smooth manifold {Ū δ(·)}
defined as in (H3). Thanks to the Evans condition (D), without loss of generality, we can
assume that

(A.4) URj (x, ζ̂, 0) = ULN−j+1(x, ζ̂, 0) = (φj(x), 0),

for j = 1, . . . , l.
Let ej ∈ CN be the unit vectors

ej =
(φj(0), 0)
|φj(0)|

, j = 1, . . . , l,

and extend to an orthonormal basis e1, . . . , eN of CN . Then the Evans function (A.2) for
the doubled boundary value problem can be explicitly defined as

(A.5) D(ζ̂, ρ) = det
(
e1 . . . eN UR1 . . . URk 0 . . . 0
e1 . . . eN 0 . . . 0 ULk+1 . . . ULN

)
|x=0.

We also set

(A.6) E−,φ(ζ̂, ρ) = span
{(
UR1
ULN

)
, . . . ,

(
URl
ULN−l+1

)}
|(0,ζ̂,ρ).

For ε > 0 fixed, denote by Ec−,φ,ε(ζ̂, ρ) any complementary subspace in E−(ζ̂, ρ) varying
continuously with (ζ̂, ρ) such that

(A.7) E−(ζ̂, ρ) = E−,φ(ζ̂, ρ)⊕ Ec−,φ,ε(ζ̂, ρ)

with uniformly bounded projections for 0 ≤ ρ ≤ ε.
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Then, we recall the following proposition that was proved for the Lax shock case in
[GMWZ1], Proposition 7.1.

Proposition A.1. (1) Let DL(ζ̂, ρ) and D(ζ̂, ρ) be the Evans functions defined as above.
Then

(A.8) DL(ζ̂, ρ) = (−1)ND(ζ̂, ρ).

(2) Under the Evans assumption (D), we have the following.
(a) For any choice of 0 < δ < R there is a constant Cδ, R such that when δ ≤ ρ ≤ R,

(A.9) |Γu| ≥ Cδ,R|u| for u ∈ E−(ζ̂, ρ).

(b) There exist positive constants C1, C2, δ such that

(A.10) C1ρ|u| ≤ |Γu| ≤ C2ρ|u| for u ∈ E−,φ(ζ̂, ρ)

for 0 ≤ ρ ≤ δ.
(c) There exists C > 0 such that

(A.11) |Γu| ≥ C|u| for u ∈ Ec−,φ,ε(ζ̂, ρ)

for 0 ≤ ρ ≤ ε.
(d) For any choice of R > 0 there is a constant CR such that for 0 ≤ ρ ≤ R,

(A.12) |Γu| ≥ CRρ|u| for u ∈ E−(ζ̂, ρ).

Proof. We follow word by word the proof for the Lax shock case in [GMWZ1], Proposition
7.1. First, by performing the row matrix operation, (1) is clear. (2a) follows by continuity
and compactness, and the fact that Γu is nonvanishing for nonzero u ∈ E−(ζ̂, ρ) when ρ > 0
by Evans function assumption (D).

For the proof of (2b), let us denote the matrix in (A.5) byM and perform column oper-

ations to replace the last l columns ofM by
(
URj
ULN−j+1

)
, and call the resulting matrixM1.

Now thanks to the normalization (A.4) and the fact that fast modes depend analytically on
ρ, we have for j = 1, . . . , l

(A.13)
(
URj
ULN−j+1

)
(0, ζ̂, ρ) =

(
(φj(0), 0)
(φj(0), 0)

)
+
(
c1j(ζ̂)
c2j(ζ̂)

)
ρ+O(ρ2).

Thus, the definition of ej , linearity of the determinant in the last l columns, and the Evans
condition (D) show that c1j − c2j are nonzero for all j. This together with the definition of
ΓU

Γ
(
UR

UL

)
= UR − UL

yields (A.10) at once.
(2c) Let v1(ζ̂, ρ), · · · , vN (ζ̂, ρ) be the last 2n columns of the matrix M1 defined above.

These vectors form a basis for E−(ζ̂, ρ). Take an arbitrary vector w ∈ Ec−,φ,ε(ζ̂, ρ). Then

(A.14) w =
N∑
j=1

cj,ε(ζ̂, ρ)vj(ζ̂, ρ),
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where cj,ε(ζ̂, ρ) depend continuously on (ζ̂, ρ).
Set c

′
ε = (c1,ε, · · · , cN−l,ε) and c

′′
ε = (cN−l+1,ε, · · · , cN,ε). The condition that the projec-

tions in (A.7) are uniformly bounded implies that there is an ε0 > 0 such that

(A.15) |c′ε(ζ̂, ρ)| ≥ ε0|c
′′
ε (ζ̂, ρ)|,

for 0 ≤ ρ ≤ ε.
In view of (D), we just need to show that Γw is nonvanishing at ρ = 0 for w as in (A.14)

and (A.15) with |(c′ε, c
′′
ε )| = 1, since (A.11) then follows by continuity and compactness.

Suppose Γw = 0 at (ζ̂, 0) for some such w. Because of (A.15) some cj,ε with j ≤ N − l, say,
c1,ε satisfies

(A.16) |c1,ε| ≥ c0

for ρ near 0, and for some c0 > 0. Since Γw = 0 at ρ = 0 and w(ζ̂, ρ) is continuous, we have

(A.17) w(ζ̂, ρ) =
(
a(ζ̂)
a(ζ̂)

)
+O(ρ).

Write vj = (vj+, vj−), use column operations to replace v1 inM1 by w, and call the resulting
matrix M2. Then M2 =(
e1 . . . eN a(ζ̂) +O(ρ) v2+ . . . vN−l,+ (φ1(0), 0) +O(ρ) . . . (φl(0), 0) +O(ρ)
e1 . . . eN a(ζ̂) +O(ρ) v2− . . . vN−l,− (φ1(0), 0) +O(ρ) . . . (φl(0), 0) +O(ρ)

)
.

(A.17) implies that | detM2(ζ̂, ρ)| ≥ C| detM1(ζ̂, ρ)| for some C > 0 uniformly near (ζ̂, 0).
But

detM2(ζ̂, ρ) = O(ρ)lO(ρ) as ρ→ 0.
This contradicts the assumed vanishing of detM = detM1 to exactly lth order at ρ = 0.

(2d) For any fixed (ζ̂, ρ), let u∗ =
(
u+(ζ̂, ρ)
u−(ζ̂, ρ)

)
∈ E−(ζ̂, ρ) be an element where the

minimum
min

|u|=1,u∈E−(ζ̂,ρ)
|Γu|

is attained. Write u∗ =
∑N

j=1 c
∗
j,ε(ζ̂, ρ)vj(ζ̂, ρ) and define c∗

′
j,ε, c

∗′′
j,ε in the same way as above.

Then, again, the uniform boundedness of the projections in (A.7) implies that there is an
ε0 > 0 such that either

(A.18) |c∗′ε(ζ̂, ρ)| ≥ ε0|c∗
′′
ε (ζ̂, ρ)|

or

(A.19) |c∗′′ε(ζ̂, ρ)| ≥ ε0|c∗
′
ε (ζ̂, ρ)|

for 0 ≤ ρ ≤ ε. Correspondingly, these imply that, without loss of generality, there holds
either

(A.20) |c∗1,ε| ≥ c0

or

(A.21) |c∗N,ε| ≥ c0
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for ρ near 0, and for some c0 > 0.
In the case that (A.20) holds, as above, we perform column operations to replace v1 in

M1 by u∗, and call the result M3. Then M3 =(
e1 . . . eN u+ v2+ . . . vN−l,+ (φ1(0), 0) +O(ρ) . . . (φl(0), 0) +O(ρ)
e1 . . . eN u− v2− . . . vN−l,− (φ1(0), 0) +O(ρ) . . . (φl(0), 0) +O(ρ)

)
.

Next perform column operations to replace the column u∗ =
(
u+

u−

)
by(

u+ − u−
0

)
=
(

Γu∗

0

)
.

Thus, by direct calculations and (A.20),

|detM3| = |Γu∗|O(ρ)l ≥ C| detM1| = C| detM| ≥ Cρl,
which gives |Γu∗| ≥ C.

Similarly, in the case that (A.20) holds, replacing vN inM1 by u∗, denoting the resulting
matrix by M4, and performing column operations as above, we then obtain

| detM4| = |u+(ζ̂)− u−(ζ̂, ρ)|O(ρ)l−1 = |Γu∗|O(ρ)l−1.

This together with | detM4| ≥ C| detM1| = O(ρl) by (A.21) yields |Γu∗| ≥ Cρ.
Thus, altogether we obtain |Γu| ≥ Cρ|u|, for u ∈ E−(ζ̂, ρ) with |u| = 1, uniformly in ρ

near 0. Together with (2a), this proves (2d). �

Now let T be the MZ conjugation such that (A.1) leads to the following constant–
coefficient system

(A.22)
{

Ux −G(∞, ζ)U = F,
Γ1U = 0 on x = 0,

where Γ1 = ΓT and G has the block form as in (2.10),(2.11):

(A.23) G(∞, ζ) =

P+(ζ) 0 0
0 P−(ζ) 0
0 0 H(ζ̂, ρ)


Thus, we can decompose U ∈ C2N as follows

(A.24) U = UP+ + UP− + UH+ + UH− ,

and set
U− = UP− + UH− ∈ E−(ζ̂, ρ).

Define the l-dimensional subspace EP1− of EP− by

E−,φ = T EP1− ,

where E−,φ is defined as in (A.6), and for ε > 0 fixed, chose a smoothly varying complemen-
tary subspace EP2−,ε such that

(A.25)
EP− = EP1−(ζ̂, ρ)⊕ EP2−,ε(ζ̂, ρ),
UP− = UP1− + UP2−,ε
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with uniformly bounded projections for 0 ≤ ρ ≤ ε. Take

(A.26) Ec−,φ,ε = T (EP2−,ε ⊕ EH−).

Ec−,φ,ε is then a choice that works in (A.7).
Then the following is an immediate consequence of Proposition A.1.

Corollary A.2. There exist positive constants C1, C2 and δ0 such that for 0 ≤ ρ ≤ δ0

(A.27)

(a) C1ρ|UP1− | ≤ |Γ1UP1− | ≤ C2ρ|UP1− |,
(b) |Γ1(UH− + UP2−,ε)| ≥ C1(|UH− |+ |UP2−,ε |),
(c) |Γ1U−| ≥ C1ρ|U−|,

where Γ1 is defined as in (A.22). These estimates hold uniformly near the basepoint X0 =
(ζ̂, 0).

Thus, we obtain the following lemma which is essential for the construction of degenerate
symmetrizers.

Lemma A.3 (Lemma 7.1, [GMWZ1]). There exists a constant δ > 0 such that for ρ
sufficiently small we have

(A.28) |ΓU−| ≥ δ(|UH− |+ ρ|UP− |)

uniformly in a neighborhood of the base point X0 = (ζ̂, 0).

Proof. In view of (A.27) (a), (b), we have

|Γ1U−| = |Γ1UH− + Γ1UP1− + Γ1UP2−,ε |
≥ C(|UH− |+ |UP2−,ε |)− Cρ|UP1− |.

Adding a sufficiently small multiple of this inequality to the inequality (A.27) (c)

|Γ1U−| ≥ Cρ|U−| = Cρ(|UH− |+ |UP1− |+ |UP2−,ε |),

we obtain for ρ small
|Γ1U−| ≥ δ(|U−|+ ρ|UP1− |+ |UP2−,ε |),

which implies (A.28). �

Appendix B. Auxiliary problem

In this section we consider the n× n system on the whole real line R

(B.1) L0V := (B11Vx)x − (A1V )x = fx

where A1, B11 are same as in (2.25). Let us recall B11 =
(

0 0
b11
1 b11

2

)
. We shall derive an

estimate slightly similar to (2.29) by Kreiss-type symmetrizers techniques in the case of
Lax and overcompressive shocks. This will be done by modifying the proof in [GMWZ1,
Section 10.2]; though, our purpose is slightly different and we have to treat the degeneracy
of the viscosity matrix B11 as comparing to the identity matrix in [GMWZ1]. Specifically,
we prove the following:
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Lemma B.1. Let V = (V1, V2) ∈ Cn−r × Cr be a solution of (B.1). We prove that there
exists a constant C > 0 such that

(B.2)
|V |Lp ≤ C(|f |L1 + |f |L∞)

|Vx|Lp ≤ C(|f |L1 + |f |L∞ + |fx|Lp)
for any 1 ≤ p ≤ ∞.

Proof. We first integrate the equation (B.1), yielding

(B.3) B11Vx −A1V = f.

Consider the double 2n× 2n boundary problem on x ≥ 0 equivalent to (B.3)

(B.4)
BWx −AW = F

ΓW = 0 on {x = 0}

where, defining φ±(x) = φ(±x) for any function φ defined on R,

(B.5)

W (x) =
(
V+(x)
V−(x)

)
,

A(x) =
(
A1

+(x) 0
0 −A1

−(x)

)
,

B(x) =
(
B11

+ (x) 0
0 −B11

− (x)

)
,

F (x) =
(
f+(x)
−f−(x)

)
,

ΓW = V+ − V−.

In what follows, we shall keep track of variables W as (W+
1 ,W

+
2 ,W

−
1 ,W

−
2 ) ∈ Cn−r ×Cr ×

Cn−r ×Cr in the obvious way corresponding to matrix blocks as above. Notice also that B
is degenerate in W±1 -blocks.

Let E−(0) be the space of boundary values of decaying solutions of (B.4) when F = 0.
Then, we have

dim E−(0) = i

where i is defined at the beginning of Section 1.2. On the other hand, ker Γ has dimension
n. Thus, Assumption (D) then implies that ker Γ and E−(0) have an l = i− n dimensional
intersection spanned by

(φ1(0), φ1(0)), · · · , (φl(0), φl(0))
where functions φi(0) are defined as in the paragraph just below (A.3).

We define an augmented boundary condition Γ̃ with property that

(B.6) C2n = ker Γ̃⊕ E−(0).

Since φj form a basis of the tangential space of the smooth manifold {Ū δ(·)} defined as
in (H3), without loss of generality, we assume that the jth component of φj is not zero.
Thus, let us define

(B.7) Γ̃W = (W1, · · · ,Wl, V+ − V−)
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where W1, · · · ,Wl are the first l components of W ∈ C2n.
Now we consider the system

(B.8)
BWx −AW = F

Γ̃W = 0 on {x = 0}.

Since any solution of (B.8) is also a solution of (B.4), we only need to give an estimate
for solutions of (B.8). By using the MZ conjugation [MeZ1], there is a uniformly bounded
transformation C such that by setting W = CZ, (B.8) gives

(B.9)
B(∞)Zx −A(∞)Z = F̄

Γ̄Z = 0 on {x = 0}

where Γ̄ = Γ̃C. Now let us define new variable Y as

Y := QZ, with Q :=


(
In−r 0
b11
1 b11

2

)
0

0
(
In−1 0
−b11

1 −b11
2

)
 .

Then Y solves

(B.10)

Ỹx −A(∞)Q−1Y = F̂

Y = (Y +
1 , Y +

2 , Y −1 , Y −2 )

Ỹ = (0, Y +
2 , 0, Y −2 )

Γ̂Y = 0 on {x = 0}

where Γ̂ = Γ̃CQ−1 and F̂ = F̄Q−1.
Now by view of (B.5), (1.3), and (H2), eigenvalues µj of each block of A(∞)Q−1 are

distinct and nonzero. Thus, by performing a further transformation if necessary, we could
assume that A(∞)Q−1 is diagonal. In these diagonalized coordinates, the system (B.10)
consists of 2n “uncoupled” equations:

− µj±Y1± = F̂1±

(Y2±)x − µj±Y2± = F̂2±

where note that Yi± are the projections of Yi on the growing (resp. decaying) eigenspaces
of A associated to eigenvalues µj±. In particular, ±µj± > 0.

From equations for Y1, it is clear that

(B.11) |Y1|Lp . |F̃1|Lp ∀p ≥ 1.

Meanwhile, Y2± satisfies

Y2+(x) =
∫ ∞
x

eµj+(x−y)F̂2+(y) dy,

Y2−(x) = eµj−xY2−(0) +
∫ x

0
eµj−(x−y)F̂2−(y) dy.
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Thus, this yields

(B.12)
|Y2+|Lp . |F̂2+|Lp ,

|Y2−|Lp . |F̂2−|Lp + |Y2−(0)|,
∀p ≥ 1.

Now since Y2−(0) ∈ E−(0), by view of (B.6) as bounded projections and the fact that all
our transformations and their inverses are bounded, we must have

|Y2−(0)| . |Γ̂Y−(0)| . |Γ̂Y (0)|+ |Y+(0)| . |Y+|L∞ .

Altogether, we obtain

(B.13) |Y |Lp . |F̃ |L1 + |F̃ |L∞ , ∀p ≥ 1

which proves the first bound in (B.2). Estimates for derivatives are then immediate by
differentiating the equations of Y1 in (B.10) and by solving equations (B.10) for Y2x in
terms of Y and F̂ . Thus, we have proved the lemma as claimed. �

Appendix C. Independence of the pointwise Green bounds

In this section we comment on independence of the pointwise Green function estimates.
The high–frequency estimate (2.4) can be derived entirely from auxiliary nonlinear energy
estimates as done in [Z4]; see also Proposition 3.6, [NZ2], for a great simplification. Whereas,
the independency for the low–frequency estimate (2.2) can be seen by first proving the
following slightly–weaker version of Proposition 2.2, independent of the pointwise bounds
(2.27),(2.28). A similar version can be done for Proposition 4.1.

Proposition C.1 (Low-frequency bounds). Under the hypotheses of Theorem 1.8, for λ ∈
Γξ̃ and ρ := |(ξ̃, λ)|, θ1 sufficiently small, there holds the resolvent bound

(C.1) |(Lξ̃ − λ)−1∂βx1
f |Lp(x1) ≤ Cρ−3/2+(1−α)β(|f |L1(x1) + |∂x1f |L1(x1)),

for all 2 ≤ p ≤ ∞, β = 0, 1, and α defined as in (2.3).

Proof. Certainly by Proposition 2.2, we only need to prove the bound in the case β = 1. In
the case of undercompressive shocks, the bound is clear by applying (C.1) with β = 0, α = 1
and f replaced by ∂x1f :

(C.2) |(Lξ̃ − λ)−1∂x1f |Lp(x1) ≤ Cρ−3/2|∂x1f |L1(x1).

Now for the case of Lax or overcompressive shocks, we use the Kreiss–Kreiss trick as
in the proof of Proposition 2.2, that is, write U = V + U1 where V solves the auxiliary
problem (B.1). From the estimate (B.2) of V and the inequality: |f |L∞ ≤ |∂x1f |L1(x1) (with
f(+∞) = 0), we have

(C.3) |V |Lp + |Vx|L1 ≤ C(|f |L1(x1) + |∂x1f |L1(x1)), ∀p ≥ 1.

Thus, replacing (2.29) by this inequality and following the proof of Proposition 2.2, we
obtain the bound (C.1). �
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Proof of Theorem 1.8, provided (C.1). The resolvent estimate (C.1) is only weaker than
(2.18) by a stronger norm on f . We thus can certainly follow the proof in Section 2.4,
yielding a low–frequency estimate like (2.2), but again weaker by a stronger norm on f ,
namely, |f |L1(x) + |∂x1f |L1(x). With this slightly weaker estimate for S1, we can follow word
by word the proof of the theorem in Section 3, noting that the higher derivatives of f (then
of U) can then be estimated by the energy estimate (3.6). Thus, we obtain the theorem
without requiring any further regularity on the structures of the system. �
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