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Abstract

In this paper we provide sharp criteria for linear stability or instability of equilibria of
collisionless plasmas in the presence of boundaries. Specifically, we consider the relativistic
Vlasov-Maxwell system with specular reflection at the boundary for the particles and with the
perfectly conducting boundary condition for the electromagnetic field. Here we initiate our
investigation in the simple geometry of radial and longitudinal symmetry.

1 Introduction

We consider a plasma at high temperature or of low density such that collisions can be ignored as
compared with the electromagnetic forces. Such a plasma is modeled by the relativistic Vlasov-
Maxwell system (RVM) {

∂tf
+ + v̂ · ∇xf+ + (E + v̂ ×B) · ∇vf+ = 0,

∂tf
− + v̂ · ∇xf− − (E + v̂ ×B) · ∇vf− = 0,

(1.1)

∇x ·E = ρ, ∇x ·B = 0, (1.2)

∂tE−∇x ×B = −j, ∂tB +∇x ×E = 0, (1.3)

ρ =

∫
R3

(f+ − f−) dv, j =

∫
R3

v̂(f+ − f−) dv.

Here f±(t, x, v) ≥ 0 is the density distribution for ions and electrons, respectively, x ∈ Ω ⊂ R3

is the particle position, Ω is the region occupied by the plasma, v is the particle momentum,
〈v〉 =

√
1 + |v|2 is the particle energy, v̂ = v/〈v〉 the particle velocity, ρ the charge density, j the

current density, E the electric field, B the magnetic field and ±(E + v̂ × B) the electromagnetic
force. We assume that the particle molecules interact with each other only through their own
electromagnetic forces. For simplicity, we have taken all physical constants such as the speed of
light and the mass of the electrons and ions equal to 1. This whole paper can be easily modified to
apply with the true physical constants.
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Stability analysis for a Vlasov-Maxwell system of the type that we present in this paper has
so far appeared only in the absence of spatial boundaries, that is, either in all space or in a
periodic setting like the torus. In this paper we present the first systematic stability analysis in a
domain Ω with a boundary. It is an unresolved problem to determine which boundary conditions
an actual plasma may satisfy under various physical conditions. Several boundary conditions are
mathematically valid and some of them are more physically justified than others. Stability analysis
is a central issue in the theory of plasmas. In a tokamak and other nuclear fusion reactors, for
instance, the plasma is confined by a strong magnetic field. This paper is a first, rather primitive,
step in the direction of mathematically understanding a confined plasma. We take the case of a
fixed boundary with specular and perfect conductor boundary conditions in a longitudinal and
radial setting.

The specular condition is

f±(t, x, v) = f±(t, x, v − 2(v · n(x))n(x)), n(x) · v < 0, x ∈ ∂Ω, (1.4)

where n(x) denotes the outward normal vector of ∂Ω at x. The perfect conductor boundary
condition is

E× n(x) = 0, B · n(x) = 0, x ∈ ∂Ω. (1.5)

Under these conditions it is straightforward to see that the total energy

E(t) =

∫
Ω

∫
R3

〈v〉(f+ + f−) dvdx+
1

2

∫
Ω

(
|E|2 + |B|2

)
dx (1.6)

is conserved in time, and also that the system admits infinitely many equilibria. The main focus
of the present paper is to investigate stability properties of the equilibria.

Our analysis closely follows the spectral analysis approach in [16, 17, 18] which tackled the
stability problem in domains without spatial boundaries. Roughly speaking, that approach provided
the sharp stability criterion L0 ≥ 0, where L0 is a certain nonlocal self-adjoint operator acting on
scalar functions that depend only on the spatial variables. The positivity condition was verified
explicitly for various interesting examples. It may also be amenable to numerical verification. In
our case with a boundary, every integration by parts brings in boundary terms. This leads to some
significant complications.

In the present paper, we restrict ourself to the stability problem in the simple setting of longi-
tudinal and radial symmetry. Thus the problem becomes spatially two-dimensional. Indeed, using
standard cylindrical coordinates (r, θ, z), the symmetry means that there is no dependence on z
and θ and that the domain is a cylinder Ω = D×R where D is a disk. We may as well assume that
D is the unit disk in the (x1, x2) plane. It follows that x = (x1, x2, 0) ∈ D×R, v = (v1, v2, 0) ∈ R3,
E = (E1, E2, 0), and B = (0, 0, B). In the sequel we will drop the zero coordinates so that x ∈ D and
v ∈ R2. In terms of the polar coordinates (r, θ), we denote er = (cos θ, sin θ), eθ = (− sin θ, cos θ).
It follows that the field has the form

E = −∂rϕer − ∂tψeθ, B =
1

r
∂r(rψ)), (1.7)

where the scalar potentials ϕ(t, r) and ψ(t, r) satisfy a reduced form of the Maxwell equations. See
the next section for details.
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1.1 Equilibria

We will denote an equilibrium by (f0,±,E0, B0). Its field has the form

E0 = −∂rϕ0er, B0 =
1

r
∂r(rψ

0). (1.8)

Then the particle energy and angular momentum

e±(x, v) := 〈v〉 ± ϕ0(r), p±(x, v) := r(vθ ± ψ0(r)), (1.9)

are invariant along the particle trajectories. It is straightforward to check that µ±(e±, p±) solve
the Vlasov equations for any smooth functions µ±(e, p). So we consider equilibria of the form

f0,+(x, v) = µ+(e+(x, v), p+(x, v)), f0,−(x, v) = µ−(e−(x, v), p−(x, v)). (1.10)

The potentials still have to satisfy the Maxwell equations, which take the form

−∆ϕ0 =

∫ [
µ+(e+, p+)− µ−(e−, p−)

]
dv

−∆rψ
0 =

∫
v̂θ

[
µ+(e+, p+)− µ−(e−, p−)

]
dv

(1.11)

with ∆r = ∆− 1
r2

. Again, see the next section for details. It is clear that the boundary conditions
(1.4) and (1.5) are automatically satisfied for the equilibria since e± and p± are even in vr, and E0

is parallel to er. In the appendix we will prove that plenty of such equilibria do exist.
Let (f0,±,E0,B0) be an equilibrium as just described with f0,± = µ±(e±, p±). We assume that

µ±(e, p) are nonnegative, C1 smooth, and satisfy

µ±e (e, p) < 0, |µ±|+ |µ±p (e, p)|+ |µ±e (e, p)|+
|µ±p (e, p)|2

|µ±e (e, p)|
≤ Cµ

1 + |e|γ
(1.12)

for some constant Cµ and some γ > 2, where the subscripts e and p denote the partial derivatives.
We also assume that ϕ0, ψ0 are continuous in D. It follows that E0,B0 ∈ C1(D), as proven in the
appendix.

We consider the Vlasov-Maxwell system linearized around the equilibrium. The linearization is

∂tf
± + D±f± = ∓(E + v̂ ×B) · ∇vf0,±, (1.13)

together with the Maxwell equations and the specular and perfect conductor boundary conditions.
Here D± denotes the first-order linear differential operator: D± := v̂ · ∇x ± (E0 + v̂×B0) · ∇v. See
the next section for details.
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1.2 Spaces and operators

In order to state precise results, we have to define certain spaces and operators. We denote by
H± = L2

|µ±e |
(D × R2) the weighted L2 space consisting of functions f±(x, v) which are radially

symmetric in x such that ∫
D

∫
|µ±e ||f±|2 dvdx < +∞.

The main purpose of the weight function is to control the growth of f± as |v| → ∞. Note that the
weight |µ±e | never vanishes and it decays like a power of v as |v| → ∞. When there is no danger of
confusion, we will often write H = H±.

For k ≥ 0 we denote by Hk
r (D) the usual Hk space on D that consists of functions that are

radially symmetric. If k = 0 we write L2
r(D). By Hk†(D) we denote the space of functions ψ = ψ(r)

in Hk
r (D) such that ψ(r)eiθ belongs to the usual Hk(D) space. The motivation for this space is to

get rid of the apparent singularity 1/r2 at the origin in the operator ∆r, thanks to the identity

−∆rψ =
(
−∆ +

1

r2

)
ψ = −e−iθ∆(ψeiθ).

By V we denote the space consisting of the functions in H2
r (D) which satisfy the Neumann boundary

condition and which have zero average over D. Also, let V† be the space consisting of the functions
in H2†(D) which satisfy the Dirichlet boundary condition. The spaces V and V† incorporate the
boundary conditions (2.9) for electric and magnetic potentials, respectively.

Denote by P± the orthogonal projection on the kernel of D± in the weighted space H±. In the
spirit of [16, 18], our main results involve the three linear operators on L2(D), two of which are
unbounded,

A0
1h = −∆h−

∫
µ+
e (1− P+)h dv −

∫
µ−e (1− P−)h dv,

A0
2h = −∆rh−

∫
rv̂θ(µ

+
p + µ−p ) dvh−

∫
v̂θ

(
µ+
e P+(v̂θh) + µ−e P−(v̂θh)

)
dv,

B0h = r

∫ (
µ+
p + µ−p

)
dvh+

∫ (
µ+
e P+(v̂θh) + µ−e P−(v̂θh)

)
dv.

(1.14)

Here µ± denotes µ±(e±, p±) = µ±(〈v〉 ± ϕ0(x), rvθ ± rψ0(x)). These three operators are naturally
derived from the Maxwell equations when f+ and f− are written in integral form by integrating
the Vlasov equations along the trajectories. See Section 3.2 for their properties. In the next section
we will show that both A0

1 with domain V and A0
2 with domain V† are self-adjoint operators on

L2
r(D). Furthermore, the inverse of A0

1 is well-defined on the range of B0, and so we are able to
introduce our key operator

L0 = A0
2 + (B0)∗(A0

1)−1B0. (1.15)

The operator L0 will then be self-adjoint on L2
r(D) with its domain V†. As the next theorem states,

L0 ≥ 0 [which means that (L0ψ,ψ)L2 ≥ 0 for all ψ ∈ V†] is the condition for stability.
Finally, by a growing mode we mean a solution of the linearized system (including the boundary

conditions) of the form (eλtf±, eλtE, eλtB) with <eλ > 0 such that f± ∈ H± and E,B ∈ L2(D).

4



The derivatives and the boundary conditions are considered in the weak sense, which will be justified
in Lemma 2.2. In particular, the weak meaning of the specular condition on f± will be given by
(2.10).

1.3 Main results

The first main result of our paper gives a necessary and sufficient condition for stability in the
spectral sense.

Theorem 1.1. Let (f0,±,E0,B0) be an equilibrium of the Vlasov-Maxwell system satisfying (1.12).
Consider the linearization of the Vlasov-Maxwell system (1.13) for radially symmetric perturbations
together with the specular and perfect conductor boundary conditions. Then

(i) if L0 ≥ 0, there exists no growing mode of the linearized system;
(ii) any growing mode, if it does exist, must be purely growing; that is, the unstable exponent λ

must be real;
(iii) if L0 6≥ 0, there exists a growing mode.

Our second main result provides explicit examples for which the stability condition does or does
not hold. For more precise statements of this result, see Section 5.

Theorem 1.2. Let (µ±,E0,B0) be an equilibrium as above.
(i) The condition pµ±p (e, p) ≤ 0 for all (e, p) implies L0 ≥ 0, provided that ψ0 is sufficiently

small. (So such an equilibrium is stable.)
(ii) The condition |µ±p (e, p)| ≤ ε

1+|e|γ for some γ > 2 and for ε sufficiently small implies L0 ≥ 0.

Here ψ0 is not necessarily small. (So such an equilibrium is stable.)
(iii) The conditions µ+(e, p) = µ−(e,−p) and pµ−p (e, p) ≥ c0p

2ν(e), for some nontrivial non-
negative function ν(e), imply that for a suitably scaled version of (µ±, 0,B0), L0 ≥ 0 is violated.
(So such an equilibrium is unstable.)

The instabilities in a plasma are due to the collective behavior of all the particles. For a ho-
mogeneous equilibrium (without an electromagnetic field) Penrose [20] found a beautiful necessary
and sufficient condition for stability of the Vlasov-Poisson system (VP). For a BGK mode, the equi-
librium has an electric field. In that case, proofs of instability for VP (electric perturbations) were
first given in [8, 9, 10] and an analysis of nonlinear stability for general inhomogenous equilibria
was provided in [1]. Especially, a general non-perturbative analysis of instability was introduced in
[14, 15] for periodic equilibria of VP. Once magnetic effects are included, even for a homogeneous
plasma, the situation becomes much more complicated: see for instance [6, 7, 11, 12]. In a series
of three papers [16, 17, 18] a more general approach was taken that treated fully electromagnetic
equilibria with electromagnetic perturbations. The linear stability theory was addressed in [16, 18],
while in [17] fully nonlinear stability and instability was proven in some cases. Among all of the
work just mentioned, the closest analogues to our work in a domain with specular and perfect
conductor boundary conditions are [1, 7]. However, instability question is not addressed in [1, 7]
and the stability criterium is far from being sharp.
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In this paper we do not address the question of well-posedness of the initial-value problem.
For VP in R3 well-posedness was proven in [21] and [19]. For RVM in all space R3 it is a famous
open problem. The relativistic setting seems to be required, for otherwise the Vlasov and Maxwell
characteristics would collide. However, for RVM in the whole plane R2, which is the case most
relevant to this paper, well-posedness and regularity were proven in [4]. The same is true even in
the 2.5 dimensional case [3]. Although global weak solutions exist in R3, they are not known to be
unique [2]. Furthermore, in a spatial domain with a boundary on which one assumes specular and
perfect conductor conditions, global weak solutions also exist [5]. Well-posedness and regularity of
VP in a convex bounded domain with the specular condition was recently proven in [13].

A delicate part of our analysis is how to deal with the specular boundary condition within the
context of weak solutions. This is discussed in subsection 2.3. Properly formulated, the operators
D± then are skew-adjoint. In this paper, as distinguished from [16], we entirely deal with the weak
formulation. Our regularity assumptions are essentially optimal. In subsection 2.4 we prove that
the densities f± of a growing mode of the linearized system decay at a certain rate as |v| → ∞.

As in [16], the stability part of Theorem 1.1 is based on realizing the temporal invariants of the
linearized system. They have to be delicately calculated due to the weak form of the boundary
conditions. This is done in subsection 3.3. The invariants are the generalized energy I and the
casimirs Kg, which are a consequence of the assumed symmetry of the system. A key part of the
stability proof is to minimize the energy with the magnetic potential being held fixed (see subsection
3.4). The purity of any growing mode, in part (ii) of Theorem 1.1, is a consequence of splitting
the densities into even and odd parts relative to the variable vr (see subsection 3.5). The proof of
stability is completed in subsection 3.6.

The proof of instability in Theorem 1.1(iii) requires the introduction of a family of linear
operators Lλ which formally reduce to L0 as λ → 0. The technique was first introduced by
Lin in [14] for the BGK modes. These operators explicitly use the particle paths (trajectories)
(X±(s;x, v), V ±(s;x, v)). The trajectories reflect specularly a countable number of times at the
boundary. We use them to represent the densities f± in integral form, like a Duhamel representa-
tion. This representation together with the Maxwell equations leads to the family of operators in
subsection 4.3. Self-adjointness requires careful consideration of the trajectories. It is then shown
in subsection 4.4 that Lλ is a positive operator for large λ, while it has a negative eigenvalue for
λ small because of the hypothesis L0 6≥ 0. Therefore Lλ has a nontrivial kernel for some λ > 0
If ψ is in the kernel, it is the magnetic potential of the growing mode. From ψ we construct the
corresponding electric potential ϕ and densities f±.

In Section 5 we prove Theorem 1.2. The stability examples are relatively easy. As we see, the
basic stabilizing condition is pµ±p ≤ 0. To construct the unstable examples we make the simplifying
assumption that the equilibrium has no electric field so that L0 = A0

2. In the expression (L0ψ,ψ)L2

the term that has to dominate negatively is the one with pµp. In order to make it dominate, we
scale the equilibrium appropriately. We first treat the homogeneous case (Theorem 5.5) and then
the purely magnetic case (Theorem 5.4).
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2 The symmetric system

2.1 The potentials

It is convenient when dealing with the Maxwell equations to introduce the electric scalar potential
ϕ and magnetic vector potential A through

E = −∇ϕ− ∂tA, B = ∇×A, (2.1)

in which without loss of generality, we impose the Coulomb gauge constraint ∇ ·A = 0. Note that
with these forms, there automatically hold the two Maxwell equations:

∂tB +∇×E = 0, ∇ ·B = 0,

whereas the remaining two Maxwell equations become

−∆ϕ = ρ, ∂2
tA−∆A + ∂t∇ϕ = j.

Under the assumption of radial and longitudinal symmetry, there is no z or θ dependence. We
use the polar coordinates x = (r cos θ, r sin θ) on the unit disk D. A radial function f(x) is one
that depends only on r and in this case we often abuse notation by writing f(r). We also denote
the unit vectors by er = (cos θ, sin θ) and eθ = (− sin θ, cos θ). Thus er(x) = n(x) is the outward
normal vector at x ∈ ∂D. Although the functions do not depend on θ, the unit vectors er and eθ
do. Then we may write f± = f±(t, r, v), where v = vrer + vθeθ and A = Arer +Aθeθ.

Now the Coulomb gauge in this symmetric setting reduces to 1
r∂r(rAr) = 0, so that Ar = h(t)/r.

We require the field to have finite energy, meaning that E,B ∈ L2(D). Thus Er = −∂rϕ− ∂tAr ∈
L2(D) only if h(t) is a constant. But if h(t) is a constant, we may as well choose it to be zero
because it will not contribute to either E or B. For notational convenience let us write ψ in place
of Aθ. The fields defined through (2.1) then take the form

E = −∂rϕer − ∂tψeθ, B = Bez, B =
1

r
∂r(rψ)). (2.2)

We note that

v̂ · ∇xf = v̂r∂rf +
1

r
v̂θ∂θf = v̂r∂rf +

1

r
v̂θ

{
vθ∂vrf − vr∂vθf

}
.

In these coordinates the RVM system takes the form ∂tf
+ + v̂r∂rf

+ +
(
Er + v̂θB + 1

rvθv̂θ

)
∂vrf

+ +
(
Eθ − v̂rB − 1

rvrv̂θ

)
∂vθf

+ = 0,

∂tf
− + v̂r∂rf

− −
(
Er + v̂θB − 1

rvθv̂θ

)
∂vrf

− −
(
Eθ − v̂rB + 1

rvrv̂θ

)
∂vθf

− = 0,
(2.3)

−∆ϕ = ρ =

∫
R2

(f+ − f−)(t, r, v) dv,

∂t∂rϕ = jr =

∫
R2

v̂r(f
+ − f−)(t, r, v) dv,

(∂2
t −∆r)ψ = jθ =

∫
R2

v̂θ(f
+ − f−)(t, r, v) dv,

(2.4)
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where ∆r = ∆− 1
r2

. The system (2.3) - (2.4) is accompanied by the specular boundary condition
on f±, which is now equivalent to the evenness of f± in vr at r = 1. In particular, jr = 0 on ∂D.
The condition B · n = 0 is automatic. The boundary conditions on ϕ and ψ are

∂rϕ(t, 1) = const., ψ(t, 1) = const. (2.5)

The Neumann condition on ϕ comes naturally from the second Maxwell equation in (2.4) with
jr = 0. The Dirichlet condition on ψ comes naturally from 0 = E× n = (0, 0,−∂tψ).

2.2 Linearization

We linearize the Vlasov-Maxwell near the equilibrium (f0,±,E0, B0). From (2.3), the linearized
Vlasov equations are

∂tf
+ + D+f+ = −(Er + v̂θB)∂vrf

0,+ − (Eθ − v̂rB)∂vθf
0,+,

∂tf
− + D−f− = (Er + v̂θB)∂vrf

0,− + (Eθ − v̂rB)∂vθf
0,−.

(2.6)

The first-order differential operators D± := v̂ · ∇x ± (E0 + v̂ ×B0) · ∇v now take the form

D+ := v̂r∂r +
(
E0
r + v̂θB

0 +
1

r
vθv̂θ

)
∂vr −

(
v̂rB

0 +
1

r
vrv̂θ

)
∂vθ ,

D− := v̂r∂r −
(
E0
r + v̂θB

0 − 1

r
vθv̂θ

)
∂vr +

(
v̂rB

0 − 1

r
vrv̂θ

)
∂vθ .

(2.7)

In order to compute the right-hand sides of (2.6) more explicitly, we differentiate the definition
f0,± = µ±(e±, p±) to get

∂vrf
0,± = µ±e v̂r, ∂vθf

0,± = µ±e v̂θ + rµ±p .

Thus, together with the forms of E and B in (2.2), we calculate

(Er + v̂θB)∂vrf
0,+ + (Eθ − v̂rB)∂vθf

0,+

= (Er + v̂θB)µ+
e v̂r + (Eθ − v̂rB)(µ+

e v̂θ + rµ+
p )

= −µ+
e v̂r∂rϕ− µ+

p v̂r∂r(rψ)− µ+
e v̂θ∂tψ − rµ+

p ∂tψ

= −µ+
e D+ϕ− µ+

p D+(rψ)− (µ+
e v̂θ + rµ+

p )∂tψ,

where the last line is due to the fact that D+ϕ = v̂r∂rϕ for radial functions. Of course a similar
calculation holds for f0,−. Thus the linearization (2.6) becomes

∂tf
+ + D+f+ = µ+

e D+ϕ+ µ+
p D+(rψ) + ∂vθ [µ

+]∂tψ

= µ+
e v̂r∂rϕ+ µ+

p v̂r∂r(rψ) + (µ+
e v̂θ + rµ+

p )∂tψ

∂tf
− + D−f− = −µ−e D−ϕ− µ−p D−(rψ)− ∂vθ [µ

−]∂tψ

= −µ−e v̂r∂rϕ− µ−p v̂r∂r(rψ)− (µ−e v̂θ + rµ−p )∂tψ

(2.8)

Of course, linearization does not alter the Maxwell equations (2.4). As for boundary conditions,
we naturally take the specular condition on f± and

∂rϕ(t, 1) = 0, ψ(t, 1) = 0. (2.9)
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2.3 The Vlasov operators

The Vlasov operators D± are formally given by (2.7). Their relationship to the boundary condition
is given in the next lemma.

Lemma 2.1. Let g(x, v) = g(r, vr, vθ) be a C1 radial function on D × R2. Then g satisfies the
specular boundary condition if and only if∫

D

∫
R2

g D±h dvdx = −
∫
D

∫
R2

D±g h dvdx

(either + or -) for all radial C1 functions h with v-compact support that satisfy the specular condi-
tion.

Proof. Integrating by parts in x and v, we have∫
D

∫
R2

{g D±h+ D±g h} dvdx = 2π

∫
gh v̂ · er dv

∣∣∣
r=1

.

If g satisfies the specular condition, then g and h are even functions of vr = v · er on ∂D, so that
the last integral vanishes. Conversely, if

∫
gh v̂ · er dv = 0 on ∂D, then

∫
g(1, vr, vθ) k(vr, vθ)dv = 0

for all test functions that are odd in vr, so it follows that g(1, vr, vθ) is an even function of vr.

Therefore we define the domain of D± to be

dom(D±) =
{
g ∈ H

∣∣∣ D±g ∈ H, 〈D±g, h〉H = −〈g,D±h〉H, ∀h ∈ C
}
, (2.10)

where C denotes the set of radial C1 functions h with v-compact support that satisfy the specular
condition. We say that a function g ∈ H with D±g ∈ H satisfies the specular boundary condition
in the weak sense if g ∈ dom(D±). Clearly, dom(D±) is dense in H since by Lemma 2.1 it contains
the space C of test functions, which is of course dense in H.

It follows that
〈D±g, h〉H = −〈g,D±h〉H (2.11)

for all g, h ∈ dom(D±). Indeed, given h ∈ dom(D±), we just approximate it in H by a sequence of
test functions in C, and so (2.11) holds thanks to Lemma 2.1.

Furthermore, with these domains, D± are skew-adjoint operators on H. Indeed, the skew-
symmetry has just been stated. To prove the skew-adjointness of D+, suppose that f, g ∈ H and
〈f, h〉H = −〈g,D+h〉H for all h ∈ dom(D±). Taking h ∈ C to be a test function, we see that
D+g = f in the sense of distributions. Therefore (2.11) is valid for all such h, which means that
g ∈ dom(D+).

2.4 Growing modes

Now we can state some necessary properties of any growing mode. Recall that by definition a
growing mode satisfies f± ∈ H and E,B ∈ L2(D).
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Lemma 2.2. Let (eλtf±, eλtE, eλtB) with <eλ > 0 be any growing mode. Then E,B ∈ H1(D) and∫∫
D×R2

(|f±|2 + |D±f±|2)
dvdx

|µ±e |
<∞.

Proof. The fields are given by (2.2) where ϕ,ψ satisfy the elliptic system (2.4) with Dirichlet or
Neumann boundary conditions, expressed weakly. The densities f± satisfy (2.8). Explicitly,

λf± + D±f± = ±µ±e v̂r∂rϕ± µ±p v̂r∂r(rψ)± λ(µ±e v̂θ + rµ±p )ψ. (2.12)

This equation implies that D±f± ∈ H. The specular boundary condition on f± is expressed weakly
by saying that f± ∈ dom(D±). Dividing by |µ±e | and defining g± = f±/|µ±e |, we write the equation
in the form λg± + D±g± = h±, where the right side h± belongs to H = L2

|µ±e |
(D × R2) thanks to

the decay assumption (1.12) on µ±.
Letting wε = |µ±e |/(ε+ |µ±e |) for ε > 0 and gε = wεg

±, we have 〈λgε+ D±gε, gε〉H = 〈wεh±, gε〉H.
It easily follows that gε ∈ H. In fact, gε ∈ dom(D±), which means that the specular boundary
condition holds in the weak sense, so that (2.11) is valid for it. In (2.11) we take both functions to
be gε and therefore 〈D±gε, gε〉H = 0. It follows that

|λ|‖gε‖2H = |〈wεh±, gε〉H| ≤ ‖h±‖H‖gε‖H.

Letting ε→ 0, we infer that g± ∈ H, which means that
∫∫
|f±|2/|µ±e |dvdx <∞.

Now the elliptic system for the field is

−∆ϕ =

∫
(f+ − f−)dv, (λ2 −∆r)ψ =

∫
v̂θ(f

+ − f−)dv

together with the boundary conditions ∂rϕ(t, 1) = 0, ψ(t, 1) = 0, which are expressed weakly.
Because of

∫∫
|f±|2/|µ±e |dvdx < ∞, the right sides of this system are now known to be finite

a.e. and to belong to L2(D). So it follows that ψ,ϕ ∈ H2(D) and E,B ∈ H1(D). This is the
first assertion of the lemma. Nevertheless, we emphasize that D±f± does not satisfy the specular
boundary condition. However, directly from (2.12) it is now clear that

∫∫
|D±f±|2/|µ±e |dvdx <∞.

This is the last assertion.

3 Linear stability

3.1 Formal argument

Before presenting the stability proof, let us sketch a formal proof. We consider the linearized RVM
system (2.8). For sake of presentation, let us consider the case with one particle f = f+, and thus
drop all the superscripts +. We have the linearized equation:

∂tf + Df = µeDϕ+ µpD(rψ) + (µev̂θ + rµp)∂tψ.

The key ingredient for stability is the fact that the functional

I(f, ϕ, ψ) :=

∫
D

∫ [ 1

|µe|
|f − rµpψ|2 − rµpv̂θ|ψ|2

]
dvdx+

∫
D

[
|E|2 + |B|2

]
dx

10



is time-invariant, which can be found by formally expanding the usual nonlinear energy-Casimir
functional around the equilibria. Next, we then write the linearized equation in the form

∂t(f − µev̂θψ − rµpψ) + D(f − µeϕ− rµpψ) = 0. (3.1)

We observe that (f − µev̂θψ − rµpψ) stays orthogonal to ker D for all time, and that in case of
stability we would expect that f −µeϕ− rµpψ asymptotically belongs to ker D. That is, if P is the
projection onto the kernel, one would have at large times

f − µeϕ− rµpψ = P(f − µeϕ− rµpψ), P(f − µev̂θψ − rµpψ) = 0.

Adding up these identities, we obtain

f = µe(1− P)ϕ+ rµpψ + µeP(v̂θψ).

This asymptotic description of f is essential to the proof of stability, which we will prove rigorously
in subsection 3.4; see (3.14). Next, by plugging the identity into the functional I(f, ϕ, ψ), we will
obtain

I(f, ϕ, ψ) = (A0
1ϕ,ϕ)L2 + (A0

2ψ,ψ)L2 +

∫
D
|∂tψ|2 dx,

in which the operators A0
j are defined as in (1.14). Using the identity A0

1ϕ = B0ψ, which is obtained
from the Poisson equation, to eliminate ϕ, we can formally write

I(f, ϕ, ψ) = (L0ψ,ψ)L2 +

∫
D
|∂tψ|2 dx, (3.2)

with L0 := A0
2 + (B0)∗(A0

1)−1B0. (In fact, we are only able to prove a reverse inequality (≥), which
however suffices for stability). Now, if we assumed that there were a growing mode of the linearized
system, then the time-invariant functional I(f, ϕ, ψ) must be zero. Thus (3.2) shows that L0 6≥ 0.
That is, L0 ≥ 0 formally implies the stability.

3.2 Key operators

In this subsection, we shall derive the basic properties of the operators A0
j and B0 defined in (1.14).

Let us recall that P± are the orthogonal projections of H onto the kernels

ker(D±) =
{
f ∈ dom(D±)

∣∣∣ D±f = 0
}
,

and the key operators:

A0
1ϕ = −∆ϕ−

∫
µ+
e (1− P+)ϕ dv −

∫
µ−e (1− P−)ϕ dv

A0
2ψ = −∆rψ −

∫
rv̂θ(µ

+
p + µ−p ) dvψ −

∫
v̂θ

(
µ+
e P+(v̂θψ) + µ−e P−(v̂θψ)

)
dv

B0ψ = r

∫ (
µ+
p + µ−p

)
dvψ +

∫ (
µ+
e P+(v̂θψ) + µ−e P−(v̂θψ)

)
dv.

(3.3)

11



We also recall that the functional space V consists of functions in H2
r (D) that satisfy the Neumann

boundary condition and have zero average over D, whereas V† consists of functions in H2†(D) that
satisfy the Dirichlet condition on ∂D.

Lemma 3.1.
(i) A0

1 is self-adjoint and positive definite on L2
r(D) with domain V. A0

1 is a one-to-one map
from V onto the set {g ∈ L2

r |
∫
D g dx = 0}. In particular, (A0

1)−1 is well-defined on the range of
B0.

(ii) B0 is a bounded operator on L2
r(D).

(ii) A0
2 and L0 are self-adjoint on L2

r(D) with common domain V†.

Proof. First, since the projections P± preserve the radial symmetry, the operators A0
j and B0 also

preserve the symmetry. Next we observe that all the integral terms in (3.3) are bounded operators
in L2

r(D). For example, we have∣∣∣ ∫
D

∫
µ+
e ψP+ϕ dvdx

∣∣∣ ≤ ‖ψ‖H‖P+ϕ‖H ≤ sup
D

(∫
|µ+
e | dv

)
‖ψ‖L2‖ϕ‖L2 ≤ C0‖ψ‖L2‖ϕ‖L2 ,

for some constant C0 that depends on the decay assumption (1.12) on µ+
e . The other integrals

are similar since v̂θ is bounded by one. This proves (ii) and also proves that the integral terms
in A0

1 and A0
2 are relatively compact with respect to −∆ and −∆r, which have domains V and

V†, respectively. Thus, A0
1 and A0

2 are well-defined operators on L2
r(D) with domains V and V†,

respectively.

Since P± are self-adjoint on H, it is clear that all three operators A0
1,A0

2, and L0 are self-adjoint
on L2

r(D). Note that the function 1 belongs to the kernel of D±. To prove the positivity of A0
1, we

use the orthogonality of P± and 1− P± in H to write

−
∫
D

∫
µ±e ϕ(1− P±)ϕ dvdx = −

∫
D

∫
µ±e |(1− P±)ϕ|2 dvdx ≥ 0

since µ±e < 0. Thus A0
1 is a nonnegative operator, and A0

1ϕ = 0 if and only if ϕ is a constant.
Since A0

1 has discrete spectrum, it is invertible on the orthogonal set to its kernel, that is, on
{g ∈ V |

∫
D g dx = 0}. In order to prove the invertibility of A0

1 on the range of B0, we note that
by the self-adjointness of P± in H, we have∫

D

∫
µ±e P±(v̂θψ) dvdx =

∫
D

∫
µ±e v̂θψP±(1) dvdx =

∫
D

∫
µ±e v̂θψ dvdx.

Thus ∫
D
B0ψ dx =

∑
±

∫
D

∫
(rµ±p + µ±e v̂θ)ψ dvdx,

which is identically zero by using the fact that ∂vθ [µ
±] = v̂θµ

±
e + rµ±p . That is, B0ψ has zero

average, and so (A0
1)−1 is well-defined on the range of B0.
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3.3 Invariants

First we consider the linearized energy.

Lemma 3.2. Suppose that (f±, ϕ, ψ) is a solution of our linearized system (2.8), (2.9), and (1.4)
such that f± ∈ C1(R, L2

1/|µe|(D × R2)) and ϕ,ψ ∈ C1(R;H2(D)). Then the linearized energy
functional

I(f±, ϕ, ψ)

:=
∑
±

∫
D

∫ [ 1

|µ±e |
|f± ∓ rµ±p ψ|2 − rµ±p v̂θ|ψ|2

]
dvdx+

∫
D

[
|∂tψ|2 + |∇ϕ|2 +

1

r2
|∂r(rψ)|2

]
dx

is independent of time.

Proof. For convenience of calculation, we denote the three terms as

I±V (f±, ψ) :=

∫
D

∫ [ 1

|µ±e |
|f± ∓ rµ±p ψ|2 − rµ±p v̂θ|ψ|2

]
dvdx

IM (ϕ,ψ) :=

∫
D

[
|∇ϕ|2 + |∂tψ|2 +

1

r2
|∂r(rψ)|2

]
dx,

so that
I(f±, ϕ, ψ) = I+

V (f+, ψ) + I−V (f−, ψ) + IM (ϕ,ψ).

Now taking the time derivative of I+
V (f+, ψ) and then using the linearized Vlasov equation (2.8)

for f+, we get

1

2

d

dt
I+
V (f+, ψ)

=

∫
D

∫ [
1

|µ+
e |

(f+ − rµ+
p ψ)(∂tf

+ − rµ+
p ∂tψ)− rµ+

p v̂θψ∂tψ

]
dvdx

=

∫
D

∫ [
1

|µ+
e |

(f+ − rµ+
p ψ)

{
−D+f+ + µ+

e D+ϕ+ µ+
p D+(rψ) + µ+

e v̂θ∂tψ
}
− rµ+

p v̂θψ∂tψ

]
dvdx

=

∫
D

∫
1

|µ+
e |

[
− f+D+f+ + µ+

e f
+D+ϕ+ µ+

p f
+D+(rψ) + µ+

e f
+v̂θ∂tψ + rµ+

p ψD+f+

− rµ+
p µ

+
e ψD+ϕ− (µ+

p )2rψD+(rψ)
]
dvdx.

Among the nine terms, we have used the fact that two terms with ∂tψ exactly cancel because
µe < 0. Some of the remaining seven terms cancel, as follows. First, we observe that the sixth
term vanishes, upon writing D+ϕ = v̂r∂rϕ and noting that µ is even in vr. Next, by using the
skew–symmetric property (2.11) of D+, which is the weak form of the specular boundary condition,
the first and seventh terms are also zero. Now the third and fifth terms can be combined to get
µ+
p D+(rψf+), whose integral again vanishes due to the boundary condition ψ = 0. We have used
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the fact that both µ+
e and µ+

p belong to the kernel of D+. Only the second and fourth terms survive,
so we have

1

2

d

dt
I+
V (f+, ψ) =

∫
D

∫ [
− f+D+ϕ− f+v̂θ∂tψ

]
dvdx =

∫
D

∫
E · v̂ f+ dvdx,

in which we have used the fact that D+ϕ = v̂r∂rϕ together with the definition E = −∂rϕer−∂tψeθ.
Entirely similar calculations hold for f−. We therefore obtain

1

2

d

dt

(
I+
V (f+, ψ) + I−V (f−, ψ)

)
=

∫
D

∫
E · v̂(f+ − f−) dvdx =

∫
D
E · j dx. (3.4)

Next, by (2.1) we may write IM (ϕ,ψ) =
∫
D

[
|E|2 + |B|2

]
dx. Taking its time derivative and

using the Maxwell equations, we obtain

1

2

d

dt
IM (ϕ,ψ) =

∫
D

[
E · ∂tE + B · ∂tB

]
dx

=

∫
D

[
−E · j + E · (∇×B)−B · (∇×E)

]
dx.

= −
∫
D
E · j dx+

∫
∂D

(E×B) · n(x) dSx = −
∫
D
E · j dx

Here we have used the fact that (E×B)·n = (E×n)·B, which vanishes due to the perfect conductor
boundary condition E× n = 0. Together with (3.4), this yields invariance of I(f±, ϕ, ψ).

Furthermore, we also obtain the following.

Lemma 3.3. Suppose that (f±, ϕ, ψ) is a solution of our linearized system (2.8), (2.9), and (1.4)
such that f± ∈ C1(R, L2

1/|µe|(D× R2)) and ϕ,ψ ∈ C1(R;H2(D)). Then the functional

K±g (f±, ψ) =

∫
D

∫ (
f± ∓ µ±e v̂θψ ∓ rµ±p ψ

)
g dvdx (3.5)

are independent in time, for all g ∈ ker D± and for both + and −. In particular, for g = 1 in (3.5),
the integrals

∫
D
∫
R2 f

±(t, x, v) dvdx are time-invariant; that is, the total masses are conserved.

Proof. Parenthetically, we remark that such invariants K±g (f±, ψ) can easily be discovered by writ-
ing the Vlasov equations as in (3.1). Indeed, writing the Vlasov equations in the form (3.1) and
using the skew-symmetry property of D± as in (2.11), we have

d

dt
K±g (f±, ψ) =

∫
D

∫
∂t

(
f± ∓ µ±e v̂θψ ∓ rµ±p ψ

)
g dvdx

=

∫
D

∫
D±
(
− f± ± µ±e ϕ± rµ±p ψ

)
g dvdx

= −
∫
D

∫ (
− f± ± µ±e ϕ± rµ±p ψ

)
D±g dvdx = 0

due to the specular conditions on f± and g and the evenness in vr of µ±. Now, if we take g = 1
in (3.5) and note that ∂vθµ

± = µ±e v̂θ + rµ±p , the integrals
∫
D
∫
R2 f

±(t, x, v) dvdx are therefore
time-invariant.
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3.4 Minimization

In this subsection we prove an identity that will be fundamental to the proof of stability. It involves
the functional

Jψ(f+, f−) :=

∫
D

∫
1

|µ+
e |
|f+ − rµ+

p ψ|2 dvdx+

∫
D

∫
1

|µ−e |
|f− + rµ−p ψ|2 dvdx+

∫
D
|∇ϕ|2 dx,

where ϕ = ϕ(r) ∈ V satisfies the Poisson equation

−∆ϕ =

∫
(f+ − f−) dv,

∫
D
ϕ dx = 0, ∂rϕ(1) = 0. (3.6)

For each fixed ψ ∈ L2
r(D), let Fψ be the space consisting of all pairs of measurable functions

(f+, f−) depending on (r, v) which satisfy the constraints∫
D

∫
1

|µ±e |
|f±|2 dvdx < +∞, (3.7)

and∫
D

∫ (
f+ − µ+

e v̂θψ − rµ+
p ψ
)
g+ dvdx = 0,

∫
D

∫ (
f− + µ−e v̂θψ + rµ−p ψ

)
g− dvdx = 0, (3.8)

for all g± ∈ ker D±. Similarly, let F0 be the space of pairs (f+, f−) satisfying (3.7) and∫
D

∫
f+g+ dvdx = 0,

∫
D

∫
f−g− dvdx = 0, ∀ g± ∈ ker D±. (3.9)

Note that the constraints in (3.8) with g = 1 imply that for such a pair of functions f±, there is
a unique solution ϕ ∈ V of the Poisson problem (3.6). In particular, ϕ is radially symmetric since
f± are radially symmetric. Thus the functional Jψ is well-defined and nonnegative on Fψ, and its
infimum over Fψ is finite. We next show that it indeed admits a minimizer on Fψ.

Lemma 3.4. For each fixed ψ ∈ L2
r(D), there exists a pair of functions f±∗ that minimizes the

functional Jψ on Fψ. Furthermore,

Jψ(f+
∗ , f

−
∗ ) = ((B0)∗(A0

1)−1B0ψ,ψ)L2 −
∫
D

∫
µ+
e |P+(v̂θψ)|2 dvdx−

∫
D

∫
µ−e |P−(v̂θψ)|2 dvdx.

(3.10)

Proof. Take a minimizing sequence f±n in Fψ such that Jψ(f+
n , f

−
n ) converges to the infimum of Jψ.

Since {f±n } are bounded sequences in L2
1/|µ±e |

, the weighted L2 space associated with the constraint

(3.7), there are subsequences with weak limits in L2
1/|µ±e |

, which we denote by f±∗ . It is clear that

f±∗ satisfy the constraints (3.8), and so they belong to Fψ. That is, (f+
∗ , f

−
∗ ) must be a minimizer.

In order to derive identity (3.10), let the pair (f∗, f
−
∗ ) ∈ Fψ be a minimizer and let ϕ∗ ∈ H2

r (D)
be the associated solution of problem (3.6) with f± = f±∗ . For each (f+, f−) ∈ Fψ, we denote

h+ := f+ − µ+
e v̂θψ − rµ+

p ψ, h− := f− + µ−e v̂θψ + rµ−p ψ. (3.11)
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In particular, h±∗ := f±∗ ∓µ±e v̂θψ∓rµ±p ψ. It is clear that (f+, f−) ∈ Fψ if and only if (h+, h−) ∈ F0.
Since ∂vθ [µ

±] = µ±e v̂θ + rµ±p , we have∫
(f+ − f−) dv =

∫
(h+ − h−) dv.

Thus if we let ϕ be the solution of the Poisson equation (3.6), ϕ is independent of the change of
variables in (3.11). Consequently, (f+

∗ , f
−
∗ ) is a minimizer of Jψ on Fψ if and only if (h+

∗ , h
−
∗ ) is a

minimizer of the functional

J0(h+, h−) =

∫
D

∫
1

|µ+
e |
|h+ + µ+

e v̂θψ|2 dvdx+

∫
D

∫
1

|µ−e |
|h− − µ−e v̂θψ|2 dvdx+

∫
D
|∇ϕ|2 dx,

on F0. By minimization, the first variation is∫
D

∫
−1

µ+
e

(h+
∗ + µ+

e v̂θψ)h+ dvdx+

∫
D

∫
−1

µ−e
(h−∗ − µ−e v̂θψ)h− dvdx+

∫
D
∇ϕ∗ · ∇ϕ dx = 0, (3.12)

for all (h+, h−) ∈ F0 where ϕ solves (3.6). By the Neumann boundary condition on ϕ, we have∫
D
∇ϕ∗ · ∇ϕ dx = −

∫
D
ϕ∗∆ϕ dx =

∫
D

∫
ϕ∗(h

+ − h−) dvdx.

Adding this to the identity (3.12), we obtain∫
D

∫
−1

µ+
e

(h+
∗ + µ+

e v̂θψ − µ+
e ϕ∗) h

+ dvdx+

∫
D

∫
−1

µ−e
(h−∗ − µ−e v̂θψ + µ−e ϕ∗) h

− dvdx = 0 (3.13)

for all (h+, h−) ∈ F0. In particular, we can take h− = 0 in (3.13) to get∫
D

∫
−1

µ+
e

(h+
∗ + µ+

e v̂θψ − µ+
e ϕ∗) h

+ dvdx = 0

for all h+ ∈ L2
1/|µ+e |

satisfying
∫
D
∫
h+g+ dvdx = 0, for all g+ ∈ ker D+.

We claim that this identity implies h+
∗ + µ+

e v̂θψ − µ+
e ϕ∗ ∈ ker D+. Indeed, let

k∗ = |µ+
e |−1(h+

∗ + µ+
e v̂θψ − µ+

e ϕ∗), ` = |µ+
e |−1h+.

Using the inner product in H = L2
|µ+e |

, we have

〈k∗, `〉H = 0 ∀` ∈ (ker D+)⊥.

Because D+ (with the specular condition) is a skew-adjoint operator onH, we have k∗ ∈ (ker D+)⊥⊥ =
ker D+. Thus

D+{f+
∗ − rµ+

p ψ − µ+
e ϕ∗} = D+{h+

∗ + µ+
e v̂θψ − µ+

e ϕ∗} = µ+
e D+k∗ = 0.
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This proves the claim. Similarly D−{f−∗ + rµ−p ψ + µ−e ϕ∗} = 0. Equivalently,

f+
∗ − rµ+

p ψ − µ+
e ϕ∗ = P+(f+

∗ − rµ+
p ψ − µ+

e ϕ∗),

f−∗ + rµ−p ψ + µ−e ϕ∗ = P−(f−∗ + rµ−p ψ + µ−e ϕ∗).

On the other hand, the constraints (3.8) can be written as P+(f+
∗ − µ+

e v̂θψ − rµ+
p ψ) = 0 and

P−(f−∗ + µ−e v̂θψ + rµ−p ψ) = 0. Combining these identities, we have

f+
∗ − rµ+

p ψ = µ+
e (1− P+)ϕ∗ + µ+

e P+(v̂θψ),

f−∗ + rµ−p ψ = −µ−e (1− P−)ϕ∗ − µ−e P−(v̂θψ).
(3.14)

Thus, using the orthogonality of P± and (1− P±) in H, we compute∫
D

∫
−1

µ±e
|f+
∗ ∓ rµ±p ψ|2 dvdx = −

∫
D

∫
µ±e |(1− P±)ϕ∗|2 dvdx−

∫
D

∫
µ±e |P±(v̂θψ)|2 dvdx

= −
∫
D

∫
µ±e ϕ∗(1− P±)ϕ∗ dvdx−

∫
D

∫
µ±e |P±(v̂θψ)|2 dvdx.

Inserting these identities into the definition of Jψ(f+
∗ , f

−
∗ ), together with the fact from the boundary

conditions that
∫
D |∇ϕ∗|

2 dx = −
∫
D ϕ∗∆ϕ∗ dx, we obtain

Jψ(f+
∗ , f

−
∗ ) =

∫
D
ϕ∗

[
−∆ϕ∗ −

∫
µ+
e (1− P+)ϕ∗ dv −

∫
µ−e (1− P−)ϕ∗ dv

]
dx

−
∫
D

∫
µ+
e |P+(v̂θψ)|2 dvdx−

∫
D

∫
µ−e |P−(v̂θψ)|2 dvdx.

By the definition (3.3) of A0
1, the first group of integrals simply equals (A0

1ϕ∗, ϕ∗)L2 .
Thus it remains to prove that A0

1ϕ∗ = B0ψ, because A0
1 is invertible on the range of B0 so

that ϕ∗ = (A0
1)−1B0ψ. Indeed, we plug the identities (3.14) into the Poisson equation (3.6) for ϕ∗,

resulting in the equation

−∆ϕ∗ =

∫
µ+
e (1− P+)ϕ∗ dv +

∫
µ−e (1− P−)ϕ∗ dv

+ r

∫
(µ+
p + µ−p ) dvψ +

∫ (
µ+
e P+(v̂θψ) + µ−e P−(v̂θψ)

)
dv.

(3.15)

In view of the definitions of A0
1 and B0, this identity (3.15) is equivalent to A0

1ϕ∗ = B0ψ, as
desired.

3.5 Growing modes are pure

In this subsection, we show that if (eλtf±, eλtE, eλtB) with <eλ > 0 is a complex growing mode,
then λ must be real. See subsection 2.4 for the properties of a growing mode. We now follow the
splitting method in [16] to show that λ is real. Let fev and fod be the even and odd parts of f
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with respect to the variable vr. That is, we have the splitting: f = fev + fod, and furthermore, by
inspection from the definition (2.7), the operators D± map even to odd functions and vice versa.
We therefore obtain, from the Vlasov equations (2.8), the split equations{

λf+
ev + D+f+

od = λ(µ+
e v̂θ + rµ+

p )ψ = λ∂vθ [µ
+]ψ,

λf+
od + D+f+

ev = µ+
e D+ϕ+ µ+

p D+(rψ).

By Lemma 2.2, we know that
∫∫
|f+|2/|µe|dvdx < ∞. It follows that the same is true for f+

ev, so
from the first split equation we also have

∫∫
|D+f+

od|
2/|µe|dvdx < ∞. The split equations imply

that
(λ2 −D+2

)f+
od = λµ+

e D+ϕ− λµ+
e D+(v̂θψ). (3.16)

Let f
+

be the complex conjugate of f+. By the specular boundary condition on f+ in its weak form
(2.11), it follows that f+

od satisfies the specular condition. (Formally, f+
od vanishes on the boundary

∂D.) However, since D+f+
od is even in the variable vr, D

+f+
od also satisfies the specular condition.

Thus when we multiply equation (3.16) by f
+
od/|µ+

e | and integrate the result over D× R2, we may
apply the skew-symmetry property (2.11) of D+. We obtain

λ2

∫
D

∫
1

|µ+
e |
|f+

od|
2 dvdx+

∫
D

∫
1

|µ+
e |
|D+f+

od|
2 dvdx = −

∫
D

∫ (
λD+ϕf

+
od + λv̂θψD+f

+
od

)
dvdx.

Similarly for f− we obtain

λ2

∫
D

∫
1

|µ−e |
|f−od|

2 dvdx+

∫
D

∫
1

|µ−e |
|D−f−od|

2 dvdx =

∫
D

∫ (
λD−ϕf

−
od + λv̂θψD−f

−
od

)
dvdx.

Adding up these identities and examining the imaginary part of the resulting identity, we get

2<eλ=mλ
∫
D

∫ ( 1

|µ+
e |
|f+

od|
2 +

1

|µ−e |
|f−od|

2
)
dvdx

= −=m
∫
D

∫
λ(D+ϕf

+
od −D−ϕf

−
od) dvdx−=m

∫
D

∫
λv̂θψ(D+f

+
od −D−f

−
od) dvdx.

(3.17)

Let us now use the Maxwell equations to compute the terms on the right side of (3.17). First,
we recall that the second equation in (2.4) is

λ∂rϕ =

∫
v̂r(f

+ − f−) dv =

∫
v̂r(f

+
od − f

−
od) dv.

Together with the definition of D±, this yields

−λ
∫
D

∫
(D+ϕf

+
od −D−ϕf

−
od) dvdx = −λ

∫
D
∂rϕ

(∫
v̂r(f

+
od − f

−
od) dv

)
dx = −|λ|2

∫
D
|∂rϕ|2dx,

whose imaginary part is identically zero.
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Secondly, using the Vlasov equation for f+
ev, we estimate

−λ
∫
D

∫
v̂θψ(D+f

+
od −D−f

−
od) dvdx

= −λ
∫
D

∫
v̂θψ(−λf+

ev + λ∂vθ [µ
+]ψ + λf

−
ev + λ∂vθ [µ

−]ψ) dvdx

= |λ|2
∫
D
ψ
(∫

v̂θ(f
+
ev − f

−
ev dv

)
dx− |λ|2

∫
D

∫
|ψ|2v̂θ(∂vθ [µ

+] + ∂vθ [µ
−]) dvdx.

By (2.4) the first term on the right equals

|λ|2
∫
D
ψ(−∆r + λ

2
)ψdx = |λ|2

∫
D

1

r2
|∂r(rψ)|2 dx+ λ

2|λ|2
∫
D
|ψ|2 dx.

Here we integrated by parts and used the Dirichlet boundary condition on ψ.
Putting these estimates back into (3.17), we obtain

2<eλ=mλ
∫
D

∫ ( 1

|µ+
e |
|f+

od|
2 +

1

|µ−e |
|f−od|

2
)
dvdx = −2<eλ=mλ|λ|2

∫
D
|ψ|2 dx.

The opposite signs of the integrals imply that λ must be real.

3.6 Proof of stability

With the above preparations, we are ready to prove the following stability result, which is half of
Theorem 1.1.

Lemma 3.5. If L0 ≥ 0, then there exists no growing mode (eλtf±, eλtE, eλtB), with <eλ > 0.

Proof. Assume that there were a growing mode (eλtf±, eλtE, eλtB). For the basic properties of
any growing mode, see Lemma 2.2. By the result in the previous subsection, it is a purely growing
mode, and thus we can assume that (f±,E, B) are real-valued functions. By the time-invariance in
Lemma 3.2, the functional I(f±, ϕ, ψ) must be identically equal to zero, where ϕ and ψ are defined
as usual through the relations (2.1). That is,

I(f±, ϕ, ψ) = Jψ(f+, f−)−
∫
D

∫
rv̂θ(µ

+
p + µ−p )|ψ|2 dvdx+

∫
D

[
|λ|2|ψ|2 +

1

r2
|∂r(rψ)|2

]
dx = 0.

Furthermore, all the expressions K±g (f±, ψ) defined in (3.5) must be zero. The vanishing of the
latter integrals is equivalent to the constraints in (3.8) and therefore the pair (f+, f−) belongs to
the function space Fψ. We then apply the Lemma 3.4 to assert that Jψ(f+, f−) ≥ Jψ(f+

∗ , f
−
∗ ).

Thus we have

I(f±, ϕ, ψ) ≥ ((B0)∗(A0
1)−1B0ψ,ψ)L2 −

∫
D

∫
µ+
e |P+(v̂θψ)|2 dvdx−

∫
D

∫
µ−e |P−(v̂θψ)|2 dvdx

−
∫
D

∫
rv̂θ(µ

+
p + µ−p )|ψ|2 dvdx+

∫
D

[
|λ|2|ψ|2 +

1

r2
|∂r(rψ)|2

]
dx.

(3.18)
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In addition, from (3.3) an integration by parts together with the Dirichlet boundary condition on
ψ yields

(A0
2ψ,ψ)L2 =

∫
D

(
|∂rψ|2 +

1

r2
|ψ|2

)
dx−

∫
D

∫
rv̂θ(µ

+
p + µ−p )|ψ|2 dvdx

−
∫
D

∫
µ+
e |P+(v̂θψ)|2 dvdx−

∫
D

∫
µ−e |P−(vθψ)|2 dvdx.

Putting this calculation into (3.18) and using the definition of L0, we then get

0 = I(f±, ϕ, ψ) ≥ (L0ψ,ψ)L2 +

∫
D
|λ|2|ψ|2 dx.

This is obviously a contradiction since we are assuming L0 ≥ 0. Thus there exists no growing mode
for the linearized system.

4 Linear instability

We now turn to the instability part of Theorem 1.1. It is based on a spectral analysis of the
relevant operators. We plug the simple form (eλtf±, eλtE, eλtB), with λ > 0, into the linearized
RVM system (2.8) to obtain the Vlasov equations{

(λ+ D+)f+ = µ+
e D+ϕ+ µ+

p D+(rψ) + λ(µ+
e v̂θ + rµ+

p )ψ

(λ+ D−)f− = −µ−e D−ϕ− µ−p D−(rψ)− λ(µ−e v̂θ + rµ−p )ψ
(4.1)

and the Maxwell equations 
−∆ϕ =

∫
(f+ − f−) dv,

(−∆r + λ2)ψ =

∫
v̂θ(f

+ − f−) dv.

(4.2)

As before, we impose the specular boundary condition on f±, the Neumann boundary condition
on ϕ, and the Dirichlet boundary condition on ψ. Recall that (f±, ϕ, ψ) is a perturbation of the
equilibrium.

4.1 Particle trajectories

We begin with the + case (ions). For each (x, v) ∈ D × R2, we introduce the particle trajectories
(X+(s;x, v), V +(s;x, v)) defined by

Ẋ+ = V̂ +, V̇ + = E0(X+) + V̂ + ×B0(X+), (4.3)

with initial values (X+(0;x, v), V +(0;x, v)) = (x, v). Because of the C1 regularity of E0 and B0 in
D, each trajectory can be continued for at least a certain fixed time. Thus each particle trajec-
tory exists and preserves cylindrical symmetry up to the first point where it meets the boundary.
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The trajectories reflect at the boundary ∂D at most a countable number of times as s → ±∞.
Let s0 be any point at which the trajectory X+(s0−;x, v) belongs to ∂D. In general, we write
h(s±) to mean the limit from the right (left). By the specular boundary condition, the trajectory
(X+(s;x, v), V +(s;x, v)) can be continued by the rule

(X+(s0+;x, v), V +(s0+;x, v)) = (X+(s0−;x, v), Ṽ +(s0−;x, v)), (4.4)

with Ṽ = (−Vr, Vθ). Thus X+ is continuous and V + has a jump at s0. Whenever the trajectory
meets the boundary, it is reflected in the same way and then continued via the ODE (4.3). Such
a continuation is guaranteed for some short time s1 past s0 by the standard ODE theory. Since
E0 and B0 are C1 smooth in D, the additional time |s1 − s0| is bounded below by some fixed
positive time T0 independent of s0. This shows that the trajectories can bounce at the boundary
at most a countable number of times as |s| → ∞. When there is no possible confusion, we will
simply write (X+(s), V +(s)) or (R+(s), V +

r (s), V +
θ (s)) for the particle trajectories. The trajectories

(X−(s), V −(s)) for the − case (electrons) are defined similarly.

Lemma 4.1. For each (x, v) ∈ D×R2, the particle trajectories (X±(s;x, v), V ±(s;x, v)) are piece-
wise C1 smooth in s ∈ R, and for each s ∈ R, the map (x, v) 7→ (X±(s;x, v), V ±(s;x, v)) is
one-to-one and differentiable with Jacobian equal to one at all points (x, v) such that x 6∈ ∂D and
X±(s;x, v) 6∈ ∂D. In addition, the standard change-of-variables formula∫

D

∫
R2

g(x, v) dxdv =

∫
D

∫
R2

g(X±(−s; y, w), V ±(−s; y, w)) dwdy (4.5)

is valid for each s ∈ R and for measurable functions g for which the integrals are finite.

Proof. For each (x, v), the particle trajectory (X±(s;x, v), V ±(s;x, v)) is smooth except when it
hits the boundary ∂D, which happens countably many times. So the first assertion is clear. Given s,
let S be the set (x, v) in D×R2 such that X±(s;x, v) 6∈ ∂D. Clearly, S is open and its complement in
D×R2 has Lebesgue measure zero. For each s, the trajectory map is one-to-one on S since the ODE
(4.3) and (4.4) are time-reversible and well-defined. In addition, a direct calculation shows that the
Jacobian determinant is time-independent and is therefore equal to one. The change-of-variable
formula (4.5) holds on the open set S and so on D× R2, as claimed.

Lemma 4.2. Let g(x, v) be a C1 radial function on D×R2. If g is specular on ∂D, then for all s,
g(X±(s;x, v), V ±(s;x, v)) is continuous and also specular on ∂D. That is,

g(X±(s;x, v), V ±(s;x, v)) = g(X±(s;x, ṽ), V ±(s;x, ṽ)), ∀ (x, v) ∈ ∂D× R2,

where ṽ = (−vr, vθ) for all v = (vr, vθ).

Proof. It follows directly by definition (4.3) and (4.4) that for all x ∈ ∂D, the trajectory is unaffected
by whether we start with v or ṽ. So for all s we have

X±(s;x, v) = X±(s;x, ṽ), V ±θ (s;x, v) = V ±θ (s;x, ṽ), |V ±r (s;x, v)| = |V ±r (s;x, ṽ)|. (4.6)

In fact we have V ±r (s;x, v) = V ±r (s;x, ṽ) for any s at which X±(s;x, v) 6∈ ∂D, while V ±r (s+;x, v) =
−V ±r (s−;x, ṽ) for s at which X±(s;x, v) ∈ ∂D. Because g is specular on the boundary, it takes the
same value at vr and −vr. Therefore g(X±(s), V ±(s)) is a continuous function of s at the points
of reflection. It is specular because of the rule (4.4).
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4.2 Representation of the particle densities

We can now invert the operator (λ+ D±) to obtain an integral representation of f±. By definition
of the operator D+ from (2.7) and the trajectories (X+(s), V +(s)) from (4.3) and (4.4), we have∫ 0

−∞
eλsD+g(X+(s), V +(s)) ds =

∫ 0

−∞
eλs

d

ds
g(X+(s), V +(s)) ds

= g(x)−
∫ 0

−∞
λeλsg(X+(s), V +(s)) ds,

for C1 functions g = g(x, v) which belong to dom(D+). Multiplying the Vlasov equations (4.1) by
eλs and then integrating along the particle trajectories from s = −∞ to zero, we readily obtain

f+(x, v) = µ+
e ϕ+ rµ+

p ψ − µ+
e

∫ 0

−∞
λeλsϕ(R+(s)) ds+

∫ 0

−∞
λeλsµ+

e V̂
+
θ (s)ψ(R+(s)) ds.

A similar derivation holds for the − case. For convenience we denote

Q±λ (g)(x, v) :=

∫ 0

−∞
λeλsg(X±(s;x, v), V ±(s;x, v)) ds.

In particular, by Lemma 4.2, Q±λ (g) is specular on ∂D if g is. Thus we have derived the integral
representation for the particle densities:

f±(x, v) = ±µ±e (1−Q±λ )ϕ± rµ±p ψ ± µ±e Q±λ (v̂θψ) (4.7)

4.3 Operators

We next substitute (4.7) into the Maxwell equations (4.2). We introduce the operators

Aλ1ϕ : = −∆ϕ−
∫
µ+
e (1−Q+

λ )ϕ dv −
∫
µ−e (1−Q−λ )ϕ dv,

Aλ2ψ : = (−∆r + λ2)ψ −
∫
rv̂θ(µ

+
p + µ−p )dvψ −

∫
v̂θ

(
µ+
e Q+

λ (v̂θψ) + µ−e Q−λ (v̂θψ)
)
dv,

Bλψ : = −
∫
µ+
e (1−Q+

λ )(v̂θψ) dv −
∫
µ−e (1−Q−λ )(v̂θψ) dv,

(Bλ)∗ψ : = −
∫
v̂θµ

+
e (1−Q+

λ )ψ dv −
∫
v̂θµ
−
e (1−Q−λ )ψ dv.

(4.8)

We also introduce
Lλ := Aλ2 + (Bλ)∗(Aλ1)−1Bλ. (4.9)

We then have

Lemma 4.3. The Maxwell equations (4.2) are equivalent to the equations

Aλ1ϕ = Bλψ, Aλ2ψ + (Bλ)∗ϕ = 0. (4.10)
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Proof. Using (4.7), we write the Poisson equation for ϕ as

−∆ϕ =

∫
(f+ − f−)(r, v) dv

=

∫
µ+
e (1−Q+

λ )ϕ dv +

∫
µ−e (1−Q−λ )ϕ dv +

∫
r(µ+

p + µ−p )dvψ

+

∫
µ+
e Q+

λ (v̂θψ) dv +

∫
µ−e Q−λ (v̂θψ) dv.

Note that ∂vθ [µ
±] = rµ±p + v̂θµ

±
e so that∫
r(µ+

p + µ−p )dv = −
∫
v̂θ(µ

+
e + µ−e ) dv.

This gives the first equation in (4.10) by definition. Similarly we write

(−∆r + λ2)ψ =

∫
v̂θ(f

+ − f−)(r, v) dv

=

∫
v̂θµ

+
e (1−Q+

λ )ϕ dv +

∫
v̂θµ
−
e (1−Q−λ )ϕ dv +

∫
rv̂θ(µ

+
p + µ−p )dvψ

+

∫
v̂θµ

+
e Q+

λ (v̂θψ) dv +

∫
v̂θµ
−
e Q−λ (v̂θψ) dv,

which is equivalent to the second equation in (4.10).

As in Lemma 3.1, we now state some properties of these operators. We recall that the spaces
V and V†, which are defined in Section 1.2, incorporate the boundary conditions.

Lemma 4.4. For any λ > 0,
(i) Aλ1 is self-adjoint and positive definite on L2

r(D) with domain V. Moreover, Aλ1 maps from
V one-to-one onto the set 1⊥ := {g ∈ L2

r :
∫
D g dx = 0}.

(ii) Bλ is a bounded operator on L2
r(D) with its adjoint operator (Bλ)∗ defined in (4.8). The

range of Bλ is contained in 1⊥.
(iii) Aλ2 and Lλ are self-adjoint on L2

r(D) with their common domain V†.

Proof. We first check the self-adjointness of Aλj and the formula for (Bλ)∗. Since µ+ is constant on
trajectories and in view of (4.8), it clearly suffices to prove, for smooth functions g and h specular
on the boundary, that∫

D

∫
µ+
e h(x, v)Q+

λ (g(x, v)) dvdx =

∫
D

∫
µ+
e g(x, ṽ)Q+

λ (h(x, ṽ)) dvdx, (4.11)

where we denote ṽ = (−vr, vθ). In order to prove (4.11), we recall the definition of Q+
λ and use the

change of variables

(y, w) := (X+(s;x, v), V +(s;x, v)), (x, v) := (X+(−s; y, w), V +(−s; y, w)),
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which has Jacobian one where it is defined (see Lemma 4.1). So we can write the left side of (4.11)
as ∫ 0

−∞

∫
D

∫
λeλsµ+

e h(x, v) g(X+(s;x, v), V +(s;x, v)) dvdxds

=

∫ 0

−∞

∫
D

∫
λeλsµ+

e h(X+(−s; y, w), V +(−s; y, w)) g(y, w) dwdyds.

Observe that the characteristics defined by (4.3) and (4.4) are invariant under the time-reversal
transformation s 7→ −s, r 7→ r, vr 7→ −vr, and vθ 7→ vθ. Thus

X+(−s;x, v) = X+(s;x, ṽ), V +(−s;x, v) = Ṽ +(s;x, ṽ),

at least if we avoid the boundary. Using this invariance, we obtain∫ 0

−∞

∫
D

∫
λeλsµ+

e h(x, v) g(X+(s;x, v), V +(s;x, v)) dvdxds

=

∫ 0

−∞

∫
D

∫
λeλsµ+

e h(X+(s; y, w̃), Ṽ +(s; y, w̃)) g(y, w) dwdyds

=

∫ 0

−∞

∫
D

∫
λeλsµ+

e h(X+(s;x, v), Ṽ +(s;x, v)) g(x, ṽ) dvdxds,

in which the last identity comes from the change of notation (x, v) := (y, w̃). By definition of Q+
λ ,

this result is precisely the identity (4.11). A similar calculation holds for the − case. This proves
the adjoint properties claimed in the lemma.

Next we show that all the integral terms in (4.8) are bounded operators on L2
r(D). For instance,

we have∣∣∣ ∫
D

∫
µ+
e ψQ+

λ ϕ dvdx
∣∣∣ =

∣∣∣ ∫ 0

−∞

∫
D

∫
λeλsµ+

e ψϕ(X+(s)) dvdxds
∣∣∣

≤
(∫ 0

−∞
λeλs

∫
D

∫
|µ+
e ||ψ|2 dvdxds

)1/2(∫ 0

−∞
λeλs

∫
D

∫
|µ+
e ||ϕ(X+(s))|2 dvdxds

)1/2

≤ sup
D

(∫
|µ+
e | dv

)
‖ψ‖L2

D
‖ϕ‖L2

D
.

(4.12)
In the last step we made the change of variables (x, v) = (X+(s;x, v), V +(s;x, v)) in the integral
for ϕ, which is possible thanks to (4.5). Similar estimates hold for the other integrals since v̂θ is
bounded by one. This proves that Bλ is bounded on L2

r(D) and also that the integral terms in Aλ1
and Aλ2 are relatively compact with respect to −∆ and −∆r, respectively. Therefore Aλ1 and Aλ2
are well-defined operators on L2

r(D) with domains V and V†, which are the same as the domains of
−∆ and −∆r, respectively.

Taking ψ = ϕ in the previous estimate, we have∣∣∣ ∫
D

∫
µ+
e ϕQ+

λ ϕ dvdx
∣∣∣ ≤ ∫ 0

−∞
λeλs

∫
D

∫
|µ+
e ||ϕ|2 dvdx = −

∫
D

∫
µ+
e |ϕ|2 dvdx

24



so that

−
∫
D

∫
µ+
e ϕ (1−Q+

λ )ϕ dv ≥ 0.

Thus Aλ1 ≥ 0, and Aλ1ϕ = 0 if and only if ϕ is a constant. Since Aλ1 has discrete spectrum, it is
invertible on the set orthogonal to the kernel of Aλ1 . That is, it is invertible on {g ∈ V :

∫
D g dx =

0}. For the invertibility of Aλ1 on the range of Bλ, we note by (4.11) and Q±λ (1) = 1 that∫
D

∫
µ±e (1−Q±λ )(v̂θψ) dvdx =

∫
D

∫
µ±e v̂θψ(1−Q±λ )(1) dvdx = 0.

This shows that Bλψ ∈ {g ∈ V :
∫
D g dx = 0} for all ψ. Thus (Aλ1)−1 is well-defined on the range

of Bλ, and so Lλ is well-defined. The self-adjoint property of Lλ is clear from that of Aλ1 .

Part (i) of Lemma 4.4 in particular shows that for each ψ ∈ L2
r(D) there exists a unique radial

function ϕ ∈ H2
r (D) that solves

Aλ1ϕ = Bλψ,
∫
D
ϕ dx = 0, ∂rϕ(1) = 0. (4.13)

4.4 Construction of a growing mode

Lemma 4.5. If L0 6≥ 0, then there exist a λ > 0 and a nonzero function ψ ∈ H2†(D) such that
Lλψ = 0 and ψ satisfies the Dirichlet condition on the boundary.

Proof. The proof is similar to the one and a half dimensional case given in [16] so that we merely
outline the main steps as follows.
(i) Lλ ≥ 0 for large λ.
(ii) For all ψ ∈ L2

r , Lλψ converges strongly to L0ψ in L2 as λ → 0, and thus Lλ 6≥ 0 when λ is
small.
(iii) The smallest eigenvalue κλ := infψ 〈Lλψ,ψ〉L2 of Lλ is continuous in λ > 0, where the infimum
is taken over ψ ∈ V† with ‖ψ‖L2 = 1.

These three steps imply that κλ must be zero for some λ > 0, from which the lemma follows.
To prove (i), it is easy to see that Lλ is nonnegative for large λ, since (Bλ)∗(Aλ1)−1Bλ ≥ 0 and
〈Aλ2ψ,ψ〉L2 is sufficiently large when λ is large. As for (ii), to show the convergence of Lλ to L0 as
λ→ 0, we use the remarkable fact, proved in [16, Lemma 2.6], that for all g ∈ H the strong limit

lim
λ→0+

Q±λ g = P±g (4.14)

is valid in the L2
|µ±e |

= H norm. Here the P± are the orthogonal projections of L2
|µ±e |

onto the

kernels of D±. However, it should be noted that the convergence is not true in the operator norm.
For all ψ ∈ L2

r , we use (4.14) and write

Aλ2ψ −A0
2ψ = λ2ψ −

∑
±

∫
v̂θµ
±
e

[
Q±λ (v̂θψ)− P±(v̂θψ)

]
dv,
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thereby obtaining the convergence of Aλ2ψ to A0
2ψ in L2. Similarly, Aλ1 and Bλ also converge

strongly in L2 to A0
1 and B0, respectively, and so does Lλ to L0. Finally, estimates similar to (4.12)

yield∣∣∣ ∫
D

∫
v̂θµ

+
e ψ(Q+

λ (v̂θψ)−Q+
µ (v̂θψ)) dvdx

∣∣∣
=
∣∣∣ ∫ 0

−∞

∫
D

∫ (
λeλs − µeµs

)
v̂θµ

+
e ψV̂θ(s)ψ(X+(s)) dvdxds

∣∣∣
≤
∫ 0

−∞
|λeλs − µeµs|

(∫
D

∫
|µ+
e ||ψ(x)|2 dvdx

)1/2(∫
D

∫
|µ+
e ||ψ(X+(s))|2 dvdx

)1/2
ds

≤ C0

(∫ 0

−∞
|λeλs − µeµs| ds

)
‖ψ‖2L2

D
≤ C0| log λ− logµ|‖ψ‖2L2

D
,

and thus
〈Aλ2ψ −A

µ
2ψ,ψ〉 ≤ C0

(
|λ− µ|+ | log λ− logµ|

)
‖ψ‖2L2

D

for all λ, µ > 0 and ψ ∈ L2
r . Similarly, we obtain the same estimate for Lλ, which proves the

continuity of the lowest eigenvalue κλ of Lλ.

Using ψ, we can now construct the growing mode.

Lemma 4.6. Let λ, ψ be as in Lemma 4.5, let ϕ be as in (4.13), and let f± be defined by (4.7).
Then (eλtf±, eλtϕ, eλtψ) is a growing mode of the linearized Vlasov-Maxwell system.

Proof. Because Lλψ = 0 and due to the definition of ϕ, both parts of (4.10) are satisfied. Therefore
(4.2) is satisfied. These are the first and third Maxwell equations in (2.4) together with the boundary
conditions for ϕ and ψ. Next, the specular boundary condition for f± follows directly by definition
(4.7) and the fact that Qλ(g) is specular on the boundary if g is. It remains to check the Vlasov
equations and the middle Maxwell equation in (2.4), namely λ∂rϕ = jr.

We begin with the equation for f+. Recall that (X+(t;x, v), V +(t;x, v)) is the particle trajectory
initiating from (x, v). Evaluating (4.7) along the trajectory, we have

f+(X+(t), V +(t)) = µ+
e ϕ(X+(t)) + µ+

p R
+(t)ψ(X+(t))− µ+

e

∫ 0

−∞
λeλsϕ(X+(s;X+(t), V +(t))) ds

+ µ+
e

∫ 0

−∞
λeλsV̂ +

θ (s;X+(t), V +(t))ψ(X+(s;X+(t), V +(t))) ds.

By the group property (X+(s;X+(t), V +(t)) = X+(s + t) and V +(s;X+(t), V +(t)) = V +(s + t),
together with integration by parts in s, we have for each t

f+(X+(t), V +(t)) = µ+
e ϕ(X+(t)) + µ+

p R
+(t)ψ(X+(t))

− µ+
e

∫ 0

−∞
λeλs

[
ϕ(X+(s+ t))− V̂ +

θ (s+ t)ψ(X+(s+ t))
]
ds

= µ+
p R

+(t)ψ(X+(t)) + µ+
e e
−λt
∫ t

−∞
eλs
[
∂sϕ(X+(s)) + λV̂ +

θ (s)ψ(X+(s))
]
ds.
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Differentiation of this identity yields

d

dt

(
eλtf+(X+(t), V +(t))

)
= µ+

p

d

dt

(
eλtR+(t)ψ(X+(t))

)
+ µ+

e e
λt
[
∂tϕ(X+(t)) + λV̂ +

θ (t)ψ(X+(t))
]
.

We evaluate the above identity for t ∈ (0, ε) and let ε→ 0. Note that by Lemma 4.1 the functions
f+(X+(t), V +(t)), ϕ(X+(t)) and ψ(X+(t)) are piecewise C1 smooth. Using the evolution (4.3)
and (4.4), we obtain

λf+ + D+f+ = µ+
e v̂r∂rϕ+ rµ+

p v̂r∂rψ + µ+
p v̂rψ + λ(µ+

e v̂θ + rµ+
p )ψ.

This is the Vlasov equation (2.8) for f+. A similar verification can be done for f−.

Finally, we verify the remaining Maxwell equation λ∂rϕ = jr. Indeed, performing the integra-
tion in v of the Vlasov equations (2.6), we easily obtain λρ+∇ · j = 0. Together with the Poisson
equation in (4.2), this yields

−
(
∂r +

1

r

)
(λ∂rϕ) = −λ∆ϕ = λρ = −

(
∂r +

1

r

)
jr

Thus r(λ∂rϕ − jr) must be a constant. However, at the boundary r = 1, we have ∂rϕ = 0 and
jr = 0 by the specular boundary condition on f±. So λ∂rϕ− jr = 0.

This completes the proof of Theorem 1.1.

5 Examples

The purpose of this section is to exhibit some explicit examples of stable and unstable equilibria,
and thereby prove Theorem 1.2.

5.1 Stable examples

By Theorem 1.1 the condition for spectral stability is

L0 = A0
2 + (B0)∗(A0

1)−1B0 ≥ 0. (5.1)

For each ψ in the domain of L0 (thus in particular satisfying the Dirichlet boundary condition), we
have

〈L0ψ,ψ〉L2 = 〈A0
2ψ,ψ〉L2 + 〈(A0

1)−1B0ψ,B0ψ〉L2 ,

in which the last term is nonnegative due to the positivity of A0
1. To investigate the sign of the

first term on the right, we recall that

A0
2ψ =

(
−∆ +

1

r2

)
ψ −

∑
±

∫
v̂θ

[
rµ±p ψ + µ±e P±(v̂θψ)

]
dv, (5.2)
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in which µ± denote µ±(e±, p±) = µ±(〈v〉 ±ϕ0, r(vθ ±ψ0)). Integration by parts, together with the
Dirichlet boundary condition on ψ and the orthogonality of P± and 1−P± (separately for + and
−) lead to the expressions

〈A0
2ψ,ψ〉L2 =

∫
D

(
|∂rψ|2 +

1

r2
|ψ|2

)
dx−

∑
±

∫
D

(∫
rv̂θµ

±
p dv

)
|ψ|2 dx+

∑
±
‖P±(v̂θh)‖2H (5.3)

We now exhibit two explicit sufficient conditions for 〈A0
2ψ,ψ〉L2 to be nonnegative. This is Theorem

1.2 (i) and (ii).

Theorem 5.1. Let (µ±, ϕ0, ψ0) be an inhomogenous equilibrium.
(i) If

pµ±p (e, p) ≤ 0, ∀ e, p, (5.4)

then the equilibrium is spectrally stable provided that ψ0 is sufficiently small in L∞.
(ii) If

|µ±p (e, p)| ≤ ε

1 + |e|γ
, (5.5)

for some γ > 2, with ε sufficiently small but ψ0 not necessarily small, then the equilibrium is
spectrally stable.

Proof. First consider case (i). We only need to show that A0
2 ≥ 0. Let us look at the second

integral of 〈A0
2ψ,ψ〉L2 in (5.3). By the definition (1.9) of p±, we may write∫
rv̂θµ

±
p (e±, p±) dv =

∫
〈v〉−1p±µ±p (e±, p±) dv ∓ rψ0

∫
〈v〉−1µ±p (e±, p±) dv,

in which the first term on the right is nonpositive due to (5.4). Therefore we have

−
∑
±

∫
D

(∫
rv̂θµ

±
p dv

)
|ψ|2 dx ≥ − sup

r
|ψ0|

(
sup
r

∫
〈v〉−1(|µ+

p |+ |µ−p |) dv
)∫

D
r|ψ|2 dx.

Now by the Poincaré inequality,∫
D
r|ψ|2 dx ≤ c0

∫
D

(
|∂rψ|2 +

1

r2
|ψ|2

)
dx,

for some constant c0. In addition, thanks to assumption (1.12), the supremum over r ∈ [0, 1] of∫
〈v〉−1(|µ+

p |+ |µ−p |) dv is finite. Thus if the sup norm of ψ0 is sufficiently small, or more precisely
if ψ0 satisfies

c0 sup
r
|ψ0|

(
sup
r

∫
〈v〉−1(|µ+

p |+ |µ−p |) dv
)
≤ 1, (5.6)

then the second term in 〈A0
2ψ,ψ〉L2 is smaller than the first, and so the operator A0

2 is nonnegative.
Case (ii) is even easier. As above, we only have to bound the second term in 〈A0

2ψ,ψ〉L2 . Using
(5.5), we have∣∣∣ ∫

D

(∫
rv̂θ(µ

+
p + µ−p ) dv

)
|ψ|2 dx

∣∣∣ ≤ ∫∫ ε

1 + |e|γ
dv|ψ|2dx ≤ Cε

∫
|ψ|2dx.

If ε is sufficiently small, the second term is smaller than the positive terms.
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5.2 Unstable examples

For instability, it suffices to find a single function in the domain of L0 such that 〈L0ψ,ψ〉L2 < 0.
We shall construct some examples where this is the case. We limit ourselves to a purely magnetic
equilibrium (µ±,E0, B0) with E0 = 0 and B0 = 1

r∂r(rψ
0). Thus e = 〈v〉 and p± = r(vθ ± ψ0). In

this subsection, we shall also make the assumption that

µ+(e, p) = µ−(e,−p), ∀e, p. (5.7)

This assumption holds for example if µ+ = µ− is an even function of p. It greatly simplifies the
verification of the spectral condition on L0. We begin with some useful properties of the projection.

Lemma 5.2. (i) If k ∈ ker D± and h ∈ H so that kh ∈ H, then P±(kh) = kP±h.
(ii) Assume (5.7). For v = vrer + vθeθ, denote Rθv = vrer − vθeθ and Rθg(x, v) = g(x,Rθv),

for any function g ∈ H. Then
RθP+(Rθg) = P−g.

In particular, P+h = P−h if h depends only on r.

Proof. We note that kP±h ∈ ker D± since both k and P±h belong to ker D±. Now, for all m ∈
ker D±, we have

〈P±(kh),m〉H = 〈kh,P±m〉H = 〈kh,m〉H = 〈P±h, km〉H = 〈kP±h,m〉H.

By taking m = P±(kh)− kP±h, we obtain the identity in (i).
Let us next prove (ii). By a view of the assumption (5.7), we have

Rθµ+(e, p+) = µ+(e,−p−) = µ−(e, p−), Rθµ−(e, p−) = µ−(e,−p+) = µ+(e, p+). (5.8)

In addition, from the definition of D± in (2.7), we observe that RθD+Rθ = D−. That is, the
differential operator D−acting on g is the same as the operator RθD+ acting on Rθg. This together
with (5.8) proves (ii).

Lemma 5.3. If (µ±, 0, ψ0) is an equilibrium such that µ± satisfies (5.7), then B0 = 0 and so

L0ψ = A0
2ψ =

(
−∆ +

1

r2

)
ψ − 2

∫
rv̂θµ

−
p (e, p−) dvψ − 2

∫
v̂θµ
−
e (e, p−)P−(v̂θψ) dv. (5.9)

Proof. By definition, we may write

(B0)∗ψ = −
∫
v̂θk(x, v) dv, k(x, v) := µ+

e (e, p+)(1− P+)ψ + µ−e (e, p−)(1− P−)ψ.

We now show that k(x, v) is in fact even in vθ, and thus (B0)∗ must vanish by integration. Indeed,
by (5.8) and Lemma 5.2, (ii), we have

k(x,Rθv) = Rθµ+
e (e, p+)(1− P+)ψ +Rθµ−e (e, p−)(1− P−)ψ

= µ−e (e, p−)(1− P−)ψ + µ+
e (e, p+)(1− P+)ψ

= k(x, v).
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This proves that L0 = A0
2. Finally, for the second identity in (5.9), we perform the change of

variable v to Rθv in the integral terms of A0
2 in (5.2). We get∫

rv̂θµ
+
p (e, p+) dv = −

∫
rv̂θµ

+
p (e,Rθp+) dv =

∫
rv̂θµ

−
p (e, p−) dv∫

v̂θµ
+
e (e, p+)P+(v̂θψ) dv = −

∫
v̂θµ

+
e (e,Rθp+)RθP+(v̂θψ) dv =

∫
v̂θµ
−
e (e, p−)P−(v̂θψ) dv.

This proves (5.9), and completes the proof of the lemma.

Thanks to Lemma 5.3, the problem now depends only on the electrons, and so we shall drop
the minus superscript in p−, µ−,D−, and P− for the rest of this section. From (5.9), integrating
by parts and recalling that p = r(vθ − ψ0), we have

(L0ψ,ψ)L2 =

∫
D

(
|∂rψ|2+

1

r2
|ψ|2

)
dx−2

∫
D

∫
pµp
〈v〉
|ψ|2 dvdx−2

∫
D

∫
µp
〈v〉

rψ0|ψ|2 dvdx+2‖P(v̂θψ)‖2H
(5.10)

for any ψ ∈ V†. For the rest of this section, we shall take ψ = ψ∗ to be the ground state of the
operator −∆ + 1

r2
, which is a Bessel function of r satisfying the Dirichlet boundary condition at

r = 1. We normalize ψ∗ so that ∫
D

(
|∂rψ∗|2 +

1

r2
|ψ∗|2

)
dx = 1.

We now scale in the variable p to get the following result.

Theorem 5.4. Let µ± satisfy (5.7) and let µ = µ−. Assume that

pµp(e, p) ≥ c0p
2ν(e), ∀ e, p, (5.11)

for some positive constant c0 and some nonnegative function ν(e) such that ν 6≡ 0. For any K > 0,
define µ(K),±(e, p) := µ±(e,Kp). Assume ψ(K),0 is a bounded solution in D of the equation(
−∆ +

1

r2

)
ψ(K),0 =

∫
v̂θ

[
µ(K),+(〈v〉, r(vθ + ψ(K),0(r)))− µ(K),−(〈v〉, r(vθ − ψ(K),0(r)))

]
dv,

(5.12)
with ψ(K),0 = 0 on the boundary ∂D. Then there exists a positive number K0 such that the inho-
mogenous purely magnetic equilibria (µ(K),±, 0, B(K),0), with B(K),0 = 1

r∂r(rψ
(K),0), are spectrally

unstable for all K ≥ K0.

Proof. It suffices to show that 〈L0ψ∗, ψ∗〉L2 < 0. From (5.10) and our choice of ψ∗, we have

(L0ψ∗, ψ∗)L2 = 1 + I + II + III

= 1− 2

∫
D

∫
Kpµp(e,Kp)

〈v〉
|ψ∗|2 dvdx− 2

∫
D

∫
Kµp
〈v〉

rψ(K),0|ψ∗|2 dvdx+ 2‖P(v̂θψ∗)‖2H.
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In view of the assumption (5.11) and the fact that ν(e) is even in vθ, we have

I ≤ −2c0K
2

∫
D

(∫
r2e−1(vθ − ψ(K),0)2ν(e) dv

)
|ψ∗|2 dx

= −2c0K
2

∫
D

(∫
e−1v2

θν(e) dv
)
r2|ψ∗|2 dx− 2c0K

2
(∫

e−1ν(e) dv
)∫

D
r2|ψ(K),0|2|ψ∗|2 dx

≤ −2c0K
2
(∫

e−1v2
θν(e) dv

)
‖rψ∗‖2L2(D) = −c1K

2‖rψ∗‖2L2(D),

where c1 > 0 is independent of K. Next, by the decay assumption (1.12) on µp and µe, we have

II ≤ C0K‖ψ(K),0‖L∞ sup
r∈[0,1]

(∫
e−1|µp(e,Kp)| dv

)
≤ C0CµK‖ψ(K),0‖L∞

∫
1

〈v〉(1 + 〈v〉γ)
dv ≤ C0CµK‖ψ(K),0‖L∞ ,

and similarly, with C0 = 2‖ψ∗‖2L2(D),

III ≤ C0 sup
r∈[0,1]

(∫
|µe(e,Kp)| dv

)
≤ C0Cµ

∫
1

1 + 〈v〉γ
dv ≤ C0Cµ,

with γ > 2 and for some constant Cµ independent of K. Combining these estimates, we have
therefore obtained

〈L0ψ∗, ψ∗〉L2 ≤ 1− c1K
2‖rψ∗‖2L2(D) + C0Cµ(1 +K‖ψ(K),0‖L∞).

Of course, the L2 norm of rψ∗ is nonzero. We claim that ψ(K),0 is uniformly bounded independently
of K. Indeed, recalling that ψ(K),0 satisfies the simple elliptic equation (5.12) and using the decay
assumption (1.12) on µ±, we have∣∣∣(−∆ +

1

r2

)
ψ(K),0

∣∣∣ ≤ Cµ ∫ 1

1 + 〈v〉γ
dv ≤ Cµ,

for some constant Cµ independent of K. Thus letting u(K)(r) := ψ(K),0(r) + Cµr
2/3, we observe

that (−∆ + 1
r2

)u(K) ≤ 0 in D and u(K) = Cµ/3 on the boundary ∂D. By the standard maximum

principle, u(K) is bounded above and consequently so is ψ(K),0. In the same way they are bounded
below. This proves the claim. Summarizing, we conclude that 〈L0ψ∗, ψ∗〉L2 is dominated for large
K by I and is therefore strictly negative.

For homogenous equilibria we also have the following additional example of instability.

Theorem 5.5. Let µ± = µ±(e, p) be an homogenous equilibrium satisfying (5.7) and denote µ =
µ−. Assume that

pµp(e, p) + eµe(e, p) > 0, ∀ e, p. (5.13)

Then there exists a positive number K0 such that the rescaled homogenous equilibria µ(K),±(e, p) :=
Kµ±(e, p) are spectrally unstable, for all K ≥ K0.
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Proof. Again from (5.10) and our choice of ψ∗ we have

(L0ψ∗, ψ∗)L2 = 1− 2

∫
D

∫
Kpµp
〈v〉
|ψ∗|2 dvdx+ 2K‖P(v̂θψ∗)‖2H

≤ 1− 2K

∫
D

∫ (pµp
e

+ µe

)
|ψ∗|2 dvdx.

The integral is clearly positive thanks to the assumption (5.13). Thus (L0ψ∗, ψ∗)L2 is strictly
negative for large K.

For the sake of completeness we present a calculation of P(v̂θψ). Since e = 〈v〉 and p = r(vθ−ψ0)
belong to the kernel of D, Lemma 5.2 (ii) allows us to write

P(v̂θψ) = 〈v〉−1pP
(ψ
r

)
+ 〈v〉−1P(ψ0ψ), (5.14)

in which the projections on the right are acting on the functions that depend only on r. Let us
first consider the homogenous case: ψ0 = 0. Note that e > 1 and |p| ≤

√
e2 − 1.

Lemma 5.6. Assume ψ0 = 0. For ψ = ψ(r) ∈ L∞(0, 1), Pψ = g(〈v〉, rvθ), where

g(e, p) =
1√

1− a(e, p)2

∫ 1

a(e,p)

ψ(r)rdr√
r2 − a(e, p)2

, a(e, p) :=
|p|√
e2 − 1

,

for e and p satisfying |p| <
√
e2 − 1.

Proof. We first note that the kernel of D contains all functions of e and p, and in particular, Pψ is
a function of e and p. By the orthogonality of P and 1− P, we have

0 = 〈(1− P)ψ, ξ〉H = −4π

∫ ∞
0

∫
R

∫ 1

0
ξ(e, p)µe(e, p)(1− P)ψ(r)rdrdvθdvr, (5.15)

for arbitrary ξ = ξ(e, p). Let us make the change of variables (r, vr, vθ) 7→ (r, e, p) with e =√
1 + v2

r + v2
θ and p = rvθ. It follows that rdrdvrdvθ = e√

e2−1−p2/r2
drdpde. The identity (5.15)

then yields

0 =

∫ ∞
1

∫ √e2−1

−
√
e2−1

ξ(e, p)µe(e, p)
(∫ 1

a(e,p)
(1− P)ψ

rdr√
r2 − a(e, p)2

) edpde√
e2 − 1

,

with a(e, p) = |p|/
√
e2 − 1. Since ξ(e, p) is arbitrary, the integral in r must vanish for each e and

p. This directly proves the lemma because Pψ depends only on e and p.

For the inhomogenous case ψ0 6= 0, a similar calculation yields

Pψ =
1

TI(e,p)

∫
I(e,p)

ψ(r)dr√
e2 − 1− (pr + ψ0(r))2

,

with TI(e,p) :=
∫
I(e,p)

dr√
e2−1−( p

r
+ψ0(r))2

. Here I(e, p) is some subset of [0, 1] that depends on each e

and p but is quite complicated to express explicitly (see [16] for the 1.5D case).
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A Equilibria

This appendix contains (i) the proof of regularity of our equilibria and (ii) the construction of some
simple examples of equilibria. We recall that E0 = −∂rϕ0er and B0 = 1

r∂r(rψ
0) where (ϕ0, ψ0)

depends only on r and satisfies the elliptic ODE system (1.11), which we rewrite as

−∆ϕ0 = h(r, ϕ0, ψ0), −∆rψ
0 = g(r, ϕ0, ψ0), (A.1)

h(r, ϕ0, ψ0) : =

∫ [
µ+
(
〈v〉+ ϕ0, r(vθ + ψ0)

)
− µ−

(
〈v〉 − ϕ0, r(vθ − ψ0)

)]
dv

g(r, ϕ0, ψ0) : =

∫
v̂θ

[
µ+
(
〈v〉+ ϕ0, r(vθ + ψ0)

)
− µ−

(
〈v〉 − ϕ0, r(vθ − ψ0)

)]
dv.

For the regularity (i), we will verify that ϕ0, ψ0 ∈ C(D) implies that E0, B0 ∈ C1(D). Observe
that ϕ0

1 = 1 and ϕ0
2 = log r are two independent solutions of the homogeneous ODE ∆ϕ0 = 0

with wronskian 1/r. Similarly, ψ0
1 = r and ψ0

2 = 1/r are two solutions of the homogeneous ODE
∆rψ

0 = 0 with wronskian −2/r. Thus all the solutions (ϕ0, ψ0) to (A.1) satisfy the integral
equations

ϕ0(r) = α+

∫ r

0
s(log s− log r)h(·, ϕ0, ψ0)(s) ds+ γ log r,

ψ0(r) = βr +
1

2r

∫ r

0
(s2 − r2)g(·, ϕ0, ψ0)(s) ds+

δ

r
,

(A.2)

with arbitrary constants α, β, γ, δ. Since ϕ0 and ψ0 are assumed to be continuous at the origin,
we require γ = δ = 0. Clearly h is continuous in D, so that ϕ0 ∈ C2(D) by (A.2) and E0 =
∇ϕ0 ∈ C1(D). As for g, we note that limr→0+ g(r, ϕ0(r), ψ0(r)) = 0, which follows from the fact
the integrand is odd in vθ. So g is also continuous in all of D. Hence, B0 = 1

r∂r(rψ
0) ∈ C1(D), as

can be seen from (A.2).

As for (ii), the construction of some equilibria, for simplicity we only consider the case µ+(e, p) =
µ−(e, p) = µ(e, p), which we take to be an arbitrary function subject to the conditions in (1.12).
Of course, E0 = 0, B0 = 0 is automatically an equilibrium for any µ. However, let us consider
the inhomogeneous case. Clearly, h(r, 0, 0) = g(r, 0, 0) = 0. No boundary condition is required on
ϕ0, ψ0. It is easy to choose µ so that the functions h(r, ·, ·) and g(r, ·, ·) are uniformly bounded, and
so that for all ξ1, η1, ξ2, η2 they satisfy

|h(r, ξ1, η1)− h(r, ξ2, η2)|+ |g(r, ξ1, η1)− g(r, ξ2, η2)| ≤ θ (|ξ1 − ξ2|+ |η1 − η2|) (A.3)

for some θ < 1. Such an assumption is satisfied for instance if µ is uniformly Lipschitz in its
variables and µ replaced by εµ for sufficiently small ε.

Now we denote by T (ϕ0, ψ0) the right sides of the integral equations in (A.2) with γ = δ = 0.
It is clear from assumption (A.3) that T is well-defined from C([0, 1]) × C([0, 1]) into itself. In
addition, T is a contraction map on a small ball B in this space if α and β are sufficiently small.
So for each small α and β there exists a unique solution (ϕ0, ψ0) in B to (A.2) and thus to (A.1).
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