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Abstract. Extending investigations of Yarahmadian and Zumbrun in
the strictly parabolic case, we study time-asymptotic stability of arbi-
trary (possibly large) amplitude noncharacteristic boundary layers of a
class of hyperbolic-parabolic systems including the Navier–Stokes equa-
tions of compressible gas- and magnetohydrodynamics, establishing that
linear and nonlinear stability are both equivalent to an Evans function,
or generalized spectral stability, condition. The latter is readily check-
able numerically, and analytically verifiable in certain favorable cases; in
particular, it has been shown by Costanzino, Humpherys, Nguyen, and
Zumbrun to hold for sufficiently large-amplitude layers for isentropic
ideal gas dynamics, with general adiabiatic index γ ≥ 1. Together with
these previous results, our results thus give nonlinear stability of large-
amplitude isentropic boundary layers, the first such result for compres-
sive (“shock-type”) layers in other than the nearly-constant case. The
analysis, as in the strictly parabolic case, proceeds by derivation of de-
tailed pointwise Green function bounds, with substantial new technical
difficulties associated with the more singular, hyperbolic behavior in the
high-frequency/short time regime.
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1. Introduction

In this paper, we study the stability of boundary layers assuming that
the boundary layer solution is noncharacteristic, which means, roughly, that
signals are transmitted into or out of but not along the boundary. In the
context of gas dynamics or magnetohydrodynamics (MHD), this corresponds
to the situation of a porous boundary with prescribed inflow or outflow
conditions accomplished by suction or blowing, a scenario that has been
suggested as a means to reduce drag along an airfoil by stabilizing laminar
flow; see Example 1.1 below.

We consider a boundary layer, or stationary solution,

(1.1) Ũ = Ū(x), lim
z→+∞

Ū(z) = U+, Ū(0) = Ū0

of a system of conservation laws on the quarter-plane

(1.2) Ũt + F (Ũ)x = (B(Ũ)Ũx)x, x, t > 0,

Ũ , F ∈ Rn, B ∈ Rn×n, with initial data Ũ(x, 0) = Ũ0(x) and Dirichlet type
boundary conditions specified in (1.5), (1.6) below. A fundamental question
connected to the physical motivations from aerodynamics is whether or not
such boundary layer solutions are stable in the sense of PDE, i.e., whether
or not a sufficiently small perturbation of Ū remains close to Ū , or converges
time-asymptotically to Ū , under the evolution of (1.2). That is the question
we address here.

Our main result, in the general spirit of [ZH, MaZ3, MaZ4, Z3, HZ, YZ],
is to reduce the questions of linear and nonlinear stability to verification of
a simple and numerically well-posed Evans function, or generalized spectral
stability, condition, which can then be checked either numerically or by the
variety of methods available for study of eigenvalue ODE; see, for example,
[Br1, Br2, BrZ, BDG, HuZ2, PZ, FS, BHRZ, HLZ, HLyZ1, HLyZ2, CHNZ].
Together with the results of [CHNZ], this yields in particular nonlinear sta-
bility of sufficiently large-amplitude boundary-layers of the compressible
Navier–Stokes equations of isentropic ideal gas dynamics, with adiabatic
index γ ≥ 1, the first such result for a large compressive, or “shock-type”,
boundary layers. The main new difficulty beyond the strictly parabolic
case of [YZ] is to treat the more singular, hyperbolic behavior in the high-
frequency regime, both in obtaining pointwise Green function bounds, and
in deriving energy estimates by which the nonlinear analysis is closed.
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1.1. Equations and assumptions. We consider the general hyperbolic-
parabolic system of conservation laws (1.2) in conserved variable Ũ , with

Ũ =
(
ũ
ṽ

)
, B =

(
0 0
b1 b2

)
, σ(b2) ≥ θ > 0,

ũ ∈ R, and ṽ ∈ Rn−1, where, here and elsewhere, σ denotes spectrum of
a linearized operator or matrix. Here for simplicity, we have restricted to
the case (as in standard gas dynamics and MHD) that the hyperbolic part
(equation for ũ) consists of a single scalar equation. As in [MaZ3], the results
extend in straightforward fashion to the case ũ ∈ Rk, k > 1, with σ(A11)
strictly positive or strictly negative.

Following [MaZ4, Z3], we assume that equations (1.2) can be written,
alternatively, after a triangular change of coordinates

(1.3) W̃ := W̃ (Ũ) =
(

w̃I(ũ)
w̃II(ũ, ṽ)

)
,

in the quasilinear, partially symmetric hyperbolic-parabolic form

(1.4) Ã0W̃t + ÃW̃x = (B̃W̃x)x + G̃,

where, defining W̃+ := W̃ (U+),

(A1) Ã(W̃+), Ã0, Ã11 are symmetric, Ã0 block diagonal, Ã0 ≥ θ0 > 0,

(A2) no eigenvector of Ã(Ã0)−1(W̃+) lies in the kernel of B̃(Ã0)−1(W̃+),

(A3) B̃ =
(

0 0
0 b̃

)
, b̃ ≥ θ > 0, and G̃ =

(
0
g̃

)
with g̃(W̃x, W̃x) = O(|W̃x|2).

Along with the above structural assumptions, we make the following tech-
nical hypotheses:

(H0) F,B, Ã0, Ã, B̃, W̃ (·), g̃(·, ·) ∈ C4.

(H1) Ã11 (scalar) is either strictly positive or strictly negative, that is,
either Ã11 ≥ θ1 > 0, or Ã11 ≤ −θ1 < 0. (We shall call these cases the inflow
case or the outflow case, correspondingly.)

(H2) The eigenvalues of dF (U+) are real, distinct, and nonzero.

Condition (H1) corresponds to noncharacteristicity, while (H2) is the condi-
tion for the hyperbolicity of U+. The assumptions (A1)-(A3) and (H0)-(H2)
are satisfied for gas dynamics and MHD with van der Waals equation of
state under inflow or outflow conditions; see discussions in [MaZ4, CHNZ,
GMWZ5, GMWZ6].

We also assume:
(B) Dirichlet boundary conditions in W̃ -coordinates:

(1.5) (w̃I , w̃II)(0, t) = h̃(t) := (h̃1, h̃2)(t)

for the inflow case, and

(1.6) w̃II(0, t) = h̃(t)
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for the outflow case.

This is sufficient for the main physical applications; the situation of more
general, Neumann- and mixed-type boundary conditions on the parabolic
variable v can be treated as discussed in [GMWZ5, GMWZ6].

Example 1.1. The main example we have in mind consists of laminar
solutions (ρ, u, e)(x1, t) of the compressible Navier–Stokes equations

(1.7)


∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρutu) +∇p = εµ∆u+ ε(µ+ η)∇divu

∂t(ρE) + div
(
(ρE + p)u

)
= εκ∆T + εµdiv

(
(u · ∇)u

)
+ ε(µ+ η)∇(u · divu),

x ∈ Rd, on a half-space x1 > 0, where ρ denotes density, u ∈ Rd velocity,
e specific internal energy, E = e + |u|2

2 specific total energy, p = p(ρ, e)
pressure, T = T (ρ, e) temperature, µ > 0 and |η| ≤ µ first and second
coefficients of viscosity, κ > 0 the coefficient of heat conduction, and ε > 0
(typically small) the reciprocal of the Reynolds number, with no-slip suction-
type boundary conditions on the velocity,

uj(0, x2, . . . , xd) = 0, j 6= 1 and u1(0, x2, . . . , xd) = V (x) < 0,

and prescribed temperature, T (0, x2, . . . , xd) = Twall(x). Under the standard
assumptions pρ, Te > 0, this can be seen to satisfy all of the hypotheses
(A1)–(A3), (H0)–(H2); indeed these are satisfied also under much weaker
van der Waals gas assumptions [MaZ4, Z3, CHNZ, GMWZ5, GMWZ6]. In
particular, boundary-layer solutions are of noncharacteristic type, scaling as
(ρ, u, e) = (ρ̄, ū, ē)(x1/ε), with layer thickness ∼ ε as compared to the ∼

√
ε

thickness of the characteristic type found for an impermeable boundary.
This corresponds to the situation of an airfoil with microscopic holes

through which gas is pumped from the surrounding flow, the microscopic
suction imposing a fixed normal velocity while the macroscopic surface im-
poses standard temperature conditions as in flow past a (nonporous) plate.
This configuration was suggested by Prandtl and tested experimentally by
G.I. Taylor as a means to reduce drag by stabilizing laminar flow; see [S, Bra].
It was implemented in the NASA F-16XL experimental aircraft program in
the 1990’s with reported 25% reduction in drag at supersonic speeds [Bra].1

Possible mechanisms for this reduction are smaller thickness ∼ ε <<
√
ε of

noncharacteristic boundary layers as compared to characteristic type, and
greater stability, delaying the transition from laminar to turbulent flow. In
particular, stability properties appear to be quite important for the under-
standing of this phenomenon. For further discussion, including the related
issues of matched asymptotic expansion, multi-dimensional effects, and more
general boundary configurations, see [GMWZ5].

1See also NASA site http://www.dfrc.nasa.gov/Gallery/photo/F-16XL2/index.html
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Example 1.2. For (1.7), or the general (1.2), a large class of boundary-
layer solutions, sufficient for the present purposes, may be generated as
truncations ūx0(x) := ū(x− x0) of standing shock solutions

(1.8) u = ū(x), lim
x→±∞

ū(x) = u±

on the whole line x ∈ R, with boundary conditions βh(t) ≡ ū(0) (inflow)
or βh(t) ≡ w̄I(0) (outflow) chosen to match. However, there are also many
other boundary-layer solutions not connected with any shock. For more
general catalogs of boundary-layer solutions of (1.7), see, e.g., [MN, SZ,
CHNZ, GMWZ5].

Lemma 1.3 ([MaZ3, Z3, GMWZ5]). Given (A1)-(A3) and (H0)-(H2), a
standing wave solution (1.1) of (1.2), (B) satisfies

(1.9)
∣∣∣(d/dx)k(Ū − U+)

∣∣∣ ≤ Ce−θx, k = 0, ..., 4,

as x → +∞. Moreover, a solution, if it exists, is in the inflow or strictly
parabolic case unique; in the outflow case it is locally unique.

Proof. As in the shock case [MaZ4, Z3], (1.9) follows by the observation
that, under hypotheses (A1)-(A3) and (H0)-(H2), U+ is a hyperbolic rest
point of the layer profile ODE; see also [GMWZ5].

Uniqueness follows by the observation [MaZ3] that the standing-wave
ODE may be integrated from x to +∞ and rearranged to yield

(1.10)
F 1(U) ≡ F 1(U+),

(b1, b2)(U)U ′ = C(U,U+),

and thereby the first-order ODE

(1.11)
(
u
v

)′
=

(
F 1

u F 1
v

b1 b2

)−1 (
0

C(U,U+)

)
.

In the strictly parabolic or inflow case, U(0) is specified by the boundary
conditions at x = 0, thus determining a unique solution for all x ≥ 0 through
(1.11). In the outflow case, we observe, comparing U and W equations, that
(1.10) can be rewritten alternatively as

(1.12)
F 1(W ) ≡ F 1(W+),

(wII)′ = D(wI , wII),

where the first equation may by the Implicit Function Theorem be locally
solved for wI as a function of wII . Substituting in the second equation,
and noting that wII(0) is specified by the boundary conditions at x = 0, we
again obtain uniqueness, this time only local, by uniqueness of solutions of
the initial-value problem for ODE (wII)′ = D(wI , wII). We omit the details.
(Local uniqueness is here essentially a remark, as it is a consequence, by
Rousset’s Lemma [R2, MZ1, GMWZ5, GMWZ6], of our later assumption
(D) of Evans stability.) �
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1.2. Main results. Linearizing the equations (1.2), (B) about the bound-
ary layer Ū , we obtain the linearized equation

(1.13) Ut = LU := −(ĀU)x + (B̄Ux)x,

where
B̄ := B(Ū), ĀU := dF (Ū)U − (dB(Ū)U)Ūx,

with boundary conditions (now expressed in U -coordinates)

(1.14) (∂W̃/∂Ũ)(Ū0)U(0, t) = h(t) :=
(
h1

h2

)
(t)

for the inflow case, and

(1.15) (∂w̃II/∂Ũ)(Ū0)U(0, t) = h(t)

for the outflow case, where (∂W̃/∂Ũ)(Ū0) is constant and invertible,

(1.16) (∂w̃II/∂Ũ)(Ū0) = m
(
b̄1 b̄2

)
(Ū0),

(by (A1) and triangular structure (1.3)) is constant with m ∈ R(n−1)×(n−1)

invertible, and h := h̃− h̄.

Definition 1.4. The boundary layer Ū is said to be linearly X → Y stable
if, for some C > 0, the problem (1.13) with initial data U0 in X and homo-
geneous boundary data h ≡ 0 has a unique global solution U(·, t) such that
|U(·, t)|Y ≤ C|U0|X for all t; it is said to be linearly asymptotically X → Y
stable if also |U(·, t)|Y → 0 as t→∞.

We define the following stability criterion, where D(λ) described below,
denotes the Evans function associated with the linearized operator L about
the layer, an analytic function analogous to the characteristic polynomial of
a finite-dimensional operator, whose zeroes away from the essential spectrum
agree in location and multiplicity with the eigenvalues of L:

(D) There exist no zeroes of D(·) in the nonstable half-plane Reλ ≥ 0.

As discussed, e.g., in [R2, MZ1, GMWZ5, GMWZ6], under assumptions
(H0)-(H2), this is equivalent to strong spectral stability, σ(L) ⊂ {Reλ <
0}, (ii) transversality of Ū as a solution of the connection problem in the
associated standing-wave ODE, and hyperbolic stability of an associated
boundary value problem obtained by formal matched asymptotics. See
[GMWZ5, GMWZ6] for further discussions.

Definition 1.5. The boundary layer Ū is said to be nonlinearly X → Y
stable if, for each ε > 0, the problem (1.2) with initial data Ũ0 sufficiently
close to the profile Ū in | · |X has a unique global solution Ũ(·, t) such that
|Ũ(·, t) − Ū(·)|Y < ε for all t; it is said to be nonlinearly asymptotically
X → Y stable if also |Ũ(·, t) − Ū(·)|Y → 0 as t → ∞. We shall sometimes
not explicitly define the norm X, speaking instead of stability or asymptotic
stability in Y under perturbations satisfying specified smallness conditions.
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Our first main result is as follows.

Theorem 1.6 (Linearized stability). Assume (A1)-(A3), (H0)-(H2), and
(B) with |h(t)| ≤ E0(1 + t)−1−ε, |h′(t)| ≤ E0(1 + t)−1, for arbitrary fixed
ε > 0. Let Ū be a boundary layer. Then linearized L1 ∩ Lp → L1 ∩ Lp

stability, 1 ≤ p ≤ ∞, is equivalent to (D). In the case of stability, there
holds also linearized asymptotic L1 ∩ Lp → Lp stability, p > 1, with rate

(1.17) |U(·, t)|Lp ≤ C(1 + t)−
1
2
(1−1/p)|U0|L1∩Lp + CE0(1 + t)−

1
2
(1−1/p).

To state the pointwise nonlinear stability result, we need some notations.
Denoting by

(1.18) a+
1 < a+

2 < · · · < a+
n

the eigenvalues of of the limiting convection matrix A+ := dF (U+), define

(1.19) θ(x, t) :=
∑

a+
j >0

(1 + t)−1/2e−|x−a+
j t|2/Mt,

(1.20)
ψ1(x, t) := χ(x, t)

∑
a+

j >0

(1 + |x|+ t)−1/2(1 + |x− a+
j t|)

−1/2,

and

(1.21) ψ2(x, t) := (1− χ(x, t))(1 + |x− a+
n t|+ t1/2)−3/2,

where χ(x, t) = 1 for x ∈ [0, a+
n t] and χ(x, t) = 0 otherwise and M > 0 is a

sufficiently large constant.
For simplicity, we measure the boundary data by function

(1.22) Bh(t) :=
2∑

r=0

|(d/dt)rh|

for the outflow case, and

(1.23) Bh(t) :=
4∑

r=0

|(d/dt)rh1|+
2∑

r=0

|(d/dt)rh2|

for the inflow case.
Then, our next result is as follows.

Theorem 1.7 (Nonlinear stability). Assuming (A1)-(A3), (H0)-(H2), (B),
and the linear stability condition (D), the profile Ū is nonlinearly asymp-
totically stable in Lp ∩ H4, p > 1, with respect to perturbations U0 ∈ H4,
h ∈ C4 in initial and boundary data satisfying: |h(t)| ≤ E0(1 + t)−1−ε,
|h′(t)| ≤ E0(1 + t)−1, for arbitrary fixed ε > 0, and

‖(1 + |x|2)3/4U0‖H4 ≤ E0 and |Bh(t)| ≤ E0(1 + t)−1/4
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for E0 sufficiently small. More precisely,

(1.24)
|Ũ(x, t)− Ū(x)| ≤ CE0(θ + ψ1 + ψ2)(x, t),

|Ũx(x, t)− Ūx(x)| ≤ CE0(θ + ψ1 + ψ2)(x, t),

where Ũ(x, t) denotes the solution of (1.2) with initial and boundary data
Ũ(x, 0) = Ū(x) + U0(x) and Ũ(0, t) = Ū0 + h(t), yielding the sharp rates

‖Ũ(x, t)− Ū(x)‖Lp ≤ CE0(1 + t)−
1
2
(1− 1

p
)
, 1 ≤ p ≤ ∞,(1.25)

‖Ũ(x, t)− Ū(x)‖H4 ≤ CE0(1 + t)−
1
4 .(1.26)

Remark 1.8. By the one dimensional Sobolev embedding, from the hypoth-
esis on U0, we automatically assume that

‖U0‖H4 ≤ E0, |U0(x)|+ |U ′0(x)| ≤ E0(1 + |x|)−3/2.

A crucial step in establishing Theorems 1.6 and 1.7 is to obtain pointwise
bounds on the Green function G(x, t; y) of the linearized evolution equations
(1.13) (more properly speaking, a distribution), which we now describe. Let
a+

j , j = 1, ...., n denote the eigenvalues of A(+∞), and l+j , r
+
j associated left

and right eigenvectors, respectively, normalized so that l+j r
+
k = δk

j . Eigenval-
ues aj(x), and eigenvectors lj(x), rj(x) correspond to large-time convection
rates and modes of propagation of the linearized model (1.13).

Define time-asymptotic, scalar diffusion rates

(1.27) β+
j := (ljBrj)+, j = 1, ..., n,

and local dissipation coefficient

(1.28) η∗ := −D∗(x)

where

D∗(x) := A12b
−1
2

[
A21 −A22b

−1
2 b1 + b−1

2 b1A∗ + b2∂x(b−1
2 b1)

]
(x)

is an effective dissipation analogous to the effective diffusion predicted by
formal, Chapman-Enskog expansion in the (dual) relaxation case,

A∗ := A11 −A12b
−1
2 b1.

Note that as a consequence of dissipativity, (A2), we obtain

(1.29) η+
∗ > 0, β+

j > 0, for all j.

We also define modes of propagation for the reduced, hyperbolic part of
system (1.13) as

(1.30) L∗ =
(

1
0n−1

)
, R∗ =

(
1

−b−1
2 b1

)
We define the Green function G(x, t; y) of the linearized evolution equa-

tions (1.13) with homogeneous boundary conditions (more properly speak-
ing, a distribution), by
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(i) (∂t − Lx)G = 0 in the distributional sense, for all x, y, t > 0;
(ii) G(x, t; y) → δ(x− y) as t→ 0;

(iii) for all y, t > 0,
(
Ā∗ 0
b̄1 b̄2

)
G(0, t; y) =

(
∗
0

)
where ∗ = 0 for the inflow

case Ā∗ > 0 and ∗ is arbitrary for the outflow case Ā∗ < 0, noting that no
boundary condition is needed to be prescribed on the hyperbolic part.

By standard arguments as in [MaZ3], we have the spectral resolution, or
inverse Laplace transform formulae

(1.31) eLtf =
1

2πi
P.V.

∫ η+i∞

η−i∞
eλt(λ− L)−1fdλ

and

(1.32) G(x, t; y) =
1

2πi
P.V.

∫ η+i∞

η−i∞
eλtGλ(x, y) dλ

for any large positive η.
We prove the following pointwise bounds on the Green function G(x, t; y).

Proposition 1.9. Under assumptions (A1)-(A3), (H0)-(H2), (B), and (D),
we obtain

(1.33) G(x, t; y) = H(x, t; y) + G̃(x, t; y),

where

(1.34)
H(x, t; y) =

1
2π
A∗(x)−1A∗(y)δx−ā∗t(y)e

−
∫ x

y (η∗/A∗)(z)dzR∗L
tr
∗

= O(e−η0t)δx−ā∗t(y)R∗L
tr
∗ ,

and
(1.35)
|∂γ

x∂
α
y G̃(x, t; y)| ≤ Ce−η(|x−y|+t)

+ C(t−(|α|+|γ|)/2 + |α|e−η|y| + |γ|e−η|x|)
( n∑

k=1

t−1/2e−(x−y−a+
k t)2/Mt

+
∑

a+
k <0, a+

j >0

χ{|a+
k t|≥|y|}t

−1/2e−(x−a+
j (t−|y/a+

k |))
2/Mt

)
,

0 ≤ |α|, |γ| ≤ 1, for some η, C, M > 0, where indicator function χ{|a+
k t|≥|y|}

is 1 for |a+
k t| ≥ |y| and 0 otherwise.

Here, the averaged convection rate ā∗(x, t) in (1.34) denotes the time-
averages over [0, t] of A∗(z) along backward characteristic paths z∗ = z∗(x, t)
defined by

(1.36)
dz∗
dt

= A∗(z∗(x, t)), z∗(t) = x.

In all equations, a+
j , A∗, L∗, R∗ are as defined just above.
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1.3. Discussion and open problems. The stability of noncharacteristic
boundary layers in gas dynamics has been treated using energy estimates
in, e.g., [MN, KNZ, R3], for both “compressive” boundary layers including
the truncated shock-solutions (1.8), and for “expansive” solutions analogous
to rarefaction waves. However, in the case of compressive waves, these and
most subsequent analyses were restricted to the small-amplitude case

(1.37) ‖ū− u+‖L1(R+) sufficiently small.

Examining this condition even for the special class (1.8) of truncated shock
solutions, we find that it is extremely restrictive.

For, consider the one-parameter family ūx0(x) = ū(x− x0) of boundary-
layers associated with a standing shock ū of amplitude δ := |u+−u−| << 1.
By center manifold analysis [Pe], ū− u+ ∼ δe−cδx, hence

‖ū− u+‖L1(R+) ∼ e−cδx ∼ |u+ − u(0)|
|u+ − u−|

in fact measures relative amplitude with respect to the amplitude |u+−u−| of
the background shock solution ū. Thus, smallness condition (1.37) requires
that the boundary layer consist of a small, nearly-constant piece of the
original shock.

The present results, extending results of [YZ] in the strictly parabolic
case, remove this restriction, allowing applications in principle to shocks
of any amplitude. In particular, in combination with the spectral stability
results obtained in [CHNZ] by asymptotic Evans function analysis, they yield
stability of noncharacteristic isentropic gas-dynamical layers of sufficiently
large amplitude. Together with further, numerical, investigations of [CHNZ]
give strong evidence that in fact all noncharacteristic isentropic gas layers
are spectrally stable, independent of amplitude, which would together with
our results yield nonlinear stability.

Spectral stability of full (nonisentropic) gas layers may be investigated
numerically as for shocks in [HLyZ1, HLyZ2], in both one- and multi-
dimensions. However, analytical results of [SZ] show that in this case in-
stability is possible, even for ideal gas equation of state. The numerical
classification of stability for full gas dynamics, and the extension of our
present nonlinear stability results to multi-dimensions, are two interesting
direction for further investigation.

Finally, we comment briefly on the difference between our analysis and
the earlier analysis [YZ] carried out by similar techniques based on the Evans
function and stationary phase estimates on the inverse Laplace transform
formula. Our analysis is in the same spirit as, and borrows heavily from this
earlier work. The main new issues are technical ones connected with the
more singular high-frequency/short-time behavior of hyperbolic-parabolic
equations as compared to the strictly parabolic equations considered in [YZ].
In particular, linearized behavior in the u coordinate, U = (u, v), is essen-
tially hyperbolic, governed for short times approximately by the principle
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part

(1.38) vt +A∗(x)vx = 0, A∗ := (A11
0 )−1A11

Thus, we may expect as in the whole-line analysis of hyperbolic-parabolic
equations in [MaZ3] that the associated Green function contain a delta-
function component transported along the hyperbolic characteristic

dx/dt = A∗(x),

with the difference that now we must consider also a possibly-complicated
interaction with the boundary.

A key point is that in fact this potential complication does not occur.
For, in the special case occurring in continuum-mechanical systems [Z3]
that all hyperbolic signals either enter or leave the boundary, there is no
such boundary interaction and no reflected signal. For example, in the
simple scalar example (1.38), the Green function on the half-line with either
homogeneous inflow (A11 > 0) boundary condition v(0) = 0 or outflow
(A11 < 0) condition v(0) arbitrary, is by inspection exactly the whole-line
Green function

g(x, t; y) = δx−āt(y)/A∗(x)
restricted to the half-line x, y > 0, where ā is the average over [0, t] of
A∗(z∗(t)) along the backward characteristic path

dz∗
dt

= A∗(z∗(x, t)), z∗(t) = x.

Indeed, comparing the description of the homogeneous boundary-value Green
function in Proposition 1.9 with that of the whole-line Green function in
[MaZ3], we see that they are identical. However, to prove this simple obser-
vation costs us considerable care in the high-frequency analysis.

A further issue at the nonlinear level is to obtain nonlinear damping esti-
mates using energy estimates as in [MaZ4], which are somewhat complicated
by the presence of a boundary. This is necessary to prevent a loss of deriva-
tives in the nonlinear iteration.

As in [YZ], we get stability also with respect to perturbations in boundary
data, something that was not accounted for in earlier works on long-time
stability. We mention, finally, the works [GR, MZ1, GMWZ5, GMWZ6] in
one- and multi-dimensions of a similar spirit but somewhat different tech-
nical flavor on the related small viscosity problem– for example, ε → 0 in
(1.7)– which establish that the Evans condition (or its multi-dimensional
analog) is also sufficient for existence and stability of matched asymptotic
solution as viscosity goes to zero.

2. Pointwise bounds on resolvent kernel Gλ

In this section, we shall establish estimates on resolvent kernel Gλ(x, y).

2.1. Evans function framework. Before starting the analysis, we review
the basic Evans function methods and gap/conjugation lemma.
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2.1.1. The gap/conjugation lemma. Consider a family of first order ODE
systems on the half-line:

(2.1)
W ′ = A(x, λ)W, λ ∈ Ω and x > 0,

B(λ)W = 0, λ ∈ Ω and x = 0.

These systems of ODEs should be considered as a generalized eigenvalue
equation, with λ representing frequency. We assume that the boundary
matrix B is analytic in λ and that the coefficient matrix A is analytic in λ
as a function from Ω into L∞(x), CK in x, and approaches exponentially to
a limit A+(λ) as x→∞, with uniform exponentially decay estimates

(2.2) |(∂/∂x)k(A− A+)| ≤ C1e
−θ|x|/C2 , for x > 0, 0 ≤ k ≤ K,

Cj , θ > 0, on compact subsets of Ω. Now we can state a refinement of
the “Gap Lemma” of [GZ, KS], relating solutions of the variable-coefficient
ODE to the solutions of its constant-coefficient limiting equations

(2.3) Z ′ = A+(λ)Z

as x→ +∞.

Lemma 2.1 (Conjugation Lemma [MZ1]). Under assumption (2.2), there
exists locally to any given λ0 ∈ Ω a linear transformation P+(x, λ) = I +
Θ+(x, λ) on x ≥ 0, Φ+ analytic in λ as functions from Ω to L∞[0,+∞),
such that:

(i) |P+| and their inverses are uniformly bounded, with
(2.4)
|(∂/∂λ)j(∂/∂x)kΘ+| ≤ C(j)C1C2e

−θ|x|/C2 for x > 0, 0 ≤ k ≤ K + 1,

j ≥ 0, where 0 < θ < 1 is an arbitrary fixed parameter, and C > 0 and the
size of the neighborhood of definition depend only on θ, j, the modulus of the
entries of A at λ0, and the modulus of continuity of A on some neighborhood
of λ0 ∈ Ω.

(ii) The change of coordinates W := P+Z reduces (2.1) on x ≥ 0 to the
asymptotic constant-coefficient equations (2.3). Equivalently, solutions of
(2.1) may be conveniently factorized as

(2.5) W = (I + Θ+)Z+,

where Z+ are solutions of the constant-coefficient equations, and Θ+ satisfy
bounds.

Proof. As described in [MaZ3], for j = k = 0 this is a straightforward
corollary of the gap lemma as stated in [Z.3], applied to the “lifted” matrix-
valued ODE

P ′ = A+P − PA + (A− A+)P
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for the conjugating matrices P+. The x-derivative bounds 0 < k ≤ K + 1
then follow from the ODE and its first K derivatives. Finally, the λ-
derivative bounds follow from standard interior estimates for analytic func-
tions. �

Definition 2.2. Following [AGJ], we define the domain of consistent split-
ting for the ODE system W ′ = A(x, λ)W as the (open) set of λ such that the
limiting matrix A+ is hyperbolic (has no center subspace) and the boundary
matrix B is full rank, with dimS+ = rank B.

Lemma 2.3. On any simply connected subset of the domain of consistent
splitting, there exist analytic bases {v1, . . . , vk}+ and {vk+1, . . . , vN}+ for
the subspaces S+ and U+ defined in Definition 2.2.

Proof. By spectral separation of U+, S+, the associated (group) eigenprojec-
tions are analytic. The existence of analytic bases then follows by a standard
result of Kato; see [Kat], pp. 99–102. �

Corollary 2.4. By the Conjugation Lemma , on the domain of consistent
splitting, the stable manifold of solutions decaying as x→ +∞ of (2.1) is

(2.6) S+ := span {P+v
+
1 , . . . , P+v

+
k },

where W j
+ := P+v

+
j are analytic in λ and CK+1 in x for A ∈ CK .

2.1.2. Definition of the Evans Function. On any simply connected subset of
the domain of consistent splitting, let W+

1 , . . . ,W
+
k = P+v

+
1 , . . . , P+v

+
k be

the analytic basis described in Corollary 2.4 of the subspace S+ of solutions
W of (2.1) satisfying the boundary condition W → 0 at +∞. Then, the
Evans function for the ODE systems W ′ = A(x, λ)W associated with this
choice of limiting bases is defined as the k × k Gramian determinant

(2.7)
D(λ) := det

(
BW+

1 , . . . ,BW
+
k

)
|x=0,λ

= det
(
BP+v

+
1 , . . . ,BP+v

+
k

)
|x=0,λ

.

Remark 2.5. Note that D is independent of the choice of P+ as, by unique-
ness of stable manifolds, the exterior products (minors) P+v

+
1 ∧ · · · ∧ P+v

+
k

are uniquely determined by their behavior as x→ +∞.

Proposition 2.6. Both the Evans function and the subspace S+ are analytic
on the entire simply connected subset of the domain of consistent splitting
on which they are defined. Moreover, for λ within this region, equation (2.1)
admits a nontrivial solution W ∈ L2(x > 0) if and only if D(λ) = 0.

Proof. Analyticity follows by uniqueness, and local analyticity of P+, v+
k .

Noting that the first P+v
+
j are a basis for the stable manifold of (2.1) at

x→ +∞, we find that the determinant of BP+v
+
j vanishes if and only if B(λ)

has nontrivial kernel on S+(λ, 0), whence the second assertion follows. �
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Remark 2.7. In the case (as here) that the ODE system describes an eigen-
value equation associated with an ordinary differential operator L, Proposi-
tion 2.6 implies that eigenvalues of L agree in location with zeroes of D.
(Indeed, they agree also in multiplicity; see [GJ1, GJ2]; Lemma 6.1, [ZH];
or Proposition 6.15 of [MaZ3].)

When ker B has an analytic basis v0
k+1, . . . , v

0
N , for example, in the com-

monly occurring case, as here, that B ≡ constant, we have the following
useful alternative formulation. This is the version that we will use in our
analysis of the Green function and Resolvent kernel.

Proposition 2.8. Let v0
k+1, . . . , v

0
N be an analytic basis of ker B, normal-

ized so that det
(
B∗, v0

k+1, . . . v
0
N

)
≡ 1. Then, the solutions W 0

j of (2.1)
determined by initial data W 0

j (λ, 0) = v0
j are analytic in λ and CK+1 in x,

and

(2.8) D(λ) := det
(
W+

1 , . . . ,W
+
k ,W

0
k+1, . . . ,W

0
N

)
|x=0,λ

.

Proof. Analyticity/smoothness follow by analytic/smooth dependence on
initial data/parameters. By the chosen normalization, and standard prop-
erties of Grammian determinants,

D(λ) = det
(
W+

1 , . . . ,W
+
k , v

0
k+1, . . . , v

0
N

)
|x=0,λ

,

yielding (2.8). �

2.1.3. The tracking/reduction lemma. Next, consider a family of systems

(2.9)
W ′ = A(x, p, ε)W, p ∈ P, ε ∈ R+ and x > 0,

B(p, ε)W = 0, λ ∈ Ω and x = 0

parametrized by p, ε, with ε → 0. The main example we have in mind is
(2.1) with p = λ/|λ| and ε := |λ|−1, in the high-frequency regime |λ| → ∞.
We assume further that by some coordinate change we can arrange that

(2.10) A =
(
M+ 0
0 M−

)
+ Θ,

with

(2.11) |Θ| ≤ δ(ε), <(M+ −M−) ≥ 2η(ε) + αε(x),

‖α‖L1(R+) uniformly bounded for all ε sufficiently small, and

(2.12) (δ/η)(ε) → 0 as ε→ 0,

where <(Q) := (1/2)(Q+Q∗) denotes the symmetric part of a matrix Q.
Then, we have the following analog of Lemma 2.1.1, asserting that the

approximately block-diagonalized equations (2.9) may be converted by a
smooth coordinate transformation(

I Θ1

Θ2 I

)
→ I as ε→ 0
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to exactly diagonalized form with the same leading part M.

Lemma 2.9 ([MaZ3]). Consider a system (2.10), with F̃ ≡ 0 and δ/η →
0 as ε → 0. Then, (i) for all 0 < ε ≤ ε0, there exist (unique) linear
transformations Φε

1(z, p) and Φε
2(z, p), possessing the same regularity with

respect to the various parameters z, p, ε as do coefficients M± and Θ, for
which the graphs {(Z1,Φε

2Z1)} and {(Φε
1Z2, Z2)} are invariant under the

flow of (2.10), and satisfying

|Φε
1|, |Φε

2| ≤ Cδ(ε)/η(ε) for all z.

In particular, (ii) the subspace E− of data at z = 0 for which the solution
decays as z → +∞, given by span {(Φε

1(0, p)v, v)}, converges as ε → 0 to
Ẽ− := span {(0, v)}.

Proof. Standard contraction mapping argument carried out on the “lifted”
equations governing the flow of the conjugating matrices Φε

j ; see Appendix
C, [MaZ3].

Remark 2.10. In practice, we usually have αε ≡ 0, as can be obtained
in general by a change of coordinates multiplying the first coordinate by
exponential weight e

∫
αεdx.

2.2. Construction of the resolvent kernel. In this section we construct
the explicit form of the resolvent kernel, which is nothing more than the
Green function Gλ(x, y) associated with the elliptic operator (L−λI), where

(2.13) (L− λI)Gλ(·, y) = δyI,

(
Ā∗ 0
b̄1 b̄2

)
Gλ(0, y) ≡

(
∗
0

)
where ∗ = 0 for the inflow case and is arbitrary for the outflow case.

Let Λ be the region of consistent splitting for L. It is a standard fact (see,
e.g., [He]) that the resolvent (L−λI)−1 and the Green function Gλ(x, y) are
meromorphic in λ on Λ, with isolated poles of finite order.

Writing the associated eigenvalue equation LU − λU = 0 in the form
of a first-order system (2.1) as follows: W := (u, v, z) ∈ C2n−1 with z :=
b1u

′ + b2v
′, and

u′ = A−1
∗ (−A12b

−1
2 z − (A′11 + λ)u−A′12v),

v′ = b−1
2 z − b−1

2 b1u
′,(2.14)

z′ = (A21 −A22b
−1
2 b1)u′ +A22b

−1
2 z +A′21u+ (A′22 + λ)v.

2.2.1. Domain of consistent splitting. Define

(2.15) Λ := ∩Λ+
j , j = 1, 2, ..., n

where Λ+
j denote the open sets bounded on the left by the algebraic curves

λ+
j (ξ) determined by the eigenvalues of the symbols −ξ2B+ − iξA+ of the

limiting constant-coefficient operators

(2.16) L+w := B+w
′′ −A+w

′
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as ξ is varied along the real axis. The curves λ+
j comprise the essential

spectrum of operators L+.

Lemma 2.11 ([MaZ3]). The set Λ is equal to the component containing
real +∞ of the domain of consistent splitting for (2.14). Moreover, under
(A1)–(A3), (H0)–(H2),

(2.17) Λ ⊂ {λ : <eλ > −η|=mλ|/(1 + |=mλ|), η > 0.

2.2.2. Basic construction. We first recall the following duality relation de-
rived for the degenerate viscosity case in [MaZ3].

Lemma 2.12 ([ZH, MaZ3]). The function W = (U,Z) is a solution of
(2.14) if and only if W̃ ∗S̃W ≡ constant for any solution W̃ = (Ũ , Z̃) of the
adjoint eigenvalue equation, where

(2.18) S̃ =

 −A11 −A12 0
−A21 −A22 Ir
−b−1

2 b1 −Ir 0


and

(2.19) Z = (b1, b2)U ′, Z̃ = (0, b∗2)Ũ
′.

For future reference, we note the representation

(2.20) S̃−1 =

 −A−1
∗ 0 A−1

∗ A12

b−1
2 b1A

−1
∗ 0 −b−1

2 b1A
−1
∗ A12 − Ir

−ÃA−1
∗ Ir −A22 + ÃA−1

∗ A12


where Ã := A21 − A22b−1b1, A∗ := A11 − A12b

−1
2 b1, obtained by direct

computation in [MaZ3].
Denote by

(2.21) Φ0 = (φ0
k+1(x;λ), · · · , φ0

n+r(x;λ)),

(2.22) Φ+ = (φ+
1 (x;λ), · · · , φ+

k (x;λ) = (P+v
+
1 , · · · , P+v

+
k ),

and

(2.23) Φ = (Φ+,Φ0),

the matrices whose columns span the subspaces of solutions of (2.1) that,
respectively, decay at x = +∞, and satisfy the prescribed boundary con-
ditions at x = 0, denoting (analytically chosen) complementary subspaces
by

(2.24) Ψ0 = (ψ0
1(x;λ), · · · , ψ0

k(x;λ)),

(2.25) Ψ+ = (ψ+
k+1(x;λ), · · · , ψ+

n+r(x;λ))

and

(2.26) Ψ = (Ψ0,Ψ+).
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As described in the previous subsection, eigenfunctions decaying at +∞
and satisfying the prescribed boundary conditions at 0 occur precisely when
the subspaces spanΦ0 and span Φ+ intersect, i.e., at zeros of the Evans
function defined in (2.8):

(2.27) DL(λ) := det(Φ0,Φ+)|x=0.

Define the solution operator from y to x of (L − λ)U = 0, denoted by
Fy→x, as

Fy→x = Φ(x, λ)Φ−1(y, λ)
and the projections Π0

y,Π
+
y on the stable manifolds at 0,+∞ as

Π+
y =

(
Φ+(y) 0

)
Φ−1(y), Π0

y =
(
0 Φ0(y)

)
Φ−1(y).

With these preparations, the construction of the Resolvent kernel goes
exactly as in the construction performed in [ZH, MaZ3] on the whole line.

Lemma 2.13. We have the the representation

(2.28) Gλ(x, y) =

{
(In, 0)Fy→xΠ+

y S̃
−1(y)(In, 0)tr, for x > y,

−(In, 0)Fy→xΠ0
yS̃

−1(y)(In, 0)tr, for x < y.

Moreover, on any compact subset K of ρ(L) ∩ Λ,

(2.29) |Gλ(x, y)| ≤ Ceη|x−y|,

where C > 0 and η > 0 depend only on K,L.

We define also the dual subspaces of solutions of (L∗ − λ∗)W̃ = 0. We
denote growing solutions

(2.30) Φ̃0 =
(
φ̃0

1(x;λ) · · · φ̃0
k(x;λ)

)
,

(2.31) Φ̃+ =
(
φ̃+

k+1(x;λ) · · · φ̃+
n+r(x;λ)

)
,

Φ̃ := (Φ̃0, Φ̃+) and decaying solutions

(2.32) Ψ̃0 =
(
ψ̃0

1(x;λ) · · · ψ̃+
k (x;λ)

)
,

(2.33) Ψ̃+ =
(
ψ̃+

k+1(x;λ) · · · ψ̃+
n+r(x;λ),

)
and Ψ̃ := (Ψ̃0, Ψ̃+), satisfying the relations

(Ψ̃Φ̃)∗0,+S̃(ΨΦ)0,+ ≡ I.

Then, we have

Proposition 2.14. The resolvent kernel may alternatively be expressed as

(2.34) Gλ(x, y) =

{
(In, 0)Φ+(x;λ)M+(λ)Ψ̃0∗(y;λ)(In, 0)tr x > y,

−(In, 0)Φ0(x;λ)M0(λ)Ψ̃+∗(y;λ)(In, 0)tr x < y,

where

(2.35) M(λ) := diag(M+(λ),M0(λ)) = Φ−1(z;λ)S̄−1(z)Ψ̃−1∗(z;λ).
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From Proposition 2.14, we obtain the following scattering decomposition,
generalizing the Fourier transform representation in the constant-coefficient
case

Corollary 2.15. On Λ ∩ ρ(L),

(2.36) Gλ(x, y) =
∑
j,k

d+
jkφ

+
j (x;λ)ψ̃+

k (y;λ)∗ +
∑

k

φ+
k (x;λ)φ̃+

k (y;λ)∗

for 0 ≤ y ≤ x, and

(2.37) Gλ(x, y) =
∑
j,k

d0
jk(λ)φ+

j (x;λ)ψ̃+
k (y;λ)∗ +

∑
k

ψ+
k (x;λ)ψ̃+

k (y;λ)∗

for 0 ≤ x ≤ y, where d0,+
jk (λ) = O(λ−K) are scalar meromorphic functions

with pole of order K less than or equal to the order to which the Evans
function D(λ) vanishes at λ = 0 (note that K = 0 under assumption (D)).

Proof. Matrix manipulation of expression (2.35), Kramer’s rule, and the
definition of the Evans function; see [MaZ3]. �

Remark 2.16. In the constant-coefficient case, with a choice of common
bases Ψ0,+ = Φ+,0 at 0,+∞, the above representation (2.15) reduces to the
simple formula

(2.38) Gλ(x, y) =

{∑N
j=k+1 φ

+
j (x;λ)φ̃+∗

j (y;λ) x > y,

−
∑k

j=1 ψ
+
j (x;λ)ψ̃+∗

j (y;λ) x < y.

2.3. High frequency estimates. We now turn to the crucial estimation
of the resolvent kernel in the high-frequency regime |λ| → +∞, following
the general approach of [MaZ3]. Define sectors

(2.39) ΩP := {λ : <eλ ≥ −θ1|=mλ|+ θ2}, θj > 0.

and

(2.40) Ω := {λ : −η1 ≤ <eλ}
with η1 sufficiently small such that Ω\B(0, r) is compactly contained in the
set of consistent splitting Λ, for some small r to be chosen later. Then, we
have the following crucial result analogous to the estimates on the whole
line performed in [MaZ3].

Proposition 2.17. Assume that (A1)-(A3), (H0)-(H2), and (B) hold. Then
for any r > 0 and η1 = η1(r) > 0 chosen sufficiently small such that
Ω \B(0, r) ⊂ Λ ∩ ρ(L). Moreover for R > 0 sufficiently large, the following
decomposition holds on Ω \B(0, R):

(2.41) Gλ(x, y) = Hλ(x, y) + Pλ(x, y) + ΘH
λ (x, y) + ΘP

λ (x, y),

where

(2.42) Hλ(x, y) =

{
χ{A∗>0}A∗(x)−1e

∫ x
y (−λ/A∗−η∗/A∗)(z)dzR∗L

tr
∗ x > y,

χ{A∗<0}A∗(x)−1e
∫ x

y (−λ/A∗−η∗/A∗)(z)dzR∗L
tr
∗ x < y,
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and

(2.43)
ΘH

λ (x, y) = λ−1Bλ(x, y;λ) + λ−1(x− y)Cλ(x, y;λ),

ΘP
λ (x, y) = λ−2Dλ(x, y;λ)

where

(2.44) Bλ(x, y) = Cλ(x, y) =

{
χ{A∗>0}e

−
∫ x

y λ/A∗(z)dzb∗(x, y) x > y,

χ{A∗<0}e
−

∫ x
y λ/A∗(z)dzb∗(x, y) x < y,

with

(2.45) b∗ := e
∫ x

y (−η∗/A∗)(z)dz = O(e−θ|x−y|),

due to (1.29), and

(2.46) Dλ(x, y;λ) = O(e−θ(1+Reλ)|x−y| + e−θ|λ|1/2|x−y|),

for some uniform θ > 0 independent of x, y, z, each described term separately
analytic in λ, and Pλ is analytic in λ on a (larger) sector ΩP as in (2.39),
with θ1 sufficiently small, and θ2 sufficiently large, satisfying uniform bounds

(2.47) (∂/∂x)α(∂/∂y)βPλ(x, y) = O(|λ|(|α|+|β|−1)/2)e−θ|λ|1/2|x−y|, θ > 0,

for |α|+ |β| ≤ 2 and 0 ≤ |α|, |β| ≤ 1.
Likewise, the following derivative bounds also hold:

(∂/∂x)Θλ(x, y) =
(
B0

x(x, y;λ) + (x− y)C0
x(x, y;λ)

)
+ λ−1

(
B1

x(x, y;λ)

+ (x− y)C1
x(x, y;λ) + (x− y)2D1

x(x, y;λ)
)

+ λ−3/2Ex(x, y;λ)

and

(∂/∂y)Θλ(x, y) =
(
B0

y(x, y;λ) + (x− y)C0
y (x, y;λ)

)
+ λ−1

(
B1

y(x, y;λ)

+ (x− y)C1
y (x, y;λ) + (x− y)2D1

y(x, y;λ)
)

+ λ−3/2Ey(x, y;λ)

where Bα
β , Cα

β , and D1
β satisfy bounds of the form (2.44), and Eβ satisfies

a bound of the form (2.46).

Proof. We shall follow closely the argument in [MaZ3], with the new feature
of boundary treatments, or estimates of Φ0,Ψ0. Writing the associated
eigenvalue equation LU − λU = 0 in the form of a first-order system as
follows: W := (u, v, z) ∈ C2n−1 with z := b1u

′ + b2v
′, and

u′ = A−1
∗ (−A12b

−1
2 z − (A′11 + λ)u−A′12v),

v′ = b−1
2 z − b−1

2 b1u
′,(2.48)

z′ = (A21 −A22b
−1
2 b1)u′ +A22b

−1
2 z +A′21u+ (A′22 + λ)v
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or

(2.49) W ′ = AW.

Recall from Lemma 2.13 that we have the the representation

(2.50) Gλ(x, y) =

{
(In, 0)Fy→x

W Π+
W (y)S̃−1(y)(In, 0)tr, for x > y,

−(In, 0)Fy→x
W Π0

W (y)S̃−1(y)(In, 0)tr, for x < y.

We shall find it more convenient to use the “local” coordinates ũ :=
A∗u, ṽ := b1u+ b2v. yielding from (2.14):

ũx = −λA−1
∗ ũ− (A12b

−1
2 ṽ)x

(ṽx)x =
[
((A21 −A22b

−1
2 b1 + b2∂x(b−1

2 b1))A−1
∗ ũ)x(2.51)

+ ((A22 + ∂x(b2)b−1
2 )ṽ)x + λb−1

2 b1A
−1
∗ ũ+ λb−1

2 ṽ
]
.

Following standard procedure (e.g., [AGJ, GZ, ZH, MaZ3]), performing
the rescaling

(2.52) x̃ := |λ|x, λ̃ := λ/|λ|,

and changing coordinates W 7→ Y = QW , where

(2.53) Y = (ũ, ṽ, ṽx)tr = (A∗u, b1u+ b2v, (b1u+ b2v)x)tr,

(2.54) Q =

 A∗ 0 0
b1 b2 0

|λ|−1∂xb1 |λ|−1∂xb2 |λ|−1Ir,


and

(2.55) Q−1 =

 A−1
∗ 0 0

−b−1
2 b1A

−1
∗ b−1

2 0
−|λ|b2∂x(b−1

2 b1)A−1
∗ −|λ|∂x(b2)b−1

2 |λ|Ir,


we obtain the first order equations

(2.56) Y ′ = A(x̃, |λ|−1)Y, Y := (ũ, ṽ, ṽ′)tr, ′ := ∂x̃

where

(2.57) A(x̃, |λ|−1) = A0(x̃) + |λ|−1A1(x̃) +O(|λ|−2),

with

(2.58)

A0(x̃) =

−λ̃A−1
∗ 0 −A12b

−1
2

0 0 Ir
0 0 0


A1(x̃) =

 0 −∂x(A12b
−1
2 ) 0

0 0 0
−λ̃d∗A−2

∗ λ̃b−1
2 e∗b

−1
2


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(2.59)
d∗ := A21 −A22b

−1
2 b1 − b−1

2 b1A∗ + b2∂x(b−1
2 b1),

e∗ := A22 + d∗A
−1
∗ A12 + ∂x(b2).

We will carry out the details of the lower-order estimates in Proposition
2.17, leaving high-order estimates and derivative bounds as brief remarks at
the end. First, observe that the representation (2.50) becomes
(2.60)

Gλ(x, y) =

{
(In, 0)Q−1Fy→x

Y Π+
Y (y)QS̃−1(y)(In, 0)tr, for x > y,

−(In, 0)Q−1Fy→x
Y Π0

Y (y)QS̃−1(y)(In, 0)tr, for x < y

where Π0,+
Y and Fy→x

Y denote projections and flows in Y−coordinates.

2.3.1. Initial diagonalization. Applying the formal iterative diagonalization
procedure described in [MaZ3, Proposition 3.12], one obtains the approxi-
mately block-diagonalized system

Z ′ = D(x̃, |λ|−1)Z, TZ := Y, D := T−1AT,(2.61)

T (x̃, |λ|−1) = T0(x̃) + |λ|−1T1(x̃) + · · ·+ |λ|−3T3(x̃)(2.62)

D(x̃, |λ|−1) = D0(x̃) + |λ|−1D1(x̃) + · · ·+D3(x̃)|λ|−3 +O(|λ|−4),(2.63)

where without loss of generality (since T0 is uniquely determined up to a
constant linear coordinate change)
(2.64)

T0 :=

1 0 −λ̃−1A∗A12b
−1
2

0 Ir 0
0 0 Ir

 , T−1
0 =

1 0 λ̃−1A∗A12b
−1
2

0 Ir 0
0 0 Ir


and

(2.65) D0 :=

−λ̃A−1
∗ 0 0

0 0 Ir
0 0 0

 , D1 :=

−η∗A−1
∗ 0 0

0 0 0
0 λ̃b−1

2 ∗


with η∗ as defined in (1.28); see Proposition 3.12 [MaZ3]. (Here, the simple
block upper-triangular form of A0 has been used to deduce the above simple
form of D0, D1.)

2.3.2. The parabolic block. At this point, we have approximately diagonal-
ized our system into a 1× 1 hyperbolic block with eigenvalue µ̃ = −λ̃/A∗ of
A0, and a 2r × 2r parabolic block

(2.66) Z ′p = NZp

with

(2.67) N :=
(

0 Ir
0 0

)
+ |λ|−1

(
0 0

λ̃b−1
2 ∗

)
+O(|λ|−2).
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Balancing this matrix N by transformations B := diag{Ir, |λ|−1/2Ir} we
get

(2.68) M̃ := B−1NB = |λ|−1/2M̃1 +O(|λ|−1), M̃1 :=
(

0 Ir
λ̃b−1

2 0

)
Observe that σ(M̃1) = ±

√
σ(λ̃b−1

2 ) has a uniform spectral gap of order

one. Thus, there is a well-conditioned transformation S = S(M̃1) depending
continuously on M̃1 such that

(2.69) M̂1 := S−1M̃1S = diag{M̂−, M̂+}

with M̂±
1 uniformly positive/negative definite, respectively. Applying this

coordinate change, and noting that the “dynamic error” S−1∂x̃S is of order
∂x̃M̃1 = O(|λ|−1), we obtain the formal expansion

(2.70) M̂(x̃, |λ|−1) = |λ|−1/2diag{M̂−
1 , M̂

+
1 }+O(|λ|−1).

Finally, on sector ΩP , blocks |λ|−1/2M̂±
1 are exponentially separated to

order |λ|−1/2. Thus, by the reduction lemma, Lemma 2.9, there is a further
transformation Ŝ := I2r +O(|λ|−1/2) converting M̂ to the fully diagonalized
form

M(x̃, |λ|−1) := |λ|−1/2Ŝ−1
(
M̂1 +O(|λ|−1/2)

)
Ŝ

= O(|λ|−1/2)diag{M−
1 ,M

+
1 }

where M±
1 = M̂±

1 +O(|λ|−1/2) are still uniformly positive/negative definite.
In summary, changing coordinates

(2.71) BSŜẐp = Zp,

(2.66) yields

(2.72) Ẑ ′p = O(|λ|−1/2)
(
M−

1 0
0 M+

1

)
Ẑp +O(|λ|−3/2)

Therefore the transformation

(2.73) T := (T0 + |λ|−1T1)
(

1 0
0 BSŜ

)
converts equations (2.56) to the following:

(2.74)
ζ ′ = −(λ̃A−1

∗ + |λ|−1η∗A
−1
∗ )ζ +O(|λ|−2)

ρ′± = |λ|−1/2M±
1 ρ± +O(|λ|−3/2)

by relation

(2.75) T Z = Y, Z = (ζ, ρ−, ρ+)tr.
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Then, we have the the representation
(2.76)

Gλ(x, y) =

{
(In, 0)Q−1T Fy→x

Z Π+
Z(y)T −1QS̃−1(y)(In, 0)tr, for x > y,

−(In, 0)Q−1T Fy→x
Z Π0

Z(y)T −1QS̃−1(y)(In, 0)tr, for x < y,

thanks to the fact that

(2.77) Fy→x
Y = T Fy→x

Z T −1, Π+
Y = T Π+

ZT
−1.

Computing, we have

T =

1 |λ|−1/2 |λ|−1/2

0 O(1) O(1)
0 |λ|−1/2 |λ|−1/2

 T −1 =

1 0 λ̃−1A∗A12b
−1
2

0 O(1) |λ|1/2

0 O(1) |λ|1/2


and

(2.78) (In, 0)Q−1 =
(

A−1
∗ 0 0

−b−1
2 b1A

−1
∗ b−1

2 0

)

(2.79) (In, 0)Q−1T =
(

A−1
∗ O(|λ|−1/2) O(|λ|−1/2)

−b−1
2 b1A

−1
∗ O(1) O(1)

)
and

(2.80) QS̃−1(In, 0)tr =

 −1 0
0 0

|λ|−1 |λ|−1Ir



(2.81) T −1QS̃−1(In, 0)tr =

−1 + |λ|−1 O(|λ|−1)
O(|λ|−1/2) O(|λ|−1/2)
O(|λ|−1/2) O(|λ|−1/2)


Therefore now we are ready to estimate Fy→x

Z Π+
Z and Fy→x

Z Π+
Z .

2.3.3. Estimates on projections and solution operators. We shall give esti-
mates on the projections:

(2.82) Π+
Z = (Φ+, 0)(Φ+,Φ0)−1, Π0

Z = (0,Φ0)(Φ+,Φ0)−1

and the solution operators:

(2.83) Fy→x
Z = (Φ+(x),Φ0(x))(Φ+(y),Φ0(y))−1.

First, let Φp+/Ψp+ be the decaying/growing basis solutions of

(2.84) ρ′− = |λ|−1/2M−
1 ρ− and ρ′+ = |λ|−1/2M+

1 ρ+

and φh+/ψh+ be the decaying/growing basis solutions of

(2.85) ζ ′ = −(λ̃A−1
∗ + |λ|−1η∗A

−1
∗ )ζ.



24 T. NGUYEN AND K. ZUMBRUN

Lemma 2.18. [Inflow case] For the inflow case A∗ > 0, we obtain

(2.86) Π+
Z =

1 0 −|λ|−1/2φh+e(λ)Ψp+−1

0 Ir −Φp+E(λ)Ψp+−1

0 0 0



(2.87) Π0
Z =

0 0 |λ|−1/2φh+e(λ)Ψp+−1

0 0 Φp+E(λ)Ψp+−1

0 0 Ir


with bounded functions e(λ), E(λ), and

(2.88) Fy→x
Z =

φh+(x)φh+(y)−1 0 0
0 Φp+(x)Φp+(y)−1 0
0 0 Ψp+(x)Ψp+(y)−1


Proof. We have the decaying basis solution in Z-coordinates of the first
order equations (2.74)

(2.89) Φ+ =

φh+ 0
0 Φp+

0 0

 +O(|λ|−1).

Since Φ+ and Ψ+ (exactly Ψp+) form a basis solution, we can write

(2.90) Φ0(x) = e(λ)

φh+

0
0

 +

 0
Φp+(x)E(λ)

0

 +

 0
0

Ψp+(x)F (λ)


Now since {ψp+

j }j forms a basis, we can take {ψp+
j (0)} to be the analytic

basis for Y at x = 0. Also as we recall that Z = T −1Y , we compute

(2.91) φ0
j|x=0

= T −1

 0
0

ψp+
j (0)

 =

 O(1)
|λ|1/2ψp+

j (0)
|λ|1/2ψp+

j (0)


This and (2.90) yield

(2.92) Φ0(x) =

 e(λ)φh+(x)
|λ|1/2Φp+(x)E(λ)
|λ|1/2Ψp+(x)

 +O(|λ|−1/2)

where

(2.93) E(λ) = (E1(λ), . . . , Er(λ))tr, Ej(λ) = ψp+
j (0, λ)Φp+(0, λ)−1

and e(λ), Ej(λ) ∈ Rr are bounded functions in λ. Therefore computing, we
get

(2.94) (Φ+,Φ0)−1 =

φh+−1 0 −|λ|−1/2e(λ)Ψp+−1

0 Φp+−1 −E(λ)Ψp+−1

0 0 |λ|−1/2Ψp+−1


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and hence straightforward computations give the lemma. �

Lemma 2.19. [Outflow case] For the outflow case A∗ < 0, we obtain

(2.95) Π+
Z =

0 0 0
0 Ir −Φp+EΨp+−1

0 0 0

 , Π0
Z =

1 0 0
0 0 Φp+EΨp+−1

0 0 Ir

 ,

where E(λ) is a bounded function in λ determined below. Moreover,

(2.96) Fy→x
Z =

ψh+(x)ψh+(y)−1 0 0
0 Φp+(x)Φp+(y)−1 0
0 0 Ψp+(x)Ψp+(y)−1


Proof. Similarly, we have Φ+ = Φp+ and Φ0 = (φh0,Φp0) where we can write

(2.97) Φ0(x) =

 0
Φp+(x)E(λ)

0

 + e(λ)

ψh+

0
0

 +

 0
0

Ψp+(x)F (λ)

 .

As before, using the form of the linearized boundary conditions (1.15),
we can take

(2.98) φp0
j|x=0

= T −1

 0
0

ψp+
j (0)

 =

 O(1)
|λ|1/2ψp+

j (0)
|λ|1/2ψp+

j (0)


and thus

(2.99) Φp0(x) =

 e(λ)ψh+(x)
|λ|1/2Φp+(x)E(λ)
|λ|1/2Ψp+(x)


with bounded functions e(λ) and Ej(λ) = ψp+

j (0, λ)Φp+(0, λ)−1.
Similarly, we take

φh0
|x=0

= T −1

1
0
0

 =

1
0
0


and thus

(2.100) φh0(x) =

ψh+(x)
0
0


Putting together and computing, we obtain

(2.101) (Φ+,Φ0) =

 0 ψh+ e(λ)ψh+

Φp+ 0 |λ|1/2Φp+E(λ)
0 0 |λ|1/2Ψp+


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and

(2.102) (Φ+,Φ0)−1 =

 0 Φp+−1 −E(λ)Ψp+−1

ψh+−1 0 −|λ|−1/2e(λ)Ψp+−1

0 0 |λ|−1/2Ψp+−1


Direct computations yield the lemma. �

2.3.4. Estimates on Gλ: Inflow case A∗ > 0. Now we are ready to combine
all above estimates to give the bounds on resolvent kernel Gλ. We shall
work in detail for the case x > y. Similar estimates can be easily obtained
for x < y. First decompose the projection as Π+

Z = Πh+
Z + Πp+

Z where

(2.103)

Πh+
Z =

1 0 −|λ|−1/2φh+e(λ)Ψp+−1

0 0 0
0 0 0


Πp+
Z =

0 0 0
0 Ir −Φp+E(λ)Ψp+−1

0 0 Ir


Hence

Hλ(x, y) = (In, 0)Q−1T Fy→x
Z Πh+

Z (y)T −1QS̃−1(y)(In, 0)tr

= φh+(x)φh+(y)−1

(
(−1 +O(|λ|−1))A−1

∗ O(|λ|−1)A−1
∗

(1 +O(|λ|−1))b−1
2 b1A

−1
∗ O(|λ|−1)b−1

2 b1A
−1
∗

)
= φh+(x)φh+(y)−1

(
−A−1

∗ (x) 0
b−1
2 b1A

−1
∗ (x) 0

)
+O(|λ|−1)φh+(x)φh+(y)−1,

= φh+(x)φh+(y)−1R∗L
tr
∗ +O(|λ|−1)φh+(x)φh+(y)−1,

recalling that φh+(x)φh+(y)−1 is the solution operator of hyperbolic equa-
tion in (2.85) and thus satisfies
(2.104)

φh+(x)φh+(y)−1 = e
∫ x̃

ỹ (−1/A∗−|λ|−1η∗/A∗)(z)dz = e
∫ x

y (−λ/A∗−η∗/A∗)(z)dz.

At the same time, computing Pλ(x, y), we obtain

Pλ(x, y) = (In, 0)Q−1T Fy→x
Z Πp+

Z (y)T −1QS̃−1(y)(In, 0)tr

= O(|λ|−1/2)Φp+(x)Φp+(y)−1

recalling that Φp+(x)Φp+(y)−1 is the (stable) solution operator of parabolic
equation (2.84), with M−

1 uniformly negative definite, and thus we have an
obvious estimate

(2.105) |Φp+(x)Φp+(y)−1| ≤ Ce−θ|λ|−1/2(x̃−ỹ) ≤ Ce−θ|λ|1/2(x−y).

We therefore obtain

(2.106) Pλ(x, y) = O(|λ|−1/2)e−θ|λ|1/2(x−y).



STABILITY OF BOUNDARY LAYERS 27

2.3.5. Estimates on Gλ: Outflow case A∗ < 0. Again as above, we shall
work in detail for the case x > y. Similar estimates can be easily obtained
for x < y. Estimates in Lemma 2.19 yield

(2.107) Fy→x
Z Π+

Z(y) =

0 0 0
0 Φp+(x)Φp+(y)−1 −Φp+(x)E(λ)Ψp+(y)−1

0 0 0


where Φp+(x)E(λ)Ψp+(y)−1 ≤ CΦp+(x)Φp+(y)−1. Observe that Πh+

Z ≡ 0.
Therefore, Hλ(x, y) = 0 and

Pλ(x, y) = (In, 0)Q−1T Fy→x
Z Πp+

Z (y)T −1QS̃−1(y)(In, 0)tr

= Φp+(x)Φp+(y)−1

(
O(|λ|−1) O(|λ|−1)
O(|λ|−1/2) O(|λ|−1/2)

)
≤ C|λ|−1/2e−θ|λ|1/2(x−y)

We thus complete the proof of estimates Hλ and of Pλ appearing in Propo-
sition 2.17.

2.3.6. Derivative estimates. Derivative estimates now follow in a straight-
forward fashion, by differentiation of (2.76), noting from the approximately
decoupled equations that differentiation of the flow brings down a factor (to
absorbable error) of λ in hyperbolic modes, λ1/2 in parabolic modes. This
completes the proof of Proposition 2.17. �

2.4. Low frequency estimates. Our goal in this section is the estimation
of the resolvent kernel in the critical regime |λ| → 0, i.e., the large time
behavior of the Green function G, or global behavior in space and time. We
are basically following the same treatment as that carried out for viscous
shock waves of strictly parabolic conservation laws in [ZH, MaZ3]; we refer
to those references for details. In the low frequency case the behavior is
essentially governed by the limiting far-field equation

(2.108) Ut = L+U := −A+Ux +B+Uxx

Lemma 2.20 ([MaZ3]). Assuming (A1)–(A3), (H0)-(H2), for |λ| suffi-
ciently small, the eigenvalue equation (L+ − λ)W = 0 associated with the
limiting, constant-coefficient operator L+, considered as a first-order sys-
tem W ′ = A+W , W = (u, v, v′), has a basis of 2n − 1 solutions W̄+

j =
eA+(λ)xVj(λ), consisting of n− 1 “fast” modes (not necessarily eigenmodes)

(2.109) |eA+(λ)xVj | ≤ Ce−θ|x|, θ > 0,

and n analytic “slow” (eigen-)modes

(2.110)

eA+(λ)xVj = eµj(λ)xVj ,

µ+
n−1+j(λ) := −λ/a+

j + λ2β+
j /a

+3

j +O(λ3),

V +
n−1+j(λ) := r+j +O(λ),
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where a+
j , l+j , r+j , β

+
j are defined as in Proposition 1.9. The same is true

for the adjoint eigenvalue equation

(L+ − λ)∗Z = 0,

i.e, it has a basis of solutions ¯̃W+
j = e−A∗+(λ)xṼj(λ) with n−1 analytic “fast”

modes

(2.111) |e−A∗+(λ)xṼj | ≤ Ce−θ|x|, θ > 0,

and n analytic “slow” (eigen-)modes

(2.112) Ṽ +
n−1+j(λ) = l+j +O(λ).

Proof. Standard matrix perturbation theory; see [MaZ3], Appendix B. �

Also we recall from the representation of Gλ in Corollary 2.15:

Proposition 2.21. Assuming (A1)–(A3), (H0)-(H2), let K be the order of
the pole of Gλ at λ = 0 and r be sufficiently small that there are no other
poles in B(0, r). Then for λ ∈ Ωθ such that |λ| ≤ r and we have

(2.113) Gλ(x, y) =
∑
j,k

d+
jk(λ)φ+

j (x)ψ̃+
k (y) +

∑
k

φ+
k (x)φ̃+

k (y),

for x > y > 0, and

(2.114) Gλ(x, y) =
∑
j,k

d0
jk(λ)φ+

j (x)ψ̃+
k (y) +

∑
k

ψ+
k (x)ψ̃+

k (y),

for 0 < x < y, where d0,+
jk (λ) = O(λ−K) are scalar meromorphic functions,

moreover K ≤ order of vanishing of the Evans function D(λ) at λ = 0.

Proof. See [ZH, Proposition 7.1] for the first statement and theorem 6.3 for
the second statement linking order K of the pole to multiplicity of the zero
of the Evans Function. �

Our main result of this section is then:

Proposition 2.22. Assume (A1)–(A3), (H0)-(H2), and (D). Then, for
r > 0 sufficiently small, the resolvent kernel Gλ associated with the linearized
evolution equation (2.108) satisfies, for 0 ≤ y ≤ x:
(2.115)

|∂γ
x∂

α
yGλ(x, t; y)|

≤ C(|λ|γ + e−θ|x|)(|λ|α + e−θ|y|)
( ∑

a+
k >0

∣∣e(−λ/a+
k +λ2β+

k /a+
k

3
)(x−y)

∣∣
+

∑
a+

k <0, a+
j >0

∣∣e(−λ/a+
j +λ2β+

j /a+
j

3
)x+(λ/a+

k −λ2β+
k /a+

k

3
)y

∣∣),
0 ≤ |α|, |γ| ≤ 1, θ > 0, with similar bounds for 0 ≤ x ≤ y. Moreover, each
term in the summation on the righthand side of (2.115) bounds a separately
analytic function.
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Proof. By condition (D), D(λ) does not vanish on Re(λ) ≥ 0, hence, by
continuity, on |λ| ≤ r. Thus, according to Proposition 2.21, all |djk(λ)| are
uniformly bounded on |λ| ≤ r, and thus it is enough to find estimates for
fast and slow modes φ+

j , φ̃+
j , ψ+

j and ψ̃+
j . By applying Lemma 2.20 and

using (2.22) we find:

(2.116)
(
φ+

j

∂xφ
+
j

)
= eA+(λ)xP+

(
vj

µjvj

)
= eA+(λ)x(I + Θ)

(
vj

µjvj

)
and similarly for φ̃+

j , ψ+
j and ψ̃+

j . Now using (2.4) and the fact, by Lemma

2.20, that eµj(λ)x is of order e−(λ/a+
j +λ2β+

j /a+3

j +O(λ3))x for slow modes and
order e−θ|x| for fast modes, so by substituting this and corresponding dual
estimates in (2.116) and grouping terms, we obtain the result.

�

3. Pointwise bounds on Green function G(x, t; y)

In this section, we prove the pointwise bounds on the Green function G
following the general approach of [MaZ3] in the whole-line, shock, case. Our
starting point is the representation

(3.1) G(x, t; y) =
1

2πi
P.V.

∫ η+i∞

η−i∞
eλtGλ(x, y) dλ

where η is any sufficiently large positive real number.

Case I. |x− y|/t large. We first treat the simple case that |x− y|/t ≥ S,
S sufficiently large. Fixing x, y, t, set λ = η+ iξ, for η > 0 sufficiently large.
Applying Proposition 2.17, we obtain the decomposition

G(x, t; y) =
1

2πi
P.V

∫ η+i∞

η−i∞
eλt

[
Hλ + ΘH

λ + Pλ + ΘP
λ

]
(x, y)dλ

=: I + II + III + IV.

For definiteness considering the inflow case A∗ > 0 and taking x > y, we
estimate each term in turn.

Term I. Computing,

I =
1

2πi
P.V

∫ η+i∞

η−i∞
eλtHλ(x, y)dλ

=
1
2π
A∗(x)−1eη(t−

∫ x
y 1/A∗(z)dz)e−

∫ x
y (η∗/A∗)(z)dzP.V

∫ +∞

−∞
eiξ(t−

∫ x
y 1/A∗(z)dz)dξ

=
1
2π
A∗(x)−1δ(t−

∫ x

y
1/A∗(z)dz)e

−
∫ x

y (η∗/A∗)(z)dz

=
1
2π
A∗(x)−1A∗(y)δx−ā∗t(y)e

−
∫ x

y (η∗/A∗)(z)dz
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where ā∗ is defined as in Proposition 1.9. Noting that ā∗ ≥ infxA∗(x) > 0
and η+

∗ > 0, we get e−
∫ x

y (η∗/A∗)(z)dz = O(e−θ(x−y)) and thus

(3.2) I = O(e−θt)δx−ā∗t(y),

vanishing for |x− y|/t large.

Term II. Similar calculations show that the “hyperbolic error term” II also
vanishes. For example, the term eλtλ−1B(x, y;λ) contributes

1
2π
eη(t−

∫ x
y 1/A∗(z)dz)e−

∫ x
y (η∗/A∗)(z)dzP.V

∫ +∞

−∞
(η + iξ)−1eiξ(t−

∫ x
y 1/A∗(z)dz)dξ.

The integral though not absolutely convergent, is integrable and uniformly
bounded as a principal value integral, for all real η bounded away from zero,
by explicit computation. On the other hand

eη(t−
∫ x

y 1/A∗(z)dz) ≤ eη(t−|x−y|/ minz A∗(z)) ≤ eηt(1−S/ minz A∗(z)) → 0,

as η → +∞, for S sufficiently large. Thus, we find that the above integral
term goes to zero. Likewise, the result applies for the term of eλtC(x, y;λ),
since (x−y)e−

∫ x
y (η∗/A∗)(z)dz ≤ C(x−y)e−θ(x−y) is also bounded. Thus, each

term of II vanishes as η → +∞.

Term III. The parabolic term III may be treated exactly as in the strictly
parabolic case [ZH]. Precisely, we may first deform the contour in the prin-
ciple value integral to

(3.3)
∫

Γ1∪Γ2

eλtPλ(x, y) dλ,

where Γ1 := ∂B(0, R)∩ Ω̄P and Γ2 := ∂ΩP \B(0, R), recalling the parabolic
sector ΩP defined in (2.39). Choose

(3.4) ᾱ :=
|x− y|

2θt
, R := θᾱ2,

where θ is as in (2.47). Note that the intersection of Γ with the real axis is
λmin = R = θᾱ2. By the large |λ| estimates of Proposition 2.17, we have for
all λ ∈ Γ1 ∪ Γ2 that

|Pλ(x, y)| ≤ C|λ|−1/2e−θ|λ|1/2|x−y|.

Further, we have

(3.5)
Reλ ≤ R(1− ηω2), λ ∈ Γ1,

Reλ ≤ Reλ0 − η(|Imλ| − |Imλ0|), λ ∈ Γ2

for R sufficiently large, where ω is the argument of λ and λ0 and λ∗0 are the
two points of intersection of Γ1 and Γ2, for some η > 0 independent of ᾱ.
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Combining these estimates, we obtain

(3.6)

∣∣∣ ∫
Γ1

eλtPλdλ
∣∣∣ ≤ C

∫
Γ1

|λ|−1/2 eReλt−θ|λ|1/2|x−y| dλ

≤ Ce−θᾱ2t

∫ +arg(λ0)

−arg(λ0)
R−1/2e−θRηω2tRdω

≤ Ct−1/2e−θᾱ2t.

Likewise,

(3.7)

|
∫

Γ2

eλtPλdλ| ≤
∫

Γ2

C|λ|−1/2CeReλt−θ|λ|1/2|x−y|dλ

≤ CeRe(λ0)t−θ|λ0|1/2|x−y|
∫

Γ2

|λ|−1/2e(Reλ−Reλ0)t |dλ|

≤ Ce−θᾱ2t

∫
Γ2

|Imλ|−1/2e−η|Im λ−Im λ0|t |d Imλ|

≤ Ct−1/2e−θᾱ2t.

Combining these last two estimates, we have

(3.8) III ≤ Ct−1/2e−θᾱ2t/2e−(x−y)2/8θt ≤ Ct−1/2e−ηte−(x−y)2/8θt,

for η > 0 independent of ᾱ. Observing that |x− at|/2t ≤ |x− y|/t ≤
2|x− at|/t for any bounded a, for |x− y|/t sufficiently large, we find that
III may be absorbed in any summand t−1/2e−(x−y−a+

k t)2/Mt.

Term IV . Similarly, as in the treatment of the term III, the principle value
integral for the “parabolic error term IV may be shifted to η = R = θᾱ2, ᾱ
as above. This yields an estimate

|IV | ≤ Ce−θᾱ2t

∫ +∞

−∞
|η0 + iξ|−2dξ ≤ Ce−θᾱ2t,

absorbed in O(e−ηte−|x−y|2/Mt) for all t.

Case II. |x − y|/t bounded. We now turn to the critical case where
|x− y|/t ≤ S, for some fixed S.

Decomposition of the contour: We begin by converting the contour inte-
gral (3.1) into a more convenient form decomposing high, intermediate, and
low frequency contributions.

We first observe that L has no spectrum on the portion of Ω lying outside
the rectangle

(3.9) R := {λ : −η1 ≤ <λ ≤ η,−R ≤ =λ ≤ R}
for η > 0, R > 0 sufficiently large, hence Gλ is analytic on this region.
Since, also, Hλ is analytic on the whole complex plane, contours involving
either one of these contributions may be arbitrarily deformed within Ω \ R
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without affecting the result, by Cauchy’s theorem. Likewise, Pλ is analytic
on ΩP \ R, and so contours involving this contribution may be arbitrarily
deformed within this region. Thus, we obtain

Observation 3.1 ([MaZ3]). Assume (A1)–(A3), (H0)-(H2), and (D). Then,
the principle value integral (3.1) may be replaced by

(3.10) G(x, t; y) = Ia + Ib + Ic + IIa + IIb + III

where

Ia := P.V.

∫ η+i∞

η−i∞
eλtHλ(x, y)dλ

Ib := P.V
( ∫ −η1−iR

−η1−i∞
+

∫ −η1+i∞

−η1+iR

)
eλt(Gλ −Hλ − Pλ)(x, y)dλ

Ic : =
∫

Γ2

eλtPλ(x, y)dλ

IIa :=
( ∫ −η1−ir/2

−η1−iR
+

∫ −η1+iR

−η1+ir/2

)
eλtGλ(x, y)dλ

IIb := −
∫ −η1+iR

−η1−iR
eλtHλ(x, y)dλ

III :=
∫

Γ1

eλtGλ(x, y)dλ

with

Γ1 :=[−η1 − ir/2, η − ir/2] ∪ [η − ir/2, η + ir/2] ∪ [η + ir/2,−η1 + ir/2]

Γ2 :=∂ΩP \ Ω,

for any η, r > 0, R sufficiently large, and η1 sufficiently small with respect
to r.

Using the above decomposition (3.10), we shall estimate in turn the high-
frequency contributions Ia, Ib, and Ic, the intermediate-frequency contribu-
tions IIa and IIb, and the low-frequency contributions III.

High-frequency contribution. We first carry out the straightforward esti-
mation of the high-frequency terms Ia, Ib, and Ic. The principal term Ia has
already been computed in (3.2) to be H(x, t; y). Likewise, calculations sim-
ilar to those of Term II show that the term Ib is time-exponentially small.
For example, the term eλtλ−1B(x, y;λ) contributes

P.V.
( ∫ −R

−∞
+

∫ +∞

R

)
(−η1 + iξ)−1eiξ(t−

∫ x
y 1/A∗(z)dz)dξ

× e−η1(t−
∫ x

y 1/A∗(z)dz)e−
∫ x

y (η∗/A∗)(z)dz(3.11)
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where

(3.12) P.V.
( ∫ −R

−∞
+

∫ +∞

R

)
(−η1 + iξ)−1eiξ(t−

∫ x
y 1/A∗(z)dz)dξ <∞

and

(3.13) eη1

∫ x
y 1/A∗(z)dze−

∫ x
y (η∗/A∗)(z)dz ≤ Ce

η1|x−y|
minz A∗(z) e−θ|x−y| ≤ Ce−θ|x−y|/2,

for η1 sufficiently small. This contributes in the term O(e−η1(t+|x−y|)) of R.
Likewise, the contributions of terms eλtλ−1(x−y)C(x, y;λ) and eλtλ−2D(x, y;λ)
split into the product of a convergent, uniformly bounded integral in ξ, a
bounded factor analogous to (3.13), and the factor e−η1t, giving the result.

The term Ic may be estimated exactly as was term III in the large |x−y|/t
case, to obtain contribution O(t−1/2e−η1t) absorbable again in the resid-
ual term O(e−ηte−|x−y|2/Mt) for t ≥ ε, any ε > 0, and by any summand
O(t−1/2(1 + t)−1/2e−(x−y−a+

k )2/Mt)e−η(x+y) for t small.

Intermediate-frequency contribution. Error term IIb is time-exponentially
small for η1 sufficiently small, by the same calculation as in (3.11)-(3.13),
hence negligible. Likewise, term IIa by the basic estimate (2.29) is seen
to be time-exponentially small of order O(e−η1t) for any η1 > 0 sufficiently
small that the associated contour lies in the resolvent set of L.

Low-frequency contribution. It remains to estimate the low-frequency term
III, which is of essentially the same form as the low-frequency contribution
analyzed in [ZH, YZ] in the strictly parabolic case, in that the contour is the
same and the resolvent kernel Gλ satisfies same bounds (with no Eλ term)
in this regime. Thus, we may conclude from these previous analyses that
III gives contribution as claimed, exactly as in the strictly parabolic case.
For completeness, we indicate the main features of the argument here.

Bounded time. For t bounded, we can use the medium-λ bounds |Gλ|,
|Gλx |, |Gλy | ≤ C to obtain |

∫
Γ1
eλtGλdλ| ≤ C2|Γ1|. This contribution is

order Ce−ηt for bounded time, hence can be absorbed.

Large time. For t large, we must instead estimate
∫
Γ1
eλtGλdλ using the

small-|λ| expansions. First, observe that, all coefficient functions djk(λ) are
uniformly bounded (since |λ| is bounded in this case).

Case II(i). (0 < y < x). By our low-frequency estimates in Proposition
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2.21, we have

(3.14)

∫
Γ1

eλtGλ(x, y) dλ =
∫

Γ1

∑
j,k

eλtdjkφ
+
j (x)ψ̃+

k (y)dλ

+
∫

Γ1

∑
k

eλtφ+
k (x)φ̃+

k (y)dλ,

where each djk is analytic, hence bounded. We estimate separately each of
the terms ∫

Γ1

eλtdjkφ
+
j (x)ψ̃+

k (y)dλ

on the righthand side of (3.14). Estimates for terms∫
Γ1

eλtφ+
k (x)φ̃+

k (y)dλ

go similarly.

Case II(ia). First, consider the critical case a+
j > 0, a+

k < 0 . For this
case,

|djkφ
+
j (x)ψ̃+

k (y)| ≤ CeRe(ρ+
j x−ν+

k y),

where {
ν+

k (λ) = −λ/a+
k + λ2β+

k /(a
+
k )3 +O(λ3)

ρ+
j (λ) = −λ/a+

j + λ2β+
j /(a

+
j )3 +O(λ3).

Set

ᾱ =
a+

k x/a
+
j − y − a+

k t

2t
, p :=

β+
j a

+
k x/(a

+
j )3 − β+

k y/(a
+
k )2

t
< 0.

Define Γ′1a to be the portion contained in Ωθ of the hyperbola
(3.15)
Re(ρ+

j x− ν+
k y) +O(λ3)(|x|+ |y|)

= (1/a+
k )Re[λ(−a+

k x/a
+
j + y) + λ2(xβ+

j a
+
k /(a

+
j )3 − yβ+

k /(a
+
k )2)]

≡ constant

= (1/a+
k )[(λmin(−a+

k x/a
+
j + y) + λ2

min(xβ+
j a

+
k /(a

+
j )3 − yβ+

k /(a
+
k )2)],

where

(3.16) λmin :=

{
ᾱ
p if | ᾱp | ≤ ε

±ε if ᾱ
p ≷ ε

Denoting by λ1, λ∗1, the intersections of this hyperbola with ∂Ωθ, define
Γ′1b

to be the union of λ1λ0 and λ∗0λ
∗
1, and define Γ′1 = Γ′1a

∪ Γ′1b
. Note that

λ = ᾱ/p minimizes the left hand side of (3.15) for λ real. Note also that
that p is bounded for ᾱ sufficiently small, since ᾱ ≤ ε implies that

(|a+
k x/a

+
j |+ |y|)/t ≤ 2|a+

k |+ 2ε

i.e. (|x|+ |y|)/t is controlled by ᾱ.
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With these definitions, we readily obtain that

(3.17)
Re(λt+ ρ+

j x− ν+
k y) ≤ −(t/a−k )(ᾱ2/4p)− ηIm(λ)2t

≤ −ᾱ2t/M − ηIm(λ)2t,

for λ ∈ Γ′1a
(note: here, we have used the crucial fact that ᾱ controls

(|x| + |y|)/t, in bounding the error term O(λ3)(|x| + |y|)/t arising from
expansion Likewise, we obtain for any q that

(3.18)
∫

Γ′1a

|λ|qeRe(λt+ρ+
j x−ν−k y)dλ ≤ Ct−

1
2
− q

2 e−ᾱ2t/M ,

for suitably large C, M > 0 (depending on q). Observing that

ᾱ = (a+
k /a

+
j )(x− a+

j (t− |y/a+
k |))/2t,

we find that the contribution of (3.18) can be absorbed in the described
bounds for t ≥ |y/a−k |. At the same time, we find that ᾱ ≥ x > 0 for
t ≤ |y/a+

k |, whence

ᾱ ≥ (x− y − a+
j t)/Mt+ |x|/M,

for some ε > 0 sufficiently small and M > 0 sufficiently large.
This gives

e−ᾱ2/|p| ≤ e−(x−y−a+
k t)2/Mte−η|x|

provided |x|/t > a+
j , a contribution which can again be absorbed. On the

other hand, if t ≤ |x/a+
j |, we can use the dual estimate

(3.19)
ᾱ = (−y − a+

k (t− |x/a+
j |))/2t

≥ (x− y − a+
k t)/Mt+ |y|/M,

together with |y| ≥ |a−k t|, to obtain

e−ᾱ2/|p| ≤ e−(x−y−a+
j t)2/Mte−η|y|,

a contribution that can likewise be absorbed.
Case II(ib). In case a+

j < 0 or a+
k > 0, terms |ϕ+

j | ≤ Ce−η|x| and
|ψ̃+

j | ≤ Ce−η|y| are strictly smaller than those already treated in Case II(ia),
so may be absorbed in previous terms.

Case II(ii) (0 < x < y). The case 0 < x < y can be treated very similarly
to the previous one; see [ZH] for details. This completes the proof of Case
II, and the theorem.
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4. Energy estimates

4.1. Energy estimate I. We shall require the following energy estimate
adapted from [MaZ4, Z2]. Define the nonlinear perturbation variables U =
(u, v) by

(4.1) U(x, t) := Ũ(x, t)− Ū(x).

Proposition 4.1. Under the hypotheses of Theorem 1.7, let U0 ∈ H4 and
U = (u, v)T be a solution of (1.2) and (4.1). Suppose that, for 0 ≤ t ≤ T ,
the W 2,∞

x norm of the solution U remains bounded by a sufficiently small
constant ζ > 0. Then

‖U(t)‖2
H4 ≤ Ce−θt‖U0‖2

H4 + C

∫ t

0
e−θ(t−τ)

(
‖U(τ)‖2

L2 + Bh(τ)2
)
dτ(4.2)

for all 0 ≤ t ≤ T , where the boundary operator Bh is defined in Theorem
1.7.

Proof. Observe that a straightforward calculation shows that |U |Hr ∼ |W |Hr ,

(4.3) W = W̃ − W̄ := W (Ũ)−W (Ū),

for 0 ≤ r ≤ 4, provided |U |W 2,∞ remains bounded, hence it is sufficient to
prove a corresponding bound in the special variable W . We first carry out a
complete proof in the more straightforward case with conditions (A1)-(A3)
replaced by the following global versions, indicating afterward by a few brief
remarks the changes needed to carry out the proof in the general case.

(A1’) Ã(W̃ ), Ã0, Ã11 are symmetric, Ã0 ≥ θ0 > 0,

(A2’) no eigenvector of Ã(Ã0)−1(W̃ ) lies in the kernel of B̃(Ã0)−1(W̃ ),

(A3’) W̃ =
(
w̃I

w̃II

)
, B̃ =

(
0 0
0 b̃

)
, b̃ ≥ θ > 0, and G̃ ≡ 0.

Substituting (4.3) into (1.4), we obtain the quasilinear perturbation equa-
tion

A0Wt +AWx = (BWx)x +M1W̄x + (M2W̄x)x(4.4)

where A0 := A0(W + W̄ ) is positive definite symmetric, A := A(W + W̄ ) is
symmetric,

M1 = A(W + W̄ )−A(W̄ ) =
( ∫ 1

0
dA(W̄ + θW )dθ

)
W,

M2 = B(W + W̄ )−B(W̄ ) =
(

0 0
0 (

∫ 1
0 db(W̄ + θW )dθ)W

)
.

As shown in [MaZ4], we have bounds

|A0| ≤ C, |A0
t | ≤ C|Wt| ≤ C(|Wx|+ |wII

xx|) ≤ Cζ,(4.5)

|∂xA
0|+ |∂2

xA
0| ≤ C(

2∑
k=1

|∂k
xW |+ |W̄x|) ≤ C(ζ + |W̄x|).(4.6)
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We have the same bounds for A,B,K, and also due to the form of M1,M2,

|M1|, |M2| ≤ C(ζ + |W̄x|)|W |.(4.7)

Note that thanks to Lemma 1.3 we have the bound on the profile: |W̄x| ≤
Ce−θ|x|, as x→ +∞.

The following results assert that hyperbolic effects can compensate for de-
generate viscosity B, as revealed by the existence of a compensating matrix
K.

Lemma 4.2 ([KSh]). Assuming (A1’), condition (A2’) is equivalent to the
following:

(K1) There exists a smooth skew-symmetric matrix K(W ) such that

(4.8) <e(K(A0)−1A+B)(W ) ≥ θ2 > 0.

Define α by the ODE

(4.9) αx = −sign(A11)c∗|W̄x|α, α(0) = 1

where c∗ > 0 is a large constant to be chosen later. Note that we have

(αx/α)A11 ≤ −c∗θ1|W̄x| =: −ω(x)(4.10)

and

|αx/α| ≤ c∗|W̄x| = θ−1
1 ω(x).(4.11)

In what follows, we shall use 〈·, ·〉 as the α-weighted L2 inner product
defined as

〈f, g〉 = 〈αf, g〉L2

and ‖f‖s =
∑s

i=0〈
d(i)

dxi f,
d(i)

dxi f〉1/2 as the norm in weighted Hs space. Note
that for any symmetric operator S,

〈Sfx, f〉 = −1
2
〈(Sx + (αx/α)S)f, f〉 − 1

2
S0f0.f0.

Note that in what follows, we shall pay attention to keeping track of c∗.
For constants independent of c∗, we simply write them as C.

4.1.1. Zeroth order “Friedrichs-type” estimate. First employing integration
by parts yields, and using estimates (4.5), (4.6), and then (4.10), we obtain

−〈AWx,W 〉

=
1
2
〈(Ax + (αx/α)A)W,W 〉+

1
2
A0W (0) ·W (0)

≤ 1
2
〈(αx/α)A11wI , wI〉+ C〈(ζ + |W̄x|)|W |+ ω(x)|wII |, |W |〉+ J0

b

≤ −1
2
〈ω(x)wI , wI〉+ C(ζ‖wI‖2

0 + 〈|W̄x|wI , wI〉) + C(c∗)‖wII‖2
0 + J0

b
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where J0
b denotes the boundary term 1

2A0W (0)·W (0). The term 〈|W̄x|wI , wI〉
may be easily absorbed into the first term of the right-hand side, since for
c∗ sufficiently large,

(4.12) 〈|W̄x|wI , wI〉 ≤ (c∗θ1)−1〈ω(x)wI , wI〉 ≤ 1
4C

〈ω(x)wI , wI〉.

Also, integration by parts yields

〈(BWx)x,W 〉 = −〈BWx,Wx〉 − 〈(αx/α)BWx,W 〉 −B0Wx(0) ·W (0)

≤ −θ‖wII
x ‖2

0 + C〈ω(x)wII
x , w

II〉 − b0w
II
x (0) · wII(0)

≤ −θ‖wII
x ‖2

0 + C(c∗)‖wII‖2
0 − b0w

II
x (0) · wII(0).

where we used the fact that BWx ·W = bwII
x ·wII , noting that B has block-

diagonal form with the first block identical to zero. Similarly, recalling that
M2 = B(W + W̄ )−B(W̄ ), we have

〈(M2W̄x)x,W 〉
= −〈M2W̄x,Wx〉 − 〈(αx/α)M2W̄x,W 〉 −M2(0)W̄x(0) ·W (0)

≤ C〈|W̄x||W |, |wII
x |〉+ C〈ω(x)|W |, wII〉 −m2(0)W̄x(0) · wII(0)

≤ ξ‖wII
x ‖2

0 + C
(
ε〈ω(x)wI , wI〉+ C(c∗)‖wII‖2

0

)
−m2(0)W̄x(0) · wII(0)

for any small ξ, ε. Note that C is independent of c∗. Therefore, for ξ = θ/2
and c∗ sufficiently large, combining all above estimates, we obtain

(4.13)

1
2
d

dt
〈A0W,W 〉

= 〈A0Wt,W 〉+
1
2
〈A0

tW,W 〉

= 〈−AWx + (BWx)x +M1W̄x + (M2W̄x)x,W 〉+
1
2
〈A0

tW,W 〉

≤ −1
4
[〈ω(x)wI , wI〉+ θ‖wII

x ‖2
0] + Cζ‖wI‖2

0 + C(c∗)‖wII‖2
0 + I0

b

where the boundary term

(4.14) I0
b :=

1
2
A0W (0) ·W (0)− b0w

II
x (0)wII(0)−M2(0)W̄x(0) ·W (0)

which, in the outflow case (thanks to the negative definiteness of A11), is
estimated as

(4.15) I0
b ≤ −θ1

2
|wI(0)|2 + C(|wII(0)|2 + |wII

x (0)||wII(0)|),

and similarly in the inflow case, estimated as

(4.16) I0
b ≤ C(|W (0)|2 + |wII

x (0)||wII(0)|).
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Therefore together with these boundary treatments, (4.13) yields

1
2
d

dt
〈A0W,W 〉

≤ −1
4
[〈ω(x)wI , wI〉+ θ‖wII

x ‖2
0] + Cζ‖wI‖2

0 + C(c∗)‖wII‖2
0 + I0

b .(4.17)

4.1.2. First order “Friedrichs-type” estimate. Similarly as above, we need
the following key estimate, computing by the use of integration by parts,
(4.12), and c∗ being sufficiently large,

(4.18)

−〈Wx, AWxx〉 =
1
2
〈Wx, (Ax + (αx/α)A)Wx〉+

1
2
A0Wx(0) ·Wx(0)

≤ −1
4
〈ω(x)wI

x, w
I
x〉+ Cζ‖wI

x‖2
0 + Cc2∗‖wII

x ‖2
0

+
1
2
A0Wx(0) ·Wx(0).

We deal with the boundary term later. Now let us compute

1
2
d

dt
〈A0Wx,Wx〉 = 〈Wx, (A0Wt)x〉 − 〈Wx, A

0
xWt〉+

1
2
〈A0

tWx,Wx〉.(4.19)

We control each term in turn. By (4.5) and (4.6), we first have

〈A0
tWx,Wx〉 ≤ Cζ‖Wx‖2

0

and by multiplying (A0)−1 into (4.4),

|〈Wx, A
0
xWt〉| ≤C〈(ζ + |W̄x|)|Wx|, (|Wx|+ |wII

xx|+ |W |)〉
≤ξ‖wII

xx‖2
0 + C〈(ζ + |W̄x|)wI

x, w
I
x〉

+ C〈(ζ + |W̄x|)wI , wI〉+ C‖wII‖2
1,

where the term 〈|W̄x|wI
x, w

I
x〉may be treated in the same way as was 〈|W̄x|wI , wI〉

in (4.12). Using (4.4), we write the first term in the right-hand side of (4.19)
as

〈Wx, (A0Wt)x〉 =〈Wx, [−AWx + (BWx)x +M1W̄x + (M2W̄x)x]x〉
=− 〈Wx, AWxx〉+ 〈Wx,−AxWx + (M1W̄x)x〉
− 〈Wxx + (αx/α)Wx, [(BWx)x + (M2W̄x)x]〉
−Wx(0).[(BWx)x + (M2W̄x)x](0)

≤− 1
4

[
〈ω(x)wI

x, w
I
x〉+ θ‖wII

xx‖2
0

]
+ C

[
ζ‖wI‖2

1 + C(c∗)‖wII
x ‖2

0 + 〈|W̄x|wI , wI〉
]

+ I1
b

where I1
b denotes the boundary terms

(4.20) I1
b :=

1
2
A0Wx(0) ·Wx(0)−Wx(0) · [(BWx)x + (M2W̄x)x](0),
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and we have used estimates (4.18),(4.12) for wI , wI
x, and Young’s inequality

to obtain:

〈Wx,−AxWx + (M1W̄x)x〉 ≤ C〈(ζ + |W̄x|)|Wx|, |Wx|+ |W |〉.
−〈Wxx + (αx/α)Wx, (BWx)x〉 ≤

−θ‖wII
xx‖2

0 + C〈|wII
xx|+ ω(x)|wII

x |, (ζ + |W̄x|)|wII
x |〉

−〈Wxx + (αx/α)Wx, (M2W̄x)x〉 ≤
C〈|wII

xx|+ ω(x)|wII
x |, (ζ + |W̄x|)(|Wx|+ |W |)〉.

Putting these estimates together into (4.19), we have obtained

1
2
d

dt
〈A0Wx,Wx〉+

1
4
θ‖wII

xx‖2
0 +

1
4
〈ω(x)wI

x, w
I
x〉

≤ C
[
ζ‖wI‖2

1 + 〈|W̄x|wI , wI〉+ C(c∗)‖wII‖2
1

]
+ I1

b .(4.21)

Let us now treat the boundary term. First observe that using the parabolic
equations, noting that A0 is the diagonal-block form, we can estimate∣∣∣Wx(0) · [(BWx)x + (M2W̄x)x](0)

∣∣∣
=

∣∣∣wII
x (0) · [(bwII

x )x + (M22
2 W̄x)x](0)

∣∣∣
=

∣∣∣wII
x (0) · [A0

2w
II
t +A21w

I
x +A22w

II
x −M1W̄x](0)

∣∣∣
≤ ε|wII

x (0)|2 + C(|W (0)|2 + |wII
x (0)|2 + |wII

t (0)|2).

For the first term in Ib, we consider each inflow/outflow case separately.
For the outflow case, since A11 ≤ −θ1 < 0, we get

A0Wx(0) ·Wx(0) ≤ −θ1
2
|wI

x(0)|2 + C|wII
x (0)|2.

Therefore

I1
b ≤ −θ1

2
|wI

x(0)|2 + C(|W (0)|2 + |wII
x (0)|2 + |wII

t (0)|2).(4.22)

Meanwhile, for the inflow case, since A11 ≥ θ1 > 0, we have

|A0Wx(0) ·Wx(0)| ≤ C|Wx(0)|2.
In this case, the invertibility of A11 allows us to use the hyperbolic equation
to derive

|wI
x(0)| ≤ C(|wI

t (0)|+ |wII
x (0)|).

Therefore we get

I1
b ≤ C(|W (0)|2 + |Wt(0)|2 + |wII

x (0)|2).(4.23)

Now applying the standard Sobolev inequality (applies for α−weighted
norms as long as |αx/α| is uniformly bounded):

(4.24) |w(0)|2 ≤ C‖w‖L2(‖wx‖L2 + ‖w‖L2)
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to control the term |wII
x (0)|2 in I1

b in both cases. We get

(4.25) |wII
x (0)|2 ≤ ε′‖wII

xx‖2
0 + C‖wII

x ‖2
0.

Using this with ε′ = θ/8, (4.20), and (4.22), the estimate (4.21) reads
1
2
d

dt
〈A0Wx,Wx〉+

θ

8
‖wII

xx‖2
0 +

1
4
〈ω(x)wI

x, w
I
x〉

≤ C
(
ζ‖wI‖2

1 + 〈|W̄x|wI , wI〉+ C(c∗)‖wII‖2
1

)
+ I1

b(4.26)

where the boundary term I1
b is estimated as

(4.27) I1
b ≤ −θ1

2
|wI

x(0)|2 + C(|W (0)|2 + |wII
t (0)|2)

for the outflow case, and similarly

(4.28) I1
b ≤ C(|W (0)|2 + |Wt(0)|2)

for the inflow case.

4.1.3. Higher order “Friedrichs-type” estimate. Similarly as above, we shall
now derive an estimate for 〈A0∂k

xW,∂
k
xW 〉, k = 2, 3, 4. We need the following

key estimate. Integration by parts and (4.10) give

−〈∂k
xW,A∂

k+1
x W 〉 =

1
2
〈∂k

xW, (Ax + (αx/α)A)∂k
xW 〉+

1
2
A0∂

k
xW (0) · ∂k

xW (0)

≤− 1
4
〈ω(x)∂k

xw
I , ∂k

xw
I〉+ Cζ‖∂k

xw
I‖2

0

+ Cc2∗‖∂k
xw

II‖2
0 +

1
2
A0∂

k
xW (0) · ∂k

xW (0).

We compute
1
2
d

dt
〈A0∂k

xW,∂
k
xW 〉 =

1
2
〈A0

t∂
k
xW,∂

k
xW 〉+ 〈A0∂k

xW,∂
k
xWt〉

=
1
2
〈A0

t∂
k
xW,∂

k
xW 〉+ 〈A0∂k

xW,∂
k
x [(A0)−1

(−AWx + (BWx)x) +M1W̄x + (M2W̄x)x]〉.(4.29)

We shall estimate each term in turn. First, |〈A0
t∂

k
xW,∂

k
xW 〉| ≤ Cζ‖∂k

xW‖2
0,

and

〈A0∂k
xW,∂

k
x [−(A0)−1AWx]〉

= 〈A0∂k
xW,

k∑
i=0

∂i
x[−(A0)−1A]∂k−i+1

x W 〉

= −〈∂k
xW,A∂

k+1
x W 〉+

k∑
i=1

〈A0∂k
xW,∂

i
x[−(A0)−1A]∂k−i+1

x W 〉

where we have

(4.30)
∣∣∣∂i

x[−(A0)−1A]
∣∣∣ ≤ C

∑
∑

αj=i

∏
1≤j≤i

|∂αj
x W |.
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Using the hypothesis on the boundedness of solutions in W 2,∞ and weak
Moser inequality [Z4, Lemma 1.5], we get

|〈A0∂k
xW,∂

i
x[−(A0)−1A]∂k−i+1

x W 〉| ≤

C
(
‖wII‖2

k + ζ‖wI‖2
k +

k∑
i=1

〈|W̄x|∂i
xw

I , ∂i
xw

I〉
)
.

This, (4.29), similar treatment (4.12) for 〈|W̄x|∂k
xw

I , ∂k
xw

I〉 with c∗ being
sufficiently large give

〈A0∂k
xW,∂

k
x [−(A0)−1AWx]〉 ≤ −1

4
〈ω∂k

xw
I , ∂k

xw
I〉+

1
2
A0∂

k
xW (0) · ∂k

xW (0)

+ C
(
‖wII‖2

k + ζ‖wI‖2
k +

k−1∑
i=1

〈|W̄x|∂i
xw

I , ∂i
xw

I〉
)

(4.31)

Next, similarly, we obtain

|〈A0∂k
xW,∂

k
x [(A0)−1M1W̄x]〉| ≤ C

(
‖wII‖2

k+ζ‖wI‖2
k+

k∑
i=1

〈|W̄x|∂i
xw

I , ∂i
xw

I〉
)
.

Finally, we compute and

〈A0∂k
xW,∂

k
x [(A0)−1(BWx +M2W̄x)x]〉

=
k∑

i=0

〈A0∂k
xW,∂

i
x[(A0)−1]∂k−i+1

x (BWx +M2W̄x)〉

=〈∂k
xW,∂

k+1
x (BWx +M2W̄x)〉

+
k∑

i=1

〈A0∂k
xW,∂

i
x[(A0)−1]∂k−i+1

x (BWx +M2W̄x)〉

≤ − 〈∂k+1
x W + (αx/α)∂k

xW,∂
k
x(BWx +M2W̄x)〉

− ∂k
x [b∂xw

II +M22
2 W̄x](0)∂k

xw
II(0)

+ ξ‖∂k+1
x wII‖2

0 + C
(
c2∗‖wII‖2

k + ζ‖wI‖2
k +

k∑
i=1

〈|W̄x|∂i
xw

I , ∂i
xw

I〉
)

≤− θ

2
‖∂k+1

x wII‖2
0 − ∂k

x [b∂xw
II +M22

2 W̄x](0)∂k
xw

II(0)

+ C
(
c2∗‖wII‖2

k + ζ‖wI‖2
k +

k∑
i=1

〈|W̄x|∂i
xw

I , ∂i
xw

I〉
)
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where in the last inequality we used the special form of B and M2 to get

〈∂k+1
x W + (αx/α)∂k

xW,∂
k
x(BWx +M2W̄x)〉

≤ 〈|∂k+1
x wII |+ ω(x)|∂k

xw
II |, |∂k

x(bwII
x + Π2M2W̄x)|〉

≤ −θ‖∂k+1
x wII‖2

0 + C
(
C(c∗)‖wII‖2

k + ζ‖wI‖2
k +

k∑
i=1

〈|W̄x|∂i
xw

I , ∂i
xw

I〉
)
.

Note that in the last inequality, there is no term of 〈ω(x)∂i
xw

I , ∂i
xw

I〉 because
of the presence of |W̄x| in term of Π2M2.

Put all these estimates into (4.29) together, we have obtained

1
2
d

dt
〈A0∂k

xW,∂
k
xW 〉+

1
4
θ‖∂k+1

x wII‖2
0 +

1
4
〈ω(x)∂k

xw
I , ∂k

xw
I〉

≤ C
(
C(c∗)‖wII‖2

k + ζ‖wI‖2
k +

k−1∑
i=1

〈|W̄x|∂i
xw

I , ∂i
xw

I〉
)

+ Ib(4.32)

where the boundary term

(4.33) Ib :=
1
2
A0∂

k
xW (0) · ∂k

xW (0)− ∂k
x [b∂xw

II +M22
2 W̄x](0)∂k

xw
II(0).

For this boundary term, we shall treat the same as we did before. First
using the parabolic equations with noting that A0 is the diagonal-block
matrix diag(A0

1, A
0
2), we can write

∂k
x [b∂xw

II +M22
2 W̄x](0)

= ∂k−1
x [A0

2(0)wII
t (0, t) +A21w

I
x(0) +A22w

II
x (0)−Π2M1(0)W̄x(0)].(4.34)

Therefore we get

|∂k
x [b∂xw

II +M22
2 W̄x](0)∂k

xw
II(0)|

≤ C|∂k
xw

II(0)|
[
|∂k−1

x wII
t (0)|+

k∑
i=0

(|∂i
xw

II(0)|+ |∂i
xw

I(0)|)
]

≤ ε

k∑
i=0

|∂i
xw

I(0)|2 + C

k∑
i=1

|∂i
xw

II(0)|2(4.35)

+ C|∂k
xw

II(0)||∂k−1
x wII

t (0)|(4.36)

for any ε small. To deal with the term of wII
t , for simplicity, assume k = 3.

By solving the parabolic-part equations and using the invertibility of b, we
obtain

(4.37)
|∂2

xw
II
t | = |∂tw

II
xx| ≤ C(|wII

tt |+ |Wt|+ |Wx|+ |Wxt|)
|Wxt| ≤ C(|W |+ |Wx|+ |Wxx|+ |wII

xxx|).

Since for case k = 3 we have a good term ‖∂4
xw

II‖0 (see (4.32)), the
term |wII

xxx(0)| resulting from the boundary treatment is easily treated via
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Sobolev embedding inequality. Hence all terms in a form ∂r
xw

II(0) are easily
estimated. Meanwhile, using the hyperbolic-part equations, we have

(4.38) |wI
t | ≤ C(|W |+ |Wx|).

Employing Young’s inequality to the last term in (4.35), we obtain

|∂k
x [b∂xw

II +M22
2 W̄x](0)∂k

xw
II(0)|

≤ ε

k∑
i=0

|∂i
xw

I(0)|2 + C(
k∑

i=0

|∂i
xw

II(0)|2 + |wII
t (0)|2 + |wII

tt (0)|2)(4.39)

To deal with the term of wI , we need to consider two cases separately. When
A11 ≤ −θ1 < 0, we get

A0∂
k
xW (0) · ∂k

xW (0) ≤ −θ1
2
|∂k

xw
I(0)|2 + C|∂k

xw
II(0)|2.

Therefore

Ik
b ≤−

θ1
2
|∂k

xw
I(0)|2 + C(

k−1∑
i=0

|∂i
xw

I(0)|2

+
k∑

i=0

|∂i
xw

II(0)|2 + |wII
t (0)|2 + |wII

tt (0)|2).(4.40)

Meanwhile, for the case A11 ≥ θ1 > 0, we have

|A0∂
k
xW (0) · ∂k

xW (0)| ≤ C(|∂k
xw

I(0)|2 + |∂k
xw

II(0)|2).
The invertibility of A11 allows us to use the hyperbolic equation to derive

|∂k
xw

I(0)| ≤ C(
k∑

i=0

(|∂i
xw

II(0)|2 + |∂i
tw

I(0)|2) + |wII
t (0)|2 + |wII

tt (0)|2).

Therefore in the case of A11 ≥ θ1 > 0, we get

Ik
b ≤ C(

k∑
i=0

(|∂i
xw

II(0)|2 + |∂i
tw

I(0)|2) + |wII
t (0)|2 + |wII

tt (0)|2).(4.41)

Employing the boundary estimates into (4.32), we have obtained
d

dt
〈A0∂k

xW,∂
k
xW 〉+ θ‖∂k+1

x wII‖2
0 + c∗θ1〈|W̄x|∂k

xw
I , ∂k

xw
I〉

≤ C
(
ζ‖wI‖2

k + c2∗‖wII‖2
k +

k−1∑
j=0

〈|W̄x|∂j
xw

I , ∂j
xw

I〉
)

+ Ik
b(4.42)

where, after absorbing the terms of |∂r
xw

II(0)| via Sobolev embedding, the
boundary term Ik

b satisfies

Ik
b ≤ −θ1

2
|∂k

xw
I(0)|2 + C(

k−1∑
i=0

|∂i
xw

I(0)|2 + |wII
t (0)|2 + |wII

tt (0)|2)(4.43)
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for outflow case, and

Ik
b ≤ C(

k∑
i=0

|∂i
tw

I(0)|2 + |wII
t (0)|2 + |wII

tt (0)|2)(4.44)

for the inflow case.
We shall establish an Kawashima-type estimate to bound the term ‖wI‖2

k
appearing on the left hand side of the above.

4.1.4. “Kawashima-type” estimate. Let K be the skew-symmetry in (4.8).
Integration by parts and skew-symmetry property of K yield

〈KWxt,W 〉 = −〈KWt,Wx〉 − 〈(Kx + (αx/α)K)Wt,W 〉 −K0W0 · (W0)t

= 〈KWx,Wt〉+ 〈(Kx + (αx/α)K)W,Wt〉 −K0W0 · (W0)t.

Using this, we compute

d

dt
〈KWx,W 〉 =

〈KtWx +KWxt,W 〉+ 〈KWx,Wt〉
=〈KtWx,W 〉+ 〈2KWx + (Kx + (αx/α)K)W,Wt〉
−K0W0 · (W0)t

=〈KtWx,W 〉+ 〈2KWx + (Kx + (αx/α)K)W,−(A0)−1AWx〉
+ 〈2KWx + (Kx + (αx/α)K)W, (A0)−1(BWx)x

+M1W̄x + (M2W̄x)x〉 −K0W0 · (W0)t

≤− 2〈K(A0)−1AWx,Wx〉+ ξ‖wI
x‖2

0 −K0W0 · (W0)t

+ C
(
C(c∗)‖wII‖2

2 + ζ‖wI‖2
0 + 〈ω(x)wI , wI〉+ 〈ω(x)wI

x, w
I
x〉

)
.

Using (4.8), we get

〈K(A0)−1AWx,Wx〉 ≥ θ2‖wI
x‖2

0 − C(c0)‖wII
x ‖2

0,

and thus obtain from the above estimate with ξ = θ2/2

d

dt
〈KWx,W 〉 ≤ − θ2

2
‖wI

x‖2
0 + C

(
C(c∗)‖wII‖2

2 + ζ‖wI‖2
0

+ 〈ω(x)wI , wI〉+ 〈ω(x)wI
x, w

I
x〉

)
−K0W0 · (W0)t.(4.45)

4.1.5. Higher order “Kawashima-type” estimate. With similar calculations,
we shall obtain an estimate for d

dt〈K∂
k
xW,∂

k−1
x W 〉, k ≥ 1. We compute

〈K∂k
xWt, ∂

k−1
x W 〉 = 〈K∂k

xW,∂
k−1
x Wt〉

+ 〈(Kx + (αx/α)K)∂k−1
x W,∂k−1

x Wt〉 −K∂k−1
x Wt · ∂k−1

x W (0).
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and hence
d

dt
〈K∂k

xW,∂
k−1
x W 〉 = 〈Kt∂

k
xW,∂

k−1
x W 〉+ 〈2K∂k

xW,∂
k−1
x Wt〉

+ 〈(Kx + (αx/α)K)∂k−1
x W,∂k−1

x Wt〉 −K∂k−1
x Wt · ∂k−1

x W (0)

= 〈2K∂k
xW,∂

k−1
x [(−A0)−1(AWx + (BWx)x +M1W̄x + (M2W̄x)x)]〉

+ 〈(Kx + (αx/α)K)∂k−1
x W,

∂k−1
x [(−A0)−1(AWx + (BWx)x +M1W̄x + (M2W̄x)x)]〉

−K∂k−1
x Wt · ∂k−1

x W (0)

≤ −2〈K(A0)−1A∂k
xW,∂

k
xW 〉+ ε‖wI‖2

k + Cc2∗‖wII‖2
k+1

+ Cζ‖wI‖2
0 + C

k∑
l=1

〈ω(x)∂l
xw

I , ∂l
xw

I〉 −K∂k−1
x Wt · ∂k−1

x W (0)

for ε small.
Using (4.8), we obtain from the above

d

dt
〈K∂k

xW,∂
k−1
x W 〉 ≤ − θ2

3
‖∂k

xw
I‖2

0 + Cc2∗‖wII‖2
k+1 + ε‖wI‖k−1(4.46)

+ Cζ‖wI‖2
0 + C

k∑
l=1

〈ω(x)∂l
xw

I , ∂l
xw

I〉

−K∂k−1
x Wt · ∂k−1

x W (0).(4.47)

4.1.6. Final estimates. We are ready to conclude our result. First combining
the estimate (4.26) with (4.17), we easily obtain

1
2
d

dt

(
〈A0Wx,Wx〉+M〈A0W,W 〉

)
≤−

(θ
8
‖wII

xx‖2
0 +

1
4
〈ω(x)wI

x, w
I
x〉

)
+ C

(
ζ‖wI‖2

1 + 〈|W̄x|wI , wI〉+ C(c∗)‖wII‖2
1

)
+ I1

b

− M

4

(
〈ω(x)wI , wI〉+ θ‖wII

x ‖2
0

)
+ CMζ‖wI‖2

0

+MC(c∗)‖wII‖2
0 +MI0

b

By choosing M sufficiently large such that Mθ � C(c∗), and noting that
c∗θ1|W̄x| ≤ ω(x), we get

(4.48)

1
2
d

dt

(
〈A0Wx,Wx〉+M〈A0W,W 〉

)
≤−

(
θ‖wII‖2

2 + 〈ω(x)wI , wI〉+ 〈ω(x)wI
x, w

I
x〉

)
+ C

(
ζ‖wI‖2

1 + C(c∗)‖wII‖2
0

)
+ I1

b +MI0
b .
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We shall treat the boundary terms later. Now we employ the estimate (4.45)
to absorb the term ‖wI‖1 into the left hand side. Indeed, fixing c∗ large as
above, adding (4.48) with (4.45) times ε, and choosing ε, ζ sufficiently small
such that εC(c∗) � θ, ε� 1 and ζ � εθ2, we obtain

1
2
d

dt

(
〈A0Wx,Wx〉+M〈A0W,W 〉+ ε〈KWx,W 〉

)
≤−

(
θ‖wII‖2

2 + 〈ω(x)wI , wI〉+ 〈ω(x)wI
x, w

I
x〉

)
+ C

(
ζ‖wI‖2

1 + C(c∗)‖wII‖2
0

)
− θ2ε

2
‖wI

x‖2
0

+ Cε
(
C(c∗)‖wII‖2

2 + ζ‖wI‖2
0 + 〈ω(x)wI , wI〉+ 〈ω(x)wI

x, w
I
x〉

)
+ I1

b +MI0
b − εK0W0 · (W0)t

≤− 1
2

(
θ‖wII‖2

2 + θ2ε‖wI
x‖2

0

)
+ C(c∗)

(
ζ‖wI‖2

0 + ‖wII‖2
0

)
+ Ib

where Ib := I1
b +MI0

b − εK0W0 · (W0)t.
By a view of boundary terms I0

b , I
1
b , we treat the term Ib in each in-

flow/outflow case separately. Recalling the inequality (4.25), |wII
x (0)| ≤

C‖wII‖2. Thus, using this, for the inflow case we have

Ib ≤M |W (0)|2 + C|Wt(0)|2 +M |wII
x (0)||wII(0)|

≤ θ

2
‖wII‖2

2 +M2|W (0)|2 + C|Wt(0)|2.

Meanwhile, for the outflow case, withMθ1 � 1 andK0W0·(W0)t ∼ wII
0 w

I
0t+

wI
0w

II
0t , we have Ib is bounded by

−θ1
2

(|wI
x(0)|2 + |wI(0)|2)

+ C(|wII
t (0)|2 + |wII(0)|2) + ε(|wII

x (0)|2 + |wI
t (0)|2)

which, together with ε being sufficiently small and the facts that

|wI
t (0)| ≤ C(|wI

x(0)|+ |wII
x (0)|+ |W (0)|)

obtained from solving the hyperbolic equation and the embedding inequality

|wII
x (0)| ≤ C‖wII‖2,

yields

Ib ≤ −θ1
2

(|wI
x(0)|2 + |wI(0)|2) +

θ

2
‖wII‖2

2 + C(|wII(0)|2 + |wII
t (0)|2)

for the outflow case. Now by Cauchy-Schwarz’s inequality and by positivity
definite of A0, it is easy to see that

(4.49) E := 〈A0Wx,Wx〉+M〈A0W,W 〉+ε〈KWx,W 〉 ∼ ‖W‖2
H1

α
∼ ‖W‖2

H1 .

The last equivalence is due to the fact that α is bounded above and below
away from zero. Thus the above derives
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d

dt
E(W )(t) ≤ −θ3E(W )(t) + C(c∗)

(
‖W (t)‖2

L2 + B1(t)2
)
,

for some positive constant θ3, which by the Gronwall inequality yields
(4.50)

‖W (t)‖2
H1 ≤ Ce−θt‖W0‖2

H1 + C(c∗)
∫ t

0
e−θ(t−τ)

(
‖W (τ)‖2

L2 + B1(τ)2
)
dτ,

where W (x, 0) = W0(x) and

(4.51) B1(τ)2 := O(|W (0, τ)|2 + |Wt(0, τ)|2) = O(|(h1, h2)|2 + |(h1, h2)t|2)

for the inflow case, and

(4.52) B1(τ)2 := O(|wII(0, τ)|2 + |wII
t (0, τ)|2) = O(|h|2 + |ht|2)

for the outflow case.
Similarly, by induction, we shall derive the same estimates for W in Hs.

To do that, let us define

E1(W ) := 〈A0Wx,Wx〉+M〈A0W,W 〉+ ε〈KWx,W 〉

Ek(W ) := 〈A0∂k
xW,∂

k
xW 〉+MEk−1(W ) + ε〈K∂k

xW,∂
k−1
x W 〉.

Then by Cauchy-Schwarz inequality, it is easy to see that Ek(W ) ∼
‖W‖2

Hk , and by induction, we obtain

d

dt
Es(W )(t) ≤ −θ3Es(W )(t) + C(c∗)(‖W (t)‖2

L2 + Bh(t)2),

for some positive constant θ3, which by the Gronwall inequality yields
(4.53)

‖W (t)‖2
Hs ≤ Ce−θt‖W0‖2

Hs + C(c∗)
∫ t

0
e−θ(t−τ)(‖W (τ)‖2

L2 + Bh(τ)2)dτ,

where W (x, 0) = W0(x) and Bh is defined as in (1.22) and (1.23).

4.1.7. The general case. Following [MaZ4], the general case that hypothe-
ses (A1)-(A3) hold can easily be covered via following simple observations.
First, we may express matrix A in (4.4) as

A(W + W̄ ) = Â+ (ζ + |W̄x|)
(

0 O(1)
O(1) O(1)

)
(4.54)

where Â is a symmetric matrix obeying the same derivative bounds as de-
scribed for A, identical to A in the 11 block and obtained in other blocks jk
by

Ajk(W + W̄ ) = Ajk(W̄ ) +Ajk(W + W̄ )−Ajk(W̄ )

= Ajk(W+) +O(|Wx|+ |W̄x|) = Ajk(W+) +O(ζ + |W̄x|).(4.55)
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Replacing A by Â in the kth order Friedrichs-type bounds above, we find
that the resulting error terms may be expressed as

〈∂k
xO(ζ + |W̄x|)|W |, |∂k+1

x wII |〉,
plus lower order terms, easily absorbed using Young’s inequality, and bound-
ary terms

O(
k∑

i=0

|∂i
xw

II(0)||∂k
xw

I(0)|)

resulting from the use of integration by parts as we deal with the 12−block.
However these boundary terms were already treated somewhere as before
(see (4.35)). Hence we can recover the same Friedrichs-type estimates ob-
tained above. Thus we may relax (A1′) to (A1).

The second observation is that, because of the favorable terms

c∗θ1〈|W̄x|∂k
xw

I , ∂k
xw

I〉
occurring in the lefthand sides of the Friedrichs-type estimates (4.42), we
need the Kawashima-type bound only to control the contribution to |∂k

xw
I |2

coming from x near +∞; more precisely, we require from this estimate only
a favorable term

−θ2〈(1−O(ζ + |W̄x|))∂k
xw

I , ∂k
xw

I〉
rather than θ2‖∂k

xw
I‖2

0 as in (4.46). But, this may easily be obtained by
substituting for K a skew-symmetric matrix-valued function K̂ := K(W+),
and using the fact that

<e(K(A0)−1A+B)(W+) ≥ θ2 > 0,

and same as (4.55), K = K̂ +O(ζ + |W̄x|), we have

<e(K(A0)−1A+B)(W ) ≥ θ2(1−O(ζ + |W̄x|)) > 0.

Thus we may relax (A2′) to (A2).
Finally, notice that the term g(W̃x)−g(W̄x) in the perturbation equation

may be Taylor expanded as(
0

g1(W̃x, W̄x) + g1(W̄x, W̃x)

)
+

(
0

O(|Wx|2)

)
The first term, since it vanishes in the first component and since |W̄x| decays
at plus spatial infinity, yields by Young’s inequality the estimate〈 (

0
g1(W̃x, W̄x) + g1(W̄x, W̃x)

)
,

(
wI

x

wII
x

) 〉
≤ C

(
〈(ζ + |W̄x|)wI

x, w
I
x〉+‖wII

x ‖2
0

)
which can be treated in the Friedrichs-type estimates. The (0, O(|Wx|2)T

nonlinear term may be treated as other source terms in the energy estimates.
Specifically, the worst-case term

〈∂k
xW,∂

k
x

(
0

O(|Wx|2)

)
〉 = −〈∂k+1

x wII , ∂k−1
x O(|Wx|2)〉−∂k

xw
II(0)∂k−1

x O(|Wx|2)(0)
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may be bounded by

‖∂k+1
x wII‖L2‖W‖W 2,∞‖W‖Hk − ∂k

xw
II(0)∂k−1

x O(|Wx|2)(0).

The boundary term will contribute to energy estimates in the form (4.33)
of Ib, and thus we may use the parabolic equations to get rid of this term as
we did in (4.34). Thus, we may relax (A3′) to (A3), completing the proof of
the general case (A1)− (A3) and the proposition. �

4.2. Energy estimate II. We require also the following estimate:

Lemma 4.3 ([HR]). Under the hypotheses of Theorem 1.7, let E0 := ‖(1 +
|x|2)3/4U0‖H4, and suppose that, for 0 ≤ t ≤ T , the W 2,∞ norm of the
solution U of (5.2) remains bounded by some constant C > 0. Then, for all
0 ≤ t ≤ T ,

(4.56) ‖(1 + |x|2)3/4U(x, t)‖2
H4 ≤ME0e

Mt.

Proof. This follows by standard Friedrichs symmetrizer estimates carried
out in the weighted H4 norm. �

Remark 4.4. An immediate consequence of Lemma 4.3, by Sobolev embed-
ding: W 3,∞ ⊂ H4 and equation (5.2), is that, if E0 and ‖U‖H4 are uniformly
bounded on [0, T ], then

(4.57) (1 + |x|)3/2
[
|U |+ |Ut|+ |Ux|+ |Uxt|

]
(x, t)

is uniformly bounded on [0, T ] as well.

5. Stability analysis

In this section, we shall prove Theorems 1.6 and 1.7. Following [HZ,
MaZ3], define the nonlinear perturbation U = (u, v) by

(5.1) U(x, t) := Ũ(x, t)− Ū(x),

we obtain

(5.2) Ut − LU = Q(U,Ux)x,

where linearized operator

(5.3) LU := −(AU)x + (BUx)x

where
AU := dF (Ū)U − (dB(Ū)U)Ūx, B = B(Ū)

and the second-order Taylor remainder:

Q(U,Ux) = F (Ū + U)− F (Ū) +A(Ū)U + (B(Ū + U)−B(Ū))Ux
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satisfying

(5.4)

|Q(U,Ux)| ≤ C(|U ||Ux|+ |U |2)
|Π1Q(U,Ux)x| ≤ C(|U ||Ux|+ |U |2)
|Q(U,Ux)x| ≤ C(|U ||Uxx|+ |Ux|2 + |U ||Ux|)
|Q(U,Ux)xx| ≤ C(|U ||Uxx|+ |U ||Uxxx|+ |Ux||Uxx|+ |Ux|2)

so long as |U | remains bounded.
For boundary conditions written in U−coordinates, (B) gives

(5.5)
h(t) = h̃(t)− h̄ = (W̃ (U + Ū)− W̃ (Ū))(0, t)

= (∂W̃/∂Ũ)(Ū0)U(0, t) +O(|U(0, t)|2).
in inflow case and

(5.6)

h(t) = h̃(t)− h̄ = (w̃II(U + Ū)− w̃II(Ū))(0, t)

= (∂w̃II/∂Ũ)(Ū0)U(0, t) +O(|U(0, t)|2)
= m

(
b̄1 b̄2

)
(Ū0)U(0, t) +O(|U(0, t)|2)

= mB(Ū0)U(0, t) +O(|U(0, t)|2).

5.1. Integral formulation. We obtain the following:

Lemma 5.1 (Integral formulation). We have

(5.7)

U(x, t) =
∫ ∞

0
G(x, t; y)U0(y) dy

+
∫ t

0

(
G̃y(x, t− s; 0)BU(0, s) +G(x, t− s; 0)AU(0, s)

)
ds

+
∫ t

0

∫ ∞

0
H(x, t− s; y)Π1Q(U,Uy)y(y, s) dy ds

−
∫ t

0

∫ ∞

0
G̃y(x, t− s; y)Π2Q(U,Uy)(y, s) dy ds

where U(y, 0) = U0(y).

Proof. From the duality (see [ZH, Lemma 4.3]), we find that G(x, t − s; y)
considered as a function of y, s satisfies the adjoint equation

(5.8) (∂s − Ly)∗G∗(x, t− s; y) = 0,

or

(5.9) −Gs − (GA)y +GAy = (GyB)y.

in the distributional sense, for all x, y, t > s > 0, where the adjoint operator
of Ly is defined by

(5.10) L∗yV := V ∗y A+ (V ∗y B)y,

with V ∗ = V tr.
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Likewise, for boundary conditions, we have, by duality

(iii’) for all x, t > 0, G(x, t; 0) ≡ 0 in the outflow case Ā∗ < 0; and
G(x, t; 0)B = 0 in the inflow case Ā∗ > 0, noting that no boundary con-
dition need be applied on the hyperbolic part for the adjoint equations in
the inflow case.

Thus, integrating G against (5.2), we obtain for any classical solution that

(5.11)

∫ t

0

∫ ∞

0
G(x, t− s; y)Q(U,Uy)y(y, s) dy ds =∫ t

0

∫ ∞

0
G(x, t− s; y)(∂s − Ly)U(y, s) dy ds

= : I1 + I2.

Integrating by parts and using the boundary conditions (iii’) on the
boundary y = 0, we get

I1 =
∫ t

0

∫ ∞

0
G(x, t− s; y)∂sU(y, s) dy ds

=
∫ t

0

∫ ∞

0
∂sG(x, t− s; y)U(y, s) dy ds

+
∫ ∞

0
G(x, 0; y)U(y, t) dy −

∫ ∞

0
G(x, t; y)U(y, 0) dy

where note that

U(x, t) =
∫ ∞

0
G(x, 0; y)U(y, t) dy

and also

I2 =
∫ t

0

∫ ∞

0
G(x, t− s; y)(−Ly)U(y, s) dy ds

=
∫ t

0

∫ ∞

0
G(x, t− s; y)((AU)y − (BUy)y)(y, s) dy ds

=
∫ t

0

∫ ∞

0
(−GyA− (GyB)y)U(y, s) dy ds

−
∫ t

0
Gy(x, t− s; 0)BU(0, s)ds−

∫ t

0
G(x, t− s; 0)AU(0, s)ds

Combining these estimates, and noting that GyB = G̃yB since HB ≡ 0,
we obtain (5.7) by rearranging and integrating by parts the last term of

(5.12)

∫ t

0

∫ ∞

0
G(x, t− s; y)Q(U,Uy)y(y, s) dy ds

=
∫ t

0

∫ ∞

0
(H + G̃)(x, t− s; y)Q(U,Uy)y(y, s) dy ds

�
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As an expression for Ux, we obtain the following.

Lemma 5.2 (Integral formulation for Ux). We have
(5.13)

Ux(x, t) =
∫ ∞

0
Gx(x, t; y)U0(y) dy −

∫ t

0
H(x, t− s; 0)Π1Q(U,Uy)y(0, s) ds

+
∫ t

0

[
G̃xy(x, t− s; 0)BU(0, s) +Gx(x, t− s; 0)AU(0, s)

]
ds

+
∫ t

0

∫ ∞

0
(Hx −Hy)(x, t− s; y)Π1Q(U,Uy)y(y, s) dy ds

−
∫ t

0

∫ ∞

0
H(x, t− s; y)Π1Q(U,Uy)yy(y, s) dy ds

−
∫ t−1

0

∫ ∞

0
G̃xy(x, t− s; y)Π2Q(U,Uy)(y, s) dy ds

+
∫ t

t−1

∫ ∞

0
G̃x(x, t− s; y)Π2Q(U,Uy)y(y, s) dy ds

where U(y, 0) = U0(y).

Proof. Differentiating the formulation (5.7) for U(x, t) with respect to x and
noting that∫ t

0

∫ ∞

0
Hxφdy ds =

∫ t

0

∫ ∞

0
(Hx −Hy)φdy ds

−
∫ t

0

∫ ∞

0
H(x, t− s; y)φy(y, s) dy ds−

∫ t

0
H(x, t− s; 0)φ(0, s)ds

and ∫ t

0

∫ ∞

0
G̃xyψ dy ds =

∫ t−1

0

∫ ∞

0
G̃xyψ dy ds

−
∫ t

t−1

∫ ∞

0
G̃xψy dy ds−

∫ t

t−1
G̃x(x, t− s; 0)ψ(0, s)ds

are valid for any smooth functions φ, ψ, we obtain the lemma. �

5.2. Convolution estimates. To establish stability, we use the following
lemmas proved in [HZ, HR, RZ].

Lemma 5.3 (Linear estimates I). Under the assumptions of Theorem 1.7,

(5.14)

∫ +∞

0
|G̃(x, t; y)|(1 + |y|)−3/2 dy ≤ C(θ + ψ1 + ψ2)(x, t),∫ +∞

0
|G̃x(x, t; y)|(1 + |y|)−3/2 dy ≤ C(θ + ψ1 + ψ2)(x, t),

and so the latter is dominated by ψ1 + ψ2, for 0 ≤ t ≤ +∞, some C > 0.
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Lemma 5.4 (Linear estimates II). Under the assumptions of Theorem 1.7,
if |U0(x)|+ |∂xU0(x)| ≤ E0(1 + |x|)−3/2, E0 > 0, then, for some θ > 0,

(5.15)

∫ +∞

0
H(x, t; y)U0(y) dy ≤ CE0e

−θt(1 + |x|)−3/2,∫ +∞

0
Hx(x, t; y)U0(y) dy ≤ CE0e

−θt(1 + |x|)−3/2,

and so both are dominated by CE0(ψ1 + ψ2), for 0 ≤ t ≤ +∞, some C > 0.

Lemma 5.5 (Nonlinear estimates I). Under the assumptions of Theorem
1.7,

(5.16)

∫ t

0

∫ +∞

0
|G̃y(x, t− s; y)|Ψ(y, s) dyds ≤ C(θ + ψ1 + ψ2)(x, t),∫ t−1

0

∫ +∞

0
|G̃xy(x, t− s; y)|Ψ(y, s) dyds ≤ C(θ + ψ1 + ψ2)(x, t),

for 0 ≤ t ≤ +∞, some C > 0, where

(5.17) Ψ(y, s) := (θ + ψ1 + ψ2)2(y, s).

Lemma 5.6 (Nonlinear estimates II). Under the assumptions of Theorem
1.7,

(5.18)

∫ t

0

∫ +∞

0
H(x, t− s; y)Υ(y, s) dyds ≤ C(ψ1 + ψ2)(x, t)∫ t

0

∫ +∞

0
(Hx −Hy)(x, t− s; y)Υ(y, s) dyds ≤ C(ψ1 + ψ2)(x, t)∫ t

t−1

∫ +∞

0
|G̃x(x, t− s; y)|Υ(y, s) dyds ≤ C(ψ1 + ψ2)(x, t)

for all 0 < t < +∞, some C > 0, where

(5.19) Υ(y, s) := s−1/4(θ + ψ1 + ψ2)(y, s)

We require also the following estimate accounting boundary effects.

Lemma 5.7 (Boundary estimates I). Under the assumptions of Theorem
1.7, if |h(t)|+ |h′(t)| ≤ E0(1 + t)−1,

(5.20)

∫ t

0
H(x, t− s; 0)h(s) ds ≤ CE0(ψ1 + ψ2)(x, t)∫ t

0
Hx(x, t− s; 0)h(s) ds ≤ CE0(ψ1 + ψ2)(x, t),

for 0 ≤ t ≤ +∞, some C > 0.
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Proof. Note that H(x, t; 0) ≡ 0 for the outflow case A∗ < 0. Consider the
inflow case A∗ > 0 (and thus ā∗ > 0). We have∣∣∣ ∫ t

0
H(x, t− s; 0)h(s) ds

∣∣∣
= e−η0x/ā∗ |h(− 1

ā∗
(x− ā∗t))|

≤ e−η0|x|(1 + |x− ā∗t|)−1 ≤ CE0(ψ1 + ψ2)(x, t),∣∣∣ ∫ t

0
Hx(x, t− s; 0)h(s) ds

∣∣∣
≤ e−η0x/ā∗

(
|h|+ |h′|

)
(− 1
ā∗

(x− ā∗t))|

≤ e−η0|x|(1 + |x− ā∗t|)−1 ≤ CE0(ψ1 + ψ2)(x, t),

which completes the proof of the lemma. �

Lemma 5.8 (Boundary estimates II). Under the assumptions of Theorem
1.7, if |h(t)| ≤ E0(1 + t)−1−ε and |h′(t)| ≤ E0(1 + t)−1,

(5.21)

∣∣∣ ∫ t

0

(
G̃y(x, t− s; 0)Bh(s)+G(x, t− s; 0)Ah(s)

)
ds

∣∣∣
≤ CE0(θ + ψ1 + ψ2)(x, t)∣∣∣ ∫ t

0

(
G̃xy(x, t− s; 0)Bh(s)+Gx(x, t− s; 0)Ah(s)

)
ds

∣∣∣
≤ CE0(θ + ψ1 + ψ2)(x, t)

for 0 ≤ t ≤ +∞, some C > 0.

Proof. We first give the estimate on
∫ t−1
0 , where Gy(x, t−s; 0) and G̃xy(x, t−

s; 0) are nonsingular. We have
(5.22)∣∣∣ ∫ t−1

0
G̃y(x, t− s; 0)Bh(s) ds

∣∣∣ ≤ C

∫ t

1
|G̃y(x, τ ; 0)|(1 + t− τ)−1−ε dτ.

We shall estimate the integral for each term (1 + τ)−1/2e−|x−akτ |2/Mτ , ap-
pearing in G̃y(x, τ ; 0), and omit the O(e−η(x+t)) term, which is negligible.
First, for ak < 0, using e−|x−akτ |2/Mτ ≤ e−x2/Mte−ητ for some η > 0, we
have

(5.23)

∫ t

1
(1 + τ)−1/2(1 + t− τ)−1e−|x−akτ |2/Mτ dτ

≤ e−x2/Mt
( ∫ t/2

1
+

∫ t

t/2

)
(1 + τ)−1/2(1 + t− τ)−1e−ητ dτ

≤ e−x2/Mt
(
(1 + t)−1 + (1 + t)−1/2e−ηt

)
,
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which is clearly bounded by C(θ + ψ1)(x, t). For ak > 0, we consider three
distinct regions depending on x and t. First for x ≥ akt, we further divide
the estimates into two cases: (1, t/2) and (t/2, t). For τ ∈ (1, t/2), we
have e−|x−akτ |2/Mτ ≤ e−x2/Mte−ητ for some η > 0 and thus as above the
integral is bounded by C(θ + ψ1)(x, t). For τ ∈ (t/2, t), we write x− akτ =
x− akt+ ak(t− τ) and thus

∫ t

t/2
(1 + τ)−1/2(1 + t− τ)−1−εe−|x−akτ |2/Mτ dτ

≤ e−(x−akt)2/Mt

∫ t

t/2
(1 + τ)−1/2(1 + t− τ)−1−εe−ak(t−τ)2/Mτ dτ

≤ C(1 + t)−1/2e−(x−akt)2/Mt

∫ t

t/2
(1 + t− τ)−1−ε dτ ≤ Cθ(x, t).

Next, consider the case: x ≤ akt/2. Divide the analysis into cases:
(1, 3t/4) and (3t/4, t). For τ ∈ (1, 3t/4), use the change of variable s :=
(x− akτ)/

√
τ to get

(5.24)

∫ 3t/4

1
(1 + τ)−1/2(1 + t− τ)−1e−|x−akτ |2/Mτ dτ

≤ (1 + t)−1

∫ 3t/4

1
(1 + τ)−1/2e−|x−akτ |2/Mτ dτ

≤ (1 + t)−1

∫ +∞

−∞
e−s2/M ds ≤ (1 + t)−1,

which is bounded by Cψ1(x, t). For τ ∈ (3t/4, t), we have e−|x−akτ |2/Mτ ≤
e−ητ for some η > 0 and thus

(5.25)

∫ t

3t/4
(1 + τ)−1/2(1 + t− τ)−1e−|x−akτ |2/Mτ dτ

≤ (1 + t)−1/2

∫ t

3t/4
e−ητ dτ ≤ C(1 + t)−1/2e−ηt ≤ Cθ(x, t).

Finally, consider the case x ∈ (akt/2, akt). We write x = aakt with
a := x

akt . We again divide the estimate into three regions: (1, at), (at, 1+a
2 t),

and (1+a
2 t, t). For τ ∈ (1, at), we have (1+t−τ)−1 ≤ C(1+ t)−1 ≤ Cψ1(x, t)

and

(5.26)
∫ at

1
(1 + τ)−1/2e−|x−akτ |2/Mτ dτ ≤

∫ +∞

0
e−s2/M ds ≤ C.
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For τ ∈ (at, 1+a
2 t), we have (1+ t− τ)−1 ≤ C(1+ |x−akt|)−1 and by change

of variable s := (x− akτ)/τ ,

(5.27)

∫ 1+a
2

t

at
(1 + τ)−1/2e−|x−akτ |2/Mτ dτ

≤
∫ 1−a

1+a

0
e−τ2/M dτ ≤ C(1− a) ≤ Ct−1|x− akt|.

Thus the integral is bounded by Ct−1 ≤ Cψ1(x, t). For τ ∈ (1+a
2 t, t), we

have |x− akτ | ≥ |x− ak
1+a
2 t| = ak

2 |1− a|t = |x−akt|
2 , and thus

(5.28)

∫ t

1+a
2

t
(1 + τ)−1/2(1 + t− τ)−1−εe−|x−akτ |2/Mτ dτ

≤ (1 + t)−1/2e−|x−akt|2/2Mt

∫ t

1+a
2

t
(1 + t− τ)−1−ε dτ

≤ C(1 + t)−1/2e−|x−akt|2/2Mt ≤ Cθ(x, t).

Therefore, combining all these estimates, we obtain

(5.29)
∣∣∣ ∫ t−1

0
G̃y(x, t− s; 0)Bh(s) ds

∣∣∣ ≤ C(θ + ψ1)(x, t).

We also have similar estimates for Gxy on the nonsingular part
∫ t−1
0 .

Next, to bound the singular part
∫ t
t−1, we integrate (5.9) in y from 0 to

+∞ to obtain

(5.30) G̃yB +GA = −
∫ +∞

0
G(x, t− s; y)Ay dy +

∫ +∞

0
Gs(x, t− s; y) dy.

Substituting in the lefthand side of (5.21), and integrating by parts in s, we
obtain
(5.31)∫ t

t−1
(G̃yB +GA)h(s) ds =

∫ 1

0

( ∫ +∞

0
Ay(y)G(x, τ ; y) dy

)
h(t− τ) dτ

−
∫ 1

0

( ∫ +∞

0
G(x, τ ; y) dy

)
h′(t− τ) dτ

+
( ∫ +∞

0
G(x, 1; y) dy

)
h(t− 1),

which by
∫
|G|dy ≤ C is bounded by max0≤τ≤1(|h|+ |h′|)(t− τ).
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Combining this with the following more straightforward estimate (for
large x, |x| > a+

n t)
(5.32)∣∣∣ ∫ t

t−1
G̃y(x, t− s; 0)Bh(s) ds

∣∣∣ ≤ ∫ 1

0
|G̃y(x, τ ; 0)|Bh(t− τ) dτ

≤ C max
0≤τ≤1

|h(t− τ)|
∫ 1

0
τ−1/2e−|x|

2/Cτ dτ

≤ C max
0≤τ≤1

|h(t− τ)|
∫ 1

0
τ−1e−|x|

2/Cτ dτ

= C|x|−2 max
0≤τ≤1

|h(t− τ)|

×
∫ 1

0
(|x|2/τ)e−|x|2/Cτ dτ

≤ C max
0≤τ≤1

|h(t− τ)||x|−2,

(5.33)∣∣∣ ∫ t

t−1
G̃(x, t− s; 0)Ah(s) ds

∣∣∣ ≤ ∫ 1

0
|G̃(x, τ ; 0)|Ah(t− τ) dτ

≤ C max
0≤τ≤1

|h(t− τ)|
∫ 1

0
τ−1/2e−|x|

2/Cτ dτ

≤ C max
0≤τ≤1

|h(t− τ)||x|−2,

and the estimate (5.20) for H term (thus together with (5.33) for G =
G̃+H), we find that the contribution from

∫ t
t−1 has norm bounded by

max
0≤τ≤1

(|h|+ |h′|)(t− τ)(1 + |x|)−2 ≤ CE0(ψ1 + ψ2)(x, t).

Combining this estimate with the one for
∫ t−1
0 , we obtain the first inequality

in (5.21). For second inequality, we first differentiate (5.31) with respect to
x to get
(5.34)∫ t

t−1
(G̃xyB +GxA)h(s) ds =

∫ 1

0

( ∫ +∞

0
Ay(y)Gx(x, τ ; y) dy

)
h(t− τ) dτ

−
∫ 1

0

( ∫ +∞

0
Gx(x, τ ; y) dy

)
h′(t− τ) dτ

+
( ∫ +∞

0
Gx(x, 1; y) dy

)
h(t− 1),

which, by
∫ 1
0

∫
|Gx|dydτ ≤ C

∫ 1
0 τ

−1/2dτ ≤ C, is bounded by max0≤τ≤1(|h|+
|h′|)(t− τ), similarly as above.
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For the large x, clearly we still have similar estimates as (5.32) and (5.33)
for G̃xy and G̃x. These, estimate (5.20) for Hx, and (5.34) yield the con-
tribution from

∫ t
t−1 as above, which together with the estimate for

∫ t−1
0

completes the proof of (5.21). �

5.3. Linearized stability. In this subsection, we shall give the proof of
Theorem 1.6. We first need the following estimates:

Lemma 5.9 ([MaZ4]). Under the assumptions of Theorem 1.6,

(5.35)

∣∣∣ ∫ +∞

0
G̃(·, t; y)f(y) dy

∣∣∣
Lp
≤ C(1 + t)−

1
2
(1−1/r)|f |Lq ,∣∣∣ ∫ +∞

0
H(·, t; y)f(y) dy

∣∣∣
Lp
≤ Ce−ηt|f |Lp ,

for all t ≥ 0, some C, η > 0, for any 1 ≤ q ≤ p and f ∈ Lq ∩ Lp, where
1/r + 1/q = 1 + 1/p.

Lemma 5.10. Under the assumptions of Theorem 1.6, if |h(t)| ≤ E0(1 +
t)−1−ε,

(5.36)

∣∣∣ ∫ t

0

(
G̃y(x, t− s; 0)Bh(s)+G(x, t− s; 0)Ah(s)

)
ds

∣∣∣
Lp

≤ CE0(1 + t)−
1
2
(1−1/p)

for 0 ≤ t ≤ +∞, some C > 0.

Proof. This follows at once by the boundary estimate (5.21) and the fact
that |(θ + ψ1 + ψ2)(·, t)|Lp ≤ C(1 + t)−

1
2
(1−1/p). �

Proof of Theorem 1.6. Sufficiency of (D) for linearized stability (the main
point here) follows easily by applying the above lemmas to the following
representation for solution U(x, t) of the linearized equations (1.13)

U(x, t) =
∫ ∞

0
G(x, t; y)U0(y) dy

+
∫ t

0

(
G̃y(x, t− s; 0)BU(0, s) +G(x, t− s; 0)AU(0, s)

)
ds

where U(y, 0) = U0(y) and |U(0, s)| ≤ C|h(s)| ≤ C(1 + s)−1−ε by (1.14) in
the inflow case, and |BU(0, s)| ≤ C|h(s)| ≤ C(1 + s)−1−ε by (1.15) in the
outflow case, noting that G(x, t; 0) ≡ 0 in this case. Necessity follows by a
much simpler argument, restricting x, y to a bounded set and letting t→∞,
noting that G is given by the ODE evolution of the spectral projection onto
the finite set of zeros of D in <λ ≥ 0, necessarily nondecaying, plus an
O(e−ηt) error, η > 0, from which we find that asymptotic decay implies
nonexistence of any such zeros; see Proposition 7.7 and Corollary 7.8, [MaZ3]
for details. �
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5.4. Nonlinear argument. In this subsection, we shall give the proof of
Theorem 1.7. In fact, with the above preparations, the proof of nonlinear
stability is also straightforward.

Lemma 5.11 (H4 local theory). Under the hypotheses of Theorem 1.7,
then, for T sufficiently small depending on the H4−norm of U0, there exists
a unique solution U(x, t) ∈ L∞(0, T ;H4(x)) of (5.2) satisfying

(5.37) |U(t)|H4 ≤ C|U0|H4

for all 0 ≤ t ≤ T .

Proof. Short-time existence, uniqueness, and stability are described in [Z2,
Z4], using a standard (bounded high norm, contractive low norm) contrac-
tion mapping argument. We omit the details. �

Lemma 5.12. Under the hypotheses of Theorem 1.7, let U ∈ L∞(0, T ;H4(x))
satisfy (5.2) on [0, T ], and define

(5.38) ζ(t) := sup
x,0≤s≤t

[
(|U |+ |Ux|)(θ + ψ1 + ψ2)−1(x, t)

]
.

If ζ(T ) and |U0|H4 are bounded by ζ0 sufficiently small, then, for some
ε > 0, (i) the solution U , and thus ζ extends to [0, T + ε], and (ii) ζ is
bounded and continuous on [0, T + ε].

Proof. Boundedness and smallness of |U(t)|H4 on [0, T ] follow by Proposition
4.1, provided smallness of ζ(T ) and |U0|H4 . By Lemma 5.11, this implies
the existence, boundedness of |U(t)|H4 on [0, T + ε], for some ε > 0, and
thus, by Lemma 4.3, boundedness and continuity of ζ on [0, T + ε]. �

Proof of Theorem 1.7. We shall establish:
Claim. For all t ≥ 0 for which a solution exists with ζ uniformly bounded

by some fixed, sufficiently small constant, there holds

(5.39) ζ(t) ≤ C2(E0 + ζ(t)2).

From this result, provided E0 < 1/4C2
2 , we have that by continuous induc-

tion

(5.40) ζ(t) < 2C2E0

for all t ≥ 0. From (5.40) and the definition of ζ in (5.38) we then obtain
the bounds of (1.24). Thus, it remains only to establish the claim above.

Proof of Claim. We must show that (|U |+ |Ux|)(θ+ψ1+ψ2)−1 is bounded
by C(E0 + ζ(t)2), for some C > 0, all 0 ≤ s ≤ t, so long as ζ remains
sufficiently small. First we need an estimate for U(0, s) and Us(0, s). For
the inflow case, by boundary condition estimate (5.5) and by the hypotheses
on h(s), we have

(5.41) |U(0, s)| ≤ C(h(s) + |U(0, s)|2) ≤ C(E0(1 + s)−1−ε + |U(0, s)|2)
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from which by continuity of |U(0, t)| (Remark 4.4) and smallness of E0, we
obtain a similar estimate to (5.40):

(5.42) |U(0, s)| ≤ CE0(1 + s)−1−ε.

Similarly for an estimate of Ut(0, t), by taking the derivative of (5.5), we get

(5.43)

|Us(0, s)| ≤ C(h′(s) + |U ||Us|(0, s))
≤ C(E0(1 + s)−1 + |U(0, s)||Us(0, s)|)
≤ C(E0(1 + s)−1 + |Us(0, s)|2)

which by the same argument as above yields

(5.44) |Us(0, s)| ≤ CE0(1 + s)−1.

Next, for the outflow case with boundary condition (5.6), we have

(5.45)
|BU(0, s)| ≤ CE0(1 + s)−1−ε +O(|U(0, s)|2)

|(BU)s(0, s)| ≤ CE0(1 + s)−1 +O(|U ||Us|(0, s)).

Now by (5.38), we have for all t ≥ 0 and some C > 0 that

(5.46) |U(x, t)|+ |Ux(x, t)| ≤ ζ(t)(θ + ψ1 + ψ2)(x, t),

and therefore

(5.47)
|Q(U,Uy)(y, s)| ≤ Cζ(t)2Ψ(y, s)

|Π1Q(U,Uy)y(y, s)| ≤ Cζ(t)2Ψ(y, s)

with Ψ = (θ + ψ1 + ψ2)2 as defined in (5.17), for 0 ≤ s ≤ t.
As an estimate for U(x, t), we use the representation (5.7) of U(x, t):

|U(x, t)| =
∣∣∣ ∫ ∞

0
G(x, t; y)U0(y) dy

∣∣∣
+

∣∣∣ ∫ t

0
(G̃y(x, t− s; 0)BU(0, s) +G(x, t− s; 0)AU(0, s)) ds

∣∣∣
+

∣∣∣ ∫ t

0

∫ ∞

0
H(x, t− s; y)Π1Q(U,Uy)y(y, s) dy ds

∣∣∣
+

∣∣∣ ∫ t

0

∫ ∞

0
G̃y(x, t− s; y)Π2Q(U,Uy)(y, s) dy ds

∣∣∣,
where by applying Lemmas 5.3-5.6 together with (5.47), we have

(5.48)

∣∣∣ ∫ ∞

0
G(x, t; y)g(y) dy

∣∣∣
≤ E0

∫ ∞

0
(|G̃(x, t; y)|+ |H(x, t; y)|)(1 + |y|)−3/2 dy

≤ CE0(θ + ψ1 + ψ2)(x, t)
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(5.49)

∣∣∣ ∫ t

0

∫ ∞

0
G̃y(x, t− s; y)Q(U,Uy)(y, s) dy ds

∣∣∣
≤ Cζ(t)2

∫ t

0

∫ ∞

0
|G̃y(x, t− s; y)|Ψ(y, s) dy ds

≤ Cζ(t)2(θ + ψ1 + ψ2)(x, t)

(5.50)

∣∣∣ ∫ t

0

∫ ∞

0
H(x, t− s; y)Π1Q(U,Uy)y(y, s) dy ds

∣∣∣
≤ Cζ(t)2

∫ t

0

∫ ∞

0
H(x, t− s; y)(θ + ψ1 + ψ2)2 dy ds

≤ Cζ(t)2
∫ t

0

∫ ∞

0
H(x, t− s; y)Υ(y, s) dy ds

≤ Cζ(t)2(θ + ψ1 + ψ2)(x, t)

and, for the boundary term, we apply the estimate (5.42) and Lemma 5.8,
yielding

(5.51)

∣∣∣ ∫ t

0
(G̃y(x, t− s; 0)BU(0, s) +G(x, t− s; 0)AU(0, s)) ds

∣∣∣
≤ C(E0 + ζ(t)2)(θ + ψ1 + ψ2)(x, t)

for the inflow. Whereas, for the outflow case, noting that G(x, t− s; 0) ≡ 0
in the outflow case, we apply the estimate (5.45), (5.46) and Lemma 5.8 to
give the same estimate as above, yielding∣∣∣ ∫ t

0
G̃y(x, t− s; 0)BU(0, s) ds

∣∣∣ ≤ C(E0 + ζ(t)2)(θ + ψ1 + ψ2)(x, t)

where we used (5.46) for |U(0, s)| ≤ ζ(t)(1 + s)−1 and thus by (5.45),
|BU(0, s)| ≤ C(E0 + ζ(t)2)(1 + s)−1−ε.

Therefore, combining the above estimates, we obtain

(5.52) |U(x, t)|(θ + ψ1 + ψ2)−1(x, t) ≤ C(E0 + ζ(t)2).

To derive the same estimate for |Ux(x, t)|, we first obtain by using Propo-
sition 4.1,

|U(t)|2H4 ≤ Ce−θt|U0|2H4 + C

∫ t

0
e−θ(t−τ)

[
|U(τ)|2L2 + Bh(τ)2

]
dτ

≤ C(E0 + ζ(t)2)t−1/2,

where Bh is the boundary function defined in Proposition 4.1, and thus by
the one dimensional Sobolev embedding: |U(t)|W 3,∞ ≤ C|U(t)|H4 ,

(5.53)
|Q(U,Ux)x| ≤ C(ζ2(t) + 4C2E2

0)Υ

|Q(U,Ux)xx| ≤ C(ζ2(t) + 4C2E2
0)Υ

where Υ = t−1/4(θ + ψ1 + ψ2).
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Now again applying Lemmas 5.3-5.8 together with (5.53), (5.44), and
(5.45), we have obtained the desired estimate, that is, bounded by (ζ2(t) +
CE0)(θ+ψ1 +ψ2)(x, t), for most terms in the formulation (5.13) of Ux(x, t),
except one boundary term:∫ t

0
H(x, t− s; 0)|Π1Q(U,Uy)y(0, s)| ds,

which is bounded by CE0(ψ1 + ψ2)(x, t) by using (5.4), (5.46), and Lemma
5.7, and noting that

|Π1Q(U,Uy)y(0, s)| ≤ ζ(t)|h(s)|(θ + ψ1 + ψ2)(0, s) ≤ Cζ(t)|h(s)|.
Therefore, together with (5.52), we have obtained

(5.54) (|U(x, t)|+ |Ux(x, t)|)(θ + ψ1 + ψ2)−1(x, t) ≤ C(E0 + ζ(t)2)

as claimed, which completes the proof of Theorem 1.7. �
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