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Abstract

Building on work of Barker, Humpherys, Lafitte, Rudd, and Zumbrun
in the shock wave case, we study stability of compressive, or “shock-like”,
boundary layers of the isentropic compressible Navier–Stokes equations with
γ-law pressure by a combination of asymptotic ODE estimates and numeri-
cal Evans function computations. Our analytical results include convergence
of the Evans function in the shock and large-amplitude limits and stabil-
ity in the large-amplitude limit, the first rigorous stability result for other
than the nearly-constant case, for all γ ≥ 1. Together with these analyti-
cal results, our numerical investigations indicate stability for γ ∈ [1, 3] for
all compressive boundary-layers, independent of amplitude, save for inflow
layers in the characteristic limit (not treated). Expansive inflow boundary-
layers have been shown to be stable for all amplitudes by Matsumura and
Nishihara using energy estimates. Besides the parameter of amplitude ap-
pearing in the shock case, the boundary-layer case features an additional
parameter measuring displacement of the background profile, which greatly
complicates the resulting case structure. Inflow boundary layers turn out
to have quite delicate stability in both large-displacement (“shock”) and
large-amplitude limits, necessitating the additional use of a mod-two stabil-
ity index studied earlier by Serre and Zumbrun in order to decide stability.
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1. Introduction

Consider the isentropic compressible Navier-Stokes equations

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + p(ρ)x = uxx

(1.1)

on the quarter-plane x, t ≥ 0, where ρ > 0, u, p denote density, velocity,
and pressure at spatial location x and time t, with γ-law pressure function

p(ρ) = a0ρ
γ , a0 > 0, γ ≥ 1, (1.2)

and noncharacteristic constant “inflow” or “outflow” boundary conditions

(ρ, u)(0, t) ≡ (ρ0, u0), u0 > 0 (1.3)

or
u(0, t) ≡ u0 u0 < 0 (1.4)
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as discussed in [26,10,9]. The sign of the velocity at x = 0 determines
whether characteristics of the hyperbolic transport equation ρt + uρx = f
enter the domain (considering f := −ρux as a lower-order forcing term), and
thus whether ρ(0, t) should be prescribed. The variable-coefficient parabolic
equation ρut − uxx = g requires prescription of u(0, t) in either case, with
g := −ρ(u2/2)x − p(ρ)x.

By comparison, the purely hyperbolic isentropic Euler equations

ρt + (ρu)x = 0,

(ρu)t + (ρu2)x + p(ρ)x = 0
(1.5)

have characteristic speeds a = u±
√

p′(ρ), hence, depending on the values
of (ρ, u)(0, t), may have one, two, or no characteristics entering the domain,
hence require one, two, or no prescribed boundary values, respectively. In
particular, there is a discrepancy between the number of prescribed bound-
ary values for (1.1) and (1.5) in the case of mild inflow u0 > 0 small (two
for (1.1), one for (1.5)) or strong outflow u0 < 0 large (one for (1.1), none
for (1.5)), indicating the possibility of boundary layers, or asymptotically-
constant stationary solutions of (1.1):

(ρ, u)(x, t) ≡ (ρ̂, û)(x), lim
z→+∞

(ρ̂, û)(z) = (ρ+, u+). (1.6)

Indeed, existence of such solutions is straightforward to verify by direct
computations on the (scalar) stationary-wave ODE; see [20,26,19,16,9,10]
or Section 2.3. These may be either of “expansive” type, resembling rarefac-
tion wave solutions on the whole line, or “compressive” type, resembling
viscous shock solutions.

A fundamental question is whether or not such boundary layer solutions
are stable in the sense of PDE. For the expansive inflow case, it has been
shown in [19] that all boundary layers are stable, independent of amplitude,
by energy estimates similar to those used to prove the corresponding result
for rarefactions on the whole line. Here, we concentrate on the complemen-
tary, compressive case (though see discussion, Section 1.1).

Linearized and nonlinear stability of general (expansive or compressive)
small-amplitude noncharacteristic boundary layers of (1.1) have been es-
tablished in [19,24,16,10]. More generally, it has been shown in [10,27,21]
that linearized and nonlinear stability are equivalent to spectral stability,
or nonexistence of nonstable (nonnegative real part) eigenvalues of the lin-
earized operator about the layer, for boundary layers of arbitrary amplitude.
However, up to now the spectral stability of large-amplitude compressive
boundary layers has remained largely undetermined.1

We resolve this question in the present paper by carrying out a sys-
tematic global study classifying the stability of all possible compressive

1 See, however, the investigations of [26] on stability index, or parity of the
number of nonstable eigenvalues of the linearized operator about the layer.
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boundary-layer solutions of (1.1). Our method of analysis is by a combi-
nation of asymptotic ODE techniques and numerical Evans function com-
putations, following a basic approach introduced recently in [3,12] for the
study of the closely related shock wave case. Here, there are interesting
complications associated with the richer class of boundary-layer solutions
as compared to possible shock solutions, the delicate stability properties
of the inflow case, and, in the outflow case, the nonstandard eigenvalue
problem arising from reduction to Lagrangian coordinates.

As in [12], our strategy is to carry out rigorous analyses of asymptotic
limits in the parameter space, thus truncating the computational domain,
then as in [3] carry out an exhaustive numerical study on the remaining
compact parameter regime. In the course of the first, analytical, step, we
obtain convergence of the Evans function in the shock- and large-amplitude
limits, and stability in the large-amplitude limit, for all γ ≥ 1, the first rig-
orous stability result for other than the nearly-constant case. For a detailed
description of our results both analytical and numerical see Section 3.

Our ultimate conclusions are, for both inflow and outflow conditions,
that compressive boundary layers that are uniformly noncharacteristic in
a sense to be made precise later (specifically, v+ bounded away from 1,
in the terminology of Section 2.3) are unconditionally stable, independent
of amplitude, on the physical range γ ∈ [1, 3] considered in our numerical
computations. We show by energy estimates that outflow boundary layers
are stable also in the characteristic limit. The omitted characteristic limit
in the inflow case, analogous to the small-amplitude limit for the shock case
should be treatable by the singular perturbation methods used in [23,7] to
treat the small-amplitude shock case; however, we do not consider this case
here.

In the inflow case, our results, together with those of [19], completely
resolve the question of stability of isentropic (expansive or compressive)
uniformly noncharacteristic boundary layers for γ ∈ [1, 3], yielding uncon-
ditional stability independent of amplitude or type. In the outflow case, we
show stability of all compressive boundary layers without the assumption
of uniform noncharacteristicity.

1.1. Discussion and open problems

The small-amplitude results obtained in [19,16,24,10] are of “general
type”, making little use of the specific structure of the equations. Essentially,
they all require that the difference between the boundary layer solution
and its constant limit at |x| = ∞ be small in L1 (alternatively, as in [19,
24], the more or less equivalent condition that xv̂′(x) be small in L1; for
monotone profiles,

∫ +∞
0

|v̂ − v+|dx = ±
∫ +∞
0

(v̂ − v+)dx = ∓
∫ +∞
0

xv̂′dx).
As pointed out in [10], this is the “gap lemma” regime in which standard
asymptotic ODE estimates show that behavior is essentially governed by the
limiting constant-coefficient equations at infinity, and thus stability may be
concluded immediately from stability (computable by exact solution) of the
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constant layer identically equal to the limiting state. These methods do
not suffice to treat either the (small-amplitude) characteristic limit or the
large-amplitude case, which require more refined analyses. In particular, up
to now, there was no analysis considering boundary layers approaching a full
viscous shock profile, not even a profile of vanishingly small amplitude. Our
analysis of this limit indicates why: the appearance of a small eigenvalue
near zero prevents uniform estimates such as would be obtained by usual
types of energy estimates.

By contrast, the large-amplitude results obtained here and (for expansive
layers) in [19] make use of the specific form of the equations. In particular,
both analyses make use of the advantageous structure in Lagrangian coor-
dinates. The possibility to work in Lagrangian coordinates was first pointed
out by Matsumura–Nishihara [19] in the inflow case, for which the station-
ary boundary transforms to a moving boundary with constant speed. Here
we show how to convert the outflow problem also to Lagrangian coordinates,
by converting the resulting variable-speed boundary problem to a constant-
speed one with modified boundary condition. This trick seems of general
use. In particular, it might be possible that the energy methods of [19]
applied in this framework would yield unconditional stability of expansive
boundary-layers, completing the analysis of the outflow case. Alternatively,
this case could be attacked by the methods of the present paper. These are
two interesting directions for future investigation.

In the outflow case, a further transformation to the “balanced flux form”
introduced in [23], in which the equations take the form of the integrated
shock equations, allows us to establish stability in the characteristic limit
by energy estimates like those of [18] in the shock case. The treatment of
the characteristic inflow limit by the methods of [23,7] seems to be another
extremely interesting direction for future study.

Finally, we point to the extension of the present methods to full (non-
isentropic) gas dynamics and multidimensions as the two outstanding open
problems in this area.

New features of the present analysis as compared to the shock case
considered in [3,12] are the presence of two parameters, strength and dis-
placement, indexing possible boundary layers, vs. the single parameter of
strength in the shock case, and the fact that the limiting equations in several
asymptotic regimes possess zero eigenvalues, making the limiting stability
analysis much more delicate than in the shock case. The latter is seen, for
example, in the limit as a compressive boundary layer approaches a full
stationary shock solution, which we show to be spectrally equivalent to the
situation of unintegrated shock equations on the whole line. As the equa-
tions on the line possess always a translational eigenvalue at λ = 0, we may
conclude existence of a zero at λ = 0 for the limiting equations and thus a
zero near λ = 0 as we approach this limit, which could be stable or unsta-
ble. Similarly, the Evans function in the inflow case is shown to converge in
the large-strength limit to a function with a zero at λ = 0, with the same
conclusions; see Section 3 for further details.
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To deal with this latter circumstance, we find it necessary to make use
also of topological information provided by the stability index of [22,8,26],
a mod-two index counting the parity of the number of unstable eigenval-
ues. Together with the information that there is at most one unstable zero,
the parity information provided by the stability index is sufficient to deter-
mine whether an unstable zero does or does not occur. Remarkably, in the
isentropic case we are able to compute explicitly the stability index for all
parameter values, recovering results obtained by indirect argument in [26],
and thereby completing the stability analysis in the presence of a single
possibly unstable zero.

2. Preliminaries

We begin by carrying out a number of preliminary steps similar to those
carried out in [3,12] for the shock case, but complicated somewhat by the
need to treat the boundary and its different conditions in the inflow and
outflow case.

2.1. Lagrangian formulation.

The analyses of [12,3] in the shock wave case were carried out in La-
grangian coordinates, which proved to be particularly convenient. Our first
step, therefore, is to convert the Eulerian formulation (1.1) into Lagrangian
coordinates similar to those of the shock case. However, standard Lagrangian
coordinates in which the spatial variable x̃ is constant on particle paths are
not appropriate for the boundary-value problem with inflow/outflow. We
therefore introduce instead “psuedo-Lagrangian” coordinates

x̃ :=
∫ x

0

ρ(y, t) dy, t̃ := t, (2.1)

in which the physical boundary x = 0 remains fixed at x̃ = 0.
Straightforward calculation reveals that in these coordinates (1.1) be-

comes

vt − svx̃ − ux̃ = σ(t)vx̃

ut − sux̃ + p(v)x̃ −
(ux̃

v

)
x̃

= σ(t)ux̃

(2.2)

on x̃ > 0, where

s = −u0

v0
, σ(t) = m(t)−s, m(t) := −ρ(0, t)u(0, t) = −u(0, t)/v(0, t), (2.3)

so that m(t) is the negative of the momentum at the boundary x = x̃ = 0.
From now on, we drop the tilde, denoting x̃ simply as x.
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2.1.1. Inflow case

For the inflow case, u0 > 0 so we may prescribe two boundary conditions
on (2.2), namely

v|x=0 = v0 > 0, u|x=0 = u0 > 0 (2.4)

where both u0, v0 are constant.

2.1.2. Outflow case

For the outflow case, u0 < 0 so we may prescribe only one boundary
condition on (2.2), namely

u|x=0 = u0 < 0. (2.5)

Thus v(0, t) is an unknown in the problem, which makes the analysis of the
outflow case more subtle than that of the inflow case.

2.2. Rescaled coordinates

Our next step is to rescale the equations in such a way that coefficients
remain bounded in the strong boundary-layer limit. Consider the change of
variables

(x, t, v, u) → (−εsx, εs2t, v/ε,−u/(εs)), (2.6)

where ε is chosen so that

0 < v+ < v− = 1, (2.7)

where v+ is the limit as x → +∞ of the boundary layer (stationary solution)
(v̂, û) under consideration and v− is the limit as x → −∞ of its continuation
into x < 0 as a solution of the standing-wave ODE (discussed in more detail
just below). Under the rescaling (2.6), (2.2) becomes

vt + vx − ux = σ(t)vx,

ut + ux + (av−γ)x = σ(t)ux +
(ux

v

)
x

,
(2.8)

where a = a0ε
−γ−1s−2, σ = −u(0, t)/v(0, t) + 1, on respective domains

x > 0 (inflow case) x < 0 (outflow case).
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2.3. Stationary boundary layers

Stationary boundary layers

(v, u)(x, t) = (v̂, û)(x)

of (2.8) satisfy

(a) v̂′ − û′ = 0

(b) û′ + (av̂−γ)′ =
(

û′

v̂

)′
(c) (v̂, û)|x=0 = (v0, u0)
(d) lim

x→±∞
(v̂, û) = (v, u)±,

(2.9)

where (d) is imposed at +∞ in the inflow case, −∞ in the outflow case and
(imposing σ = 0) u0 = v0. Using (2.9)(a) we can reduce this to the study
of the scalar ODE,

v̂′ + (av̂−γ)′ =
(

v̂′

v̂

)′
(2.10)

with the same boundary conditions at x = 0 and x = ±∞ as above. Taking
the antiderivative of this equation yields

v̂′ = HC(v̂) = v̂(v̂ + av̂−γ + C), (2.11)

where C is a constant of integration.
Noting that HC is convex, we find that there are precisely two rest

points of (2.11) whenever boundary-layer profiles exist, except at the single
parameter value on the boundary between existence and nonexistence of
solutions, for which there is a degenerate rest point (double root of HC).
Ignoring this degenerate case, we see that boundary layers terminating at
rest point v+ as x → +∞ must either continue backward into x < 0 to
terminate at a second rest point v− as x → −∞, or else blow up to infinity
as x → −∞. The first case we shall call compressive, the second expansive.

In the first case, the extended solution on the whole line may be recog-
nized as a standing viscous shock wave; that is, for isentropic gas dynamics,
compressive boundary layers are just restrictions to the half-line x ≥ 0 [resp.
x ≤ 0] of standing shock waves. In the second case, as discussed in [19], the
boundary layers are somewhat analogous to rarefaction waves on the whole
line. From here on, we concentrate exclusively on the compressive case.

With the choice v− = 1, we may carry out the integration of (2.10) once
more, this time as a definite integral from −∞ to x, to obtain

v̂′ = H(v̂) = v̂(v̂ − 1 + a(v̂−γ − 1)), (2.12)

where a is found by letting x → +∞, yielding

a = − v+ − 1
v−γ
+ − 1

= vγ
+

1− v+

1− vγ
+

; (2.13)

in particular, a ∼ vγ
+ in the large boundary layer limit v+ → 0. This is

exactly the equation for viscous shock profiles considered in [12].
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2.4. Eigenvalue equations

Linearizing (2.8) about (v̂, û), we obtain

ṽt + ṽx − ũx =
ṽ(0, t)

v0
v̂′

ũt + ũx −
(

h(v̂)
v̂γ+1

ṽ

)
x

−
(

ũx

v̂

)
x

=
ṽ(0, t)

v0
û′

(ṽ, ũ)|x=0 = (ṽ0(t), 0)
lim

x→+∞
(ṽ, ũ) = (0, 0),

(2.14)

where v0 = v̂(0),

h(v̂) = −v̂γ+1 + a(γ − 1) + (a + 1)v̂γ (2.15)

and ṽ, ũ denote perturbations of v̂, û.

2.4.1. Inflow case

In the inflow case, ũ(0, t) = ṽ(0, t) ≡ 0, yielding

λv + vx − ux = 0

λu + ux −
(

h(v̂)
v̂γ+1

v

)
x

=
(ux

v̂

)
x

(2.16)

on x > 0, with full Dirichlet conditions (v, u)|x=0 = (0, 0).

2.4.2. Outflow case

Letting Ũ := (ṽ, ũ)T , Û := (v̂, û)T , and denoting by L the operator
associated to the linearization about boundary-layer (v̂, û),

L := −∂xA(x) + ∂xB(x)∂x, (2.17)

where

A(x) =
(

1 −1
−h(v̂)/v̂γ+1 1

)
, B(x) =

(
0 0
0 v̂−1

)
, (2.18)

we have Ũt − LŨ = ṽ0(t)
v0

Û ′(x), with associated eigenvalue equation

λŨ − LŨ =
ṽ(0, λ)

v0
Û ′(x), (2.19)

where Û ′ = (v̂′, û′).
To eliminate the nonstandard inhomogeneous term on the righthand side

of (2.19), we introduce a “good unknown” (c.f. [2,6,11,14])

U := Ũ − λ−1 ṽ(0, λ)
v0

Û ′(x). (2.20)
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Since LÛ ′ = 0 by differentiation of the boundary-layer equation, the system
expressed in the good unknown becomes simply

λU − LU = 0 in x < 0, (2.21)

or, equivalently, (2.16) with boundary conditions

U |x=0 =
ṽ(0, λ)

v0
(1− λ−1v̂′(0), −λ−1û′(0))T

lim
x→+∞

U = 0.
(2.22)

Solving for u|x=0 in terms of v|x=0 and recalling that v̂′ = û′ by (2.12), we
obtain finally

u|x=0 = α(λ)v|x=0, α(λ) :=
−v̂′(0)

λ− v̂′(0)
. (2.23)

Remark 2.1. Problems (2.19) and (2.21)–(2.16) are evidently equivalent for
all λ 6= 0, but are not equivalent for λ = 0 (for which the change of coor-
dinates to good unknown becomes singular). For, U = Û ′ by inspection is
a solution of (2.21), but is not a solution of (2.19). That is, we have intro-
duced by this transformation a spurious eigenvalue at λ = 0, which we shall
have to account for later.

2.5. Preliminary estimates

Proposition 2.1 ([3]). For each γ ≥ 1, 0 < v+ ≤ 1/12 < v0 < 1, (2.12)
has a unique (up to translation) monotone decreasing solution v̂ decaying
to endstates v± with a uniform exponential rate for v+ uniformly bounded
away from v− = 1. In particular, for 0 < v+ ≤ 1/12,

|v̂(x)− v+| ≤ Ce−
3(x−δ)

4 x ≥ δ, (2.24a)

|v̂(x)− v−| ≤ Ce
(x−δ)

2 x ≤ δ, (2.24b)

where δ is defined by v̂(δ) = (v− + v+)/2.

Proof. Existence and monotonicity follow trivially by the fact that (2.12)
is a scalar first-order ODE with convex righthand side. Exponential conver-

gence as x → +∞ follows by H(v, v+) = (v−v+)
(
v−
(

1−v+
1−vγ

+

)(
1−
(

v+
v

)γ

1−
(

v+
v

) )),
whence v− γ ≤ H(v,v+)

v−v+
≤ v− (1− v+) by 1 ≤ 1−xγ

1−x ≤ γ for 0 ≤ x ≤ 1. Ex-
ponential convergence as x → −∞ follows by a similar, but more straight-
forward calculation, where, in the “centered” coordinate x̃ := x − δ, the
constants C > 0 are uniform with respect to v+, v0. See [3] for details.

The following estimates are established in Appendices A and B.



Stability of boundary layers 11

Proposition 2.2. Nonstable eigenvalues λ of (2.16), i.e., eigenvalues with
nonnegative real part, are confined for any 0 < v+ ≤ 1 to the region

Λ := {λ : <e(λ) + |=m(λ)| ≤ 1
2

(
2
√

γ + 1
)2

} (2.25)

for the inflow case, and to the region

Λ := {λ : <e(λ) + |=m(λ)| ≤ max{3
√

2
2

, 3γ +
3
8
} (2.26)

for the outflow case.

2.6. Evans function formulation

Setting w := u′

v̂ + h(v̂)
v̂γ+1 v−u, we may express (2.16) as a first-order system

W ′ = A(x, λ)W, (2.27)

where

A(x, λ) =

0 λ λ
0 0 λ
v̂ v̂ f(v̂)− λ

 , W =

 w
u− v

v

 , ′ = d

dx
, (2.28)

where
f(v̂) = v̂ − v̂−γh(v̂) = 2v̂ − a(γ − 1)v̂−γ − (a + 1), (2.29)

with h as in (2.15) and a as in (2.13), or, equivalently,

f(v̂) = 2v̂ − (γ − 1)
(1− v+

1− vγ
+

)(v+

v̂

)γ

−
(1− v+

1− vγ
+

)
vγ
+ − 1. (2.30)

Remark 2.2. The coefficient matrix A may be recognized as a rescaled ver-
sion of the coefficient matrix A appearing in the shock case [3,12], with

A =

1 0 0
0 1 0
0 0 λ

A

1 0 0
0 1 0
0 0 1/λ

 .

The choice of variables (w, u−v, v)T may be recognized as the modified flux
form of [23], adapted to the hyperbolic–parabolic case.

Eigenvalues of (2.16) correspond to nontrivial solutions W for which
the boundary conditions W (±∞) = 0 are satisfied. Because A(x, λ) as a
function of v̂ is asymptotically constant in x, the behavior near x = ±∞ of
solutions of (2.28) is governed by the limiting constant-coefficient systems

W ′ = A±(λ)W, A±(λ) := A(±∞, λ), (2.31)

from which we readily find on the (nonstable) domain <λ ≥ 0, λ 6= 0 of in-
terest that there is a one-dimensional unstable manifold W−

1 (x) of solutions
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decaying at x = −∞ and a two-dimensional stable manifold W+
2 (x)∧W+

3 (x)
of solutions decaying at x = +∞, analytic in λ, with asymptotic behavior

W±
j (x, λ) ∼ eµ±(λ)xV ±

j (λ) (2.32)

as x → ±∞, where µ±(λ) and V ±
j (λ) are eigenvalues and associated ana-

lytically chosen eigenvectors of the limiting coefficient matrices A±(λ). A
standard choice of eigenvectors V ±

j [8,5,4,13], uniquely specifying W±
j (up

to constant factor) is obtained by Kato’s ODE [15], a linear, analytic ODE
whose solution can be alternatively characterized by the property that there
exist corresponding left eigenvectors Ṽ ±

j such that

(Ṽj · Vj)± ≡ constant, (Ṽj · V̇j)± ≡ 0, (2.33)

where “ ˙ ” denotes d/dλ; for further discussion, see [15,8,13].

2.6.1. Inflow case

In the inflow case, 0 ≤ x ≤ +∞, we define the Evans function D as the
analytic function

Din(λ) := det(W 0
1 ,W+

2 ,W+
3 )|x=0, (2.34)

where W+
j are as defined above, and W 0

1 is a solution satisfying the bound-
ary conditions (v, u) = (0, 0) at x = 0, specifically,

W 0
1 |x=0 = (1, 0, 0)T . (2.35)

With this definition, eigenvalues of L correspond to zeroes of D both in
location and multiplicity; moreover, the Evans function extends analytically
to λ = 0, i.e., to all of <λ ≥ 0. See [1,8,17,28] for further details.

Equivalently, following [22,3], we may express the Evans function as

Din(λ) =
(
W̃+

1 ·W 0
1

)
|x=0

, (2.36)

where W̃+
1 (x) spans the one-dimensional unstable manifold of solutions

decaying at x = +∞ (necessarily orthogonal to the span of W+
2 (x) and

W+
3 (x)) of the adjoint eigenvalue ODE

W̃ ′ = −A(x, λ)∗W̃ . (2.37)

The simpler representation (2.36) is the one that we shall use here.
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2.6.2. Outflow case

In the outflow case, −∞ ≤ x ≤ 0, we define the Evans function as

Dout(λ) := det(W−
1 ,W 0

2 ,W 0
3 )|x=0, (2.38)

where W−
1 is as defined above, and W 0

j are a basis of solutions of (2.27)
satisfying the boundary conditions (2.23), specifically,

W 0
2 |x=0 = (1, 0, 0)T , W 0

3 |x=0 =
(
0,− λ

λ− v̂′(0)
, 1
)T

, (2.39)

or, equivalently, as
Dout(λ) =

(
W̃ 0

1 ·W−
1

)
|x=0

, (2.40)

where

W̃ 0
1 =

(
0,−1,− λ̄

λ̄− v̂′(0)

)T

(2.41)

is the solution of the adjoint eigenvalue ODE dual to W 0
2 and W 0

3 .

Remark 2.3. As discussed in Remark 2.1, Dout has a spurious zero at λ = 0
introduced by the coordinate change to “good unknown”.

3. Main results

We can now state precisely our main results.

3.1. The strong layer limit

Taking a formal limit as v+ → 0 of the rescaled equations (2.8) and
recalling that a ∼ vγ

+, we obtain a limiting evolution equation

vt + vx − ux = 0,

ut + ux =
(ux

v

)
x

(3.1)

corresponding to a pressureless gas, or γ = 0.
The associated limiting profile equation v′ = v(v−1) has explicit solution

v̂0(x) =
1− tanh

(
x−δ
2

)
2

, (3.2)

v̂0(0) = 1−tanh(−δ/2)
2 = v0; the limiting eigenvalue system is

W ′ = A0(x, λ)W, A0(x, λ) =

 0 λ λ
0 0 λ
v̂0 v̂0 f0(v̂0)− λ

 , (3.3)

where f0(v̂0) = 2v̂0 − 1 = − tanh
(

x−δ
2

)
.
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Convergence of the profile and eigenvalue equations is uniform on any
interval v̂0 ≥ ε > 0, or, equivalently, x− δ ≤ L, for L any positive constant,
where the sequence of coefficient matrices is therefore a regular perturbation
of its limit. Following [12], we call x ≤ L+δ the “regular region”. For v̂0 → 0
on the other hand, or x →∞, the limit is less well-behaved, as may be seen
by the fact that ∂f/∂v̂ ∼ v̂−1 as v̂ → v+, a consequence of the appearance
of
( v+

v̂

)
in the expression (2.30) for f . Similarly, A(x, λ) does not converge

to A+(λ) as x → +∞ with uniform exponential rate independent of v+,
γ, but rather as Cv̂−1e−x/2. As in the shock case, this makes problematic
the treatment of x ≥ L + δ. Following [12] we call x ≥ L + δ the “singular
region”.

To put things in another way, the effects of pressure are not lost as
v+ → 0, but rather pushed to x = +∞, where they must be studied by a
careful boundary-layer analysis. (Note: this is not a boundary-layer in the
same sense as the background solution, nor is it a singular perturbation in
the usual sense, at least as we have framed the problem here.)

Remark 3.1. A significant difference from the shock case of [12] is the ap-
pearance of the second parameter v0 that survives in the v+ → 0 limit.

3.1.1. Inflow case

Observe that the limiting coefficient matrix

A0
+(λ) := A0(+∞, λ) =

0 λ λ
0 0 λ
0 0 −1− λ

 , (3.4)

is nonhyperbolic (in ODE sense) for all λ, having eigenvalues 0, 0,−1−λ; in
particular, the stable manifold drops to dimension one in the limit v+ → 0,
and so the prescription of an associated Evans function is underdetermined.

This difficulty is resolved by a careful boundary-layer analysis in [12],
determining a special “slow stable” mode

V2 := (1, 0, 0)T

augmenting the “fast stable” mode

V3 := (λ/µ)(λ/µ + 1), λ/µ, 1)T

associated with the single stable eigenvalue µ = −1− λ of A0
+. This deter-

mines a limiting Evans function D0
in(λ) by the prescription (2.34), (2.32) of

Section 2.6, or alternatively via (2.36) as

D0
in(λ) =

(
W̃ 0+

1 ·W 00
1

)
|x=0

, (3.5)

with W̃ 0+
1 defined analogously as a solution of the adjoint limiting system

lying asymptotically at x = +∞ in direction

Ṽ1 := (0,−1, λ̄/µ̄)T (3.6)
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orthogonal to the span of V2 and V3, where “ ¯ ” denotes complex conju-
gate, and W 00

1 defined as the solution of the limiting eigenvalue equations
satisfying boundary condition (2.35), i.e., (W 00

1 )|x=0 = (1, 0, 0)T .

3.1.2. Outflow case

We have no such difficulties in the outflow case, since A0
− = A0(−∞)

remains uniformly hyperbolic, and we may define a limiting Evans func-
tion D0

out directly by (2.38), (2.32), (2.41), at least so long as v0 remains
bounded from zero. (As perhaps already hinted by Remark 3.1, there are
complications associated with the double limit (v0, v+) → (0, 0).)

3.2. Analytical results

With the above definitions, we have the following main theorems char-
acterizing the strong-layer limit v+ → 0 as well as the limits v0 → 0, 1.

Theorem 3.1. For v0 ≥ η > 0 and λ in any compact subset of <λ ≥ 0,
Din(λ) and Dout(λ) converge uniformly to D0

in(λ) and D0
out(λ) as v+ → 0.

Theorem 3.2. For λ in any compact subset of <λ ≥ 0 and v+ bounded from
1, Din(λ), appropriately renormalized by a nonvanishing analytic factor,
converges uniformly as v0 → 1 to the Evans function for the (unintegrated)
eigenvalue equations of the associated viscous shock wave connecting v− = 1
to v+; likewise, Dout(λ), appropriately renormalized, converges uniformly as
v0 → 0 to the same limit for λ uniformly bounded away from zero.

By similar computations, we obtain also the following direct result.

Theorem 3.3. Inflow boundary layers are stable for v0 sufficiently small.

We have also the following parity information, obtained by stability-
index computations as in [26].2

Lemma 3.1 (Stability index). For any γ ≥ 1, v0, and v+, Din(0) 6=
0, hence the number of unstable roots of Din is even; on the other hand
D0

in(0) = 0 and limv0→0 D0
in(λ) ≡ 0. Likewise, (D0

in)′(0), D′
out(0) 6= 0,

(D0
out)

′(0) 6= 0, hence the number of nonzero unstable roots of D0
in, Dout,

D0
out is even.

Finally, we have the following auxiliary results established by energy
estimates in Appendices C, D, E, and F.

Proposition 3.1. The limiting Evans function D0
in is nonzero for λ 6= 0 on

<eλ ≥ 0, for all 1 > v0 > 0. The limiting Evans function D0
out is nonzero

for λ 6= 0 on <eλ ≥ 0, for 1 > v0 > v∗, where v∗ ≈ 0.0899 is determined by
the functional equation v∗ = e−2/(1−v∗)

2
.

2 Indeed, these may be deduced from the results of [26], taking account of the
difference between Eulerian and Lagrangian coordinates.
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Proposition 3.2. Compressive outflow boundary layers are stable for v+

sufficiently close to 1.

Proposition 3.3 ([19]). Expansive inflow boundary layers are stable for
all parameter values.

Collecting information, we have the following analytical stability results.

Corollary 3.1. For v0 or v+ sufficiently small, compressive inflow bound-
ary layers are stable. For v0 sufficiently small, v+ sufficiently close to 1, or
v0 > v∗ ≈ .0899 and v+ sufficiently small, compressive outflow layers are
stable. Expansive inflow boundary layers are stable for all parameter values.

Stability of inflow boundary layers in the characteristic limit v+ → 1
is not treated here, but should be treatable analytically by the asymptotic
ODE methods used in [23,7] to study the small-amplitude (characteristic)
shock limit. This would be an interesting direction for future investigation.
The characteristic limit is not accessible numerically, since the exponential
decay rate of the background profile decays to zero as |1 − v+|, so that
the numerical domain of integration needed to resolve the eigenvalue ODE
becomes infinitely large as v+ → 1.

Remark 3.2. Stability in the noncharacteristic weak layer limit v0 → v+

[resp. 1] in the inflow [outflow] case, for v+ bounded away from the strong
and characteristic limits 0 and 1 has already been established in [10,24].
Indeed, it is shown in [10] that the Evans function converges to that for a
constant solution, and this is a regular perturbation.

Remark 3.3. Stability of D0
in, D0

out may also be determined numerically, in
particular in the region v0 ≤ v∗ not covered by Proposition 3.1.

3.3. Numerical results

The asymptotic results of Section 3.2 reduce the problem of (uniformly
noncharacteristic, v+ bounded away from v− = 1) boundary layer stability
to a bounded parameter range on which the Evans function may be effi-
ciently computed numerically in a way that is uniformly well-conditioned;
see [5]. Specifically, we may map a semicircle

∂
(
{<λ ≥ 0} ∩ {|λ| ≤ 10}

)
enclosing Λ for γ ∈ [1, 3] by D0

in, D0
out, Din, Dout and compute the winding

number of its image about the origin to determine the number of zeroes of
the various Evans functions within the semicircle, and thus within Λ. For
details of the numerical algorithm, see [3,5].

In all cases, we obtain results consistent with stability; that is, a winding
number of zero or one, depending on the situation. In the case of a single
nonzero root, we know from our limiting analysis that this root may be quite
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near λ = 0, making delicate the direct determination of its stability; how-
ever, in this case we do not attempt to determine the stability numerically,
but rely on the analytically computed stability index to conclude stability.
See Section 6 for further details.

3.4. Conclusions

As in the shock case [3,12], our results indicate unconditional stability
of uniformly noncharacteristic boundary-layers for isentropic Navier–Stokes
equations (and, for outflow layer, in the characteristic limit as well), de-
spite the additional complexity of the boundary-layer case. However, two
additional comments are in order, perhaps related. First, we point out that
the apparent symmetry of Theorem 3.2 in the v0 → 0 outflow and v0 → 1
inflow limits is somewhat misleading. For, the limiting, shock Evans func-
tion possesses a single zero at λ = 0, indicating that stability of inflow
boundary layers is somewhat delicate as v0 → 1: specifically, they have an
eigenvalue near zero, which, though stable, is (since vanishingly small in the
shock limit) not “very” stable. Likewise, the limiting Evans function D0

in as
v+ → 0 possesses a zero at λ = 0, with the same conclusions.

By contrast, the Evans functions of outflow boundary layers possess a
spurious zero at λ = 0, so that convergence to the shock or strong-layer limit
in this case implies the absence of any eigenvalues near zero, or “uniform”
stability as v+ → 0. In this sense, strong outflow boundary layers appear
to be more stable than inflow boundary layers. One may make interesting
comparisons to physical attempts to stabilize laminar flow along an air- or
hydro-foil by suction (outflow) along the boundary. See, for example, the
interesting treatise [25].

Second, we point out the result of instability obtained in [26] for inflow
boundary-layers of the full (nonisentropic) ideal-gas equations for appropri-
ate ratio of the coefficients of viscosity and heat conduction. This suggests
that the small eigenvalues of the strong inflow-layer limit may in some cases
perturb to the unstable side. It would be very interesting to make these
connections more precise, as we hope to do in future work.

4. Boundary-layer analysis

Since the structure of (2.28) is essentially the same as that of the shock
case, we may follow exactly the treatment in [12] analyzing the flow of
(2.28) in the singular region x → +∞. As we shall need the details for
further computations (specifically, the proof of Theorem 3.3), we repeat the
analysis here in full.

Our starting point is the observation that

A(x, λ) =

0 λ λ
0 0 λ
v̂ v̂ f(v̂)− λ

 (4.1)
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is approximately block upper-triangular for v̂ sufficiently small, with diag-

onal blocks
(

0 λ
0 0

)
and

(
f(v̂)− λ

)
that are uniformly spectrally separated

on <eλ ≥ 0, as follows by

f(v̂) ≤ v̂ − 1 ≤ −3/4. (4.2)

We exploit this structure by a judicious coordinate change converting (2.28)
to a system in exact upper triangular form, for which the decoupled “slow”
upper lefthand 2 × 2 block undergoes a regular perturbation that can be
analyzed by standard tools introduced in [23]. Meanwhile, the fast, lower
righthand 1× 1 block, since scalar, may be solved exactly.

4.1. Preliminary transformation

We first block upper-triangularize by a static (constant) coordinate trans-
formation the limiting matrix

A+ = A(+∞, λ) =

 0 λ λ
0 0 λ
v+ v+ f(v+)− λ

 (4.3)

at x = +∞ using special block lower-triangular transformations

R+ :=
(

I 0
v+θ+ 1

)
, L+ := R−1

+ =
(

I 0
−v+θ+ 1

)
, (4.4)

where I denotes the 2 × 2 identity matrix and θ+ ∈ C1×2 is a 1 × 2 row
vector.

Lemma 4.1. On any compact subset of <eλ ≥ 0, for each v+ > 0 suf-
ficiently small, there exists a unique θ+ = θ+(v+, λ) such that Â+ :=
L+A+R+ is upper block-triangular,

Â+ =
(

λ(J + v+11θ+) λ11
0 f(v+)− λ− λv+θ+11

)
, (4.5)

where J =
(

0 1
0 0

)
and 11 =

(
1
1

)
, satisfying a uniform bound

|θ+| ≤ C. (4.6)

Proof. Setting the 2−1 block of Â+ to zero, we obtain the matrix equation

θ+(aI − λJ) = −11T + λv+θ+11θ+,

where a = f(v+)− λ, or, equivalently, the fixed-point equation

θ+ =
(
− 11T + λv+θ+11θ+

)
(aI − λJ)−1. (4.7)

By det(aI − λJ) = a2 6= 0, (aI − λJ)−1 is uniformly bounded on compact
subsets of <eλ ≥ 0 (indeed, it is uniformly bounded on all of <eλ ≥ 0),
whence, for |λ| bounded and v+ sufficiently small, there exists a unique
solution by the Contraction Mapping Theorem, which, moreover, satisfies
(4.6).
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4.2. Dynamic triangularization

Defining now Y := L+W and

Â(x, λ) = L+A(x, λ)R+ = λ(J + v+11θ+) λ11
(v̂ − v+)11T − v+(f(v̂)− f(v+))θ+ f(v̂)− λ− λv+θ+11

 ,

we have converted (2.28) to an asymptotically block upper-triangular system

Y ′ = Â(x, λ)Y, (4.8)

with Â+ = Â(+∞, λ) as in (4.5). Our next step is to choose a dynamic
transformation of the same form

R̃ :=
(

I 0
Θ̃ 1

)
, L̃ := R̃−1 =

(
I 0
−Θ̃ 1

)
, (4.9)

converting (4.8) to an exactly block upper-triangular system, with Θ̃ uni-
formly exponentially decaying at x = +∞: that is, a regular perturbation of
the identity.

Lemma 4.2. On any compact subset of <eλ ≥ 0, for L sufficiently large
and each v+ > 0 sufficiently small, there exists a unique Θ̃ = Θ̃(x, λ, v+)
such that Ã := L̃Â(x, λ)R̃ + L̃′R̃ is upper block-triangular,

Ã =

(
λ(J + v+11θ+ + 11Θ̃) λ11

0 f(v̂)− λ− λv+θ+11− λΘ̃11

)
, (4.10)

and Θ̃(L) = 0, satisfying a uniform bound

|Θ̃(x, λ, v+)| ≤ Ce−ηx, η > 0, x ≥ L, (4.11)

independent of the choice of L, v+.

Proof. Setting the 2− 1 block of Ã to zero and computing

L̃′R̃ =
(

0 0
−Θ̃′ 0

)(
I 0
Θ̃ I

)
=
(

0 0
−Θ̃′ 0,

)
we obtain the matrix equation

Θ̃′ − Θ̃
(
aI − λ(J + v+11θ+)

)
= ζ + λΘ̃11Θ̃, (4.12)

where a(x) := f(v̂)− λ− λv+θ+11 and the forcing term

ζ := −(v̂ − v+)11T + v+(f(v̂)− f(v+))θ+
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by derivative estimate df/dv̂ ≤ Cv̂−1 together with the Mean Value Theo-
rem is uniformly exponentially decaying:

|ζ| ≤ C|v̂ − v+| ≤ C2e
−ηx, η > 0. (4.13)

Initializing Θ̃(L) = 0, we obtain by Duhamel’s Principle/Variation of
Constants the representation (supressing the argument λ)

Θ̃(x) =
∫ x

L

Sy→x(ζ + λΘ̃11Θ̃)(y) dy, (4.14)

where Sy→x is the solution operator for the homogeneous equation

Θ̃′ − Θ̃
(
aI − λ(J + v+11θ+)

)
= 0,

or, explicitly,
Sy→x = e

∫ x
y

a(y)dye−λ(J+v+11θ+)(x−y).

For |λ| bounded and v+ sufficiently small, we have by matrix perturba-
tion theory that the eigenvalues of −λ(J +v+11θ+) are small and the entries
are bounded, hence

|e−λ(J+v+11θ+)z| ≤ Ceεz

for z ≥ 0. Recalling the uniform spectral gap <e(a) = f(v̂) − <eλ ≤ −1/2
for <eλ ≥ 0, we thus have

|Sy→x| ≤ Ce−η(x−y) (4.15)

for some C, η > 0. Combining (4.13) and (4.15), we obtain∣∣∣ ∫ x

L

Sy→xζ(y) dy
∣∣∣ ≤ ∫ x

L

C2e
−η(x−y)e−(η/2)ydy

= C3e
−(η/2)x.

(4.16)

Defining Θ̃(x) =: θ̃(x)e−(η/2)x and recalling (4.14) we thus have

θ̃(x) = f + e(η/2)x

∫ x

L

Sy→xe−ηyλθ̃11θ̃(y) dy, (4.17)

where f := e(η/2)x
∫ x

L
Sy→xζ(y) dy is uniformly bounded, |f | ≤ C3, and

e(η/2)x
∫ x

L
Sy→xe−ηyλθ̃11θ̃(y) dy is contractive with arbitrarily small contrac-

tion constant ε > 0 in L∞[L,+∞) for |θ̃| ≤ 2C3 for L sufficiently large, by
the calculation∣∣∣e(η/2)x

∫ x

L

Sy→xe−ηyλθ̃111θ̃1(y)− e(η/2)x

∫ x

L

Sy→xe−ηyλθ̃211θ̃2(y)
∣∣∣

≤
∣∣∣e(η/2)x

∫ x

L

Ce−η(x−y)e−ηy dy
∣∣∣|λ|‖θ̃1 − θ̃2‖∞max

j
‖θ̃j‖∞

≤ e−(η/2)L
∣∣∣ ∫ x

L

Ce−(η/2)(x−y) dy
∣∣∣|λ|‖θ̃1 − θ̃2‖∞max

j
‖θ̃j‖∞

= C3e
−(η/2)L|λ|‖θ̃1 − θ̃2‖∞max

j
‖θ̃j‖∞.
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It follows by the Contraction Mapping Principle that there exists a unique
solution θ̃ of fixed point equation (4.17) with |θ̃(x)| ≤ 2C3 for x ≥ L, or,
equivalently (redefining the unspecified constant η), (4.11).

4.3. Fast/Slow dynamics

Making now the further change of coordinates

Z = L̃Y

and computing

(L̃Y )′ = L̃Y ′ + L̃′Y = (L̃A+ + L̃′)Y,

= (L̃A+R̃ + L̃′R̃)Z,

we find that we have converted (4.8) to a block-triangular system

Z ′ = ÃZ =

(
λ(J + v+11θ+ + 11Θ̃) λ11

0 f(v̂)− λ− λv+θ+11− λΘ̃11

)
Z, (4.18)

related to the original eigenvalue system (2.28) by

W = LZ, R := R+R =
(

I 0
Θ 1

)
, L := R−1 =

(
I 0
−Θ 1

)
, (4.19)

where
Θ = Θ̃ + v+θ+. (4.20)

Since it is triangular, (4.18) may be solved completely if we can solve
the component systems associated with its diagonal blocks. The fast system

z′ =
(
f(v̂)− λ− λv+θ+11− λΘ̃11

)
z

associated to the lower righthand block features rapidly-varying coefficients.
However, because it is scalar, it can be solved explicitly by exponentiation.

The slow system

z′ = λ(J + v+11θ+ + 11Θ̃)z (4.21)

associated to the upper lefthand block, on the other hand, by (4.11), is an
exponentially decaying perturbation of a constant-coefficient system

z′ = λ(J + v+11θ+)z (4.22)

that can be explicitly solved by exponentiation, and thus can be well-
estimated by comparison with (4.22). A rigorous version of this statement
is given by the conjugation lemma of [20]:
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Proposition 4.1 ([20]). Let M(x, λ) = M+(λ)+Θ(x, λ), with M+ contin-
uous in λ and |Θ(x, λ)| ≤ Ce−ηx, for λ in some compact set Λ. Then, there
exists a globally invertible matrix P (x, λ) = I + Q(x, λ) such that the coor-
dinate change z = Pv converts the variable-coefficient ODE z′ = M(x, λ)z
to a constant-coefficient equation

v′ = M+(λ)v,

satisfying for any L, 0 < η̂ < η a uniform bound

|Q(x, λ)| ≤ C(L, η̂, η, max |(M+)ij |,dim M+)e−η̂x for x ≥ L. (4.23)

Proof. See [20,28], or Appendix C, [12].

By Proposition 4.1, the solution operator for (4.21) is given by

P (y, λ)eλ(J+v+11θ+(λ,v+))(x−y)P (x, λ)−1, (4.24)

where P is a uniformly small perturbation of the identity for x ≥ L and
L > 0 sufficiently large.

5. Proof of the main theorems

With these preparations, we turn now to the proofs of the main theo-
rems.

5.1. Boundary estimate

We begin by recalling the following estimates established in [12] on
W̃+

1 (L + δ), that is, the value of the dual mode W̃+
1 appearing in (2.36)

at the boundary x = L + δ between regular and singular regions. For com-
pleteness, and because we shall need the details in further computations,
we repeat the proof in full.

Lemma 5.1 ([12]). For λ on any compact subset of <eλ ≥ 0, and L > 0
sufficiently large, with W̃+

1 normalized as in [8,23,3],

|W̃+
1 (L + δ)− Ṽ1| ≤ Ce−ηL (5.1)

as v+ → 0, uniformly in λ, where C, η > 0 are independent of L and

Ṽ1 := (0,−1, λ̄/µ̄)T

is the limiting direction vector (3.6) appearing in the definition of D0
in.
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Corollary 5.1 ([12]). Under the hypotheses of Lemma 5.1,

|W̃ 0+
1 (L + δ)− Ṽ1| ≤ Ce−ηL (5.2)

and
|W̃+

1 (L + δ)− W̃ 0+
1 (L + δ)| ≤ Ce−ηL (5.3)

as v+ → 0, uniformly in λ, where C, η > 0 are independent of L and W̃ 0+
1 is

the solution of the limiting adjoint eigenvalue system appearing in definition
(3.5) of D0.

Proof (Proof of Lemma 5.1). First, make the independent coordinate
change x → x−δ normalizing the background wave to match the shock-wave
case. Making the dependent coordinate-change

Z̃ := R∗W̃ , (5.4)

R as in (4.19), reduces the adjoint equation W̃ ′ = −A∗W̃ to block lower-
triangular form,

Z̃ ′ = −Ã∗Z̃ =(
−λ̄(JT + v+11θ+ + 11Θ̃)∗ 0

−λ̄11T −f(v̂) + λ̄ + λ̄(v+θ+11 + Θ̃11)∗

)
Z,

(5.5)

with “¯” denoting complex conjugate.
Denoting by Ṽ +

1 a suitably normalized element of the one-dimensional
(slow) stable subspace of −Ã∗, we find readily (see [12] for further discus-
sion) that, without loss of generality,

Ṽ +
1 → (0, 1, λ̄(γ + λ̄)−1)T (5.6)

as v+ → 0, while the associated eigenvalue µ̃+
1 → 0, uniformly for λ on

an compact subset of <eλ ≥ 0. The dual mode Z̃+
1 = R∗W̃+

1 is uniquely
determined by the property that it is asymptotic as x → +∞ to the corre-
sponding constant-coefficient solution eµ̃+

1 xṼ +
1 (the standard normalization

of [8,23,3]).
By lower block-triangular form (5.5), the equations for the slow variable

z̃T := (Z̃1, Z̃2) decouples as a slow system

z̃′ = −
(
λ(J + v+11θ+ + 11Θ̃)

)∗
z̃ (5.7)

dual to (4.21), with solution operator

P ∗(x, λ)−1e−λ̄(J+v+11θ+)∗)(x−y)P (y, λ)∗ (5.8)

dual to (4.24), i.e. (fixing y = L, say), solutions of general form

z̃(λ, x) = P ∗(x, λ)−1e−λ̄(J+v+11θ+)∗)(x−y)ṽ, (5.9)
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ṽ ∈ C2 arbitrary.
Denoting by

Z̃+
1 (L) := R∗W̃+

1 (L),

therefore, the unique (up to constant factor) decaying solution at +∞, and
ṽ+
1 := ((Ṽ +

1 )1, (Ṽ +
1 )2)T , we thus have evidently

z̃+
1 (x, λ) = P ∗(x, λ)−1e−λ̄(J+v+11θ+)∗)xṽ+

1 ,

which, as v+ → 0, is uniformly bounded by

|z̃+
1 (x, λ)| ≤ Ceεx (5.10)

for arbitrarily small ε > 0 and, by (5.6), converges for x less than or equal
to X − δ for any fixed X simply to

lim
v+→0

z̃+
1 (x, λ) = P ∗(x, λ)−1(0, 1)T . (5.11)

Defining by q̃ := (Z̃+
1 )3 the fast coordinate of Z̃+

1 , we have, by (5.5),

q̃′ +
(
f(v̂)− λ̄− (λv+θ+11 + λΘ̃11)∗

)
q̃ = λ̄11T z̃+

1 ,

whence, by Duhamel’s principle, any decaying solution is given by

q̃(x, λ) =
∫ +∞

x

e
∫ x

y
a(z,λ,v+)dzλ̄11T z+

1 (y) dy,

where
a(y, λ, v+) := −

(
f(v̂)− λ̄− (λv+θ+11 + λΘ̃11)∗

)
.

Recalling, for <eλ ≥ 0, that <ea ≥ 1/2, combining (5.10) and (5.11), and
noting that a converges uniformly on y ≤ Y as v+ → 0 for any Y > 0 to

a0(y, λ) := −f0(v̂) + λ̄ + (λΘ̃011)∗

= (1 + λ̄) + O(e−ηy)

we obtain by the Lebesgue Dominated Convergence Theorem that

q̃(L, λ) →
∫ +∞

L

e
∫ L

y
a0(z,λ)dzλ̄11T (0, 1)T dy

= λ̄

∫ +∞

L

e(1+λ̄)(L−y)+
∫ L

y
O(e−ηz)dz dy

= λ̄(1 + λ̄)−1(1 + O(e−ηL)).

Recalling, finally, (5.11), and the fact that

|P − Id|(L, λ), |R− Id|(L, λ) ≤ Ce−ηL

for v+ sufficiently small, we obtain (5.1) as claimed.
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Proof (Proof of Corollary 5.1). Again, make the coordinate change
x → x− δ normalizing the background wave to match the shock-wave case.
Applying Proposition 4.1 to the limiting adjoint system

W̃ ′ = −(A0)∗W̃ =

 0 0 0
−λ̄ 0 0
−λ̄ −λ̄ 1 + λ̄

 W̃ + O(e−ηx)W̃ ,

we find that, up to an Id+O(e−ηx) coordinate change, W̃ 0+
1 (x) is given by

the exact solution W̃ ≡ Ṽ1 of the limiting, constant-coefficient system

W̃ ′ = −(A0
+)∗W̃ =

 0 0 0
−λ̄ 0 0
−λ̄ −λ̄ 1 + λ̄

 W̃ .

This yields immediately (5.2), which, together with (5.1), yields (5.3).

5.2. Convergence to D0

The rest of our analysis is standard.

Lemma 5.2. On x ≤ L − δ for any fixed L > 0, there exists a coordinate-
change W = TZ conjugating (2.28) to the limiting equations (3.3), T =
T (x, λ, v+), satisfying a uniform bound

|T − Id| ≤ C(L)v+ (5.12)

for all v+ > 0 sufficiently small.

Proof. Make the coordinate change x → x−δ normalizing the background
profile. For x ∈ (−∞, 0], this is a consequence of the Convergence Lemma of
[23], a variation on Proposition 4.1, together with uniform convergence of the
profile and eigenvalue equations. For x ∈ [0, L], it is essentially continuous
dependence; more precisely, observing that |A − A0| ≤ C1(L)v+ for x ∈
[0, L], setting S := T − Id, and writing the homological equation expressing
conjugacy of (2.28) and (3.3), we obtain

S′ − (AS − SA0) = (A−A0),

which, considered as an inhomogeneous linear matrix-valued equation, yields
an exponential growth bound

S(x) ≤ eCx(S(0) + C−1C1(L)v+)

for some C > 0, giving the result.
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Proof (Proof of Theorem 3.1: inflow case). Make the coordinate
change x → x− δ normalizing the background profile. Lemma 5.2, together
with convergence as v+ → 0 of the unstable subspace of A− to the unstable
subspace of A0

− at the same rate O(v+) (as follows by spectral separation
of the unstable eigenvalue of A0 and standard matrix perturbation theory)
yields

|W 0
1 (0, λ)−W 00

1 (0, λ)| ≤ C(L)v+. (5.13)

Likewise, Lemma 5.2 gives

|W̃+
1 (0, λ)− W̃ 0+

1 (0, λ)| ≤ C(L)v+|W̃+
1 (0, λ)|

+ |SL→0
0 ||W̃+

1 (L, λ)− W̃ 0+
1 (L, λ)|,

(5.14)

where Sy→x
0 denotes the solution operator of the limiting adjoint eigenvalue

equation W̃ ′ = −(A0
+)∗W̃ . Applying Proposition 4.1 to the limiting system,

we obtain
|SL→0

0 | ≤ C2|e−A0
+L| ≤ C2L|λ|

by direct computation of e−A0
+L, where C2 is independent of L > 0. Together

with (5.3) and (5.14), this gives

|W̃+
1 (0, λ)− W̃ 0+

1 (0, λ)| ≤ C(L)v+|W̃+
1 (0, λ)|+ L|λ|C2Ce−ηL,

hence, for |λ| bounded and v+ sufficiently small relative to C(L),

|W̃+
1 (0, λ)− W̃ 0+

1 (0, λ)| ≤ C3(L)v+|W̃ 0+
1 (0, λ)|+ LC4e

−ηL

≤ C5(L)v+ + LC4e
−ηL.

(5.15)

Taking first L → ∞ and then v+ → 0, we obtain therefore convergence of
W 0

1 (0, λ) and W̃+
1 (0, λ) to W 00

1 (0, λ) and W̃ 0+
1 (0, λ), yielding convergence

by definitions (2.36) and (3.5).
This convergence, however, is between Evans functions with profiles

shifted by δ = δ(v+). This shift changes the initializing asymptotic behavior
at +∞ of W̃+

1 , modifying the value of the Evans function by a nonvanishing
factor e−δµ̃1(λ), where µ̃1(λ) is the decay rate associated with mode W̃+

1 ; for
similar computations, see the proof of Theorem 3.2. In particular, the value
of D0 is unaffected by a shift, since µ̃1 ≡ 0. Noting that δ(v+) is uniformly
bounded as v+ → 0 (indeed, it approaches a limit δ0 as v+ → 0, determined
by v̂0(δ0) = v−/2 = 1/2, as follows by continuous dependence of solutions
of ODE), while µ̃1(λ) → 0 uniformly on compact subsets of <λ ≥ 0, we
thus find that both shifted and unshifted versions of D(λ) approach D0(λ)
as v+ → 0, uniformly on compact subsets of <λ ≥ 0.

Proof (Proof of Theorem 3.1: outflow case). Straightforward, follow-
ing the previous argument in the regular region only.
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5.3. Convergence to the shock case

Proof (Proof of Theorem 3.2: inflow case). First make the coordinate
change x → x−δ normalizing the background profile location to that of the
shock wave case, where δ → +∞ as v0 → 1. By standard duality properties,

Din = W̃+
1 ·W 0

1 |x=x0

is independent of x0, so we may evaluate at x = 0 as in the shock case.
Denote by W−

1 , W̃+
1 the corresponding modes in the shock case, and

D = W̃+
1 · W−

1 |x=0

the resulting Evans function.
Noting that W̃1

+ and W̃ 1
+ are asymptotic to the unique stable mode at

+∞ of the (same) adjoint eigenvalue equation, but with translated decay
rates, we see immediately that W̃+

1 = W̃ 1
+e−δµ̃+

1 . On the other hand, W 0
1 is

initialized at at x = −δ (in the new coordinates x̃ = x− δ) as

W 0
1 (−δ) = (1, 0, 0)T ,

whereasW−
1 is the unique unstable mode at−∞ decaying as eµ−1 xV −

1 , where
V −

1 is the unstable right eigenvector of

A− =

0 λ λ
0 0 λ
1 1 f(1)− λ

 .

Denote by Ṽ −
1 the associated dual unstable left eigenvector and

Π−
1 := V −

1 (Ṽ −
1 )T

the eigenprojection onto the stable vector V −
1 . By direct computation,

Ṽ −
1 = c(λ)(1, 1 + λ/µ−1 , µ−1 )T , c(λ) 6= 0,

yielding
Π−

1 W 0
1 =: β(λ) = c(λ) 6= 0 (5.16)

for <λ ≥ 0, on which <µ−1 > 0.
Once we know (5.16), we may finish by a standard argument, concluding

by exponential attraction in the positive x-direction of the unstable mode
that other modes decay exponentially as x → 0, leaving the contribution
from β(λ)V −

1 plus a negligible O(e−ηδ) error, η > 0, from which we may
conclude that W−

1 |x=0 ∼ β−1e−δµ−1 W 0
1 |x=0. Collecting information, we find

that
D(λ) = β(λ)−1e−δ(µ̄−1 +µ̃+

1 )(λ)Din(λ) + O(e−ηδ),

η > 0, yielding the claimed convergence C(λ, δ)Din(λ) → D(λ) as v0 → 1,
δ → +∞, with C(λ, δ) := β(λ)−1e−δ(µ̄−1 +µ̃+

1 )(λ) 6= 0.
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Proof (Proof of Theorem 3.2: outflow case). For λ uniformly bounded
from zero, W̃ 0

1 = (0,−1,−λ̄/(λ̄− v̂′(0)))T converges uniformly as v0 → 0 to

(0,−1,−1)T ,

whereas the shock Evans function D is initiated by W̃+
1 proportional to

Ṽ+
1 = (0,−1,−1− λ̄)T

agreeing in the first two coordinates with W̃ 0
1 . By the boundary-layer anal-

ysis of Section 5.1, the backward (i.e., decreasing x) evolution of the adjoint
eigenvalue ODE reduces in the asymptotic limit v+ → 0 (forced by v0 → 0)
to a decoupled slow flow

w̃′ =
(

0 0
−λ̄ 0

)
w̃, w̃ ∈ C2

in the first two coordinates, driving an exponentially slaved fast flow in the
third coordinate. From this, we may conclude that solutions agreeing in the
first two coordinates converge exponentially as x decreases. Performing an
appropriate normalization, as in the inflow case just treated, we thus obtain
the result. We omit the details, which follow what has already been done in
previous cases.

5.4. The stability index

Following [26,10], we note that Din(λ) is real for real λ, and nonvanishing
for real λ sufficiently large, hence sgnDin(+∞) is well-defined and constant
on the entire (connected) parameter range. The number of roots of Din on
<λ ≥ 0 is therefore even or odd depending on the stability index

sgn[Din(0)Din(+∞)].

Similarly, recalling that Dout(0) ≡ 0, we find that the number of roots of
Dout on <λ ≥ 0 is even or odd depending on

sgn[D′
out(0)Dout(+∞)].

Proof (Proof of Lemma 3.1: inflow case). Examining the adjoint equa-
tion at λ = 0,

W̃ ′ = −A∗W̃ , −A∗(x, 0) =

0 0 −v̂
0 0 −v̂
0 0 −f(v̂)

 ,

−f(v+) > 0, we find by explicit computation that the only solutions that are
bounded as x → +∞ are the constant solutions W̃ ≡ (a, b, 0)T . Taking the
limit Ṽ +

1 (0) as λ → 0+ along the real axis of the unique stable eigenvector of
−A∗+(λ), we find (see, e.g., [28]) that it lies in the direction (1, 2 + a+

j , 0)T ,
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where a+
j > 0 is the positive characteristic speed of the hyperbolic con-

vection matrix
(

1 −1
−h(v+)/vγ+1

+ 1

)
, i.e., Ṽ +

1 = c(v0, v+)(1, 2 + a+
j , 0)T ,

c(v0, v+) 6= 0. Thus, Din(0) = Ṽ +
1 · (1, 0, 0)T = c̄(v0, v+) 6= 0 as claimed.

On the other hand, the same computation carried out for D0
in(0) yields

D0
in(0) ≡ 0. (Note: aj ∼ v

−1/2
+ → +∞ as v+ → 0.) Similarly, as v0 → 0,

D0
in(λ) → (0,−1, ∗)T · (1, 0, 0)T ≡ 0.

Finally, note Din(0) 6= 0 implies that the stability index, since continuously
varying so long as it doesn’t vanish and taking discrete values ±1, must be
constant on the connected set of parameter values. Since inflow boundary
layers are known to be stable on some part of the parameter regime by
energy estimates (Theorem 3.3), we may conclude that the stability index
is identically one and therefore there are an even number of unstable roots
for all 1 > v0 ≥ v+ > 0.

To establish that (D0
in)′(0) 6= 0, we compute

D0
in
′(0) = W̃ 0+

1 · (∂λW 00
1 ) + (∂λ̄W̃ 0+

1 ) ·W 00
1 . (5.17)

Since W 00
1 ≡ (1, 0, 0) is independent of λ, this reduces to

D0
in
′(0) = ∂λ̄W̃ 0+

1,1 |x=0, (5.18)

so we need only show that the first component of ∂λ̄W̃ 0+
1 is nonzero. Note

that ∂λ̄W̃ 0+
1 solves the limiting adjoint variational equations

(∂λ̄W̃ 0+
1 )′(0) + (A0)∗(x, 0)∂λ̄W̃ 0+

1 = b(x) (5.19)

with b(x) := −∂λ̄(A0)∗(x, 0)W̃ 0+
1 (x, 0), W̃ 0+

1 (x, 0) = (0,−1, 0)T ,

(A0)∗(x, 0) =

0 0 v̂0

0 0 v̂0

0 0 f0(v̂0)

 , ∂λ̄(A0)∗(x, 0) =

0 0 0
1 0 0
1 1 −1

 .

Thus b(x) = (0, 0, 1)T . By (3.6), and the fact that ∂λ̄µ̃0+
1 ≡ 0, ∂λ̄W̃ 0+

1 (x)
is chosen so that asymptotically at x = +∞ it lies in the direction of
∂λ̄Ṽ1 = (0, 0, 1). Set ∂λ̄W̃ 0+

1 = (∂λ̄W̃ 0+
1, 1, ∂λ̄W̃ 0+

1, 2, ∂λ̄W̃ 0+
1, 3)

T . Then the third
component solves

(∂λ̄W̃ 0+
1, 3)

′ + f0(v̂0)∂λ̄W̃ 0+
1, 3 = 1,

where f0(v̂0) = 2v̂0 − 1. Define Z(x) := e−x∂λ̄W̃ 0+
1, 3(x, 0). Then Z solves

Z ′ + 2v̂0Z = e−x, Z(+∞) = 0,

which has solution
Z(x) = −

∫ ∞

x

Sy→x
Z e−ydy
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where
Sy→x

Z = e2
∫ y

x
v̂0(z)dz,

denoting the solution operator of Z ′ + 2v̂0Z = 0. Integrating the equation
(5.19) for the first component of ∂λ̄W̃ 0+

1 with ∂λ̄W̃ 0+
1, 1(+∞) = 0 yields

∂λ̄W̃ 0+
1, 1(x) = ∂λ̄W̃ 0+

1, 1(+∞) +
∫ ∞

x

v̂0(y)∂λ̄W̃ 0+
1, 3(y)dy

= −
∫ ∞

x

v̂0(y)ey

∫ ∞

y

Sz→y
Z e−zdzdy

and thus

∂λ̄W̃ 0+
1, 1|x=0 = −

∫ ∞

0

v̂0(y)ey

∫ ∞

y

Sz→y
Z e−zdzdy.

Finally, note that for all y, v̂0(y), Sz→y
Z ≥ 0. Therefore by (5.18),

D0
in
′(0) = ∂λ̄W̃ 0+

1, 1|x=0 6= 0.

Remark 5.1. The result Din(0) 6= 0 at first sight appears to contradict that
of Theorem 3.2, since D(0) = 0 for the shock wave case. This apparent
contradiction is explained by the fact that the normalizing factor e−δ(µ̄−1 +µ̃+

1 )

is exponentially decaying in δ for λ = 0, since µ̃+
1 (0) = 0, while <µ−1 > 0.

Recalling that δ → +∞ as v0 → 1, we recover the result of Theorem 3.2.

Proof (Proof of Lemma 3.1: outflow case). Similarly, we compute

D′
out(0) = W̃ 0

1 · ∂λW−
1 + ∂λ̄W̃ 0

1 ·W−
1 ,

where ∂λW−
1 |λ=0 satisfies the variational equation L∂λU−

1 (0) = ∂λA(x, 0)U−
1 ,or,

written as a first-order system,

(∂λW−
1 )′ −A(x, 0)∂λW−

1 =

 ûx

v̂x

−v̂x

 , A(x, 0) =

0 0 0
0 0 0
v̂ v̂ f(v̂)

 ,

which may be solved exactly for the unique solution decaying at −∞ of

W−
1 (0) =

 0
0
v̂′

 , (∂λW−
1 )(0) =

û− u−
v̂ − v−
∗

 .

Recalling from (2.41) that W̃ 0
1 (λ) = (0,−1,−λ̄/(λ̄− v̂′(0)))T , hence

W̃ 0
1 (0) = (0,−1, 0)T , ∂λ̄W̃ 0

1 (0) = (0, 0, 1/v̂′(0))T ,

we thus find that

D′
out(0) = W̃ 0

1 (0) · ∂λW−
1 (0) + ∂λ̄W̃ 0

1 (0) ·W−
1 (0)

= −(v̂(0)− 1) + 1 = 2− v0 6= 0
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as claimed. The proof that (D0
out)

′(0) 6= 0 goes similarly.
Finally, as in the proof of the inflow case, we note that nonvanishing

implies that the stability index is constant across the entire (connected) pa-
rameter range, hence we may conclude that it is identically one by existence
of a stable case (Corollary 3.1), and therefore that the number of nonzero
unstable roots is even, as claimed.

5.5. Stability in the shock limit

Proof (Proof of Corollary 3.1: inflow case). By Proposition 3.1 we
find that Din has at most a single zero in <λ ≥ 0. However, by our stability
index results, Theorem 3.1, the number of eigenvalues in <λ ≥ 0 is even.
Thus, it must be zero, giving the result.

Proof (Proof of Corollary 3.1: outflow case). By Theorem 3.2, Dout,
suitably renormalized, converges as v0 → 0 to the Evans function for the
(unintegrated) shock wave case. But, the shock Evans function by the results
of [3,12] has just a single zero at λ = 0 on <λ ≥ 0, already accounted for
in Dout by the spurious root at λ = 0 introduced by recoordinatization to
“good unknown”.

5.6. Stability for small v0

Finally, we treat the remaining, “corner case” as v+, v0 simultaneously
approach zero. The fact (Lemma 3.1) that

lim
v0→0

lim
v+→0

Din(λ) ≡ 0

shows that this limit is quite delicate; indeed, this is the most delicate part
of our analysis.

Proof (Proof of Theorem 3.3: inflow case). Consider again the adjoint
system

W̃ ′ = −A∗(x, λ)W̃ , A∗(x, λ) =

0 0 v̂
λ̄ 0 v̂
λ̄ λ̄ f(v̂)− λ̄

 .

By the boundary analysis of Section 5.1,

W̃ =
(
α, 1,

αµ̃− λ̄(α + 1)
−f(v̂) + λ̄

)T

+ O(e−η|x−δ|),

where α := µ̃+

µ̃++λ̄
, and µ̃ is the unique stable eigenvalue of A∗+, satisfying

(by matrix perturbation calculation)

µ̃ = λ̄(v1/2
+ + O(v+))
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and thus α = v
1/2
+ + O(v+) as v0 → 0 (hence v+ → 0) on bounded subsets

of <λ ≥ 0. Combining these expansions, we have

W̃1(+∞) = v
1/2
+ (1 + o(1)), W̃3 =

−λ̄

−f(v̂) + λ̄
(1 + o(1))

for v0 sufficiently small.
From the W̃1 equation W̃ ′

1 = v̂W̃3, we thus obtain

W̃1(0) = W̃1(+∞)−
∫ +∞

0

v̂W̃3(y) dy

= (1 + o(1))×
(
v
1/2
+ +

∫ +∞

0

λ̄v̂

−f(v̂) + λ̄
(y) dy

)
.

Observing, finally, that, for <λ ≥ 0, the ratio of real to imaginary parts of
λ̄v̂

−f(v̂)+λ̄
(y) is uniformly positive, we find that <W̃1(0) 6= 0 for v0 sufficiently

small, which yields nonvanishing of Din(λ) on <λ ≥ 0 as claimed.

6. Numerical computations

In this section, we show, through a systematic numerical Evans function
study, that there are no unstable eigenvalues for

(γ, v+) ∈ [1, 3]× (0, 1],

in either inflow or outflow cases. As defined in Section 2.6, the Evans func-
tion is analytic in the right-half plane and reports a value of zero precisely
at the eigenvalues of the linearized operator (2.14). Hence we can use the
argument principle to determine if there are any unstable eigenvalues for
this system. Our approach closely follows that of [3,12] for the shock case
with only two major differences. First, our shooting algorithm is only one
sided as we have the boundary conditions (2.35) and (2.41) for the inflow
and outflow cases, respectfully. Second, we “correct” for the displacement in
the boundary layer when v0 ≈ 1 in the inflow case and v0 ≈ 0 in the outflow
case so that the Evans function converges to the shock case as studied in
[3,12] (see discussion in Section 6.3).

The profiles were generated using Matlab’s bvp4c routine, which is an
adaptive Lobatto quadrature scheme. The shooting portion of the Evans
function computation was performed using Matlab’s ode45 package, which
is the standard 4th order adaptive Runge-Kutta-Fehlberg method (RKF45).
The error tolerances for both the profiles and the shooting were set to
AbsTol=1e-6 and RelTol=1e-8. We remark that Kato’s ODE (see Section
2.6 and [15,13] for details) is used to analytically choose the initial eigenbasis
for the stable/unstable manifolds at the numerical values of infinity at L =
±18. Finally in Section 6.4, we carry out a numerical convergence study
similar to that in [3].
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Fig. 6.1. Typical examples of the inflow case, showing convergence to the limiting
Evans function as v+ → 0 for a monatomic gas, γ = 5/3, with (a) v0 = 0.1, (b)
v0 = 0.2, (c) v0 = 0.4, and (d) v0 = 0.7. The contours depicted, going from inner to
outer, are images of the semicircle φ under D for v+ = 1e−2, 1e−3, 1e−4, 1e−5, 1e−6,
with the outer-most contour given by the image of φ under D0, that is, when
v+ = 0. Each contour consists of 60 points in λ.

6.1. Winding number computations

The high-frequency estimates in Proposition 2.2 restrict the set of ad-
missible unstable eigenvalues to a fixed compact triangle Λ in the right-half
plane (see (2.25) and (2.26) for the inflow and outflow cases, respectively).
We reiterate the remarkable property that Λ does not depend on the choice
of v+ or v0. Hence, to demonstrate stability for a given γ, v+ and v0, it
suffices to show that the winding number of the Evans function along a
contour containing Λ is zero. Note that in our region of interest, γ ∈ [1, 3],
the semi-circular contour given by

φ := ∂({λ | <eλ ≥ 0} ∩ {λ | |λ| ≤ 10}),

contains Λ in both the inflow and outflow cases. Hence, for consistency we
use this same semicircle for all of our winding number computations.
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Fig. 6.2. Typical examples of the outflow case, showing convergence to the lim-
iting Evans function as v+ → 0 for a monatomic gas, γ = 5/3, with (a) v0 = 0.2,
(b) v0 = 0.4, (c) v0 = 0.6, and (d) v0 = 0.8. The contours depicted are images of
the semicircle φ under D for v+ = 1e−2, 1e−3, 1e−4, 1e−5, 1e−6, and the limiting
case v+ = 0. Interestingly the contours are essentially (visually) indistinguishable
in this parameter range. Each contour consists of 60 points in λ

A remarkable feature of the Evans function for this system, and one
that is shared with the shock case in [3,12], is that the Evans function has
limiting behavior as the amplitude increases, Section 3.2. For the inflow
case, we see in Figure 6.1, the mapping of the contour φ for the monatomic
case (γ = 5/3), for several different choices of v0, as v+ → 0. We remark
that the winding numbers for 0 ≤ v+ ≤ 1 are all zero, and the limiting
contour touches zero due to the emergence of a zero root in the limit. Note
that the limiting case contains the contours of all other amplitudes. Hence,
we have spectral stability for all amplitudes.

The outflow case likewise has a limiting behavior, however, all contours
cross through zero due to the eigenvalue at the origin. Nonetheless, since
the contours only wind around once, we can likewise conclude that these
profiles are spectrally stable. We remark that the outflow case converges
to the limiting case faster than the inflow case as is clear from Figure 6.2.
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Fig. 6.3. Typical examples of the Evans function evaluated along the positive
real axis. The (a) inflow case is computed for v0 = 0.7 and v0 = 0 and (b) the
outflow case is computed for v0 = 0.3 and v+ = 0.001. Not the transversality at
the origin in both cases. Both graphs consist of 50 points in λ.

Indeed, v+ = 1e−2 and the limiting case v+ = 0, as well as all of the values
of v+ in between, are virtually indistinguishable.

In our study, we systematically varied v0 in the interval [.01, .99] and
took the v+ → 0 limit at each step, starting from a v+ = .9 (or some
other appropriate value, for example when v0 < .9) on the small-amplitude
end and decreased v+ steadily to 10−k for k = 1, 2, 3, . . . , 6, followed by
evaluation at v+ = 0. For both inflow and outflow cases, over 2000 contours
were computed. We remark that in the v+ → 0 limit, the system becomes
pressureless, and thus all of the contours in the large-amplitude limit look
the same regardless of the value of γ chosen.

6.2. Nonexistence of unstable real eigenvalues

As an additional verification of stability, we computed the Evans func-
tion along the unstable real axis on the interval [0, 15] for varying parameters
to show that there are no real unstable eigenvalues. Since the Evans func-
tion has a root at the origin in the limiting system for the inflow case, and
for all values of v+ in the outflow case, we can perform in these cases a
sort of numerical stability index analysis to verify that the Evans function
cuts transversely through the origin and is otherwise nonzero, indicating
that there are no unstable real eigenvalues as expected. In Figure 6.3, we
see a typical example of (a) the inflow and (b) outflow cases. Note that in
both images, the Evans function cuts transversally through the origin and
is otherwise nonzero as λ increases.

6.3. The shock limit

When v0 is far from the midpoint (1− v+)/2 of the end states, the the
Evans function of the boundary layer is similar to the Evans function of



36 Nicola Costanzino et al.

!0.5 0 0.5 1 1.5 2

!1.5

!1

!0.5

0

0.5

1

1.5

Re

Im

!2 !1 0 1 2 3 4 5 6
!4

!3

!2

!1

0

1

2

3

4

Re

Im

(a) (b)

Fig. 6.4. Shock limit for (a) inflow and (b) outflow cases, both for γ = 5/3. Note
that the images look very similar to those of [3,12].

the shock case evaluated at the displacement point x0. Hence, when we
compute the boundary layer Evans function near the shock limits, v0 ≈ 1
for the inflow case and v0 ≈ 0 for the outflow case, we multiply for the
correction factor c(λ) so that our output looks close to that of the shock
case studied in [3,12]. The correction factors are

c(λ) = e(−µ+−µ̄−)x0

for the inflow case and
c(λ) = e(−µ̄+−µ−)x0 ,

for the outflow case, where µ− is the growth mode of A−(λ) and µ+ is the
decay mode of A+(λ). In Figure 6.4, we see that these highly displaced pro-
files appear to be very similar to the shock cases with one notable difference.
These images have a small dimple near λ = 0 to account for the eigenvalue
there, whereas those in the shock case [3,12] were computed in integrated
coordinates and thus have no root at the origin.

6.4. Numerical convergence study

As in [3], we carry out a numerical convergence study to show that our
results are accurate. We varied the absolute and relative error tolerances,
as well as the length of the numerical domain [−L, L]. In Tables 1–2, we
demonstrate that our choices of L = 18, AbsTol=1e-6 and RelTol=1e-8
provide accurate results.

Appendix A. Proof of preliminary estimate: inflow case

Our starting point is Remark 2.2, in which we observed that the first-
order eigensystem (2.28) in variable W = (w, u − v, v)T may be converted
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Inflow Case
L γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0
8 7.8(-1) 8.4(-1) 9.2(-1) 1.0(0) 1.2(0) 1.3(0)
10 1.4(-1) 1.2(-1) 9.2(-2) 6.8(-2) 4.4(-2) 2.8(-2)
12 1.4(-2) 7.9(-3) 3.6(-3) 1.3(-3) 3.1(-4) 7.3(-5)
14 1.3(-3) 4.9(-4) 1.3(-4) 2.4(-5) 8.7(-6) 8.2(-6)
16 1.2(-4) 3.0(-5) 4.7(-6) 2.8(-6) 2.7(-6) 2.6(-6)
18 1.1(-5) 5.8(-6) 8.0(-6) 8.1(-6) 8.0(-6) 8.0(-6)

Outflow Case
L γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0
8 5.4(-3) 5.4(-3) 5.4(-3) 5.4(-3) 5.4(-3) 5.4(-3)
10 9.2(-4) 9.1(-4) 9.1(-4) 9.1(-4) 9.1(-4) 9.1(-4)
12 1.5(-4) 1.5(-4) 1.5(-4) 1.5(-4) 1.5(-4) 1.5(-4)
14 2.5(-5) 2.7(-5) 2.0(-5) 2.0(-5) 2.0(-5) 2.0(-5)
16 2.3(-6) 2.6(-6) 2.6(-6) 2.5(-6) 2.5(-6) 2.5(-6)
18 6.6(-6) 3.6(-6) 8.7(-6) 8.7(-6) 8.7(-6) 8.7(-6)

Table 6.1. Relative errors in D(λ) for the inflow and outflow cases are computed
by taking the maximum relative error for 60 contour points evaluated along the
semicircle φ. Samples were taken for varying L and γ, leaving v+ fixed at v+ =
10−4 and v0 = 0.6. We used L = 8, 10, 12, 14, 16, 18, 20 and γ = 1.2, 1.4, 1.666, 2.0.
Relative errors were computed using the next value of L as the baseline.

Inflow Case

Abs/Rel γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0
10−3/10−5 5.4(-4) 4.1(-4) 4.0(-4) 5.0(-4) 3.4(-4) 8.6(-4)
10−4/10−6 3.1(-5) 4.6(-5) 3.4(-5) 3.3(-5) 3.3(-5) 3.2(-5)
10−5/10−7 2.9(-6) 3.6(-6) 3.9(-6) 6.8(-6) 2.7(-6) 2.5(-6)
10−6/10−8 4.6(-7) 9.9(-7) 1.1(-6) 6.0(-7) 2.9(-7) 3.2(-7)

Outflow Case
Abs/Rel γ = 1.2 γ = 1.4 γ = 1.666 γ = 2.0 γ = 2.5 γ = 3.0

10−3/10−5 9.2(-4) 9.2(-4) 9.1(-4) 9.1(-4) 9.1(-4) 9.2(-4)
10−4/10−6 5.3(-5) 4.9(-5) 5.3(-5) 5.3(-5) 5.3(-5) 5.3(-5)
10−5/10−7 6.7(-5) 6.7(-5) 6.7(-5) 6.7(-5) 6.7(-5) 6.7(-5)
10−6/10−8 2.9(-6) 2.9(-6) 2.9(-6) 2.9(-6) 2.9(-6) 2.9(-6)

Table 6.2. Relative errors in D(λ) for the inflow and outflow cases are computed
by taking the maximum relative error for 60 contour points evaluated along the
semicircle φ. Samples were taken for varying the absolute and relative error tol-
erances and γ in the ODE solver, leaving L = 18 and γ = 1.666, v+ = 10−4, and
v0 = 0.6 fixed. Relative errors were computed using the next run as the baseline.

by the rescaling W → W̃ := (w, u − v, λv)T to a system identical to that
of the integrated equations in the shock case; see [23]. Artificially defining
(ũ, ṽ, ṽ′)T := W̃ , we obtain a system

λṽ + ṽ′ − ũ′ = 0, (A.1a)

λũ + ũ′ − h(v̂)
v̂γ+1

ṽ′ =
ũ′′

v̂
. (A.1b)
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identical to that in the integrated shock case [3], but with boundary condi-
tions

ṽ(0) = ṽ′(0) = ũ′(0) = 0 (A.2)

imposed at x = 0. This new eigenvalue problem differs spectrally from
(2.16) only at λ = 0, hence spectral stability of (2.16) is implied by spectral
stability of (A.1). Hereafter, we drop the tildes, and refer simply to u, v.

With these coordinates, we may establish (2.25) by exactly the same
argument used in the shock case in [3,12], for completeness reproduced
here.

Lemma A.1. The following inequality holds for <eλ ≥ 0:

(<e(λ) + |=m(λ)|)
∫

R+
v̂|u|2 +

∫
R+
|u′|2

≤
√

2
∫

R+

h(v̂)
v̂γ

|v′||u|+
√

2
∫

R+
v̂|u′||u|. (A.3)

Proof. We multiply (A.1b) by v̂ū and integrate along x. This yields

λ

∫
R+

v̂|u|2 +
∫

R+
v̂u′ū +

∫
R+
|u′|2 =

∫
R+

h(v̂)
v̂γ

v′ū.

We get (A.3) by taking the real and imaginary parts and adding them
together, and noting that |<e(z)|+ |=m(z)| ≤

√
2|z|.

Lemma A.2. The following identity holds for <eλ ≥ 0:∫
R+
|u′|2 = 2<e(λ)2

∫
R+
|v|2 + <e(λ)

∫
R+

|v′|2

v̂
+

1
2

∫
R+

[
h(v̂)
v̂γ+1

+
aγ

v̂γ+1

]
|v′|2

(A.4)

Proof. We multiply (A.1b) by v̄′ and integrate along x. This yields

λ

∫
R+

uv̄′ +
∫

R+
u′v̄′ −

∫
R+

h(v̂)
v̂γ+1

|v′|2 =
∫

R+

1
v̂
u′′v̄′ =

∫
R+

1
v̂
(λv′ + v′′)v̄′.

Using (A.1a) on the right-hand side, integrating by parts, and taking the
real part gives

<e

[
λ

∫
R+

uv̄′ +
∫

R+
u′v̄′

]
=
∫

R+

[
h(v̂)
v̂γ+1

+
v̂x

2v̂2

]
|v′|2 + <e(λ)

∫
R+

|v′|2

v̂
.

The right hand side can be rewritten as

<e

[
λ

∫
R+

uv̄′ +
∫

R+
u′v̄′

]
=

1
2

∫
R+

[
h(v̂)
v̂γ+1

+
aγ

v̂γ+1

]
|v′|2 + <e(λ)

∫
R+

|v′|2

v̂
.

(A.5)
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Now we manipulate the left-hand side. Note that

λ

∫
R+

uv̄′ +
∫

R+
u′v̄′ = (λ + λ̄)

∫
R+

uv̄′ −
∫

R+
u(λ̄v̄′ + v̄′′)

= −2<e(λ)
∫

R+
u′v̄ −

∫
R+

uū′′

= −2<e(λ)
∫

R+
(λv + v′)v̄ +

∫
R+
|u′|2.

Hence, by taking the real part we get

<e

[
λ

∫
R+

uv̄′ +
∫

R+
u′v̄′

]
=
∫

R+
|u′|2 − 2<e(λ)2

∫
R+
|v|2.

This combines with (A.5) to give (A.4).

Lemma A.3 ([3]). For h(v̂) as in (2.15), we have

sup
v̂

∣∣∣∣h(v̂)
v̂γ

∣∣∣∣ = γ
1− v+

1− vγ
+

≤ γ, (A.6)

where v̂ is the profile solution to (2.12).

Proof. Defining

g(v̂) := h(v̂)v̂−γ = −v̂ + a(γ − 1)v̂−γ + (a + 1), (A.7)

we have g′(v̂) = −1− aγ(γ − 1)v̂−γ−1 < 0 for 0 < v+ ≤ v̂ ≤ v− = 1, hence
the maximum of g on v̂ ∈ [v+, v−] is achieved at v̂ = v+. Substituting (2.13)
into (A.7) and simplifying yields (A.6).

Proof (Proof of Proposition 2.2). Using Young’s inequality twice on
right-hand side of (A.3) together with (A.6), we get

(<e(λ) + |=m(λ)|)
∫

R+
v̂|u|2 +

∫
R+
|u′|2

≤
√

2
∫

R+

h(v̂)
v̂γ

|v′||u|+
√

2
∫

R+
v̂|u′||u|

≤ θ

∫
R+

h(v̂)
v̂γ+1

|v′|2 +
(
√

2)2

4θ

∫
R+

h(v̂)
v̂γ

v̂|u|2 + ε

∫
R+

v̂|u′|2 +
1
4ε

∫
R+

v̂|u|2

< θ

∫
R+

h(v̂)
v̂γ+1

|v′|2 + ε

∫
R+
|u′|2 +

[
γ

2θ
+

1
2ε

] ∫
R+

v̂|u|2.

Assuming that 0 < ε < 1 and θ = (1− ε)/2, this simplifies to

(<e(λ) + |=m(λ)|)
∫

R+
v̂|u|2 + (1− ε)

∫
R+
|u′|2

<
1− ε

2

∫
R+

h(v̂)
v̂γ+1

|v′|2 +
[

γ

2θ
+

1
2ε

] ∫
R+

v̂|u|2.
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Applying (A.4) yields

(<e(λ) + |=m(λ)|)
∫

R+
v̂|u|2 <

[
γ

1− ε
+

1
2ε

] ∫
R+

v̂|u|2,

or equivalently,

(<e(λ) + |=m(λ)|) <
(2γ − 1)ε + 1

2ε(1− ε)
.

Setting ε = 1/(2
√

γ + 1) gives (2.25).

Appendix B. Proof of preliminary estimate: outflow case

Similarly as in the inflow case, we can convert the eigenvalue equations
into the integrated equations as in the shock case; see [23]. Artificially defin-
ing (ũ, ṽ, ṽ′)T := W̃ , we obtain a system

λṽ + ṽ′ − ũ′ = 0, (B.1a)

λũ + ũ′ − h(v̂)
v̂γ+1

ṽ′ =
ũ′′

v̂
. (B.1b)

identical to that in the integrated shock case [3], but with boundary condi-
tions

ṽ′(0) =
λ

α− 1
ṽ(0), ũ′(0) = αṽ′(0) (B.2)

imposed at x = 0. We shall write w0 for w(0), for any function w. This
new eigenvalue problem differs spectrally from (2.16) only at λ = 0, hence
spectral stability of (2.16) is implied by spectral stability of (B.1). Hereafter,
we drop the tildes, and refer simply to u, v.

Lemma B.1. The following inequality holds for <eλ ≥ 0:

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 − 1

2

∫
R−

v̂x|u|2 +
∫

R−
|u′|2 +

1
2
v̂0|u0|2

≤
√

2
∫

R−

h(v̂)
v̂γ

|v′||u|+
∫

R−
v̂|u′||u|+

√
2|α||v′0||u0|.

(B.3)

Proof. We multiply (B.1b) by v̂ū and integrate along x. This yields

λ

∫
R−

v̂|u|2 +
∫

R−
v̂u′ū +

∫
R−
|u′|2 =

∫
R−

h(v̂)
v̂γ

v′ū + u′0ū0.

We get (B.3) by taking the real and imaginary parts and adding them
together, and noting that |<e(z)|+ |=m(z)| ≤

√
2|z|.
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Lemma B.2. The following inequality holds for <eλ ≥ 0:

1
2

∫
R−

[
h(v̂)
v̂γ+1

+
aγ

v̂γ+1

]
|v′|2 + <e(λ)

∫
R−

|v′|2

v̂
+
|v′0|2

4v̂0
+ 2<e(λ)2

∫
R−
|v|2

≤
∫

R−
|u′|2 + v̂0|u0|2. (B.4)

Proof. We multiply (B.1b) by v̄′ and integrate along x. This yields

λ

∫
R−

uv̄′ +
∫

R−
u′v̄′ −

∫
R−

h(v̂)
v̂γ+1

|v′|2 =
∫

R−

1
v̂
u′′v̄′ =

∫
R−

1
v̂
(λv′ + v′′)v̄′.

Using (B.1a) on the right-hand side, integrating by parts, and taking the
real part gives

<e

[
λ

∫
R−

uv̄′ +
∫

R−
u′v̄′

]
=
∫

R−

[
h(v̂)
v̂γ+1

+
v̂x

2v̂2

]
|v′|2+<e(λ)

∫
R−

|v′|2

v̂
+
|v′0|2

2v̂0
.

The right hand side can be rewritten as

<e

[
λ

∫
R−

uv̄′ +
∫

R−
u′v̄′

]
=

1
2

∫
R−

[
h(v̂)
v̂γ+1

+
aγ

v̂γ+1

]
|v′|2 + <e(λ)

∫
R−

|v′|2

v̂
+
|v′0|2

2v̂0
. (B.5)

Now we manipulate the left-hand side. Note that

λ

∫
R−

uv̄′ +
∫

R−
u′v̄′ = (λ + λ̄)

∫
R−

uv̄′ +
∫

R−
(u′v̄′ − λ̄uv̄′)

= −2<e(λ)
∫

R−
u′v̄ + 2<eλu0v̄0 +

∫
R−

u′(v̄′ + λ̄v̄)− λ̄u0v̄0

= −2<e(λ)
∫

R−
(λv + v′)v̄ +

∫
R−
|u′|2 + 2<eλu0v̄0 − λ̄u0v̄0.

Hence, by taking the real part and noting that

<e(2<eλu0v̄0 − λ̄u0v̄0) = <eλ<e(u0v̄0)−=mλ=m(u0v̄0) = <e(λu0v̄0)

we get

<e

[
λ

∫
R−

uv̄′ +
∫

R−
u′v̄′

]
=
∫

R−
|u′|2−2<e(λ)2

∫
R−
|v|2−<eλ|v0|2+<e(λu0v̄0).

This combines with (B.5) to give

1
2

∫
R−

[
h(v̂)
v̂γ+1

+
aγ

v̂γ+1

]
|v′|2 + <e(λ)

∫
R−

|v′|2

v̂
+
|v′0|2

2v̂0
+ 2<e(λ)2

∫
R−
|v|2

+ <eλ|v0|2 =
∫

R−
|u′|2 + <e(λu0v̄0).
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We get (B.4) by observing that (B.2) and Young’s inequality yield

|<e(λu0v̄0)| ≤ |α− 1||v′0v0| ≤ |v′0v0| ≤
|v′0|2

4v̂0
+ v̂0|u0|2.

Here we used |α− 1| = |λ|
|λ−v̂′0|

≤ 1. Note that <eλ ≥ 0 and v̂′0 ≤ 0.

Proof (Proof of Proposition 2.2). Using Young’s inequality twice on
right-hand side of (B.3) together with (A.6), and denoting the boundary
term on the right by Ib, we get

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 − 1

2

∫
R−

v̂x|u|2 +
∫

R−
|u′|2 +

1
2
v̂0|u0|2

≤
√

2
∫

R−

h(v̂)
v̂γ

|v′||u|+
∫

R−
v̂|u′||u|+ Ib

≤ θ

∫
R−

h(v̂)
v̂γ+1

|v′|2 +
1
2θ

∫
R−

h(v̂)
v̂γ

v̂|u|2 + ε

∫
R−

v̂|u′|2 +
1
4ε

∫
R−

v̂|u|2 + Ib

< θ

∫
R−

h(v̂)
v̂γ+1

|v′|2 + ε

∫
R−
|u′|2 +

[
γ

2θ
+

1
4ε

] ∫
R−

v̂|u|2 + Ib.

Here we treat the boundary term by

Ib ≤
√

2|α||v′0||u0| ≤
θ

2
|v′0|2

v̂0
+

1
θ
|α|2v̂0|u0|2.

Therefore using (B.4), we simply obtain from the above estimates

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 + (1− ε)

∫
R−
|u′|2 +

1
2
v̂0|u0|2

< θ

∫
R−

h(v̂)
v̂γ+1

|v′|2 +
θ

2
|v′0|2

v̂0
+
[

γ

2θ
+

1
4ε

] ∫
R−

v̂|u|2 +
1
θ
|α|2v̂0|u0|2

< 2θ

∫
R−
|u′|2 +

[
γ

2θ
+

1
4ε

] ∫
R−

v̂|u|2 + Jb

where Jb := ( 1
θ |α|

2 + 2θ)v̂0|u0|2. Assuming that ε + 2θ ≤ 1, this simplifies
to

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 +

1
2
v̂0|u0|2 <

[
γ

2θ
+

1
4ε

] ∫
R−

v̂|u|2 + Jb.

Note that |α| ≤ −v̂′0
|λ| ≤

1
4|λ| . Therefore for |λ| ≥ 1

4θ , we get |α| ≤ θ and
Jb ≤ 3θv̂0|u0|2. For sake of simplicity, choose θ = 1/6 and ε = 2/3. This
shows that Jb can be absorbed into the left by the term 1

2 v̂0|u0|2 and thus
we get

(<e(λ) + |=m(λ)|)
∫

R−
v̂|u|2 <

[
γ

2θ
+

1
4ε

] ∫
R−

v̂|u|2 =
[
3γ +

3
8

] ∫
R−

v̂|u|2,

provided that |λ| ≥ 1/(4θ) = 3/2.
This shows

(<e(λ) + |=m(λ)|) < max{3
√

2
2

, 3γ +
3
8
}.
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Appendix C. Nonvanishing of D0
in

Working in (ṽ, ũ) variables as in (A.1), the limiting eigenvalue system
and boundary conditions take the form

λṽ + ṽ′ − ũ′ = 0, (C.1a)

λũ + ũ′ − 1− v̂

v̂
ṽ′ =

ũ′′

v̂
(C.1b)

corresponding to a pressureless gas, γ = 0, with

(ũ, ũ′, ṽ, ṽ′)(0) = (d, 0, 0, 0), (ũ, ũ′, ṽ, ṽ′)(+∞) = (c, 0, 0, 0). (C.2)

Hereafter, we drop the tildes.

Proof (Proof of Proposition 3.1). Multiplying (C.1b) by v̂ū/(1− v̂) and
integrating on [0, b] ⊂ R+, we obtain

λ

∫ b

0

v̂

1− v̂
|u|2dx +

∫ b

0

v̂

1− v̂
u′ūdx−

∫ b

0

v′ūdx =
∫ b

0

u′′ū

1− v̂
dx.

Integrating the third and fourth terms by parts yields

λ

∫ b

0

v̂

1− v̂
|u|2dx +

∫ b

0

[
v̂

1− v̂
+
(

1
1− v̂

)′]
u′ūdx

+
∫ b

0

|u′|2

1− v̂
dx +

∫ b

0

v(λv + v′)dx

=
[
vū +

u′ū

1− v̂

] ∣∣∣b
0
.

Integrating the second term by parts and taking the real part, we have

<e(λ)
∫ b

0

(
v̂

1− v̂
|u|2 + |v|2

)
dx +

∫ b

0

g(v̂)|u|2dx +
∫ b

0

|u′|2

1− v̂
dx

= <e

[
vū +

u′ū

1− v̂
− 1

2

[
v̂

1− v̂
+
(

1
1− v̂

)′]
|u|2 − |v|2

2

] ∣∣∣b
0
, (C.3)

where

g(v̂) = −1
2

[(
v̂

1− v̂

)′
+
(

1
1− v̂

)′′]
.

Note that

d

dx

(
1

1− v̂

)
= − (1− v̂)′

(1− v̂)2
=

v̂x

(1− v̂)2
=

v̂(v̂ − 1)
(1− v̂)2

= − v̂

1− v̂
.
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Thus, g(v̂) ≡ 0 and the third term on the right-hand side vanishes, leaving

<e(λ)
∫ b

0

(
v̂

1− v̂
|u|2 + |v|2

)
dx +

∫ b

0

|u′|2

1− v̂
dx

=
[
<e(vū) +

<e(u′ū)
1− v̂

− |v|2

2

] ∣∣∣b
0

=
[
<e(vū) +

<e(u′ū)
1− v̂

− |v|2

2

]
(b).

We show finally that the right-hand side goes to zero in the limit as
b →∞. By Proposition 4.1, the behavior of u, v near ±∞ is governed by the
limiting constant–coefficient systems W ′ = A0

±(λ)W , where W = (u, v, v′)T

and A0
± = A0(±∞, λ). In particular, solutions W asymptotic to (1, 0, 0) at

x = +∞ decay exponentially in (u′, v, v′) and are bounded in coordinate u
as x → +∞. Observing that 1− v̂ → 1 as x → +∞, we thus see immediately
that the boundary contribution at b vanishes as b → +∞.

Thus, in the limit as b → +∞,

<e(λ)
∫ +∞

0

(
v̂

1− v̂
|u|2 + |v|2

)
dx +

∫ +∞

0

|u′|2

1− v̂
dx = 0. (C.4)

But, for <eλ ≥ 0, this implies u′ ≡ 0, or u ≡ constant, which, by u(0) = 1,
implies u ≡ 1. This reduces (C.1a) to v′ = λv, yielding the explicit solution
v = Ceλx. By v(0) = 0, therefore, v ≡ 0 for <eλ ≥ 0. Substituting into
(C.1b), we obtain λ = 0. It follows that there are no nontrivial solutions of
(C.1), (C.2) for <eλ ≥ 0 except at λ = 0.

Remark C.1. The above energy estimate is essentially identical to that used
in [12] to treat the limiting shock case.

Appendix D. Nonvanishing of D0
out

Working in (ṽ, ũ) variables as in (A.1), the limiting eigenvalue system
and boundary conditions take the form

λṽ + ṽ′ − ũ′ = 0, (D.1a)

λũ + ũ′ − 1− v̂

v̂
ṽ′ =

ũ′′

v̂
(D.1b)

corresponding to a pressureless gas, γ = 0, with

(ũ, ũ′, ṽ, ṽ′)(−∞) = (0, 0, 0, 0), (D.2)

ṽ′(0) =
λ

α− 1
ṽ(0), ũ′(0) = αṽ′(0). (D.3)
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In particular,

ũ′(0) =
λα

α− 1
ṽ(0) = v̂′(0)ṽ(0) = (v0 − 1)v̂0ṽ(0). (D.4)

Hereafter, we drop the tildes.

Proof (Proof of Proposition 3.1). Multiplying (D.1b) by v̂ū/(1 − v̂)
and integrating on [a, 0] ⊂ R−, we obtain

λ

∫ 0

a

v̂

1− v̂
|u|2dx +

∫ 0

a

v̂

1− v̂
u′ūdx−

∫ 0

a

v′ūdx =
∫ 0

a

u′′ū

1− v̂
dx.

Integrating the third and fourth terms by parts yields

λ

∫ 0

a

v̂

1− v̂
|u|2dx +

∫ 0

a

[
v̂

1− v̂
+
(

1
1− v̂

)′]
u′ūdx

+
∫ 0

a

|u′|2

1− v̂
dx +

∫ 0

a

v(λv + v′)dx

=
[
vū +

u′ū

1− v̂

] ∣∣∣0
a
.

Taking the real part, we have

<e(λ)
∫ 0

a

(
v̂

1− v̂
|u|2 + |v|2

)
dx +

∫ 0

a

g(v̂)|u|2dx +
∫ 0

a

|u′|2

1− v̂
dx

= <e

[
vū +

u′ū

1− v̂
− 1

2

[
v̂

1− v̂
+
(

1
1− v̂

)′]
|u|2 − |v|2

2

] ∣∣∣0
a
, (D.5)

where

g(v̂) = −1
2

[(
v̂

1− v̂

)′
+
(

1
1− v̂

)′′]
≡ 0

and the third term on the right-hand side vanishes, as shown in Section C,
leaving

<e(λ)
∫ 0

a

(
v̂

1− v̂
|u|2 + |v|2

)
dx +

∫ 0

a

|u′|2

1− v̂
dx

=
[
<e(vū) +

<e(u′ū)
1− v̂

− |v|2

2

] ∣∣∣0
a
.
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A boundary analysis similar to that of Section C shows that the contri-
bution at a on the righthand side vanishes as a → −∞; see [12] for details.
Thus, in the limit as a → −∞ we obtain

<e(λ)
∫ 0

−∞

(
v̂

1− v̂
|u|2 + |v|2

)
dx +

∫ 0

−∞

|u′|2

1− v̂
dx

=
[
<e(vū) +

<e(u′ū)
1− v̂

− |v|2

2

]
(0)

=
[
(1− v0)<e(vū)− |v|2

2

]
(0),

≤
[
(1− v0)|v||u| −

|v|2

2

]
(0)

≤ (1− v0)2
|u(0)|2

2
,

where the second equality follows by (D.4) and the final line by Young’s
inequality.

Next, observe the Sobolev-type bound

|u(0)|2 ≤
(∫ 0

−∞
|u′(x)|dx

)2

≤
∫ 0

−∞

|u′|2

1− v̂
(x)dx

∫ 0

−∞
(1− v̂)(x)dx,

together with∫ 0

−∞
(1− v̂)(x)dx =

∫ 0

−∞
− v̂′

v̂
(x)dx =

∫ 0

−∞
(log v̂−1)′(x)dx = log v−1

0 ,

hence
∫ 0

−∞(1− v̂)(x)dx < 2
(1−v0)2

for v0 > v∗, where v∗ < e−2 is the unique
solution of

v∗ = e−2/(1−v∗)
2
. (D.6)

Thus, for v0 > v∗,

<e(λ)
∫ 0

−∞

(
v̂

1− v̂
|u|2 + |v|2

)
dx + ε

∫ 0

−∞

|u′|2

1− v̂
dx ≤ 0, (D.7)

for ε := 1− (1−v0)
2

2

∫ 0

−∞(1− v̂)(x)dx > 0. For <eλ ≥ 0, this implies u′ ≡ 0,
or u ≡ constant, which, by u(−∞) = 0, implies u ≡ 0. This reduces (D.1a)
to v′ = λv, yielding the explicit solution v = Ceλx. By v(0) = 0, therefore,
v ≡ 0 for <eλ ≥ 0. It follows that there are no nontrivial solutions of (D.1),
(D.2) for <eλ ≥ 0 except at λ = 0.

By iteration, starting with v∗ ≈ 0, we obtain first v∗ < e−2 ≈ 0.14 then
v∗ > e2/(1−.14)2 ≈ .067, then v∗ < e2/(1−.067)2 ≈ .10, then v∗ > e2/(1−.10)2 ≈
.085, then v∗ < e2/(1−.085) ≈ .091 and v∗ > e2/(1−.091) ≈ .0889, terminating
with v∗ ≈ .0899.
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Remark D.1. Our Evans function results show that the case v0 small not
treated corresponds to the shock limit for which stability is already known
by [12]. This suggests that a more sophisticated energy estimate combining
the above with a boundary-layer analysis from x = 0 back to x = L + δ
might yield nonvanishing for all 1 > v0 > 0.

Appendix E. The characteristic limit: outflow case

We now show stability of compressive outflow boundary layers in the
characteristic limit v+ → 1, by essentially the same energy estimate used in
[18] to show stability of small-amplitude shock waves.

As in the above section on the outflow case, we obtain a system

λṽ + ṽ′ − ũ′ = 0, (E.1a)

λũ + ũ′ − h(v̂)
v̂γ+1

ṽ′ =
ũ′′

v̂
(E.1b)

identical to that in the integrated shock case [3], but with boundary condi-
tions

ṽ′(0) =
λ

α− 1
ṽ(0), ũ′(0) = αṽ′(0). (E.2)

In particular,

ũ′(0) =
λα

α− 1
ṽ(0) = v̂′(0)ṽ(0). (E.3)

This new eigenvalue problem differs spectrally from (2.16) only at λ = 0,
hence spectral stability of (2.16) is implied by spectral stability of (E.1).
Hereafter, we drop the tildes, and refer simply to u, v.

Proof (Proof of Proposition 3.2).
We note that h(v̂) > 0. By multiplying (E.1b) by both the conjugate ū

and v̂γ+1/h(v̂) and integrating along x from −∞ to 0, we have∫ 0

−∞

λuūv̂γ+1

h(v̂)
dx +

∫ 0

−∞

u′ūv̂γ+1

h(v̂)
dx−

∫ 0

−∞
v′ūdx =

∫ 0

−∞

u′′ūv̂γ

h(v̂)
dx.

Integrating the last two terms by parts and appropriately using (E.1a) to
substitute for u′ in the third term gives us∫ 0

−∞

λ|u|2v̂γ+1

h(v̂)
dx +

∫ 0

−∞

u′ūv̂γ+1

h(v̂)
dx +

∫ 0

−∞
v(λv + v′)dx +

∫ 0

−∞

v̂γ |u′|2

h(v̂)
dx

= −
∫ 0

−∞

(
v̂γ

h(v̂)

)′
u′ūdx +

[
vū +

vγu′ū

h(v̂)

] ∣∣∣
x=0

.

We take the real part and appropriately integrate by parts to get

<e(λ)
∫ 0

−∞

[
v̂γ+1

h(v̂)
|u|2 + |v|2

]
dx +

∫ 0

−∞
g(v̂)|u|2dx +

∫ 0

−∞

v̂γ

h(v̂)
|u′|2dx = G(0),

(E.4)
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where

g(v̂) = −1
2

[(
v̂γ+1

h(v̂)

)′
+
(

v̂γ

h(v̂)

)′′]
and

G(0) = −1
2

[
v̂γ+1

h(v̂)
+
(

v̂γ

h(v̂)

)′]
|u|2 + <e

[
vū +

vγu′ū

h(v̂)

]
− |v|2

2

evaluated at x = 0. Here, the boundary term appearing on the righthand
side is the only difference from the corresponding estimate appearing in the
treatment of the shock case in [18,3]. We shall show that as v+ → 1, the
boundary term G(0) is nonpositive. Observe that boundary conditions yield[

vū +
vγu′ū

h(v̂)

] ∣∣∣
x=0

= <e(v(0)ū(0))
[
1 +

v̂γ v̂′

h(v̂)

] ∣∣∣
x=0

.

We first note, as established in [18,3], that g(v̂) ≥ 0 on [v+, 1], under
certain conditions including the case v+ → 1. Straightforward computation
gives identities:

γh(v̂)− v̂h′(v̂) = aγ(γ − 1) + v̂γ+1 and (E.5)

v̂γ−1v̂x = aγ − h(v̂). (E.6)

Using (E.5) and (E.6), we abbreviate a few intermediate steps below:

g(v̂) = − v̂x

2

[
(γ + 1)v̂γh(v̂)− v̂γ+1h′(v̂)

h(v̂)2
+

d

dv̂

[
γv̂γ−1h(v̂)− v̂γh′(v̂)

h(v̂)2
v̂x

]]
= − v̂x

2

[
v̂γ ((γ + 1)h(v̂)− v̂h′(v̂))

h(v̂)2
+

d

dv̂

[
γh(v̂)− v̂h′(v̂)

h(v̂)2
(aγ − h(v̂))

]]
= −av̂xv̂γ−1

2h(v̂)3
×[

γ2(γ + 1)v̂γ+2 − 2(a + 1)γ(γ2 − 1)v̂γ+1 + (a + 1)2γ2(γ − 1)v̂γ

+ aγ(γ + 2)(γ2 − 1)v̂ − a(a + 1)γ2(γ2 − 1)
]

= −av̂xv̂γ−1

2h(v̂)3
[(γ + 1)v̂γ+2 + v̂γ(γ − 1) ((γ + 1)v̂ − (a + 1)γ)2 (E.7)

+ aγ(γ2 − 1)(γ + 2)v̂ − a(a + 1)γ2(γ2 − 1)]

≥ −av̂xv̂γ−1

2h(v̂)3
[(γ + 1)v̂γ+2 + aγ(γ2 − 1)(γ + 2)v̂ − a(a + 1)γ2(γ2 − 1)]

≥ −γ2a3v̂x(γ + 1)
2h(v̂)3v+

(vγ+1
+

aγ

)2

+ 2(γ − 1)

(
vγ+1
+

aγ

)
− (γ − 1)

 .

(E.8)

This verifies g(v̂) ≥ 0 as v+ → 1.
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Second, examine

G(0) = −1
2

[
v̂γ+1

h(v̂)
+
(

v̂γ

h(v̂)

)′]
|u(0)|2 +

[
1 +

v̂γ v̂′

h(v̂)

]
<e(v(0)ū(0))− |v(0)|2

2
.

Applying Young’s inequality to the middle term, we easily get

G(0) ≤ −1
2

[
v̂γ+1

h(v̂)
+
(

v̂γ

h(v̂)

)′
−
(

1 +
v̂γ v̂′

h(v̂)

)2
]
|u(0)|2 =: −1

2
I|u(0)|2.

Now observe that I can be written as

I =
v̂γ+1

h(v̂)
− 1 +

[
γv̂γ−1

h(v̂)
− 2v̂γ

h(v̂)
− v̂2γ v̂′

h2(v̂)

]
v̂′ − v̂γh′(v̂)

h2(v̂)
.

Using (E.5) and (E.6), we get

v̂γ+1

h(v̂)
− 1 = − (γ − 1)v̂γ−1v̂′ + v̂h′(v̂)

h(v̂)

and thus

I = − (γ − 1)v̂γ−1v̂′ + v̂h′(v̂)
h(v̂)

+
[
γv̂γ−1

h(v̂)
− 2

v̂γ

h(v̂)
− v̂2γ v̂′

h2(v̂)

]
v̂′ − v̂γh′(v̂)

h2(v̂)
.

Now since h′(v̂) = −(γ+1)v̂γ v̂′+(a+1)γv̂γ−1v̂′, as v+ → 1, I ∼ −v̂′ ≥ 0.
Therefore, as v+ is close to 1, G(0) ≤ 1

4 v̂′(0)|u(0)|2 ≤ 0. This, g(v̂) ≥ 0, and
(E.4) give, as v+ is close enough to 1,

<e(λ)
∫ 0

−∞

[
v̂γ+1

h(v̂)
|u|2 + |v|2

]
dx +

∫ 0

−∞

v̂γ

h(v̂)
|u′|2dx ≤ 0, (E.9)

which evidently gives stability as claimed.

Appendix F. Nonvanishing of Din: expansive inflow case

For completeness, we recall the argument of [19] in the expansive inflow
case.

Profile equation. Note that, in the expansive inflow case, we assume
v0 < v+. Therefore we can still follow the scaling (2.6) to get

0 < v0 < v+ = 1.

Then the stationary boundary layer (v̂, û) satisfies (2.9) with v0 < v+ =
1. Now by integrating (2.10) from x to +∞ with noting that v̂(+∞) = 1
and v̂′(+∞) = 0, we get the profile equation

v̂′ = v̂(v̂ − 1 + a(v̂−γ − 1)).
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Note that v̂′ > 0. We now follow the same method for compressive inflow
case to get the following eigenvalue system

λv + v′ − u′ = 0, (F.1a)

λu + u′ − (fv)′ =
(

u′

v̂

)′
(F.1b)

with boundary conditions

u(0) = v(0) = 0, (F.2)

where f(v̂) = h(v̂)
v̂γ+1 .

Proof (Proof of Proposition 3.3). Multiply the equation (F.1b) by ū
and integrate along x. By integration by parts, we get

λ

∫ ∞

0

|u|2dx +
∫ ∞

0

u′ū + fvū′ +
|u′|2

v̂
dx = 0.

Using (F.1a) and taking the real part of the above yield

<eλ

∫ ∞

0

|u|2 + f |v|2dx− 1
2

∫ ∞

0

f ′|v|2dx +
∫ ∞

0

|u′|2

v̂
dx = 0. (F.3)

Note that

f ′ =
(

1 + a +
a(γ2 − 1)

v̂γ

)
−v̂′

v̂2
≤ 0

which together with (F.3) gives <eλ < 0, the proposition is proved.
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