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Abstract. We report our results on long-time stability of multi–dimensional nonchar-
acteristic boundary layers of a class of hyperbolic–parabolic systems including the com-
pressible Navier–Stokes equations with inflow [outflow] boundary conditions, under the
assumption of strong spectral, or uniform Evans, stability. Evans stability has been ver-
ified for small-amplitude layers by Guès, Métivier, Williams, and Zumbrun. For large–
amplitudes, it may be checked numerically, as done in one–dimensional case for isentropic
gas by Costanzino, Humpherys, Nguyen, and Zumbrun.

1. Introduction

We consider a boundary layer, or stationary solution,

(1.1) Ũ = Ū(x1), lim
x1→+∞

Ū(x1) = U+, Ū(0) = Ū0

of a system of conservation laws on the quarter-space

(1.2) Ũt +
∑
j

F j(Ũ)xj =
∑
jk

(Bjk(Ũ)Ũxk)xj , x ∈ Rd
+ = {x1 > 0}, t > 0,

Ũ , F j ∈ Rn, Bjk ∈ Rn×n, with initial data Ũ(x, 0) = Ũ0(x) and Dirichlet type boundary
conditions specified in (1.5), (1.6) below.

Our studies to boundary layers are restricted to the case that the layers are assumed
to be noncharacteristic, that is, the matrix dF 1

11 in the hyperbolic equations of ũ is either
strictly positive (inflow case) or strictly negative (outflow case). Roughly speaking, the
noncharacteristicity limits the signals to be transmitted into or out of but not along the
boundary. In the context of gas dynamics or MHD, this corresponds to the situation of a
porous boundary with prescribed inflow or outflow conditions accomplished by suction or
blowing, a scenario that has been suggested as a means to reduce drag along an airfoil by
stabilizing laminar flow; see Example 1.1 below.

A fundamental question is whether or not such boundary layer solutions are stable in the
sense of PDE, i.e., whether or not a sufficiently small (initial and boundary) perturbation of
Ū remains close to Ū , or converges time-asymptotically to Ū , under the evolution of (1.2).
Purpose of this note is to report our results in [NZ2], addressing this time–asymptotic
stability question.
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1.1. Equations and assumptions. We consider the general hyperbolic-parabolic system
of conservation laws (1.2) in conserved variable Ũ , with

Ũ =
(
ũ
ṽ

)
, B =

(
0 0
bjk1 bjk2

)
,

ũ ∈ Rn−r, and ṽ ∈ Rr, where

<σ
∑
jk

bjk2 ξjξk ≥ θ|ξ|
2 > 0, ∀ξ ∈ Rn\{0}.

Following [MaZ4, Z3, Z4], we assume that equations (1.2) can be written, alternatively,
after a triangular change of coordinates

(1.3) W̃ := W̃ (Ũ) =
(

w̃I(ũ)
w̃II(ũ, ṽ)

)
,

in the quasilinear, partially symmetric hyperbolic-parabolic form

(1.4) Ã0W̃t +
∑
j

ÃjW̃xj =
∑
jk

(B̃jkW̃xk)xj + G̃,

where

Ã0 =
(
Ã0

11 0
0 Ã0

22

)
, Ã =

(
Ã11 Ã12

Ã21 Ã22

)
, B̃ =

(
0 0
0 b̃

)
, G̃ =

(
0
g̃

)
and, defining W̃+ := W̃ (U+),

(A1) Ãj(W̃+), Ã0, Ã1
11 are symmetric, Ã0 block diagonal, Ã0 ≥ θ0 > 0,

(A2) for each ξ ∈ Rd \ {0}, no eigenvector of
∑

j ξjÃ
j(Ã0)−1(W̃+) lies in the kernel of∑

jk ξjξkB̃
jk(Ã0)−1(W̃+),

(A3)
∑
b̃jkξjξk ≥ θ|ξ|2, and g̃(W̃x, W̃x) = O(|W̃x|2).

Along with the above structural assumptions, we make the following technical hypotheses:

(H0) F j , Bjk, Ã0, Ãj , B̃jk, W̃ (·), g̃(·, ·) ∈ Cs+1, with s ≥ [(d− 1)/2] + 4 in our analysis of
linearized stability, and s ≥ s(d) := [(d− 1)/2] + 7 in our analysis of nonlinear stability.

(H1) Ã11
1 is either strictly positive or strictly negative, that is, either Ã11

1 ≥ θ1 > 0, or
Ã11

1 ≤ −θ1 < 0. (We shall call these cases the inflow case or outflow case, correspondingly.)

(H2) The eigenvalues of dF 1(U+) are distinct and nonzero.

(H3) The eigenvalues of
∑

j dF
j
+ξj have constant multiplicity with respect to ξ ∈ Rd,

ξ 6= 0.

(H4) The set of branch points of the eigenvalues of (Ã1)−1(iτÃ0 +
∑

j 6=1 iξjÃ
j)+, τ ∈ R,

ξ̃ ∈ Rd−1 is the (possibly intersecting) union of finitely many smooth curves τ = η+
q (ξ̃), on

which the branching eigenvalue has constant multiplicity sq (by definition ≥ 2).
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Condition (H1) corresponds to hyperbolic–parabolic noncharacteristicity, while (H2) is the
condition for the hyperbolicity at U+ of the associated first-order hyperbolic system obtained
by dropping second-order terms. The assumptions (A1)-(A3) and (H0)-(H2) are satisfied
for gas dynamics and MHD with van der Waals equation of state under inflow or outflow
conditions; see discussions in [MaZ4, CHNZ, GMWZ5, GMWZ6]. Condition (H3) holds
always for gas dynamics, but fails always for MHD in dimension d ≥ 2. Condition (H4) is a
technical requirement of the analysis introduced in [Z2]. It is satisfied always in dimension
d = 2 or for rotationally invariant systems in dimensions d ≥ 2, for which it serves only to
define notation; in particular, it holds always for gas dynamics.

We also assume:
(B) Dirichlet boundary conditions in W̃ -coordinates:

(1.5) (w̃I , w̃II)(0, x̃, t) = h̃(x̃, t) := (h̃1, h̃2)(x̃, t)

for the inflow case, and

(1.6) w̃II(0, x̃, t) = h̃(x̃, t)

for the outflow case, with x = (x1, x̃) ∈ Rd.

This is sufficient for the main physical applications; the situation of more general, Neu-
mann and mixed-type boundary conditions on the parabolic variable v can be treated as
discussed in [GMWZ5, GMWZ6].

Example 1.1. The main example we have in mind consists of laminar solutions (ρ, u, e)(x1, t)
of the compressible Navier–Stokes equations

(1.7)


∂tρ+ div(ρu) = 0

∂t(ρu) + div(ρutu) +∇p = εµ∆u+ ε(µ+ η)∇divu

∂t(ρE) + div
(
(ρE + p)u

)
= εκ∆T + εµdiv

(
(u · ∇)u

)
+ ε(µ+ η)∇(u · divu),

x ∈ Rd, on a half-space x1 > 0, where ρ denotes density, u ∈ Rd velocity, e specific internal
energy, E = e + |u|2

2 specific total energy, p = p(ρ, e) pressure, T = T (ρ, e) temperature,
µ > 0 and |η| ≤ µ first and second coefficients of viscosity, κ > 0 the coefficient of heat
conduction, and ε > 0 (typically small) the reciprocal of the Reynolds number, with no-slip
suction-type boundary conditions on the velocity,

uj(0, x2, . . . , xd) = 0, j 6= 1 and u1(0, x2, . . . , xd) = V (x) < 0,

and prescribed temperature, T (0, x2, . . . , xd) = Twall(x̃). Under the standard assumptions
pρ, Te > 0, this can be seen to satisfy all of the hypotheses (A1)–(A3), (H0)–(H4), (B) in
the outflow case (1.6); indeed these are satisfied also under much weaker van der Waals gas
assumptions [MaZ4, Z3, CHNZ, GMWZ5, GMWZ6]. In particular, boundary-layer solutions
are of noncharacteristic type, scaling as (ρ, u, e) = (ρ̄, ū, ē)(x1/ε), with layer thickness ∼ ε
as compared to the ∼

√
ε thickness of the characteristic type found for an impermeable

boundary.
This corresponds to the situation of an airfoil with microscopic holes through which

gas is pumped from the surrounding flow, the microscopic suction imposing a fixed normal
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velocity while the macroscopic surface imposes standard temperature conditions as in flow
past a (nonporous) plate. This configuration was suggested by Prandtl and tested experi-
mentally by G.I. Taylor as a means to reduce drag by stabilizing laminar flow; see [S, Bra].
It was implemented in the NASA F-16XL experimental aircraft program in the 1990’s with
reported 25% reduction in drag at supersonic speeds [Bra].1 Possible mechanisms for this
reduction are smaller thickness ∼ ε <<

√
ε of noncharacteristic boundary layers as com-

pared to characteristic type, and greater stability, delaying the transition from laminar to
turbulent flow. In particular, stability properties appear to be quite important for the
understanding of this phenomenon. For further discussion, including the related issues
of matched asymptotic expansion, multi-dimensional effects, and more general boundary
configurations, see [GMWZ5].

Example 1.2. Alternatively, we may consider the compressible Navier–Stokes equations
(1.7) with blowing-type boundary conditions

uj(0, x2, . . . , xd) = 0, j 6= 1 and u1(0, x2, . . . , xd) = V (x) > 0,

and prescribed temperature and pressure

T (0, x2, . . . , xd) = Twall(x̃), p(0, x2, . . . , xd) = pwall(x̃)

(equivalently, prescribed temperature and density). Under the standard assumptions pρ,
Te > 0 on the equation of state (alternatively, van der Waals gas assumptions), this can be
seen to satisfy hypotheses (A1)–(A3), (H0)–(H4), (B) in the inflow case (1.5).

1.2. The Evans condition and strong spectral stability. The linearized equations of
(1.2), (B) about Ū are

(1.8) Ut = LU :=
∑
j,k

(BjkUxk)xj −
∑
j

(AjU)xj

with initial data U(0) = U0 and boundary conditions in (linearized) W̃ -coordinates of

W (0, x̃, t) := (wI , wII)T (0, x̃, t) = h

for the inflow case, and
wII(0, x̃, t) = h

for the outflow case, with x = (x1, x̃) ∈ Rd, where W := (∂W̃/∂U)(Ū)U . Here, Bjk :=
Bjk(Ū(x1)) and AjU := dF j(Ū(x1))U − [dBj1(Ū(x1))U ]Ūx1(x1).

A necessary condition for linearized stability is weak spectral stability, defined as nonex-
istence of unstable spectra <λ > 0 of the linearized operator L about the wave. This is
equivalent to nonvanishing for all ξ̃ ∈ Rd−1, <λ > 0 of the Evans function

DL(ξ̃, λ)

a Wronskian associated with the Fourier-transformed eigenvalue ODE.

Definition 1.3. We define strong spectral stability as uniform Evans stability:

(D) |DL(ξ̃, λ)| ≥ θ(C) > 0

for (ξ̃, λ) on bounded subsets C ⊂ {ξ̃ ∈ Rd−1, <λ ≥ 0} \ {0}.
1See also NASA site http://www.dfrc.nasa.gov/Gallery/photo/F-16XL2/index.html
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For the class of equations we consider, this is equivalent to the uniform Evans condition of
[GMWZ5, GMWZ6], which includes an additional high-frequency condition that for these
equations is always satisfied (see Proposition 3.8, [GMWZ5]). A fundamental result proved
in [GMWZ5] is that small-amplitude noncharacteristic boundary-layers are always strongly
spectrally stable.2

Proposition 1.4 ([GMWZ5]). Assuming (A1)-(A3), (H0)-(H3), (B) for some fixed end-
state (or compact set of endstates) U+, boundary layers with amplitude

‖Ū − U+‖L∞[0,+∞]

sufficiently small satisfy the strong spectral stability condition (D).

As demonstrated in [SZ], stability of large-amplitude boundary layers may fail for the
class of equations considered here, even in a single space dimension, so there is no such
general theorem in the large-amplitude case. Stability of large-amplitude boundary-layers
may be checked efficiently by numerical Evans computations as in [BDG, Br1, Br2, BrZ,
HuZ, BHRZ, HLZ, CHNZ, HLyZ1, HLyZ2].

1.3. Main results. Our main results are as follows.

Theorem 1.5 (Linearized stability). Assuming (A1)-(A3), (H0)-(H4), (B), and strong
spectral stability (D), we obtain asymptotic L1 ∩ H [(d−1)/2]+5 → Lp stability of (1.8) in
dimension d ≥ 2, and any 2 ≤ p ≤ ∞, with rate of decay

(1.9)
|U(t)|L2 ≤ C(1 + t)−

d−1
4 |U0|L1∩H3 ,

|U(t)|Lp ≤ C(1 + t)−
d
2

(1−1/p)+1/2p|U0|L1∩H[(d−1)/2]+5 ,

provided that the initial perturbations U0 are in L1 ∩H3 for p = 2, or in L1 ∩H [(d−1)/2]+5

for p > 2, and zero boundary perturbations h = 0.

Theorem 1.6 (Nonlinear stability). Assuming (A1)-(A3), (H0)-(H4), (B), and strong
spectral stability (D), we obtain asymptotic L1 ∩Hs → Lp ∩Hs stability of Ū as a solution
of (1.2) in dimension d ≥ 2, for s ≥ s(d) as defined in (H0), and any 2 ≤ p ≤ ∞, with rate
of decay

(1.10)
|Ũ(t)− Ū |Lp ≤ C(1 + t)−

d
2

(1−1/p)+1/2p|U0|L1∩Hs

|Ũ(t)− Ū |Hs ≤ C(1 + t)−
d−1
4 |U0|L1∩Hs ,

provided that the initial perturbations U0 := Ũ0 − Ū are sufficiently small in L1 ∩Hs and
zero boundary perturbations h = 0.

Remark 1.7. Nonzero boundary perturbations are also treated in [NZ2]. However, for
simplicity, we only report here the case of zero boundary perturbations.

Combining Theorem 1.6 and Proposition 1.4, we obtain the following small-amplitude
stability result, applying in particular to the motivating situation of Example 1.1.

2The result of [GMWZ5] applies also to more general types of boundary conditions and in some situations
to systems with variable multiplicity characteristics, including, in some parameter ranges, MHD.
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Corollary 1.8. Assuming (A1)-(A3), (H0)-(H4), (B) for some fixed endstate (or compact
set of endstates) U+, boundary layers with amplitude

‖Ū − U+‖L∞[0,+∞]

sufficiently small are linearly and nonlinearly stable in the sense of Theorems 1.5 and 1.6.

Remark 1.9. The obtained rate of decay in L2 may be recognized as that of a (d − 1)-
dimensional heat kernel, and the obtained rate of decay in L∞ as that of a d-dimensional
heat kernel. We believe that the sharp rate of decay in L2 is rather that of a d-dimensional
heat kernel and the sharp rate of decay in L∞ dependent on the characteristic structure of
the associated inviscid equations, as in the constant-coefficient case [HoZ1, HoZ2].

Remark 1.10. In one dimension, strong spectral stability is necessary for linearized as-
ymptotic stability; see Theorem 1.6, [NZ1]. However, in multi-dimensions, it appears likely
that, as in the shock case [Z3], there are intermediate possibilities between strong and weak
spectral stability for which linearized stability might hold with degraded rates of decay. In
any case, the gap between the necessary weak spectral and the sufficient strong spectral
stability conditions concerns only pure imaginary spectra <λ = 0 on the boundary between
strictly stable and unstable half-planes, so this should not interfere with investigation of
physical stability regions.

1.4. Discussion and open problems. Asymptotic stability, without rates of decay, has
been shown for small amplitude noncharacteristic “normal” boundary layers of the isen-
tropic compressible Navier–Stokes equations with outflow boundary conditions and vanish-
ing transverse velocity in [KK], using energy estimates. Corollary 1.8 recovers this existing
result and extends it to the general arbitrary transverse velocity, outflow or inflow, and isen-
tropic or nonisentropic (full compressible Navier–Stokes) case, in addition giving asymptotic
rates of decay. Also, the type of boundary layer relevant to the drag-reduction strategy dis-
cussed in Examples 1.1–1.2 is a noncharacteristic “transverse” type with constant normal
velocity, complementary to the normal type considered in [KK].

The large-amplitude asymptotic stability result of Theorem 1.6 extends to multi dimen-
sions corresponding one-dimensional results of [YZ, NZ1], reducing the problem of stability
to verification of a numerically checkable Evans condition. See also the related, but tech-
nically rather different, work on the small viscosity limit in [MZ, GMWZ5, GMWZ6]. By
a combination of numerical Evans function computations and asymptotic ODE estimates,
spectral stability has been checked for arbitrary amplitude noncharacteristic boundary layers
of the one-dimensional isentropic compressible Navier–Stokes equations in [CHNZ]. Exten-
sions to the nonisentropic and multi-dimensional case should be possible by the methods
used in [HLyZ1] and [HLyZ2] respectively to treat the related shock stability problem.

This (investigation of large-amplitude spectral stability) would be a very interesting di-
rection for further investigation. In particular, note that it is large-amplitude stability that
is relevant to drag-reduction at flight speeds, since the transverse relative velocity (i.e.,
velocity parallel to the airfoil) is zero at the wing surface and flight speed outside a thin
boundary layer, so that variation across the boundary layer is substantial.

Our method of analysis follows the basic approach introduced in [Z2, Z3, Z4] for the
study of multi-dimensional shock stability and we are able to make use of much of that
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analysis without modification. However, there are some new difficulties to be overcome in
the boundary-layer case.

The main new difficulty is that the boundary-layer case is analogous to the undercom-
pressive shock case rather than the more favorable Lax shock case emphasized in [Z3], in
that Gy1 6∼ t−1/2G as in the Lax shock case but rather Gy1 ∼ (e−θ|y1|+ t−1/2)G, θ > 0, as in
the undercompressive case. This is a significant difficulty; indeed, for this reason, the un-
dercompressive shock analysis was carried out in [Z3] only in nonphysical dimensions d ≥ 4.
On the other hand, there is no translational invariance in the boundary layer problem, so
no zero-eigenvalue and no pole of the resolvent kernel at the origin for the one-dimensional
operator, and in this sense G is somewhat better in the boundary layer than in the shock
case.

Thus, the difficulty of the present problem is roughly intermediate to that of the Lax
and undercompressive shock cases. Though the undercompressive shock case is still open in
multi-dimensions for d ≤ 3, the slight advantage afforded by lack of pole terms allows us to
close the argument in the boundary-layer case. Specifically, thanks to the absence of pole
terms, we are able to get a slightly improved rate of decay in L∞(x1) norms, though our
L2(x1) estimates remain the same as in the shock case. By keeping track of these improved
sup norm bounds throughout the proof, we are able to close the argument without using
detailed pointwise bounds as in the one-dimensional analyses of [HZ, RZ].

Other difficulties include the appearance of boundary terms in integrations by parts,
which makes the auxiliary energy estimates by which we control high-frequency effects
considerably more difficult in the boundary-layer than in the shock-layer case, and the
treatment of boundary perturbations. In terms of the homogeneous Green function G,
boundary perturbations lead by a standard duality argument to contributions consisting of
integrals on the boundary of perturbations against various derivatives of G, and these are
a bit too singular as time goes to zero to be absolutely integrable. Following the strategy
introduced in [YZ, NZ1], we instead use duality to convert these to less singular integrals
over the whole space, that are absolutely integrable in time. However, we make a key
improvement here over the treatment in [YZ, NZ1], integrating against an exponentially
decaying test function to obtain terms of exactly the same form already treated for the
homogeneous problem. This is necessary for us in the multi-dimensional case, for which
we have insufficient information about individual parts of the solution operator to estimate
them separately as in [YZ, NZ1], but makes things much more transparent also in the
one-dimensional case.

Among physical systems, our hypotheses appear to apply to and essentially only to the
case of compressible Navier–Stokes equations with inflow or outflow boundary conditions.
However, the method of analysis should apply, with suitable modifications, to more general
situations such as MHD; see an extension to MHD case via a different approach [N2], and
see also the recent results on the related small-viscosity problem in [GMWZ5, GMWZ6].

Finally, as pointed out in Remark 1.10, the strong spectral stability condition does not
appear to be necessary for asymptotic stability. It would be interesting to develop a refined
stability condition similarly as was done in [SZ, Z2, Z3, Z4] for the shock case.
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2. Linearized estimates

We first establish estimates on the linearized inhomogeneous problem

(2.1) Ut − LU = f

with initial data U(0) = U0 and Dirichlet boundary conditions as usual in W̃ -coordinates:

(2.2) W (0, x̃, t) := (wI , wII)T (0, x̃, t) = h

for the inflow case, and

(2.3) wII(0, x̃, t) = h

for the outflow case, with x = (x1, x̃) ∈ Rd.
Let us define low- and high-frequency parts of the linearized solution operator S(t) of the

linearized problem with homogeneous boundary and forcing data, f , h ≡ 0, as

(2.4) S1(t) :=
1

(2πi)d

∫
|ξ̃|≤r

∮
Γξ̃∩{|λ|≤r}

eλt+iξ̃·x̃(Lξ̃ − λ)−1dλdξ̃

and S2(t) := eLt − S1(t).
Then we obtain the following linearized estimates.

Proposition 2.1 (Low-frequency estimate). Under the hypotheses of Theorem 1.6, for
β = (β1, β

′) with β1 = 0, 1,

(2.5)

|S1(t)∂βxf |L2
x
≤C(1 + t)−(d−1)/4−|β|/2|f |L1

x
+ Cβ1(1 + t)−(d−1)/4|f |

L1,∞
x̃,x1

,

|S1(t)∂βxf |L2,∞
x̃,x1

≤C(1 + t)−(d+1)/4−|β|/2|f |L1
x

+ Cβ1(1 + t)−(d+1)/4|f |
L1,∞
x̃,x1

,

|S1(t)∂βxf |L∞x̃,x1 ≤C(1 + t)−d/2−|β|/2|f |L1
x

+ Cβ1(1 + t)−d/2|f |
L1,∞
x̃,x1

,

where | · |Lp,qx̃,x1 denotes the norm in Lp(x̃;Lq(x1)).

According to [Z4, Corollary 4.11], we can write

(2.6)
S2(t)f =

1
(2πi)d

P.V.
∫ −θ1+i∞

−θ1−i∞

∫
Rd−1

χ|ξ̃|2+|=mλ|2≥θ1+θ2

× eiξ̃·x̃+λt(λ− Lξ̃)
−1f̂(x1, ξ̃)dξ̃dλ,

and we obtain the following.

Proposition 2.2 (High-frequency estimate). Given (A1)-(A2), (H0)-(H2), (D), and ho-
mogeneous boundary conditions (B), for 0 ≤ |α| ≤ s− 3, s as in (H0),

(2.7)
|S2(t)f |L2

x
≤ Ce−θ1t|f |H3

x
,

|∂αxS2(t)f |L2
x
≤ Ce−θ1t|f |

H
|α|+3
x

.
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2.1. Resolvent bounds. Our first step of proving the linearized estimates is to estimate
solutions of the resolvent equation with homogeneous boundary data ĥ ≡ 0.

Proposition 2.3 (High-frequency bounds). Given (A1)-(A2), (H0)-(H2), and homoge-
neous boundary conditions (B), for some R,C sufficiently large and θ > 0 sufficiently small,

(2.8) |(Lξ̃ − λ)−1f̂ |Ĥ1(x1) ≤ C|f̂ |Ĥ1(x1),

and

(2.9) |(Lξ̃ − λ)−1f̂ |L2(x1) ≤
C

|λ|1/2
|f̂ |Ĥ1(x1),

for all |(ξ̃, λ)| ≥ R and <eλ ≥ −θ, where f̂ is the Fourier transform of f in variable x̃ and
|f̂ |Ĥ1(x1) := |(1 + |∂x1 |+ |ξ̃|)f̂ |L2(x1).

Proof. The proposition follows easily by applying a Laplace-Fourier transformed version
with respect to variables (λ, x̃) of the nonlinear energy estimate in Section 3.1 with s = 1,
carried out on the linearized equations written in W -coordinates. See [NZ2] for all the
details. �

We next have the following:

Proposition 2.4 (Mid-frequency bounds). Given (A1)-(A2), (H0)-(H2), and strong spec-
tral stability (D),

(2.10) |(Lξ̃ − λ)−1|Ĥ1(x1) ≤ C, for R−1 ≤ |(ξ̃, λ)| ≤ R and <eλ ≥ −θ,

for any R and C = C(R) sufficiently large and θ = θ(R) > 0 sufficiently small, where
|f̂ |Ĥ1(x1) is defined as in Proposition 2.3.

Proof. Immediate, by compactness of the set of frequencies under consideration together
with the fact that the resolvent (λ − Lξ̃)

−1 is analytic with respect to H1 in (ξ̃, λ); see
Proposition 4.8, [Z4]. �

We next obtain the following resolvent bound for low-frequency regions as a direct con-
sequence of pointwise bounds on the resolvent kernel.

Proposition 2.5 (Low-frequency bounds). Under the hypotheses of Theorem 1.6, for λ ∈
Γξ̃ and ρ := |(ξ̃, λ)|, θ1 sufficiently small, there holds the resolvent bound

(2.11) |(Lξ̃ − λ)−1∂βx1
f̂ |Lp(x1) ≤ Cγ2ρ

−2/p
[
ρβ|f̂ |L1(x1) + β|f̂ |L∞(x1)

]
for all 2 ≤ p ≤ ∞, β = 0, 1, where

(2.12) γ2 := 1 +
∑
j

[
ρ−1|=mλ− η+

j (ξ̃)|+ ρ
]1/sj−1

,

and sj , η+
j (ξ̃) are as defined in (H4).
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Proof. Applying the following pointwise bounds on the resolvent kernel deliberately con-
structed in [Z3] and recalled in [NZ2], Proposition 2.5,

|∂βy1Gξ̃,λ(x1, y1)| ≤ Cγ2(ρβ + βe−θy1)e−θρ
2|x1−y1|,

and using the convolution inequality |g ∗ h|Lp ≤ |g|Lp |h|L1 , we obtain

|(Lξ̃ − λ)−1∂βx1
f̂ |Lp(x1)

=
∣∣∣ ∫ ∂βy1Gξ̃,λ(x1, y1)f̂(y1, ξ̃) dy1

∣∣∣
Lp(x1)

+ β|Gξ̃,λ(x1, 0)f̂(0, ξ̃)|Lp(x1)

≤
∣∣∣ ∫ Cγ2(ρβ + βe−θy1)e−θρ

2|x1−y1||f̂(y1, ξ̃)| dy1

∣∣∣
Lp

+ Cγ2β|f̂(0, ξ̃)||e−θρ2x1 |Lp(x1)

≤ Cγ2ρ
−2/p

[
ρβ|f̂ |L1(x1) + β|f̂ |L∞(x1)

]
as claimed. �

Remark 2.6. The above Lp bounds may alternatively be obtained directly by the argu-
ment of Section 12, [GMWZ1], using quite different Kreiss symmetrizer techniques, again
omitting pole terms arising from vanishing of the Evans function at the origin, and also
the auxiliary problem construction of Section 12.6 used to obtain sharpened bounds in the
Lax or overcompressive shock case (not relevant here). See also [N2] in this direction with
treatment of the boundary layer case.

2.2. Estimates on homogeneous solution operators. We sketch the proof of Proposi-
tions 2.1 and 2.2.

Proof of Proposition 2.1. The proof will follow closely the treatment of the shock case in
[Z3]. Let û(x1, ξ̃, λ) denote the solution of (Lξ̃ − λ)û = f̂ , where f̂(x1, ξ̃) denotes Fourier
transform of f , and

u(x, t) := S1(t)f =
1

(2πi)d

∫
|ξ̃|≤r

∮
Γξ̃∩{|λ|≤r}

eλt+iξ̃·x̃(Lξ̃ − λ)−1f̂(x1, ξ̃)dλdξ̃.

Recalling the resolvent estimates in Proposition 2.5, we have

|û(x1, ξ̃, λ)|Lp(x1) ≤ Cγ2ρ
−2/p|f̂ |L1(x1) ≤ Cγ2ρ

−2/p|f |L1(x)

where γ2 is as defined in (2.12).
Therefore, using Parseval’s identity, Fubini’s theorem, and the triangle inequality, we

may estimate

|u|2L2(x1,x̃)(t) =
1

(2π)2d

∫
x1

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

eλtû(x1, ξ̃, λ)dλ
∣∣∣2dξ̃dx1

=
1

(2π)2d

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

eλtû(x1, ξ̃, λ)dλ
∣∣∣2
L2(x1)

dξ̃

≤ 1
(2π)2d

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλt|û(x1, ξ̃, λ)|L2(x1)dλ
∣∣∣2dξ̃

≤ C|f |2L1(x)

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλtγ2ρ
−1dλ

∣∣∣2dξ̃.
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Specifically, parametrizing Γξ̃ by

λ(ξ̃, k) = ik − θ1(k2 + |ξ̃|2), k ∈ R,

and observing that by (2.12),

(2.13)

γ2ρ
−1 ≤ (|k|+ |ξ̃|)−1

[
1 +

∑
j

( |k − τj(ξ̃)|
ρ

)1/sj−1]
≤ (|k|+ |ξ̃|)−1

[
1 +

∑
j

( |k − τj(ξ̃)|
ρ

)ε−1]
,

where ε := 1
maxj sj

(0 < ε < 1 chosen arbitrarily if there are no singularities), we estimate

∫
ξ̃

∣∣∣ ∮
Γξ̃∩{|λ|≤r}

e<eλtγ2ρ
−1dλ

∣∣∣2dξ̃ ≤ ∫
ξ̃

∣∣∣ ∫
R
e−θ1(k2+|ξ̃|2)tγ2ρ

−1dk
∣∣∣2dξ̃

≤
∫
ξ̃
e−2θ1|ξ̃|2t|ξ̃|−2ε

∣∣∣ ∫
R
e−θ1k

2t|k|ε−1dk
∣∣∣2dξ̃

+
∑
j

∫
ξ̃
e−2θ1|ξ̃|2t|ξ̃|−2ε

∣∣∣ ∫
R
e−θ1k

2t|k − τj(ξ̃)|ε−1dk
∣∣∣2dξ̃

≤
∫
ξ̃
e−2θ1|ξ̃|2t|ξ̃|−2ε

∣∣∣ ∫
R
e−θ1k

2t|k|ε−1dk
∣∣∣2dξ̃

≤ Ct−(d−1)/2.

In the same way as above, we also obtain similar estimates for |u|2
L2,∞
x̃,x1

and |u|L∞x̃,x1 . The

x1-derivative bounds follow similarly by using the resolvent bounds in Proposition 2.5 with

β1 = 1. The x̃-derivative bounds are straightforward by the fact that ∂̂β̃x̃f = (iξ̃)β̃ f̂ .
Finally, each of the above integrals is bounded by C|f |L1(x) as the product of |f |L1(x)

times the integral quantities γ2ρ
−1, γ2 over a bounded domain, hence we may replace t by

(1 + t) in the above estimates. �

Proof of Proposition 2.2. The proof starts with the following resolvent identity, using ana-
lyticity on the resolvent set ρ(Lξ̃) of the resolvent (λ− Lξ̃)

−1, for all f ∈ D(Lξ̃),

(2.14) (λ− Lξ̃)
−1f = λ−1(λ− Lξ̃)

−1Lξ̃f + λ−1f.



12 T. NGUYEN AND K. ZUMBRUN

Using this identity and (2.6), we estimate

(2.15)

S2(t)f =
1

(2πi)d
P.V.

∫ −θ1+i∞

−θ1−i∞

∫
Rd−1

χ|ξ̃|2+|=mλ|2≥θ1+θ2

× eiξ̃·x̃+λtλ−1(λ− Lξ̃)
−1Lξ̃ f̂(x1, ξ̃)dξ̃dλ

+
1

(2πi)d
P.V.

∫ −θ1+i∞

−θ1−i∞

∫
Rd−1

χ|ξ̃|2+|=mλ|2≥θ1+θ2

× eiξ̃·x̃+λtλ−1f̂(x1, ξ̃)dξ̃dλ
=: S1 + S2,

where, by Plancherel’s identity and Propositions 2.2 and 2.4, we have

|S1|L2(x̃,x1) ≤ C
∫ −θ1+i∞

−θ1−i∞
|λ|−1|eλt||(λ− Lξ̃)

−1Lξ̃ f̂ |L2(ξ̃,x1)|dλ|

≤ Ce−θ1t
∫ −θ1+i∞

−θ1−i∞
|λ|−3/2

∣∣∣(1 + |ξ̃|)|Lξ̃ f̂ |H1(x1)

∣∣∣
L2(ξ̃)
|dλ|

≤ Ce−θ1t|f |H3
x

and

(2.16)

|S2|L2
x
≤ 1

(2π)d

∣∣∣P.V.
∫ −θ1+i∞

−θ1−i∞
λ−1eλtdλ

∫
Rd−1

eix̃·ξ̃ f̂(x1, ξ̃)dξ̃
∣∣∣
L2

+
1

(2π)d

∣∣∣P.V.
∫ −θ1+ir

−θ1−ir
λ−1eλtdλ

∫
Rd−1

eix̃·ξ̃ f̂(x1, ξ̃)dξ̃
∣∣∣
L2

≤ Ce−θ1t|f |L2
x
,

by direct computations, noting that the integral in λ in the first term is identically zero.
This completes the proof of the first inequality stated in the proposition. Derivative bounds
follow similarly. �

2.3. Proof of linearized stability.

Proof of Theorem 1.5. Applying estimates on low- and high-frequency operators S1(t) and
S2(t), we obtain

(2.17)

|U(t)|L2 ≤ |S1(t)U0|L2 + |S2(t)U0|L2

≤ C(1 + t)−
d−1
4 |U0|L1 + Ce−ηt|U0|H3

≤ C(1 + t)−
d−1
4 |U0|L1∩H3
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and

(2.18)

|U(t)|L∞ ≤ |S1(t)U0|L∞ + |S2(t)U0|L∞

≤ C(1 + t)−
d
2 |U0|L1 + C|S2(t)U0|H[(d−1)/2]+2

≤ C(1 + t)−
d
2 |U0|L1 + Ce−ηt|U0|H[(d−1)/2]+5

≤ C(1 + t)−
d
2 |U0|L1∩H[(d−1)/2]+5 .

These prove the bounds as stated in the theorem for p = 2 and p =∞. For 2 < p <∞, we
use the interpolation inequality between L2 and L∞. �

3. Nonlinear stability

3.1. Auxiliary energy estimates. For the analysis of nonlinear stability, we need the
following energy estimate adapted from [MaZ4, NZ1, Z4]. Define the nonlinear perturbation
variables U = (u, v) by

(3.1) U(x, t) := Ũ(x, t)− Ū(x1).

Proposition 3.1. Under the hypotheses of Theorem 1.6, let U0 ∈ Hs and U = (u, v)T be a
solution of (1.2) and (3.1). Suppose that, for 0 ≤ t ≤ T , the W 2,∞

x norm of the solution U
remains bounded by a sufficiently small constant ζ > 0. Then

|U(t)|2Hs ≤ Ce−θt|U0|2Hs + C

∫ t

0
e−θ(t−τ)|U(τ)|2L2dτ(3.2)

for all 0 ≤ t ≤ T .

Proof. The proof uses the Goodmann-weighted and Kawashima-type energy estimates adapted
from [MaZ4, Z4] for the shock case. See [NZ2] for details. �

3.2. Proof of nonlinear stability. Defining the perturbation variable U := Ũ − Ū , we
obtain the nonlinear perturbation equations

(3.3) Ut − LU =
∑
j

Qj(U,Ux)xj ,

where Qj(U,Ux) = O(|U ||Ux|+ |U |2) so long as |U | remains bounded.
Applying the Duhamel formula (see Lemma 3.9, [NZ2]) to (3.3), we obtain

(3.4) U(x, t) =S(t)U0 +
∫ t

0
S(t− s)

∑
j

∂xjQ
j(U,Ux)ds

where U(x, 0) = U0(x).

Proof of Theorem 1.6. Define

(3.5)
ζ(t) := sup

s

(
|U(s)|L2

x
(1 + s)

d−1
4 + |U(s)|L∞x (1 + s)

d
2

+ (|U(s)|+ |Ux(s)|+ |∂2
x̃U(s)|)

L2,∞
x̃,x1

(1 + s)
d+1
4

)
.
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We shall prove here that for all t ≥ 0 for which a solution exists with ζ(t) uniformly
bounded by some fixed, sufficiently small constant, there holds

(3.6) ζ(t) ≤ C(|U0|L1∩Hs + E0 + ζ(t)2).

This bound together with continuity of ζ(t) implies that

(3.7) ζ(t) ≤ 2C(|U0|L1∩Hs + E0)

for t ≥ 0, provided that |U0|L1∩Hs + E0 < 1/4C2. This would complete the proof of the
bounds as claimed in the theorem, and thus give the main theorem.

By standard short-time theory/local well-posedness in Hs, and the standard principle
of continuation, there exists a solution U ∈ Hs on the open time-interval for which |U |Hs

remains bounded, and on this interval ζ(t) is well-defined and continuous. Now, let [0, T )
be the maximal interval on which |U |Hs remains strictly bounded by some fixed, sufficiently
small constant δ > 0. By Proposition 3.1, and the Sobolev embeding inequality |U |W 2,∞ ≤
C|U |Hs , we have

(3.8)
|U(t)|2Hs ≤ Ce−θt|U0|2Hs + C

∫ t

0
e−θ(t−τ)|U(τ)|2L2dτ

≤ C(|U0|2Hs + ζ(t)2)(1 + t)−(d−1)/2.

and so the solution continues so long as ζ remains small, with bound (3.7), yielding existence
and the claimed bounds.

Thus, it remains to prove the claim (3.6). First by (3.4), we obtain

(3.9)
|U(t)|L2 ≤|S(t)U0|L2 +

∫ t

0
|S1(t− s)∂xjQj(s)|L2ds+

∫ t

0
|S2(t− s)∂xjQj(s)|L2ds

≤I1 + I2 + I3

where

I1 : = |S(t)U0|L2 ≤ C(1 + t)−
d−1
4 |U0|L1∩H3 ,

I2 : =
∫ t

0
|S1(t− s)∂xjQj(s)|L2ds

≤ C
∫ t

0
(1 + t− s)−

d−1
4
− 1

2 |Qj(s)|L1 + (1 + s)−
d−1
4 |Qj(s)|

L1,∞
x̃,x1

ds

≤ C
∫ t

0
(1 + t− s)−

d−1
4
− 1

2 |U |2H1 + (1 + t− s)−
d−1
4

(
|U |2

L2,∞
x̃,x1

+ |Ux|2L2,∞
x̃,x1

)
ds

≤ C(|U0|2Hs + ζ(t)2)
∫ t

0

[
(1 + t− s)−

d−1
4
− 1

2 (1 + s)−
d−1
2

+ (1 + t− s)−
d−1
4 (1 + s)−

d+1
2

]
ds

≤ C(1 + t)−
d−1
4 (|U0|2Hs + ζ(t)2)
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and

I3 : =
∫ t

0
|S2(t− s)∂xjQj(s)|L2ds ≤

∫ t

0
e−θ(t−s)|∂xjQj(s)|H3ds

≤ C
∫ t

0
e−θ(t−s)(|U |L∞ + |Ux|L∞)|U |H5ds ≤ C

∫ t

0
e−θ(t−s)|U |2Hsds

≤ C(|U0|2Hs + ζ(t)2)
∫ t

0
e−θ(t−s)(1 + s)−

d−1
2 ds

≤ C(1 + t)−
d−1
2 (|U0|2Hs + ζ(t)2).

Combining these above estimates yields

(3.10) |U(t)|L2(1 + t)
d−1
4 ≤ C(|U0|L1∩Hs + ζ(t)2).

Similarly, we can obtain estimates for |U(t)|
L2,∞
x̃,x1

, |Ux(t)|
L2,∞
x̃,x1

, |Ux̃x̃|L2,∞ , and |U(t)|L∞x ,

completing the proof of claim (3.6), and the main theorem. �
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