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Abstract

We study the inviscid limit problem of the incompressible flows in the presence of
both impermeable regular boundaries and a hypersurface transversal to the boundary
across which the inviscid flow has a discontinuity jump. In the former case, boundary
layers have been introduced by Prandtl as correctors near the boundary between the
inviscid and viscous flows. In the latter case, the viscosity smoothes out the discontinuity
jump by creating a transition layer which has the same amplitude and thickness as the
Prandtl layer. In the neighborhood of the intersection of the impermeable boundary and
of the hypersurface, interactions between the boundary and the transition layers must
then be considered. In this paper, we initiate a mathematical study of this interaction
and carry out a strong convergence in the inviscid limit for the case of the plane parallel
flows introduced by Di Perna and Majda in [2].

1 Introduction

In this paper we are interested in the behavior of the incompressible Navier-Stokes flow
when the viscosity is small. This so-called inviscid limit problem is particularly difficult
when the flows is contained in a domain limited by impermeable walls. In the standard case
of a half-space, the problem reads as follows:

∂tv
ε + (vε · ∇)vε +∇pε = ε∆vε

div vε = 0.
(1.1)

Here, x = (x, y, z) is in R × R × (0,+∞), the velocity vε = (uε, vε, wε) is in R3, pε the
pressure and ε > 0 is the viscosity parameter.

The equation (1.1) is imposed with the classical no-slip boundary condition:

vε|z=0
= 0. (1.2)

∗Division of Applied Mathematics, Brown University, 182 George street, Providence, RI 02912, USA.
Email: Toan Nguyen@Brown.edu
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Considering the problem (1.1)-(1.2) in the limit ε→ 0, one may hope to recover the Euler
flow: the equation (1.1) with ε = 0, for which the natural condition on the boundary {z = 0}
is

w0
|z=0

= 0. (1.3)

Due to the difference (or rather, loss) of boundary conditions, it is common in the
limit to add a boundary corrector or the so-called Prandtl layer. This formal procedure
was introduced by Prandtl in 1904, and it remains a challenging mathematical problem to
circumvent the validity of this theory.

Yet, some positive answers have been given in the setting of analytic flows in two di-
mensions by Caflish and Sammartino in [9] and improved by Cannonne, Lombardo and
Sammartino in [10] for inviscid flows that are analytic with respect to the tangential vari-
ables. On the other hand, when the smoothness with respect to the tangential variables is
limited, the Prandtl layer have been shown to be unstable; see for example the papers by
Grenier [4], Gérard-Varet and Dormy [3], Guo and Nguyen [5]. Note that these papers also
concern the 2d case.

Here, we propose to study the inviscid limit problem of a viscous incompressible Navier-
Stokes flow in presence of both a solid boundary and of a transversal discontinuity hypersur-
face in the limiting inviscid flow. The full problem is currently out of reach. In particular,
jump discontinuity across a hypersurface is also a rather unstable pattern for the incompress-
ible Euler equations, because of the Kelvin-Helmhotz instabilities. Nevertheless, when the
inviscid theory is successful to provide some Euler solutions with some jump discontinuity
across a hypersurface, it is expected that the extra viscosity in the Navier-Stokes solutions
smoothes out the discontinuity into a transition layer which can be basically thought as
a transmission version of the Prandtl layers. Here again, positive results are known in an
analytic framework, in 2d, see [8].

However, since this hypersurface is assumed here to be transverse to the boundary, one
cannot relies on the previous results based upon the analyticity in the transversal variables
to study the interactions between the boundary layer and the transition layer. We will
therefore study the layers interactions in Sobolev spaces.

In this paper, we will restrict our study to a simple setting of three-dimensional incom-
pressible flows: the plane-parallel flows. They were introduced by DiPerna and Majda in
[2] in order to prove that the Euler equations are not closed under weak limits (in three
spatial dimensions). These flows have also been used as basic flows for the Euler equations
by Yudovich in [11] to investigate stability issues and recently by Bardos and Titi in [1] to
investigate several longstanding questions including the minimal regularity needed to have
well-posedness results, localization of vortex sheets on surfaces, and the energy conservation
for the Euler equations.
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Precisely, a plane-parallel solution is of the form:

vε(t, x, y, z) =

 uε(t, z)
vε(t, x, z)

0

 . (1.4)

Then, the Navier-Stokes system (1.1) depletes into

∂tu
ε = ε∂2zu

ε

∂tv
ε + uε∂xv

ε = ε∆xzv
ε,

(1.5)

with pε = 0. It is thus a pressureless flow. Observe that a vector field of the form (1.4) is
divergence free. On the other hand the boundary conditions (1.2) now read

(uε, vε)|z=0
= 0, (1.6)

as the Dirichlet condition for the third component is automatically satisfied for flows of the
form (1.4). The system (1.5)-(1.6) is now quite simple: the first equation in (1.5) is a one
dimensional heat equation whereas the second one is a two dimensional transport-diffusion
equation, and for both we prescribe homogeneous Dirichlet conditions.

On the other hand, the Euler system, the equations (1.1) with ε = 0, depletes into

∂tu
0 = 0

∂tv
0 + u0∂xv

0 = 0.
(1.7)

Therefore the solution starting from the initial data

v0(x, z) =

 u0(z)
v0(x, z)

0


is simply given by the formula

v0(t, x, z) =

 u0(z)
v0(x− tu0(z), z)

0

 . (1.8)

This holds true in a quite general setting, but let us be formal for a few more lines. For
instance let us think that the function v0 is smooth for a while, so that there is no doubt to
have about the meaning of the formula (1.8) nor about the fact that it solves the depleted
Euler equations (1.7). We want to focus here first on the issue of the boundary conditions.
In particular, note that no boundary conditions are needed to be prescribed for the system
(1.7), since any solution of the form (1.4) already satisfies the condition (1.3). On the other
hand, if the initial data v0 does not vanish on the boundary z = 0 then neither does the
corresponding solution v0 given by (1.8) for positive times. As a consequence, v0 does not
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satisfy the condition (1.6) and therefore cannot be a good approximation, say in L∞, of
any smooth solution vε of the system (1.5)-(1.6). Yet Prandtl’s theory predicts that the
system (1.5)-(1.6) admit some solutions vε which have the following asymptotic expansion
as ε→ 0:

vε(t, x, z) ∼ v0(t, x, z) + vP (t, x,
z√
ε
). (1.9)

Above the profile vP (t, x, Z) describes a Prandtl boundary layer correction. In particular
it satisfies vP (t, x, Z)→ 0 when Z → +∞, so that this term really matters only in a layer
of thickness

√
ε near the boundary {z = 0}, and also satisfies v0(t, x, 0) +vP (t, x, 0) = 0, so

that the functions in the right hand side of (1.9) satisfies the boundary conditions (1.6). The
validity of this asymptotic expansion has been verified in a recent paper of Mazzucato, Niu
and Wang [7] for regular initial data v0. In particular it follows easily from their analysis
that for any regular initial data v0, there exists a sequence of smooth solutions vε of the
system (1.5)-(1.6), with some initial data conveniently chosen, such that vε converges to v0

strongly in the L2 topology.

Here, as mentioned previously, we are interested in the case where v0 has a jump of
discontinuity across a hypersurface. More precisely we assume that u0 is smooth and that
v0 is piecewise smooth with a jump of discontinuity across the hypersurface {x = 0}:

[v0]|x=0
:= lim

x→0+
v0(x, z)− lim

x→0−
v0(x, z) 6= 0. (1.10)

We assume for simplicity that there is no jump of the normal derivative of v0 across the
hypersurface {x = 0}, that is

[∂xv0]|x=0
= 0. (1.11)

Then it can be easily seen on the formula (1.8) that the corresponding Euler solution
v0 is piecewise smooth with a jump of discontinuity across the hypersurface given by the
equation {Ψ0(t, x, z) = 0}, with

Ψ0(t, x, z) := x− ψ(t, z), ψ(t, z) := tu0(z),

Moreover taking the derivative with respect to x of the both sides of Formula (1.8) yields
that there is no jump of the normal derivative of v0 across the hypersurface {Ψ0(t, x, z) = 0}.

Such a pattern cannot hold anymore for any reasonable solutions vε of the depleted
Navier-Stokes equations (1.5)-(1.6): the viscosity smoothes out this jump of discontinuity
into a transition layer near the hypersurface {Ψ0 = 0}. In particular vε and its normal
derivative must be continuous across the hypersurface {Ψ0 = 0}:

[vε]|Ψ0=0
= 0 and [∂xv

ε]|Ψ0=0
= 0. (1.12)

Following Prandtl’s ideas it is natural to introduce a corrector

vKH(t,
Ψ0(t, x, z)√

ε
, z)
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where the profile VKH(t, x,X) satisfies1{
[VKH ]|X=0

= −[v0]x=0

[∂XVKH ]|X=0
= 0,

(1.13)

and VKH → 0 as X → ±∞. This strategy can be seen as a transmission counterpart of the
introduction of the boundary layer vP previously mentionned. Actually, if the fluid domain
was not limited by the boundary {z = 0} one could then adapt the analysis of [7] to justify
the existence of some solutions vε of (1.5)-(1.6) which admits an expansion of the form

vε(t, x, z) ∼ v0(t, x, z) + vKH(t,
Ψ0(t, x, z)√

ε
, z).

Yet there is no reason for which the transition layer vKH should satisfy the boundary
condition at z = 0, nor for which the boundary layer vP should take care of the jump
condition across {Ψ0 = 0}. It is precisely our point to understand how to deal with both
layers.

Our result is the following.

Theorem 1.1. Let 1 < p < 2 and let

u0(z) ∈ H2(0,+∞),

v0,+(x, z) ∈W 2,p([0,+∞)× (0,+∞)),

v0,−(x, z) ∈W 2,p((−∞, 0]× (0,+∞)),

(1.14)

and

v0 ∈ Lp(R× (0,+∞)), with v0(x, z) :=

{
v0,+(x, z), x > 0,
v0,−(x, z), x < 0.

(1.15)

Assume that v0 satisfies the jump conditions (1.10) and (1.11). Let us consider v0 given
by the formula (1.8), which for any T > 0 is a distributional solution of the depleted Euler
equations (1.7) with v0

|t=0
= v0.

Then, there exist some smooth solutions vε := (uε(t, z), vε(t, x, z)) of the depleted Navier-
Stokes equations (1.5)-(1.6) such that as ε→ 0, there holds the convergence

vε → v0 in L∞(0, T ;L2(R+)× Lp(R× R+)). (1.16)

Here W 2,p denotes the usual Sobolev space of order 2 associated to the Lebesgue space
Lp and H2 denotes the special case H2 := W 2,2.

Let us end our Introduction by giving here a few comments.

1Here the subscript KH holds for Kelvin-Helmhotz
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First, observe that in the statement of Theorem 1.1 the initial data of vε is not pre-
scribed. In the proof, we will explicitly choose them in a convenient way; in particular, it
allows the boundary and transmission layers to be initially specified. This could perhaps
seem a little bit unusual at first glance, but it is in fact only technical for our convenient
formulation of the main result. However this way to formulate our results avoids some extra
considerations regarding forcing terms and/or initial layers which do not seem essential for
our purpose in the present paper.

Finally, let us mention that we are unable to include the case p = 2 or any p > 2 in
Theorem 1.1. We will explain why in Remark 3.7.

2 Straightened interface

To fix the interface, we introduce the following change of variable:

x̃ := x− ψ(t, z), where ψ(t, z) := tu0(z).

In these coordinates, the discontinuity interface is given by the equation x̃ = 0. In what
follows, we drop the tilde in x̃. The system (1.5) now reads

∂tu
ε = ε∂2zu

ε,

∂tv
ε + (uε − u0)∂xvε = ε∆ψ

xzv
ε,

(2.1)

with
∆ψ
xz := ∂2x + (∂z − ∂zψ∂x)2 = (1 + |∂zψ|2)∂2x − 2∂zψ∂

2
z,x − ∂2zψ∂x + ∂2z .

The boundary conditions (1.6) do not change:

(uε, vε)|z=0
= 0. (2.2)

We are looking for some functions uε and vε which satisfy the equations (2.1) on both
quadrants (x, z) ∈ (0,+∞) × (0,+∞) and (x, z) ∈ (−∞, 0) × (0,+∞) with the interface
conditions:

[vε]|x=0
= 0 and [∂xv

ε]|x=0
= 0, (2.3)

which correspond to the conditions (1.12) in the new variables. Now, since uε does not
depend on x, the conditions (2.3) reduce to

[vε]|x=0
= 0 and [∂xv

ε]|x=0
= 0. (2.4)

Note that if uε and vε are distributional solutions of (2.1) on both quadrants (x, z) ∈
(0,+∞) × (0,+∞) and (x, z) ∈ (−∞, 0) × (0,+∞) and satisfy the previous interface con-
ditions then they are distributional solutions of (2.1) on the whole half-space R× (0,+∞).

In the limit case ε = 0, the situation is now particularly simple: in the new coordinates
the solution v0 is stationary

v0(t, x, z) =

 u0(z)
v0(x, z)

0

 . (2.5)
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Now, to prove Theorem 1.1 it suffices to prove that there exist some functions uε and vε

which satisfy the equations (2.1) on both quadrants, satisfy the conditions (2.2) and (2.4)
and converge, as ε→ 0, to v0 given by (2.5) in L∞(0, T ;L2(R+)× Lp(R× R+)).

3 Asymptotic expansions

Let us now describe our strategy. We are going to construct a family of functions of the
form

uεapp(t, z) = u0(z) + UP (t,
z√
ε
),

vεapp(t, x, z) = v0(x, z) + VP (t, x,
z√
ε
) + VKH(t,

x√
ε
, z) + Vb(t,

x√
ε
,
z√
ε
),

(3.1)

which satisfy approximatively (2.1) on both quadrants (in a sense that we will precise in
the sequel), and which satisfy the conditions (2.2) and (2.4).

In (3.1), (u0, v0) are the functions given by (2.5). The other functions will be defined in
the sequel. For instance, (UP , VP ) will be a depleted Prandtl layer near the boundary, VKH
will be a transmission layer near the discontinuity interface, and Vb will aim at describing
the behavior of the boundary layers interaction. In what follows, we will use, as in the
introduction, the capitalized variables X,Z to refer to x/

√
ε, z/
√
ε, correspondingly.

Then we will prove that there exists a family of functions (uε, vε) close to (uεapp, v
ε
app)

which exactly satisfy (2.1) on both quadrants and (x, z) ∈ (−∞, 0] × (0,+∞), and which
still satisfy the conditions (2.2) and (2.4).

It will remain to prove that this family (uε, vε) converges to (u0, v0) in L∞(0, T ;L2(R+)×
Lp(R× R+)), for 1 < p < 2, to conclude the proof of Theorem 1.1.

3.1 Construction of the approximated solution

3.1.1 Construction of UP

We start by defining the function UP , which aims at compensating the non-vanishing value
of u0 at z = 0. On the other hand, we want this correction to be localized near the boundary
z = 0. We will therefore require UP to satisfy

UP (t, 0) = −u0(0), lim
Z→+∞

UP (t, Z) = 0. (3.2)

Now if we put the Ansatz (3.1) into the system (2.1) and match the order in ε, we get from
the equation for uε the following equation for the profile UP (t, Z):

∂tUP = ∂2ZUP . (3.3)

We choose for UP the initial value

UP |t=0
(Z) = −u0(0)e−Z . (3.4)
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By Duhamel’s principle, the solution Up(t, Z) of (3.2)-(3.3)-(3.4) satisfies

Up(t, Z) =− u0(0)e−Z − u0(0)

∫ t

0

∫ +∞

0
G(t− s, Z;Z ′)e−Z

′
dZ ′ds,

where G(t, Z;Z ′) denotes the one-dimensional heat kernel on the half-line:

G(t, Z;Z ′) := G(t, Z − Z ′)−G(t, Z + Z ′), G(t, Z) :=
1√
4πt

e−
Z2

4t . (3.5)

Now by using the standard convolution inequality: ‖f∗g‖Lp ≤ ‖f‖Lp‖g‖L1 , we easily deduce
that, for any p > 1,

‖UP ‖L∞(0,T ;Lp(R+)) ≤ C0|u0(0)|
[
1 +

∫ T

0
‖G(t, ·)‖L1‖e−Z‖Lp ds

]
≤ C0|u0(0)|,

for some positive constant C0 that depends on p and T . Here, we used the fact that
‖G(t, ·)‖L1 = 1. Similarly, using the fact that ‖∂ZG(t, ·)‖L1 ∼ t−1/2, we obtain

‖∂ZUP ‖L∞(0,T ;Lp(R+)) ≤ C0|u0(0)|
[
1 + sup

0≤t≤T

∫ t

0
(t− s)−1/2ds

]
,

which is again bounded by C0|u0(0)|.
That is, we obtain the following lemma:

Lemma 3.1. There exists a unique solution Up to the problem (3.2)-(3.3)-(3.4) on [0, T ]×
R+, for any T > 0. Furthermore, for any p > 1, there is some positive constant C0 that
depends on p and T such that

‖UP ‖L∞(0,T ;W 1,p(R+)) ≤ C0|u0(0)|. (3.6)

3.1.2 Construction of VP

For VP , the situation is the same as that for UP , other than the fact that VP also depends
on the variable x. However, x only appears as a harmless parameter. More precisely, by
plugging the Ansatz (3.1) into the system (2.1) and match the order in ε, we then get from
the equation for vε the profile equation for VP (t, x, Z):

∂tVP = ∂2ZVP , VP |Z=0
= −v0(x, z)|z=0

, lim
Z→+∞

VP = 0. (3.7)

Once again, we choose an initial data compatible with the boundary condition, for instance

VP |t=0
= −v0(x, 0)e−Z . (3.8)

Then as was the case for Up, there exists a unique solution VP of (3.7)-(3.8) satisfying the
Duhamel principle:

Vp(t, x, Z) =− v0(x, 0)e−Z − v0(x, 0)

∫ t

0

∫ +∞

0
G(t− s, Z;Z ′)e−Z

′
dZ ′ds,
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where G(t − s, Z;Z ′) is the heat kernel defined as in (3.5). It is clear from this integral
representation for Vp that the only dependence on x is due to v0(x, 0). Thus, we easily
obtain the following lemma.

Lemma 3.2. There exists a unique solution Vp to the problem (3.7)-(3.8) on [0, T ]×R±×
R+, for any T > 0. Furthermore, for any p > 1, there is some positive constant C0 that
depends on p and T such that

‖∂kxVP ‖L∞(0,T ;Lp(R±;W 1,p(R+))) ≤ C0‖∂kxv0(·, 0)‖Lp(R±), k = 0, 1, 2, (3.9)

and the jump of discontinuity [VP ]|x=0
satisfies

‖[VP ]|x=0
‖L∞(0,T ;W 1,p(R+)) ≤ C0|[v0(x, 0)]|x=0

|. (3.10)

Proof. Similarly as done for Up, the integral representation for Vp easily yields

‖∂kxVP (x)‖L∞(0,T ;W 1,p(R+)) ≤ C0|∂kxv0(x, 0)|, k = 0, 1, 2, (3.11)

for each nonzero x ∈ R. Taking the Lp norm of this inequality in x gives (3.9) at once.
The estimate for the jump of discontinuity of Vp follows similarly by noting that the jump
[Vp]|x=0

satisfies the similar integral representation to that of Vp.

3.1.3 Construction of VKH

Similarly, plugging the Ansatz (3.1) into the system (2.1) yields the profile equation for
VKH :

∂tVKH = (1 + |∂zψ|2)∂2XVKH , [VKH ]|X=0
= −[v0]x=0, [∂XVKH ]|X=0

= 0. (3.12)

We choose the initial data:

VKH |t=0(X, z) = ∓ [v0]x=0

2
e∓X , ±X > 0. (3.13)

We will derive necessary estimates for the profile VKH . It turns out convenient to introduce
a change of variables:

X̃ = X, t̃ =

∫ t

0
(1 + |∂zψ(s, z)|2) ds,

and write
VKH(t,X, z) = ṼKH(t̃(t,X, z), X̃(t,X, z), z).

In these new variables, we then have

∂t̃ṼKH = ∂2
X̃
ṼKH , [ṼKH ]|X̃=0

= −[v0]x=0, [∂X̃ ṼKH ]|X̃=0
= 0, (3.14)
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with initial data

ṼKH |t̃=0 = ∓ [v0]x=0

2
e∓X̃ , ±X̃ > 0. (3.15)

The systems (3.14) and (3.15) are the heat equations on each half lines X̃ < 0 and X̃ > 0,
with z being a parameter. Thus, the Duhamel principle for the heat equation yields a
candidate for ṼKH(t̃, X̃, z) as

ṼKH(t̃, X̃, z) =− [v0]x=0

2
e−X̃ − [v0]x=0

2

∫ t̃

0

∫ +∞

0
G(t̃− s̃, X̃; X̃ ′)e−X̃

′
dX̃ ′ds̃,

for X̃ > 0, and

ṼKH(t̃, X̃, z) =
[v0]x=0

2
eX̃ +

[v0]x=0

2

∫ t̃

0

∫ 0

−∞
G(t̃− s̃, X̃; X̃ ′)eX̃

′
dX̃ ′ds̃,

with the Green function for the heat equation defined by

G(t,X;X ′) = G(t,X −X ′)−G(t,X +X ′), G(t,X) =
1√
4πt

e−X
2/4t.

It is straightforward to check that these definitions of ṼKH on R± × R+ indeed satisfy
the boundary and jump conditions from (3.14) and (3.15).

Furthermore, similarly to those estimates obtained for Up and Vp, we can easily obtain

‖∂kz ṼKH(z)‖L∞(0,T̃ ;W 1,p(R±)) ≤ C0|[∂kz v0(x, z)]|x=0
|, , k = 0, 1, 2,

for each z ∈ R+ and for some positive constant C0 that depends only on p and T̃ . Going
back to the original coordinates (t,X), we have thus shown

‖∂kzVKH(z)‖L∞(0,T ;W 1,p(R±)) ≤ C0|[∂kz v0(x, z)]|x=0
|, (3.16)

for k = 0, 1, 2 and for each z ∈ R+.

Collecting these information, we obtain the following lemma.

Lemma 3.3. There exists a unique solution VKH to the problem (3.12) and (3.13) on
[0, T ] × R± × R+, for any T > 0. Furthermore, for any p > 1, there is some positive
constant C0 that depends on p and T such that

‖∂kzVKH‖L∞(0,T ;Lp(R+;W 1,p(R±))) ≤ C0‖[∂kz v0(x, ·)]|x=0
‖Lp(R+), (3.17)

for k = 0, 1, 2.

Proof. The estimate (3.17) is obtained easily by taking to both sides of (3.16) the usual Lp

norm in z and using the triangle inequality.
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3.1.4 Construction of Vb

Finally, in the “box” where the interactions take place, we obtain from the equation for vε

with the Ansatz (3.1) the following equation for the interaction profile Vb(t,X,Z):

∂tVb = ∆ψ0

XZVb, ∆ψ0

XZ = ∂2X + (∂Z − ∂zψ|z=0
∂X)2, (3.18)

where
∆ψ0

XZ := ∂2X + (∂Z − ∂zψ|z=0
∂X)2,

with the boundary and jump conditions:

Vb|Z=0
= −VKH |z=0

, [Vb]|X=0
= −[VP ]|x=0

, [∂XVb]|X=0
= 0, (3.19)

and Vb → 0 as X → ±∞ or Z → +∞. Next, we choose the initial data for Vb:

Vb|t=0
=

{
−1

2e
−|X|[VP ]|x=0,t=0

, X > 0
1
2e
−|X|[VP ]|x=0,t=0

, X < 0.
(3.20)

which satisfy all the conditions in (3.19), thanks to (3.8) and to (3.13).
We observe at once that these boundary and jump conditions in (3.2), (3.7), (3.12),

and (3.19) make the Ansatz vεapp defined as in (3.1) smooths out the inviscid solution v0

(at least with C1 regularity) as well as satisfy the correct no-slip boundary conditions (1.6)
for the depleted Navier-Stokes system. We will see in the next section that these Ansatz
vεapp indeed provide a good approximation for vε, and are sufficient to show the desired
convergence.

We will show in this section that the profile Vb exists and we then derive necessary
estimates to carry out the convergence stated in the main Theorem 1.1. In fact, we could
continue our study by employing the Green function of the heat equation on the half-space
as done previously on the half-line. However, we choose to proceed the analysis by energy
estimates, as it appears natural for the proof of our desired convergence.

To begin, it appears convenient to introduce w̃ through

Vb =

{
w̃ − 1

2 [VP ]|x=0
e−|X|, X > 0

w̃ + 1
2 [VP ]|x=0

e−|X|, X < 0.

The function w̃ then solves

∂tw̃ = ∆ψ0

XZw̃ + J+e
−|X|, X > 0,

∂tw̃ = ∆ψ0

XZw̃ + J−e
−|X|, X < 0,

(3.21)

with boundary and jump conditions:

[w̃]|X=0
= 0, [∂Xw̃]|X=0

= 0, lim
|X|→∞

w̃ = lim
Z→∞

w̃ = 0, (3.22)

11



and {
w̃|Z=0

= −VKH |z=0
− 1

2e
−|X|[v0|z=0

]|x=0
, X > 0

w̃|Z=0
= −VKH |z=0

+ 1
2e
−|X|[v0|z=0

]|x=0
, X < 0.

(3.23)

Moreover w̃ vanishes at the initial time:

w̃|t=0 = 0. (3.24)

Here, J± in (3.21) collects the terms involving the jumps of discontinuity. Direct calculation
together with a use of (3.7) gives

J+ = −1

2

(
(1 + |∂zψ|z=0

|2)[VP ]|x=0
+ 2∂zψ|z=0

[∂ZVP ]|x=0

)
,

J− =
1

2

(
(1 + |∂zψ|z=0

|2)[VP ]|x=0
− 2∂zψ|z=0

[∂ZVP ]|x=0

)
.

(3.25)

By applying the estimate (3.10) obtained in Lemma 3.2, we then have∫ T

0
‖J±(t)‖p

W 1,p
Z

dt ≤ C0|[v0(x, 0)]|x=0
|, (3.26)

for some C0 that depends on p and T .

We are able to provide the following estimates.

Lemma 3.4. There exists a unique solution w̃ to the problem (3.21)–(3.23) on [0, T ]×R±×
R+, for any T > 0. Furthermore, for any p > 1, there is some positive constant C0 that
depends on p and T such that there holds

d

dt
‖w̃‖p

Lp
XW

1,p
Z

+

∫
R2

+

|w̃|p−2|∇ψ0

X,Zw̃|
2 dXdZ +

∫
R2

+

|∂Zw̃|p−2|∇ψ0

X,Z∂Zw̃|
2 dXdZ

≤ C0

(
1 + ‖J±‖p

W 1,p
Z

+ ‖w̃‖p
Lp
XW

1,p
Z

) (3.27)

Here, ∇ψ0

XZ := (∂X , ∂Z − ∂zψ|z=0
∂X).

Proof. By multiplying by |w̃|p−2w̃ to the equation (3.21) and integrating it over R2
+, one

has
1

p

d

dt
‖w̃‖p

Lp
XZ

=

∫
R2

+

(
∆ψ0

XZw̃ + J±e
∓X
)
|w̃|p−2w̃ dXdZ.

For the term involving J±, the standard Hölder’s inequality gives∫
R2

+

e∓XJ±|w̃|p−1 dXdZ . ‖w̃‖p−1
Lp
XZ
‖J±‖Lp

Z
.
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Here and in what follows, by f . g we always mean that f ≤ C0g, for some positive constant
C0 that only depends on p and T . Now, integration by parts yields∫

R2
+

∆ψ0

XZw̃|w̃|
p−1w̃ dXdZ

=− (p− 1)

∫
R2

+

|w̃|p−2|∇ψ0

XZw̃|
2 dXdZ −

∫
R

(∂Z − ∂zψ|z=0
∂X)w̃|w̃|p−2w̃|Z=0

dX

−
∫
R+

(
[∂Xw̃|w̃|p−2w̃ − ∂zψ|z=0

(∂Z − ∂zψ|z=0
∂X)w̃|w̃|p−2w̃]|X=0

)
dZ

in which the last term on the right-hand side vanishes due to the jump conditions (3.22) on
w̃ and on ∂Xw̃. Thus, we obtain∫

R2
+

∆ψ0

XZw̃w̃ dXdZ =− (p− 1)

∫
R2

+

|w̃|p−2|∇ψ0

XZw̃|
2 dXdZ −

∫
R
∂Zw̃|w̃|p−2w̃|Z=0

dX.

Collecting, we have shown

d

dt
‖w̃‖p

Lp
XZ

+ p(p− 1)

∫
R2

+

|w̃|p−2|∇ψ0

X,Zw̃|
2 dXdZ

. ‖w̃‖p−1
Lp
XZ
‖J±‖Lp

Z
−
∫
R
∂Zw̃|w̃|p−2w̃|Z=0

dX.

(3.28)

For the boundary term, the Young’s inequality yields∫
R
|∂Zw̃|w̃|p−2w̃|Z=0

| dX . ‖w̃|Z=0
‖p
Lp
X

+ ‖∂Zw̃|Z=0
‖p
Lp
X
.

The first boundary term can be easily treated by the trace inequality. We treat the second
boundary term by the H1

Z energy estimate. To this end, we take Z-derivative of the equation
(3.21) and multiply by |∂Zw̃|p−2∂Zw̃ to the resulting equation. We simply get

1

p

d

dt
‖∂Zw̃‖pLp

XZ
=

∫
R2

+

(
∆ψ0

XZ∂Zw̃ + ∂ZJ±e
∓X
)
|∂Zw̃|p−2∂Zw̃ dXdZ.

Again, by applying the Hölder’s inequality to the last term on the right-hand side, we have∫
R2

+

∂ZJ±e
∓X |∂Zw̃|p−2∂Zw̃ dXdZ . ‖∂ZJ±‖Lp

Z
‖∂Zw̃‖p−1Lp

XZ
.

Next, the integration by parts yields∫
R2

+

∆ψ0

XZ |∂Zw̃|
p−2∂Zw̃∂Zw̃ dXdZ

=− (p− 1)

∫
R2

+

|∂Zw̃|p−2|∇ψ0

XZ∂Zw̃|
2 dXdZ −

∫
R

(∂Z − ∂zψ|z=0
∂X)∂Zw̃|∂Zw̃|p−2∂Zw̃|Z=0

dX

−
∫
R+

(
[∂2XZw̃|∂Zw̃|p−2∂Zw̃ − ∂zψ|z=0

(∂Z − ∂zψ|z=0
∂X)∂Zw̃|∂Zw̃|p−2∂Zw̃]|X=0

)
dZ

13



in which again the last term on the right-hand side vanishes due to the jump condition
(3.22). By using the equation for w̃, we can write the boundary term as

−
∫
R

(∂Z − ∂zψ|z=0
∂X)∂Zw̃|∂Zw̃|p−2∂Zw̃|Z=0

dX

= −
∫
R

(
(∂Z − ∂zψ|z=0

∂X)2w̃ + ∂zψ|z=0
(∂Z − ∂zψ|z=0

∂X)∂Xw̃
)
|∂Zw̃|p−2∂Zw̃|Z=0

dX

= −
∫
R

(
∂tw̃ − (1 + |∂zψ|z=0

|2)∂2Xw̃ − J±e∓X + ∂zψ|z=0
∂2XZw̃

)
|∂Zw̃|p−2∂Zw̃|Z=0

dX,

in which the integral term involving ∂2XZw̃ vanishes due to the jump condition (3.22) and
the fact that it is a perfect derivative in X. For the other terms, we note that at Z = 0 we
have

∂tw̃ − (1 + |∂zψ|z=0
|2)∂2Xw̃ − J±e∓X = ∂tVKH − (1 + |∂zψ|z=0

|2)∂2XVKH + c±e
∓X

= c±e
∓X .

for some constant c±; here, the last identity was due to a use of the equation for VKH .
Thus, using this and the Sobolev embedding, we have

−
∫
R

(∂Z − ∂zψ|z=0
∂X)∂Zw̃|∂Zw̃|p−2∂Zw̃|Z=0

dX

. ‖∂Zw̃|Z=0
‖Lp

X

. ‖∂Zw̃‖Lp
XZ

+
(∫

R2
+

|∂Zw̃|p−2|∂2Zw̃|2 dZdX
)1/p

.

Thus, applying the Young’s inequality to the last term and combing all the above estimates,
we obtain

d

dt
‖∂Zw̃‖pLp

XZ
+

∫
R2

+

|∂Zw̃|p−2|∇ψ0

X,Z∂Zw̃|
2 dXdZ

. 1 + ‖∂Zw̃‖Lp
XZ

+ ‖∂ZJ±‖Lp
Z
‖∂Zw̃‖p−1Lp

XZ
.

This together with the L2 estimate (3.28) yields the lemma at once.

We also obtain the following X-derivative estimates.

Lemma 3.5. For any solutions w̃ to (3.21)–(3.23), there holds

d

dt
‖∂Xw̃‖p

Lp
XW

1,p
Z

+

∫
R2

+

|∂Xw̃|p−2|∇ψ0

X,Z∂Xw̃|
2 dXdZ +

∫
R2

+

|∂2XZw̃|p−2|∇
ψ0

X,Z∂
2
XZw̃|2 dXdZ

. 1 + ‖J±‖p
W 1,p

Z

+ ‖w̃‖p
W 1,p

XZ

.
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Proof. The proof of this lemma follows word by word of that of the Lemma 3.4, upon
noting that the jump of discontinuity of ∂2Xw̃ across {X = 0} can be computed through the
equation (3.21) for w̃ to give [∂2Xw̃]|X=0

= J+ − J−. Note also that we may need to apply
the Sobolev embedding:

‖∂Zw̃|X=0
‖Lp

Z
. ‖∂Zw̃‖Lp

XZ
+
(∫

R2
+

|∂Zw̃|p−2|∂2XZw̃|2 dZdX
)1/p

.

We thus omit the further detail of the proof of the lemma.

To conclude this subsection, we summarize our estimate for Vb in the following lemma.

Lemma 3.6. There exists a unique solution Vb of the problem (3.18) with the boundary and
jump conditions (3.19) and initial data (3.20). Furthermore, for any p > 1, there exists
some positive constant C0 that depends on p and T such that there holds

sup
0≤t≤T

‖Vb(t)‖pW 1,p
XZ

+

∫ T

0

∫
R2

+

|∂2XVb|p dXdZdt

≤ C0

(
|[v0(x, 0)]|x=0

|p + ‖[v0(x, ·)]|x=0
‖p
W 1,p(R+)

+ ‖v0(·, 0)‖p
W 1,p(R±)

)
.

(3.29)

Proof. This is a collection of estimates from Lemmas 3.4 and 3.5, the estimate (3.26) on J±,
the jump estimate (3.10) from Lemma 3.2, and a use of the standard Gronwall inequality.
Indeed, Lemmas 3.4 and 3.5 inparticular yields

sup
0≤t≤T

‖w̃‖p
W 1,p

XZ

+

∫ T

0

∫
R2

+

|∂Xw̃|p−2|∂2Xw̃|2 dXdZdt

is bounded. This together with the standard Young’s inequality yields that∫ T

0

∫
R2

+

|∂2Xw̃|p dXdZdt =

∫ T

0

∫
R2

+

|∂Xw̃|
2−p

2
p|∂Xw̃|

p−2
2
p|∂2Xw̃|p dXdZdt

≤
∫ T

0

∫
R2

+

|∂Xw̃|p dXdZdt+

∫ T

0

∫
R2

+

|∂Xw̃|p−2|∂2Xw̃|2 dXdZdt

is also bounded. The lemma is proved.

3.2 Remainders

We observe that, with the above profiles, the functions (uεapp, v
ε
app) given by the formula

(3.1) satisfy
∂tu

ε
app = ε∂2zu

ε
app + Eu,

∂tv
ε
app + (uεapp − u0)∂xvεapp = ε∆ψ

xzv
ε
app + Ev,

(uεapp, v
ε
app)|z=0

= 0,

[vεapp]|x=0
= 0

[∂xv
ε
app]|x=0

= 0,

(3.30)
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where direct computations give
Eu = ε∂2zu0,

and

Ev = ε∆ψ
xzv0 + (∆ψ

XZ −∆ψ0

XZ)Vb − 2
√
ε∂zψ∂

2
zXVKH −

√
ε∂2zψ∂XVKH + ε∂2zVKH

+ ε(1 + |∂zψ|2))∂2xVP − 2
√
ε∂zψ∂

2
xZVP − ε∂2zψ∂xVP − Up∂xvεapp.

Remark 3.7. We note that Ev contains a singular term: 1√
ε
Up(t, z/

√
ε)∂XVKH(t, x/

√
ε, z)

in Up∂xv
ε
app. This singular term is a-priori not better than bounded in L2 and thus we can’t

obtain the convergence in the L2 space this way. However, its Lp norm has an order of
ε1/p−1/2, which tends to zero in Lp, for 1 < p < 2, as ε→ 0.

Proposition 3.8. For all p > 1, there hold uniform estimates:

‖Eu(t)‖L2
z
≤ ε‖∂2zu0‖L2

z
,

∫ T

0
‖Ev(t)‖p

Lp
xz
dt ≤ Cin(p, T )ε1−p/2, (3.31)

for some positive constant Cin(p, T ) that depends continuously on the initial data, the dis-
continuous jump of the Euler flow v0, the number p > 1, and the time T . More precisely,
the constant Cin(p, T ) is bounded by

C0

(
|[v0(x, 0)]|x=0

|p + ‖[v0(x, ·)]|x=0
‖p
W 1,p(R+)

+ ‖v0(·, 0)‖p
W 1,p(R±) + ‖∆v0‖pLp

xz(R±×R+)

)
for some C0 that depends only on T and p.

We now give a proof of the Proposition 3.8. The first estimate is clear from the definition
Eu = ε∂2zu0. We prove the second estimate. We will use the following simple lemma.

Lemma 3.9. For any reasonable function u = u(z), there holds

‖u(z/
√
ε)‖L2

z(R+) . ε1/4‖u(Z)‖L2
Z(R+).

Proof. It is clear by changing of variable from z to z/
√
ε.

We now check term by term in Ev. The term ε∆ψ
xzv0 is clear, giving the contribution

of ε‖∆v0‖pLp
xz(R±×R+)

. Next, note that

∆ψ
XZ −∆ψ0

XZ = (|∂zψ|2 − |∂zψ|z=0
|2)∂2X − 2(∂zψ − ∂zψ|z=0

)∂2XZ − ∂2zψ∂X .

Thus, the estimate (3.29) for Vb precisely gives us the desired Lp estimate for (∆ψ
XZ −

∆ψ0

XZ)Vb, after a change of variables (x, z) to (X,Z) with X = x/
√
ε, Z = z/

√
ε, yielding a

small factor of ε. Similarly, for all the terms:

−2
√
ε∂zψ∂

2
zXVKH−

√
ε∂2zψ∂XVKH+ε∂2zVKH+ε(1+|∂zψ|2))∂2xVP−2

√
ε∂zψ∂

2
xZVP−ε∂2zψ∂xVP
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the estimates from Lemmas 3.1, 3.2, and 3.3 immediately yield that the Lp norm of these
are bounded by

C0ε
1/2
(
|[v0(x, 0)]|x=0

|+ ‖[v0(x, ·)]|x=0
‖W 1,p(R+) + ‖v0(·, 0)‖W 1,p(R±)

)
.

Finally, let us treat the term Up∂xv
ε
app. From the definition of vεapp, the singular terms

in Up∂xv
ε
app are

1√
ε
Up(t, Z)∂XVKH(t,X, z) +

1√
ε
Up(t, Z)∂XVb(t,X,Z).

We then use the Lemma 3.9 to treat these singular terms. For example, we compute

ε−p/2
∫
R2

+

|Up(t, Z)∂XVb(t,X,Z)|p dxdz . ε1−p/2
∫
R2

+

|Up(t, Z)∂XVb(t,X,Z)|p dXdZ

. ε1−p/2‖Up‖pL∞Z ‖∂XVb‖
p
Lp
XZ

. ε1−p/2.

Other terms are entirely similar. This completes the proof of the estimate (3.31), and thus
the Proposition 3.8.

3.3 Convergence

We are ready to prove the convergence stated in the main theorem.
Now we consider the solutions Ru, Rv of the following problem:

∂tR
u = ε∂2zR

u + Eu,

∂tR
v + (Up +Ru)∂xR

v = ε∆ψ
xzR

v −Ru∂xvεapp + Ev

(Ru, Rv)|z=0
= 0,

lim
z→+∞

(Ru, Rv) = 0,

[Rv]|x=0
= [∂xR

v]x=0 = 0,

(Ru, Rv)|t=0
= 0.

(3.32)

Then the functions (uε, vε) defined by

uε(t, z) = uεapp(t, z) +Ru(t, z)

vε(t, x, z) = vεapp(t, x, z) +Rv(t, x, z),

satisfy the equations (2.1)-(2.2)-(2.4).
The well-posedness of the problem (3.32) follows at once from the following a-priori

estimates:
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Lemma 3.10. There hold

d

dt
‖Ru‖2L2

z
+ ε‖∂zRu‖2L2

z
. ‖Ru‖L2

z
‖Eu‖L2

z
,

d

dt
‖Rv‖p

Lp
x,z

+ ε

∫
R2

+

|Rv|p−2|∇ψx,zRv|2 dxdz .
(
‖Ru∂xvεapp‖Lp

xz
+ ‖Ev‖Lp

xz

)
‖Rv‖p−1

Lp
xz
,

where ∇ψx,z := (∂x, ∂z − ∂zψ∂x).

Proof. Multiply by Ru and |Rv|p−2Rv the respective equations in (3.32) and integrate the
resulting equations over R+ or R2

+. The claimed estimate for Ru is straightforward. For
the Rv estimate, we have

1

p

d

dt

∫
R2

+

|Rv|p +

∫
R2

+

(
Up +Ru)|Rv|p−2∂xRvRv dxdz

=

∫
R2

+

(
ε∆ψ

xzR
v −Ru∂xvεapp − Ev

)
|Rv|p−2Rv dxdz.

We first note that integration by parts yields∫
R2

+

(Up +Ru)|Rv|p−2∂xRvRv dxdz =

∫
R2

+

(Up +Ru)∂x

( |Rv|p
p

)
dxdz = 0

and

ε

∫
R2

+

∆ψ
xzR

v|Rv|p−2Rv dxdz = −ε
∫
R2

+

|Rv|p−2|∇ψx,zRv|2 dxdz,

upon noting that there is no contribution on the boundary and the interface due to the
vanishing boundary and jump conditions for Rv. Finally, the standard Hölder inequality
yields∫

R2
+

(|Ru∂xvεapp|+ |Ev|)|Rv|p−1 dxdz .
(
‖Ru∂xvεapp‖Lp

xz
+ ‖Ev‖Lp

xz

)
‖Rv‖p−1

Lp
xz
.

Collecting these estimates together proves the lemma.

It is straightforward to verify that

(uεapp(t, z), v
ε
app(t, x, z))→ v0 in L∞(0, T ;L2(R+)× Lp(R× R+)),

as ε→ 0, upon using the estimates on the profiles from Lemmas 3.1, 3.2, 3.3, and 3.6, and
the Lemma 3.9. Therefore in order to prove Theorem 1.1, it remains to prove that

(Ru(t, z), Rv(t, x, z))→ 0 in L∞(0, T ;L2(R+)× Lp(R× R+)), (3.33)

as ε→ 0.
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From Lemma 3.10 and Proposition 3.8, by the standard ODE estimate and the Gronwall
inequality, we immediately obtain uniform bounds

‖Ru‖L∞t L2
z

+ ε1/2‖∂zRu‖L2
tL

2
z

. ε,

with noting that ‖Eu‖L2
tL

2
z
. ε and Ru|t=0

= 0. In addition, this estimate yields∫ T

0
‖Ru(t, ·)‖4L∞z dt . ‖Ru‖2L∞t L2

z
‖∂zRu‖2L2

tL
2
z

. ε3.

This together with the bound ‖∂xvεapp‖
p
L∞t Lp

x,z
. 1, which again follows from the estimates

on the profiles, yields∫ T

0
‖Ru∂xvεapp‖

p
Lp
x,z

. ‖∂xvεapp‖
p
L∞t Lp

x,z

∫ T

0
‖Ru‖pL∞z dt . ε3p/4.

In addition, the second estimate from Lemma 3.10 implies

d

dt
‖Rv‖p

Lp
xz

. ‖Rv‖p
Lp
xz

+
(
‖Ru∂xvεapp‖

p
Lp
xz

+ ‖Ev‖p
Lp
xz

)
,

which gives

‖Rv(t)‖p
Lp
xz

.
∫ t

0
‖Rv(s)‖p

Lp
xz
ds+

(
ε3/4 + ε1−p/2

)
.

The Gronwall inequality then yields

‖Rv‖p
L∞t Lp

xz
. ε3/4 + ε1−p/2,

which tends to zero as ε→ 0, for p < 2.
This ends the proof of the convergence (3.33), and thus of Theorem 1.1.
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