APMA 0360: Midterm I

Some useful facts:

1. Inverse of a 2×2 matrix:

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)^{-1}=\frac{1}{a d-b c}\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right), \quad \text { if } \quad a d-b c \neq 0
$$

2.

$$
\int t^{n} d t=\frac{1}{n+1} t^{n+1}+C, \quad \text { if } \quad n \neq-1
$$

Problem 1 (20 points)

Consider an initial value problem of a third order differential equation:

$$
u^{\prime \prime \prime}+\sin (t) u^{\prime \prime}-2 t u^{\prime}+u=0, \quad u(0)=1, \quad u^{\prime}(0)=0, \quad u^{\prime \prime}(0)=-2 .
$$

Transform this problem into an initial value problem of a system of first order equations of the matrix form:

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

Do NOT solve the resulting system.
Solution: Denote

$$
x_{1}=u, \quad x_{2}=u^{\prime}, \quad x_{3}=u^{\prime \prime} .
$$

We easily see that

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)^{\prime}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1 & 2 t & -\sin t
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \quad \text { with initial datum: } \quad\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)(0)=\left(\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right)
$$

Problem 2 (20 points)

For each of the following differential equations, determine if the origin is a saddle point, stable node, unstable node, stable improper node, unstable improper node, stable spiral point, or unstable spiral point:
(a) $\quad \mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right) \mathbf{x}(t)$
(b) $\quad \mathbf{x}^{\prime}(t)=\left(\begin{array}{rr}2 & 3 \\ 4 & -2\end{array}\right) \mathbf{x}(t)$
(c) $\quad \mathbf{x}^{\prime}(t)=\left(\begin{array}{rr}-2 & 0 \\ 1 / 2 & -1\end{array}\right) \mathbf{x}(t)$
(d) $\quad \mathbf{x}^{\prime}(t)=\left(\begin{array}{rr}-3 & -2 \\ 1 & -1\end{array}\right) \mathbf{x}(t)$

[^0]Do NOT solve these systems.
Solution: Only need to calculate the eigenvalues.
(a) It's clear that eigenvalues are $\lambda_{1}=2$ and $\lambda_{2}=3$. They are distinct, real, same (positive) sign. The origin is an unstable node.
(b) Eigenvalues are solutions of

$$
(\lambda-2)(\lambda+2)-12=0
$$

so $\lambda^{2}=16$, which yields two eigenvalues -4 and 4 . They are real, distinct, different sign. Origin must be a saddle point.
(c) Clearly, the eigenvalues are -1 and -2 . Origin is a stable node.
(d) Eigenvalues solve

$$
(\lambda+1)(\lambda+3)+2=0
$$

So $\lambda^{2}+4 \lambda+5=0$. Solutions are $\lambda_{1,2}=-2 \pm \sqrt{4-5}=-2 \pm i$. Complex eigenvalues with real part equal to -2 , negative. The origin is a stable spiral.

Problem 3 (20 points)
Find the general (real-valued) solution to the system of differential equations

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{rr}
1 & -1 \\
1 & 3
\end{array}\right) \mathbf{x}(t)
$$

and sketch the phase portrait.
Solution: First, let's find eigenvalues. They are solutions to

$$
(\lambda-1)(\lambda-3)+1=0
$$

So, eigenvalue is $\lambda=2$, repeated. Eigenvector associated with the eigenvalue is a solution of the linear algebraic equation:

$$
\left[\left(\begin{array}{rr}
1 & -1 \\
1 & 3
\end{array}\right)-2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right]\binom{x_{1}}{x_{2}}=0
$$

Or equivalently,

$$
\left(\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=0
$$

This clearly yields $x_{1}+x_{2}=0$ (only one free parameter). An eigenvector is

$$
V_{1}=\binom{1}{-1}
$$

We need to find a generalized eigenvector V_{2} solving (why so?) $(A-2 I) V_{2}=V_{1}$, or equivalently

$$
\left(\begin{array}{rr}
-1 & -1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{1}{-1}
$$

This yields $x_{1}+x_{2}=1$. A generalized eigenvector is

$$
V_{2}=\binom{1}{0}
$$

The general solution (why? need to convince that V_{1} and V_{2} are linearly independent) is then

$$
\mathbf{x}(t)=c_{1}\binom{1}{-1} e^{2 t}+c_{2}\left[\binom{1}{-1} t e^{2 t}+\binom{1}{0} e^{2 t}\right]
$$

See Figure in the end of this note for the phase portrait. Did you get the "same" ? No, I won't provide you a computer to draw this; you only need to sketch a phase portrait.

Problem 4 (20 points)

Consider an initial value problem of the general nonhomogeneous system:

$$
\mathbf{x}^{\prime}(t)=A \mathbf{x}+g(t), \quad \mathbf{x}(0)=\mathbf{x}_{0}
$$

where A is some given constant $n \times n$ matrix. Assume that we can compute the exponential matrix $e^{A t}$.
Question: Present a method for determining the solution to the above initial value problem. Explain clearly all the steps in your method.

Solution 1: Since the matrix A is constant, the exponential matrix $e^{A t}$ is the fundamental matrix and so you can present in detail the "variations of parameters" method (since it works for arbitrary fundamental matrix) to obtain the general solution:

$$
\begin{equation*}
\mathbf{x}(t)=e^{A t} C+e^{A t} \int_{0}^{t} e^{-A s} g(s) d s \tag{1}
\end{equation*}
$$

Now with $\mathbf{x}(0)=\mathbf{x}_{0}$, we get

$$
\mathbf{x}_{0}=\mathbf{x}(0)=e^{A 0} C+e^{A 0} \int_{0}^{0} e^{-A s} g(s) d s=e^{0} C=C
$$

That is, $C=\mathrm{x}_{0}$ and the solution is

$$
\begin{equation*}
\mathbf{x}(t)=e^{A t} \mathbf{x}_{0}+e^{A t} \int_{0}^{t} e^{-A s} g(s) d s \tag{2}
\end{equation*}
$$

Solution 2: Remembering what we should do if this were a scalar equation, we then compute

$$
\left(e^{-A t} \mathbf{x}\right)^{\prime}=e^{-A t} \mathbf{x}^{\prime}-e^{-A t} A \mathbf{x}=e^{-A t}\left(\mathbf{x}^{\prime}-A \mathbf{x}\right)=e^{-A t} g(t)
$$

Here check that $(e-A t)^{\prime}=e^{-A t} A$ and use $\mathbf{x}^{\prime}-A \mathbf{x}=g(t)$, which is the given equation. Integrating the above identity yields

$$
e^{-A t} \mathbf{x}=\mathbf{x}_{0}+\int_{0}^{t} e^{-A s} g(s) d s
$$

Multiply this by $e^{A t}$ we get the formula (2).

Problem 5 (20 points)

Consider the nonhomogeneous system:

$$
\mathbf{x}^{\prime}(t)=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \mathbf{x}-\binom{0}{t^{5} e^{t}}
$$

We know (that is, you do NOT have to find it) that the exponential matrix of $A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$ is

$$
e^{A t}=\left(\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right) e^{t}
$$

Question: Find the general solution to the above system by ONE of any methods that you know. Hint: use the variation-of-parameters method (or Problem 4).
Solution: Note that

$$
e^{-A t}=\left(\begin{array}{cc}
1 & -t \\
0 & 1
\end{array}\right) e^{-t}
$$

Now using the formula (1) in Problem 4, we get the general solution

$$
\begin{aligned}
\mathbf{x}(t) & =e^{A t} C+e^{A t} \int_{0}^{t} e^{-A s} g(s) d s \\
& =e^{A t} C-e^{A t} \int_{0}^{t}\left(\begin{array}{cc}
1 & -s \\
0 & 1
\end{array}\right)\binom{0}{s^{5}} d s \\
& =e^{A t} C-e^{A t} \int_{0}^{t}\binom{-s^{6}}{s^{5}} d s \\
& =e^{A t} C-e^{A t}\binom{-\frac{1}{7} t^{7}}{\frac{1}{6} s^{6}} \\
& =e^{A t} C-\binom{\frac{1}{42} t^{7}}{\frac{1}{6} s^{6}} e^{t}
\end{aligned}
$$

(well, it wasn't so bad, was it ?) Note in this last problem if you used the socalled "undetermined-coefficients", it would be a bit lengthy since you will have to begin with a particular solution of a form:

$$
\mathbf{x}(t)=\binom{a_{0}+a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}+a_{6} t^{6}+a_{7} t^{7}}{b_{0}+b_{1} t+b_{2} t^{2}+b_{3} t^{3}+b_{4} t^{4}+b_{5} t^{5}+b_{6} t^{6}+b_{7} t^{7}} e^{t}
$$

and solve for these constants a_{j} and b_{j}.

[^0]: ${ }^{1}$ Exam time: 50 minutes. Date: Friday, Feb 24th, 2012

