APMA 0360: HOMEWORK ASSIGNMENT \#7

DUE DATE: 4PM, OCT $26 \mathrm{TH}, 2012$

Name:
Grade:

Section 9.3

For the problems in this section, you may use "stability/instability table 9.3 .1 ", page 513 , when needed, to draw your final conclusions.

- Work out problems $1,3,5,7,13$. Note that in the question (d) of problems 5,7, and 13, try as much as possible to sketch a phase portrait at least locally near the critical point(s). You may use computers to draw these if you know how to do so, but not required.
- Work out problem 21 parts (a), (b), and (c), and problems $27 \& 28$.

Stability/instability questions

Lemma 1. (Stability) Let $\mathbf{x}_{\mathbf{0}}$ be a critical point of

$$
\mathbf{x}^{\prime}(\mathbf{t})=\mathbf{f}(\mathbf{x}), \quad \mathbf{t} \geq \mathbf{0}
$$

Assume that there are two positive constants C_{0}, δ_{0} and a nonnegative constant α so that whenever $\mathbf{x}(\mathbf{0})$ satisfies $\left\|\mathbf{x}(\mathbf{0})-\mathbf{x}_{\mathbf{0}}\right\| \leq \delta_{\mathbf{0}}$, the solution $\mathbf{x}(\mathbf{t})$ with the initial data $\mathbf{x}(\mathbf{0})$ exists for all time $t \geq 0$ and satisfies

$$
\left\|\mathbf{x}(\mathbf{t})-\mathbf{x}_{\mathbf{0}}\right\| \leq \mathbf{C}_{\mathbf{0}} \mathbf{e}^{-\alpha \mathbf{t}}\left\|\mathbf{x}(\mathbf{0})-\mathbf{x}_{\mathbf{0}}\right\|, \quad \forall \mathbf{t} \geq \mathbf{0} .
$$

Then prove by the stability definition given in the book or in class that the critical point $\mathbf{x}_{\mathbf{0}}$ is stable if $\alpha \geq 0$ and asymptotically stable if $\alpha>0$.

- Once you have proved the above lemma, it might serve as a definition of stability of the critical point throughout the class.
- Show that the critical point $x=0$ of each of the following systems of differential equations is (asymptotically) stable or unstable. In this problem, it's asked you to show your proof without using the "stability/instability table 9.3.1". You may use the above lemma, that is to verify the assumptions of the lemma for each of the systems:
(a) $\left\{\begin{aligned} x^{\prime}(t) & =-x+\sin y+y^{3} \\ y^{\prime}(t) & =-\sin x-y\end{aligned}\right.$
(b) $\left\{\begin{array}{l}x^{\prime}(t)=2 x-x^{2}-x y \\ y^{\prime}(t)=-y-2 y^{2}+x^{2} y\end{array}\right.$

