APMA 0360: HOMEWORK ASSIGNMENT \#2

DUE DATE: SEP 21ST, 2011

Name:
Grade:

EXERCISE 1

Using the Gaussian elimination method to solve the following systems of linear algebraic equations (or showing that there is no solution if it is the case):
(a) $\quad\left\{\begin{aligned} & x_{1}+x_{2}+x_{3}=2, \\ & 2 x_{1}+x_{2} \\ & x_{1}-2 x_{2}-5 x_{3}=1,\end{aligned} \quad\right.$ (b) $\quad\left\{\begin{aligned} & x_{1}-2 x_{2}+2 x_{3}=0, \\ & 2 x_{1}+x_{2}-x_{3}=1, \\ &-2 x_{2}-4 x_{3}=0 .\end{aligned}\right.$

EXERCISE 2

Find all the eigenvalues and compute the eigenvectors associated with each eigenvalue of the following matrices:

$$
\begin{align*}
\mathbf{A} & =\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad(b) \quad \mathbf{B}=\left(\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right), \tag{a}\\
\mathbf{D} & =\left(\begin{array}{ccc}
0 & \sqrt{2} & 0 \\
\sqrt{2} & 0 & \sqrt{2} \\
0 & \sqrt{2} & 0
\end{array}\right) . \tag{b}
\end{align*}
$$

(c) $\quad \mathbf{C}=\left(\begin{array}{cc}1 & i \\ -i & -1\end{array}\right)$,

EXERCISE 3

Consider the system

$$
\mathbf{x}^{\prime}=A \mathbf{x}, \quad \text { with } \quad A:=\left(\begin{array}{rr}
2 & 2 \\
2 & -1
\end{array}\right)
$$

a) Compute the eigenvalues and eigenvectors of the matrix A .
b) Find the general solution of the above equation.

EXERCISE 4

Consider the system

$$
\mathrm{x}^{\prime}=A \mathrm{x}, \quad \text { with } \quad A:=\left(\begin{array}{rrr}
-3 & -2 & 0 \\
1 & -1 & 0 \\
0 & 0 & -2
\end{array}\right)
$$

a) Compute the eigenvalues and eigenvectors of the above matrix.
b) Find the general solution of the above equation.

EXERCISEs from the textbook

- Section 7.3: Complete the Problems 26 and 32. Show your work. There, A^{T} denotes the transpose matrix of A, and A^{*} denotes the adjoint of A and is defined by taking the transpose and complex conjugate of A. A matrix is called Hermitian or self-adjoint if $A^{*}=A$.
- Section 7.3: Problem 34.
- Section: 7.4: Solve Problem 2 with $n=2$ (that it, do only part a,b, and c in this problem).

