Problem 28: Let f be a step function on $[a, b]$. Find a formula for its total variation.

Solution: Without loss of generality we may assume that f is right continuous, however then proof works for more general step functions. This means that there is a partition $P = \{x_0, x_1, \ldots, x_n\}$ of $[a, b]$ so that f may be written as

$$f = \sum_{k=1}^{n} c_k \chi_{[x_{k-1}, x_k)}$$

where any two consecutive values of $\{c_k\}$ are distinct. It follows that

$$V(f, P) = \sum_{k=1}^{n} |c_k - c_{k-1}|.$$

However, for any other partition Q, we can always adjoin P, so that $Q' = Q \cup P$ is a partition of $[a, b]$. We may then divide this partition up as $Q' = \bigcup_{k=1}^{n} Q_k$, where

$$Q_k = \{q \in Q' \mid x_{k-1} \leq q < x_k\}.$$

Define $q^*_k = \max\{Q_k\}$. We point out that if $q \in Q_k$ then $f(q) = c_k$ and therefore $V(f_{[x_{k-1}, q^*_k]}, Q_k) = 0$. We then conclude that

$$V(f, Q) \leq V(f, Q') = \sum_{k=1}^{n} V(f_{[x_{k-1}, q^*_k]}, Q_k) + \sum_{k=1}^{n} |f(x_k) - f(q^*_k)| = \sum_{k=1}^{n} |c_k - c_{k-1}|.$$

Since this upper bound on $V(f, Q)$ is achieved at $Q = P$, we conclude

$$TV(f) = \sum_{k=1}^{n} |c_k - c_{k-1}|.$$

Problem 29:

(i) Define

$$f(x) = \begin{cases} x^2 \cos(1/x^2) & \text{if } x \neq 0, x \in [-1, 1] \\ 0 & \text{if } x = 0. \end{cases}$$

Is f of bounded variation on $[-1, 1]$?
(ii) Define
\[g(x) = \begin{cases}
 x^2 \cos \left(\frac{1}{x}\right) & \text{if } x \neq 0, x \in [-1, 1] \\
 0 & \text{if } x = 0.
\end{cases} \]

Is \(g \) of bounded variation on \([-1, 1]\)?

Solution:

(i) It suffices to consider \(f \) on the interval \([0, \pi^{-1/2}]\). Let \(n \) be some natural number, and consider the partition
\[P_n = \left\{ 0, \frac{1}{\sqrt{n\pi}}, \frac{1}{\sqrt{(n-1/2)\pi}}, \ldots, \frac{1}{\sqrt{2\pi}}, 1 \right\}. \]

We see that
\[V(f, P_n) = 1 + 1/2 + \ldots + 1/n \]

is divergent and so \(f \) is not of bounded variation.

(ii) Note that
\[g'(x) = 2x \cos \left(\frac{1}{x}\right) - \sin \left(\frac{1}{x}\right). \]

and that for \(-1 < x < 1\)
\[|g'(x)| \leq 3. \]

It follows that \(g \) is Lipschitz and therefore of bounded variation.

\[\square \]

Problem 35: For \(\alpha \) and \(\beta \) positive numbers, define the function \(f \) on \([0, 1]\) by
\[f(x) = \begin{cases}
 x^\alpha \sin \left(\frac{1}{x^\beta}\right) & \text{for } 0 < x \leq 1 \\
 0 & \text{for } x = 0.
\end{cases} \]

Show that if \(\alpha > \beta \), then \(f \) is of bounded variation on \([0, 1]\), by showing that \(f' \) is integrable over \([0, 1]\). Then show that if \(\alpha \leq \beta \), then \(f \) is not of bounded variation on \([0, 1]\).

Solution: If \(\alpha > \beta \), then
\[f'(x) = \alpha x^{\alpha-1} \sin \left(\frac{1}{x^\beta}\right) - \beta x^{\alpha-\beta-1} \cos \left(\frac{1}{x^\beta}\right). \]

Since \(f \) is \(C^1 \) and bounded on \((0, 1)\) we can use the fundamental theorem of calculus for Riemann integrals to conclude that for any partition \(P \)
\[V(f, P) = \sum_{k=0}^{n} |f(x_k) - f(x_{k-1})| \leq \int_0^1 |f'| \]
and therefore
\[TV(f) \leq \int_0^1 |f'| \leq \int_0^1 \alpha x^{\alpha-1} + \beta x^{\alpha-\beta-1} < \infty, \]
since \(\alpha > 0 \) and \(\alpha - \beta > 0 \).

If \(\alpha \leq \beta \), choose a partition \(P_n = \{0, a_n, a_{n-1}, \ldots, a_1\} \), where
\[a_n = \left(\frac{n\pi}{2} \right)^{-1/\beta} \]
then we see that
\[V(f, P_n) = \sum_{k=1}^{n} \left(\frac{k\pi}{2} \right)^{-\alpha/\beta} \]
Note that this series diverges as \(n \to \infty \) since \(\alpha/\beta \leq 1 \). Therefore
\[\lim_{n \to \infty} V(f, P_n) \leq TV(f) = \infty. \]

Problem 37: Let \(f \) be a continuous function on \([0, 1]\) that is absolutely continuous on \([\epsilon, 1]\) for each \(0 < \epsilon < 1 \).

(i) Show that \(f \) may not be absolutely continuous on \([0, 1]\).

(ii) Show that \(f \) is absolutely continuous on \([0, 1]\) if it is increasing.

(iii) Show that the function \(f \) on \([0, 1]\), defined by \(f(x) = \sqrt{x} \) for \(0 \leq x \leq 1 \), is absolutely continuous, but not Lipschitz, on \([0, 1]\).

Solution:

(i) Consider
\[f(x) = \begin{cases}
 x \sin \left(\frac{1}{x} \right) & \text{if } 0 < x \leq 1 \\
 0 & \text{if } x = 0
\end{cases} \]
Note that on \([\epsilon, 1]\)
\[|f'(x)| = \left| \sin(1/x) - \frac{1}{x} \cos(1/x) \right| \leq 1 + \frac{1}{\epsilon} \]
Therefore \(f \) is Lipschitz on \([\epsilon, 1]\) and hence absolutely continuous on \([\epsilon, 1]\). However, we know from Problem 35 that \(f \) is not BV on \([0, 1]\) and therefore not absolutely continuous on \([0, 1]\).
(ii) Suppose \(f \) is increasing, let \(\eta > 0 \) and choose \(\epsilon \) so that
\[
f(\epsilon) - f(0) < \eta/2.
\]
Since \(f \) is absolutely continuous on \([\epsilon, 1]\) choose \(\delta > 0 \) in response to \(\eta/2 \) in the absolute continuity condition on \([\epsilon, 1]\). Now suppose that \(\{(a_k, b_k)\}_{k=1}^{N} \) is a collection of disjoint open intervals such that \(\sum_{k=1}^{N} |b_k - a_k| < \delta \). We may assume that \(\epsilon \) is not contained in any of the intervals since we may always split any such interval \((a_{k_0}, b_{k_0})\) into two consecutive intervals \((a_{k_0}, \epsilon) \cup (\epsilon, b_{k_0})\) such that, by the fact that \(f \) is increasing,
\[
|f(b_{k_0}) - f(\epsilon)| + |f(\epsilon) - f(a_{k_0})| = |f(b_{k_0}) - f(a_{k_0})|.
\]
It follows that we may divide the set of intervals into \(n_- \) intervals to the left of \(\epsilon \), \(\{(a_k^-, b_k^-)\}_{k=1}^{n_-} \) and \(n_+ \) intervals to the right of \(\epsilon \), \(\{(a_k^+, b_k^+)\}_{k=1}^{n_+} \). We observe that
\[
\sum_{k=1}^{n_+} |b_k^+ - a_k^-| < \delta
\]
and so by uniform integrability on \([\epsilon, 1]\),
\[
\sum_{k=1}^{n_+} |f(b_k^+) - f(a_k^+)| < \eta/2.
\]
Also, since \(f \) is increasing,
\[
\sum_{k=1}^{n_-} |f(b_k^-) - f(a_k^-)| \leq f(\epsilon) - f(0) < \eta/2.
\]
Therefore
\[
\sum_{k=1}^{n} |f(b_k) - f(a_k)| < \eta.
\]

(iii) Clearly \(\sqrt{x} \) is not Lipschitz on \([0, 1]\) since its derivative is unbounded as \(x \to 0 \). However, \(\sqrt{x} \) is increasing and is Lipschitz on \([\epsilon, 1]\) for any \(\epsilon > 0 \). Therefore by (ii), \(f \) is absolutely continuous on \([0, 1]\).

\[\blacksquare\]

Problem 39: Use the preceding problem to show that if \(f \) is continuous and increasing on \([a, b]\), then \(f \) is absolutely continuous on \([a, b]\) if and only if for each \(\epsilon \), there is a \(\delta > 0 \) such that for a measurable subset \(E \) of \([a, b]\),
\[
m^*(f(E)) < \epsilon \text{ if } m(E) < \delta.
\]

Solution: Suppose that \(f \) is absolutely continuous, and let \(\delta > 0 \) be chosen in response to \(\epsilon > 0 \) in the absolute continuity condition as generalized in Problem 38. Suppose that
$E \subseteq [a, b]$ is measurable and $m(E) < \delta/2$. We can find a countable cover of disjoint open intervals $\{(a_k, b_k)\}_{k=1}^{\infty}$ of E so that
\[
m\left(\bigcup_{k=1}^{\infty} I_k\right) < \delta/2 + m(E) < \delta
\]
and therefore
\[
\sum_{k=1}^{\infty} |f(b_k) - f(a_k)| < \epsilon.
\]
Since f is increasing and continuous $\{f(I_k)\}_{k=1}^{\infty}$ is an open cover of $f(E)$ and $m(f(I_k)) = f(b_k) - f(a_k)$. By the definition of outer measure we conclude that
\[
m^*(f(E)) \leq \sum_{k=1}^{\infty} |f(b_k) - f(a_k)| < \epsilon.
\]
For the converse, let $\delta > 0$ be chosen to satisfy the converse condition with $\epsilon > 0$ and let $\{(a_k, b_k)\}_{k=1}^{n}$ be a finite collection of disjoint open interval such that $E = \bigcup_{k=1}^{n} (a_k, b_k)$ and $m(E) < \delta$. Since f is increasing we see that $\{f((a_k, b_k))\}_{k=1}^{n}$ are disjoint and by continuity $m(f((a_k, b_k))) = f(b_k) - f(a_k)$. By the converse condition
\[
\sum_{k=1}^{n} |f(b_k) - f(a_k)| = m\left(\bigcup_{k=1}^{n} (a_k, b_k)\right) < \epsilon.
\]

Problem 40: Use the preceding problem to show that an increasing absolutely continuous function f on $[a, b]$ maps sets of measure zero onto sets of measure zero. Conclude that the Cantor-Lebesgue function φ is not absolutely continuous $[0, 1]$ since the function ψ, defined by $\psi = x + \varphi(x)$ for $0 \leq x \leq 1$, maps the Cantor set to a set of measure 1.

Solution: Problem 39 obviously shows that an increasing absolutely continuous function maps sets of measure 0 to sets of measure 0.

By construction, the map ψ maps the Cantor set to a set of measure 1 and therefore cannot be absolutely continuous. Since x is absolutely continuous and the sum of two absolutely continuous functions is continuous we conclude that φ cannot be continuous.

Problem 41: Let f be an increasing absolutely continuous function on $[a, b]$. Use (i) and (ii) below to conclude that f maps measurable sets to measurable sets.

(i) Infer from the continuity of f and the compactness of $[a, b]$ that f maps closed sets to closed sets and therefore maps F_σ sets to F_σ sets.

(ii) The preceding problem tells us that f maps sets of measure zero to sets of measure zero.
Solution: Since f is continuous, f maps compact sets to compact sets. In particular since $[a, b]$ is compact f maps closed subsets of $[a, b]$ to closed sets. Also since

$$f \left(\bigcup_{k=1}^{\infty} A_k \right) = \bigcup_{k=1}^{\infty} f(A_k)$$

we conclude then that f maps F_σ sets to F_σ sets. Now since any measurable set A can be written as $A = F \cup E$ where F is an F_σ set and E is measure zero, we conclude that

$$f(A) = f(F) \cup f(E)$$

is measurable, being the union of an F_σ set and a set of measure zero.

■