Real Analysis HW 7 Solutions

Problem 37: Let \(f \) be an integrable function on \(E \). Show that for each \(\epsilon > 0 \), there is a natural number \(N \) for which if \(n \geq N \), then \(\left| \int_{E_n} f \right| < \epsilon \), where \(E_n = \{ x \in E | |x| \geq n \} \).

Solution: Note that \(\{ E_n \} \) are a descending collection of sets such that \(\bigcap_{k=1}^{\infty} E_k = \emptyset \) and therefore
\[
m \left(\bigcap_{k=1}^{\infty} E_k \right) = m(\emptyset) = 0.
\]
Therefore since \(f \) is integrable on \(E \), by the continuity of integration
\[
\lim_{n \to \infty} \int_{E_n} f = \int_{\bigcap_{k=1}^{\infty} E_k} f = 0.
\]
The result follows. \(\blacksquare \)

Problem 38: For each of the two functions \(f \) on \([1, \infty)\) defined below, show that \(\lim_{n \to \infty} \int_{1}^{n} f \) exists while \(f \) is not integrable over \([1, \infty)\). Does this contradict the continuity of integration?

(i) Define \(f(x) = (-1)^n/n \) for \(n \leq x \leq n + 1 \).

(ii) Define \(f(x) = (\sin(x))/x \) for \(1 \leq x < \infty \).

Solution: Neither of these cases contradict the continuity of integration since continuity assumes that \(f \) integrable over a set \(E \) containing each of the sets in the collection \(\{ E_k \} \), which we do not have in either of these cases.

(i) We can easily see that
\[
\lim_{n \to \infty} \int_{1}^{n} f = \sum_{k=1}^{\infty} \frac{(-1)^k}{k}
\]
converges. However
\[
\lim_{n \to \infty} \int_{1}^{n} |f| = \sum_{k=1}^{\infty} \frac{1}{k}
\]
diverges. So \(f \) is not integrable.
(ii) Note that since \(\sin(x)/x \) is continuous and bounded so we may use the Riemann integral. It follows from the fundamental theorem of calculus for Riemann integrals

\[
\int_1^n \frac{\sin x}{x} \, dx = - \int_1^n \left(\frac{d}{dx} \frac{\cos x}{x} + \frac{\cos x}{x^2} \right) \, dx
\]

\[
= \cos 1 - \frac{\cos n}{n} - \int_1^n \frac{\cos x}{x^2} \, dx
\]

It follows that if \(n, m > 0 \),

\[
\left| \int_m^n \frac{\sin x}{x} \, dx \right| \leq \frac{2}{\min\{n, m\}} + \int_m^n \frac{1}{x^2} \, dx
\]

\[
\leq \frac{4}{\min\{n, m\}} \to 0
\]

as \(m, n \) goes to infinity. Therefore \(\int_1^n \frac{\sin x}{x} \, dx \) is Cauchy and converges. In particular we have the well known result

\[
\int_0^\infty \frac{\sin x}{x} \, dx = \frac{\pi}{2},
\]

which can be gotten by complex integration or the Laplace transform. However \(\sin(x)/x \) is not Lebesgue integrable since

\[
\int_{k\pi}^{(k+1)\pi} \frac{|\sin x|}{x} \, dx \geq \frac{1}{(k+1)\pi} \int_{k\pi}^{(k+1)\pi} |\sin x| \, dx = \frac{2}{(k+1)\pi}
\]

and therefore

\[
\lim_{n \to \infty} \int_1^n \frac{|\sin x|}{x} \, dx \geq \frac{2}{\pi} \sum_{k=2}^{\infty} \frac{1}{k} = \infty
\]

diverges.

\[\square\]

Problem 40: Let \(f \) be integrable over \(\mathbb{R} \). Show that the function \(F \) defined by

\[F(x) = \int_{-\infty}^x f \quad \text{for all } x \in \mathbb{R} \]

is properly defined and continuous. Is it necessarily Lipschitz?

Solution: Clearly \(F \) is properly defined since \(f \) is integrable and therefore \(f \chi_{(-\infty, x]} \) is integrable for every \(x \). To see continuity, consider a sequence \(\{x_n\} \to x \) and define \(f_n = f \chi_{(-\infty,x_n]} \). Note that \(f_n \to f \chi_{(-\infty,x]} \) and \(|f_n| \leq f \). Therefore by dominated convergence,

\[
\lim_{n \to \infty} F(x_n) = \lim_{n \to \infty} \int_{-\infty}^x f_n = \int_{-\infty}^x f = F(x).
\]
For F to be Lipschitz, we would need f to be in L^∞. Since f is merely integrable we cannot guarantee that F will be Lipschitz. A counter-example is $f = \frac{1}{\sqrt{x}}\chi_{(0,\infty)}(x)$. Using the Riemann integral we can show that

$$F(x) = \int_{-\infty}^{x} f = \int_{0}^{x} \frac{1}{\sqrt{x}}dx = 2\sqrt{x}\chi_{(0,\infty)}(x),$$

which is not Lipschitz as the derivative is unbounded near 0.

\[\square \]

\textbf{Problem 43:} Let $\{h_n\}$ and $\{g_n\}$ be uniformly integrable over E. Show that for any α and β, the sequence of linear combinations $\{\alpha f_n + \beta g_n\}$ are also uniformly integrable over E.

\textbf{Solution:} Let $\varepsilon > 0$ and choose δ_1 and δ_2 so if $m(A) < \delta_1$ then $\int_A |f_n| < \varepsilon/2|\alpha|$ and if $m(A) < \delta_2$, $\int_A |g_n| < \varepsilon/2|\beta|$. Choose $\delta = \min\{\delta_1, \delta_2\}$, then if $m(A) < \delta$,

$$\int_A |\alpha f_n + \beta g_n| \leq |\alpha| \int_A |f_n| + |\beta| \int_A |g_n| < \varepsilon.$$

\[\square \]

\textbf{Problem 44:} Let f be integrable over \mathbb{R} and $\varepsilon > 0$. Establish the following three approximation properties.

(i) There is a simple function η on \mathbb{R} which has finite support and $\int_{\mathbb{R}} |f - \eta| < \varepsilon$

(ii) There is a step function s on \mathbb{R} which vanishes outside a closed, bounded interval and $\int_{\mathbb{R}} |f - s| < \varepsilon$.

(iii) There is a continuous function g on \mathbb{R} which vanishes outside a bounded set and $\int_{\mathbb{R}} |f - g| < \varepsilon$.

\textbf{Solution:}

(i) As shown in Problem 24, if f is non-negative we may find an increasing sequence of non-negative simple functions $\{\phi_n\}$ with finite support such that $\phi_n \to f$ pointwise. It follows by monotone convergence that we can find a ϕ such that

$$\int_{\mathbb{R}} |f - \phi| = \int_{\mathbb{R}} f - \phi < \varepsilon.$$

For general f we write $f = f^+ - f^-$, and find η_1 and η_2 simple and of finite support such that $\int_{\mathbb{R}} |f^+ - \eta_1| < \varepsilon/2$ and $\int_{\mathbb{R}} |f^- - \eta_2| < \varepsilon/2$. Since f^+ and f^- have disjoint support, we see that η_1 and η_2 must also have disjoint support, therefore $\eta = \eta_1 - \eta_2$ is also simple with finite support and it follows that

$$\int_{\mathbb{R}} |f - \eta| \leq \int_{\mathbb{R}} |f^+ - \eta_1| + \int_{\mathbb{R}} |f^- - \eta_2| < \varepsilon.$$
By part (i), since we can approximate by simple functions, by the triangle inequality it suffices to show that the characteristic function χ_E of a bounded measurable set E can be approximated by step functions. Note that since E is measurable, we can find a disjoint collection of open intervals $\{I_k\}_{k=1}^{\infty}$ such that $O = \bigcup_{k=1}^{\infty} I_k$, and $m(O \sim E) < \epsilon/2$. Since O must have finite measure we can find an N large enough such that $m(\bigcup_{k=N+1}^{\infty} I_k) < \epsilon/2$. Therefore
\[s = \sum_{k=1}^{N} \chi_{I_k} \]
is a step function and
\[\int_{\mathbb{R}} |\chi_E - s| \leq \sum_{k=1}^{N} \int_{\mathbb{R}} |\chi_{E \cap I_k} - \chi_{I_k}| + \sum_{k=N+1}^{\infty} \int_{\mathbb{R}} \chi_{E \cap I_k} \]
\[\leq m \left(\bigcup_{k=1}^{N} I_k \sim E \right) + m \left(\bigcup_{k=N+1}^{\infty} I_k \cap E \right) \]
\[\leq m(O \sim E) + m \left(\bigcup_{k=N+1}^{\infty} I_k \right) < \epsilon. \]

(iii) Using part (ii), once again we see by the triangle inequality that it suffices to show that any characteristic function of a bounded interval $\chi_{[a,b]}$ can be approximated by a continuous function. Let g be the continuous function which is 1 on $[a + \epsilon/2, b - \epsilon/2]$ and linearly interpolated to 0 outside of $[a, b]$, then
\[\int_{\mathbb{R}} |\chi_{[a,b]} - g| < m([a, a + \epsilon/2] \cup (b - \epsilon/2, b]) = \epsilon. \]

Problem 46: (Riemann-Lebesgue) Let f be integrable over $(-\infty, \infty)$. Show that
\[\lim_{n \to \infty} \int_{-\infty}^{\infty} f(x) \cos nx dx = 0. \]

Solution: Using the result from problem 44, we know there exists a step function s, vanishing outside of a closed bounded interval such that $\int_{\mathbb{R}} |f - s| < \epsilon/2$. Let s be the step function which we write in canonical form as
\[s = \sum_{k=1}^{K} s_k \chi_{(a_k, b_k)}, \]
where $\{(a_k, b_k)\}$ are a disjoint collection of bounded open intervals and $\{s_k\}$ are distinct. Note that it doesn’t matter that we don’t define s at the end points of the intervals since
they are a set of measure 0. We see that
\[
\left| \int_{-\infty}^{\infty} s(x) \cos nx \, dx \right| \leq \sum_{k=1}^{K} |s_k| \left| \int_{a_k}^{b_k} \cos nx \, dx \right|
\]
\[
= \sum_{k=1}^{K} \frac{|s_k|}{n} \left| \sin nb_k - \sin na_k \right|
\]
\[
\leq \frac{2K \max\{|s_i|\}}{n}.
\]
Therefore if \(n > N \equiv 4K \max\{|s_i|\}/\epsilon \), we conclude
\[
\left| \int_{-\infty}^{\infty} f(x) \cos nx \, dx \right| \leq \int_{-\infty}^{\infty} |f(x) - s(x)| \, dx + \int_{-\infty}^{\infty} s(x) \cos nx \, dx
\]
\[
< \epsilon/2 + \epsilon/2 = \epsilon.
\]

\textbf{Problem 49:} Let \(f \) be integrable over \(\mathbb{R} \). Show that the following four assertions are equivalent:

(i) \(f = 0 \) a.e. on \(\mathbb{R} \).

(ii) \(\int_{\mathbb{R}} fg = 0 \) for every bounded measurable function \(g \) on \(\mathbb{R} \).

(iii) \(\int_A f = 0 \) for every measurable set \(A \).

(iv) \(\int_{\mathcal{O}} f = 0 \) for every open set \(\mathcal{O} \).

\textbf{Solution:}

- For (i) \(\Rightarrow \) (ii) note that if \(f = 0 \) a.e., then \(f \cdot g = 0 \) a.e. for every bounded measurable function, and so \(\int_{\mathbb{R}} fg = 0 \).

- For (ii) \(\Rightarrow \) (iii), choose \(g = \chi_A \) for a measurable function \(A \).

- For (iii) \(\Rightarrow \) (iv), choose \(A = \mathcal{O} \) an open set.

- For (iv) \(\Rightarrow \) (i), note that since \(\{ f > 0 \} \) is measurable, then for any \(\delta > 0 \) we may find an open set \(\mathcal{O}_\delta \supseteq \{ f > 0 \} \) such that \(m(\mathcal{O}_\delta \sim \{ f > 0 \}) < \delta \). We may write

\[
0 = \int_{\mathcal{O}_\delta} f = \int_{\{ f > 0 \}} f + \int_{\mathcal{O}_\delta \sim \{ f > 0 \}} f = \int_{\{ f > 0 \}} f - \int_{\mathcal{O}_\delta \sim \{ f > 0 \}} |f|
\]

Since \(f \) is integrable we may choose \(\delta \) so that \(\int_{\mathcal{O}_\delta \sim \{ f > 0 \}} |f| < \epsilon \), therefore

\[
0 \leq \int_{f > 0} f = \int_{\mathcal{O}_\delta \sim \{ f > 0 \}} |f| < \epsilon.
\]
Since this holds for every $\epsilon > 0$, $\int_{f>0} f = 0$. However since $\{f > 1/n\} \subseteq \{f > 0\}$ we see that

$$0 = \int_{\{f>0\}} f \geq \int_{\{f > 1/n\}} f \geq \frac{1}{n} m(\{f > 1/n\}) \geq 0$$

and therefore $m(\{f > 1/n\}) = 0$. It follows that

$$m(\{f > 0\}) = \lim_{n \to \infty} m(\{f > 1/n\}) = 0.$$

Therefore $f \leq 0$ a.e. Making the same argument for $\{f < 0\}$, we conclude that $f = 0$ a.e.