Problem 23: Find an example of a Cauchy sequence of numbers that is not rapidly Cauchy.

Solution: Consider the \(\left\{ \frac{(-1)^n}{n} \right\}_{n=1}^{\infty} \). This is sequence converges to 0 and is therefore Cauchy. However
\[
\left| \frac{(-1)^n}{n} - \frac{(-1)^{n+1}}{n+1} \right| = \frac{n+2}{n(n+1)} \geq \frac{1}{n}
\]
and is therefore not rapidly Cauchy. ■

Problem 28: Assume \(E \) has finite measure and \(1 \leq p < \infty \). Suppose \(\{f_n\} \) is a sequence of measurable functions that converges pointwise a.e. on \(E \) to \(f \). For \(1 \leq p < \infty \), show that \(\{f_n\} \to f \) in \(L^p(E) \) if there is a \(\theta > 0 \) such that \(\{f_n\} \) belongs to and is bounded as a subset of \(L^{p+\theta}(E) \).

Solution: Suppose that there exists a \(\theta > 0 \) such that
\[
\|f_n\|_{L^{p+\theta}} \leq C
\]
uniformly in \(n \), then \(\|f\|_{L^{p+\theta}} \leq C \) by Fatou’s Lemma. We see by an application of Hölder’s inequality that
\[
\int_E |f - f_n|^p \leq m(E)^{\theta/(p+\theta)} \int_E |f - f_n|^{p+\theta} \leq 2C^{p+\theta}m(E)^{\theta/(p+\theta)}.
\]
This clearly implies that \(\{|f - f_n|^p\} \) is uniformly integrable and so by Vitali convergence \(\{f_n\} \to f \) in \(L^p(E) \). ■

Problem 36: Let \(S \) be a subset of a normed linear space \(X \). Show that \(S \) is dense in \(X \) if and only if each \(g \in X \) is the limit of a sequence in \(S \).

Solution: Suppose \(S \) is dense and \(g \in X \), then by definition of density for each \(n \geq 1 \) we may find a \(s_n \in S \) so that
\[
\|g - s_n\| < 1/n.
\]
It follows that \(\{s_n\} \to g \) in \(X \).

For the converse suppose let \(g \in X \) and choose a sequence \(\{s_n\} \subseteq S \) converging to \(g \). Clearly for any \(\epsilon > 0 \) we may choose \(n_0 \) large enough so that
\[
\|g - s_{n_0}\| < \epsilon
\]
and so S is dense.

Extra Problem: Let $a < b$ and $\epsilon > 0$. Consider the function

$$f_\epsilon(x) = \frac{1}{e^{\frac{(x-a)(x-b)}{\epsilon}} + 1}$$

(i) Show that as $\epsilon \to 0$, $f_\epsilon(x) \to 1$ if $a < x < b$, and $f_\epsilon(x) \to 0$ for x outside $[a, b]$. Thus

$$\lim_{\epsilon \to 0} f_\epsilon(x) = \chi_{[a,b]}(x) \text{ for almost all } x \in \mathbb{R}.$$

(ii) For $1 \leq p < \infty$, prove that

$$\lim_{\epsilon \to 0} \|f_\epsilon(x) - \chi_{[a,b]}\|_{L^p(\mathbb{R})} = 0.$$

Solution:

(ii) If $a < x < b$ then $(x-a)(x-b)/\epsilon \to -\infty$ as $\epsilon \to 0$ and therefore $f_\epsilon(x) \to 1$. Also if x is outside $[a, b]$ then $(x-a)(x-b)/\epsilon \to +\infty$ as $\epsilon \to 0$ and so $f_\epsilon(x) \to 0$. Therefore

$$\lim_{\epsilon \to 0} f_\epsilon(x) = \chi_{[a,b]}(x) \text{ for all } x \neq a, b.$$

(ii) Note that for $\epsilon < 1$,

$$|f_\epsilon(x) - \chi_{[a,b]}(x)| \leq e^{-(x-a)(x-b)}$$

and since $e^{-(x-a)(x-b)}$ decays faster than any inverse power of x as $x \to \pm \infty$ it is in $L^p(\mathbb{R})$ for $1 \leq p < \infty$. Therefore by Dominated Convergence

$$\lim_{\epsilon \to 0} \|f_\epsilon(x) - \chi_{[a,b]}(x)\|_{L^p(\mathbb{R})} = 0.$$

\[\blacksquare \]