## Review Problems

I. Solve the following PDE in a disk: $\left\{x^{2}+y^{2} \leq 1\right\}$

$$
u_{x x}+u_{y y}=0 .
$$

The boundary condition in the polar coordinates $(r, \theta)$ is $\left.u(r, \theta)\right|_{r=1}=\sin \theta$.
II. Solve the following PDE in the interval: $0 \leq(x, y) \leq 1$

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \\
& u(x, 0)=u(0, y)=u(1, y)=0 \\
& u_{y}(x, 1)=\sin (2 \pi x)
\end{aligned}
$$

III. Solve the following PDE in the interval: $0 \leq x \leq 2, t \geq 0$

$$
\begin{aligned}
& u_{t t}-4 u_{x x}=0 \\
& u_{x}(0, t)=0, u_{x}(2, t)=0 \\
& u(0, x)=f(x), u_{t}(x, 0)=0
\end{aligned}
$$

IV. Solve the following PDE in the interval: $0 \leq x \leq 2, t \geq 0$

$$
\begin{aligned}
& u_{t}-4 u_{x x}=0 \\
& u_{x}(0, t)=0, u(2, t)=0 \\
& u(0, x)=f(x)
\end{aligned}
$$

V. write down the Forward Euler, Backward Euler, and Improved Euler formula for the following equations:

$$
x^{\prime}=3-t+4 x .
$$

VI. For the following equations:
1.

$$
x^{\prime}=14 x-2 x^{2}-x y \quad y^{\prime}=16 y-2 y^{2}-x y
$$

2. 

$$
x^{\prime}=-x+\sin y \quad y^{\prime}=2 y
$$

3. 

$$
x^{\prime}=x(3-y) \quad y^{\prime}=y(-2+x)
$$

4. 

$$
x^{\prime \prime}+9 x-x^{3}=0
$$

a Determine all the critical points.
b Find the linear equation for those critical points.
c Determine nonlinear stability properties of the equations in the neighborhood of these critical points.
d Sketch phase portraits in the neighborhood of these critical points.
VII. Please review the midterm, similar problems may appear in the final!

