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Abstract

We generalize efficinet greedy algorithms developed in [2] to the Successive Constraints Method (SCM) of com-
puting lower bounds of the coercivity constants. The algorithms are based on a newly developed simple version of
SCM [4]. With monotonicity-based algorithm, the amount of work is saved substantially over the standard greedy
algorithm. Combined this with the safety check guaranteed adaptively enriching greedy algorithm, the SCM for
problems with high dimensional parameter space is now workable and more robust.
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Résumé

Algorithme glouton efficace pour la Méthode par Contraintes Successives (MCS) pour des espaces
de paramètres de haute dimension. Dans ce travail, on generalize l’algorithme glouton developé dans [2] pour
la Méthode par Contraintes Successives (MCS) qui permet de calculer une borne inférieure de la constante de
coercivité. L’algorithme est basé sur la nouvelle version simplifiée de la MCS [4]. Avec cet algorithme, assurant
la monotinicité de la constante, beaucoup de travail peut être sauvé en comparant à la version standard. Ici, on
combine cette approche avec la version de l’algorithme glouton [2] en rendant la MCS faisable pour des espaces
de parametètres de haute dimension et plus robuste.

Pour citer cet article :S. Zhang, C. R. Acad. Sci. Paris, Ser. I . xxx (201x).

1. Introduction

In [2], efficiency greedy algorithms are developed for problems with high-dimensional parameter space.
We apply the algorithms to reduced basis and empirical interpolation methods successfully. Another
major component of the certified reduced basis methods is an accurate estimation of the lower-bounds
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of parametric coercivity and inf-sup stability constants. Successive constrains methods (SCM) are often
used to get the estimation of such constants. Traditional SCM [3,1] computes the coercivity constants by
solving a linear programming problem with two kinds of constraints. The first kind of constraint is from
Mα closest points in a set CN , where eigenvalues and eigenvectors are computed. The second kind of
constraint is from M+ closest points in the train set Ξ. Since the size of Ξ is often large to ensure that Ξ
is a fine subset of the parameter domain D ∈ Rp, where p is the number of parameters, finding M+ closest
points in Ξ is not a simple task. If Ξ is randomly generated, then a sorting process or some tree structure
has to be used, which will be slow and complicated. If Ξ is generated based on a Cartesian grid, it will too
coarse or impossible to construct when p is large. Thus, direct applications of the saturation assumption
based and adaptively enriching greedy algorithms developed in [2] to SCM are not simple. Fortunately, in
[4], a new version of SCM is suggested. For the second kind of constraint, only the parameter itself needs
to be kept to ensure the monotonicity of the error estimator. We can discard Mα and use the full CN as
the first kind of constraint. With this new version of SCM, random generated Ξ can be used and there
is no need to find closest points in both CN and Ξ. In this paper, with some modification of the method
in [4] (the active set of constraints is not tracked), we develop monotonicity-based greedy algorithm and
adaptively enriching greedy algorithm for SCM based on the ideas of [2]. The saving of the algorithms
are substantial and the new algorithms can be applied to SCM with high dimensional spaces.

2. Monotonicity-based Greedy Algorithm for Successive Constraints Methods

We describe the monotonicity-based greedy algorithm of SCM in this section. This algorithm corre-
sponds to the saturation assumption based greedy algorithm in [2].

Given an affine bilinear form a(u, v;µ) =
∑Q
i=1 Θi(µ)ai(u, v), u, v ∈ Xfe and µ ∈ D. A representation

of the coercivity constant is αfe(µ) = infw∈Xfe
a(w,w;µ)
‖w‖2

Xh

= infw∈Xfe

∑Q
i=1 Θi(µ)ai(w,w;µ)

‖w‖2
Xh

. Then

αfe(µ) = min
y∈Y
I(µ,y) where I(µ,y) =

Q∑
i=1

Θi(µ)yi,

Y =

{
y = (y1, · · · , yQ) ∈ RQ | ∃ w ∈ Xfe s.t. yi =

ai(w,w)
‖w‖2Xh

, 1 ≤ i ≤ Q

}
.

Lower and upper bounds of αfe(µ) can be found by building two sets YUB and YLB such that YUB ⊂ Y ⊂
YLB . Define αLB(µ) = miny∈YLB

I(µ,y) and αUB(µ) = miny∈YUB
I(µ,y). We introduce a parameter

set CN = {µ1, · · · ,µN}, which is a subset of D with N parameter vectors. For each µi ∈ CN , we solve
a generalized eigenvalue problem a(wi, v;µi) = αfe(µi)(wi, v)Xfe , v ∈ Xfe with αfe(µi) is the smallest
eigenvalue and wi ∈ Xfe is the corresponding eigenvector. Then YUB(CN ) is defined by

YUB(CN ) = {y∗(µi), 1 ≤ i ≤ N} with y∗(µ) = arg min
y∈Y
I(µ,y), (2.1)

It’s clear that YUB(CN ) ⊂ Y. An online step of computing αNUB = miny∈YLB(CN ) I(µ,y), is independent
of the degree of freedom of Xfe, but get a point in CN offline involving an eigenvalue problem in the
finite element spaces. For YLB , we define a box B = ΠQ

i=1[σ−i , σ
+
i ] ⊂ RQ, where σ−i = infv∈Xfe

ai(v,v)
‖v‖2

Xfe

and σ+
i = supv∈Xfe

ai(v,v)
‖v‖2

Xfe

for 1 ≤ i ≤ Q. Obviously, Y is a subset of B. For any µ ∈ Ξ, defined an

αsaved(µ) with initialization 0. Define

YLB(µ; CN ) =
{
y ∈ B |I(µ′,y) ≥ αfe(µ′),∀µ′ ∈ CN , I(µ,y) ≥ αsaved(µ)

}
. (2.2)
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It’s well known that if we keep I(µ,y) ≥ αsaved(µ) as a constraint in YLB , then the updated αNLB(µ) =
miny∈YLB(µ;CN ) I(µ,y) ≥ αsaved(µ). Each time, if αNLB(µ) is computed for µ, we update its corresponding

value in αsaved(µ). Define an error estimator η(µ; CN ) = αN
UB(µ)−αN

LB(µ)

αN
UB

(µ)
. It’s easy to see 0 ≤ η(µ; CN ) <

1 and η(µ; CN ) is non-increasing with respect to N . The saturation assumption in [2] is now a proved
monotonicity.

For each parameter value µ ∈ Ξ, we create an error profile ηsaved(µ) with initial values 1 and a
coercivity profile αsaved(µ) with initial values 0. Now suppose CN is determined and we want to find
the next sample µN+1 = arg maxµ∈Ξ η(µ; CN ). We keep updating a temporary maximum when µ runs
through Ξ, until the whole Ξ is searched. Since η is not increasing, if for some parameter µ ∈ Ξ, its saved
error estimation ηsaved(µ) is less than the current temporary maximum, this µ will not be chosen in this
loop. Thus, the computation of η(µ) can be skipped and we leave the values of ηsaved(µ) and αsaved(µ)
untouched. Otherwise, we update those values and compare the updated error estimator with the current
temporary maximum to see whether an update is needed. Due to the monotonicity of the error estimator,
the saving of the algorithm is substantial.

3. Adaptively Enriching Greedy Algorithm for Successive Constraints Methods

A detailed pseudo-code of the adaptively enriching greedy algorithm for the reduced basis and empirical
interpolation methods can be found in [2]. For the new version of SCM discussed in [4] and the above
section, only some small adaptions are needed to develop the adaptively enriching greedy algorithm for
SCM. For completeness, we describe the main ideas here.

Like mentioned in [2], even with the above monotonicity-based greedy algorithm, we still face some
problems. It’s hard to determine the size of the train set Ξ. If the size of Ξ is too small, then it might not
be a fine enough subset of D. On the other hand, if the size of Ξ is too large, then the each searching of
the greedy algorithm is very expansive. To ensure the SCM is good enough with a reasonable size of Ξ,
a ”safety check” step is added at the end of the algorithm, that is, we test the quality of CN by a large
number of parameters to see if the resulting error estimators are smaller than the tolerance. If not, new
points are added into CN and the safety check step is re-done until the set CN passes the ”safety check”.
After having a CN , some points in Ξ are already smaller then the tolerance, thus will never be chosen.
Those points can be removed from Ξ and new random points can be added into Ξ to make the size of Ξ
a constant. For the unchanged part of Ξ, the monotonicity algorithm should be used to save wokload.

4. Numerical Tests

For the thermal block problem [4], ∇ · (κ∇u) = 0 in [0, 1]2, u = 0 on Γtop = {x ∈ (0, 1), y = 1},
κ∇u · n = 0 on Γside = {x = 0 and x = 1, y ∈ (0, 1)}, κ∇u · n = 1 on Γbase = {x ∈ (0, 1), y = 0}.
The domain is decomposed into 9 subdomains: Rk = ( i−1

3 , i3 ) × ( j−1
3 , j3 ), for i = 1, 2, 3, j = 1, 2, 3, and

k = 3(i − 1) + j. The diffusion constant κ is set to be 52µk−1, for x ∈ Rk, k = 1, 2, · · · , 8, and κ9 = 1
for x ∈ R9, where µ = (µ1, µ2, · · · , µ8) ∈ [0, 1]8. The H1-norm is used as the underlying norm. For
monotonicity-based greedy algorithm, we use a Ξ with 10′000 random points and set tolerance 0.2. From
Fig. 1, except for the first step, the amount of points whose error estimators are actually computed are
very low. After N = 20, only about 1.6% points need to be computed.

For the adaptively enriching greedy algorithm, we keep the size of Ξ to be 10′000 and set tolerance 0.2.
100′000 points are used to check the quality of SCM. Fig. 2 shows the convergence behavior, some jumps
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Figure 1. Percentage of work at each step N using Mono-

tonicity-based Algorithm.
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Figure 2. Convergence behavior of Adaptively Enriching Al-

gorithm

after N = 70 are the new bad points discovered by the safety check step. Percentage of work (effected at
each step N) w.r.t. the size of Ξ and of the number of points remained in the train set (at each step N)
is shown in Fig. 3. Before N = 70, it’s basically the monotonicity-based algorithm, very small number of
points are thrown away, and the percentage of points whose error estimators are computed is low. After
70 more points in CN , several rounds of fresh random points are enriched, and then 10 rounds of new
points to pass the ”safety check”. Compared to the pure monotonicity-based algorithm, a larger N is
obtained, but the quality of CN is more guaranteed.
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Figure 3. Percentage of work (effected at each step N) w.r.t. the size of Ξ and of the number of points remained in the

train set (at each step N) of the adaptively enriching greedy algorithm

Remark 1 In [4], an active set of the first type of constraint is used. We discard this condition in our
algorithm. The computational time is reasonable from the numerical results. Due to the monotonicity-
based algorithm, at the beginning, when N is small, error estimators are computed for relatively large
potion of the train set, the computational costs are acceptable at this stage; when N is relatively big (in
our numerical test N > 20), error estimators are computed on only a very small part of the whole Ξ, so the
computational costs are still reasonable even the active constraint set is not tracked. For the adaptively
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enriching greedy algorithm, when new random samples are enriched into Ξ, no history information of
active constraints is available, so we have to use the full CN as the set of constraints.

On the online procedure, like mentioned in [4], all points in CN are used as constraints, and the
computational time is acceptable.
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