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Abstract. We propose two new and enhanced algorithms for greedy sampling of high-
dimensional functions. While the techniques have a substantial degree of generality, we
frame the discussion in the context of methods for empirical interpolation and the devel-
opment of reduced basis techniques for high-dimensional parametrized functions. The first
algorithm, based on a assumption of saturation of error in the greedy algorithm, is shown
to result in a significant reduction of the workload over the standard greedy algorithm. In
an improved approach, this is combined with an algorithm in which the train set for the
greedy approach is adaptively sparsefied and enriched. A safety check step is added at
the end of the algorithm to certify the quality of the basis set. Both these techniques are
applicable to high-dimensional problems and we shall demonstrate their performance on a
number of numerical examples.

1 Introduction

Approximation of a function is a generic problem in mathematical and numerical analysis,
involving the choice of some suitable representation of the function and a statement about how
this representation should approximate the function. A traditional approach is polynomial
representation where the polynomials coefficients are chosen to ensure that the approximation is
exact at certain specific points, recognized as the Lagrange form of the interpolating polynomial
representation. Such representations, known as linear approximations, are independent of the
function being approximated and have been used widely for centuries. However, as problems
becomes complex and high-dimensional, the direct extension of such ideas quickly becomes
prohibitive.

More recently, there has been an increasing interest in the development of nonlinear ap-
proximations in which case the approximation is constructed in a problem specific manner to
reduce the overall computational complexity of constructing and evaluating the approximation
to a given accuracy. In this setting, the key question becomes how to add an element to the
existing approximation such that the new enriched approximation improves as much as possi-
ble, measured in some reasonable manner. This approach, known as a greedy approximation,
seeks to maximize a given function, say the maximum error, and enrich the basis to eliminate
this specific error, hence increasing the accuracy in an optimal manner when measured in the
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maximum norm. Such a greedy approach has proven themselves to be particularly valuable for
the approximation of high-dimensional problems where simple approaches are excluded due to
the curse of dimension. For a detailed recent overview of such ideas in a general context, we
refer to [15].

In this work we consider greedy algorithms and improvements of particular relevance to
high-dimensional problems. While the ideas are of a general nature, we motivate and frame the
discussion in the context of reduced basis methods (RBM) and empirical interpolation methods
(EIM) in which the greedy approximation approach plays a key role. In the generic greedy
approach, one typically needs a fine enough train set Ξtrain ⊂ D over which a functional has to
be evaluated to select the next element of the approximation. When the number of parameters
is high, the size of this train set quickly becomes considerable, rendering the computational
cost substantial and perhaps even prohibitive. As consequence, since a fine enough train set
is not realistic in practice, one is faced with the problem of ensuring the quality of the basis
set under a non-rich enough train set. It is worth noting that when dealing with certain high
dimensional problems, one may encounter the situation that the optimal basis set itself is of
large size. This situation is, however, caused by the general complexity of the problems and
we shall not discuss this further. Strategies for such cases are discussed in see [6, 7].

In this paper, we propose two enhanced greedy algorithms related to the search/loop over
the large train set. The first algorithm utilizes a saturation assumption, based on the assump-
tion that the greedy algorithm converges, i.e., with enough bases, the error will decrease to
zero. It is then reasonable to assume that the error (or the error estimator in the case of the
reduced basis method) is likewise decreasing in some sense. With a simple and reasonable
saturation assumption on the error or the error estimator, we demonstrate how to modify the
greedy algorithm such only errors/error estimators are computed for those points in Ξtrain

with a large enough predicted error. With this simple modification, the total workload of the
standard greedy algorithm is significantly reduced.

The second algorithm is an adaptively enriching greedy algorithm. In this approach, the
samples in the train set is adaptively removed and enriched, and a safety check step is added
at the end of the algorithm to ensure the quality of the basis set. On each step of searching
a new parameter for a basis, the size of the train set is maintained at a reasonable number.
This algorithm can be applied to problems with high number of parameters with substantial
savings.

What remains of this paper is organized as follows. In Section 2, we discuss the role greedy
sampling plans in different computational methods, exemplified by empirical interpolation and
reduced basis methods, to highlight shortcomings of a naive approach and motivate the need
for improved methods. This sets the stage for Section 3 where we discuss the details of two
enhanced greedy techniques. This is followed in Section 4 and 5 by a number of detailed
numerical examples for the empirical interpolation methods and reduced basis techniques,
respectively, to illustrate the advantages of using these new methods for problems with both
low and high-dimensional parameter spaces. Section 6 contains a few concluding remarks.

2 On the need for improved greedy methods

In the following we give a brief background on two different computational techniques, both
of which rely on greedy approximation techniques, to serve as motivation for the subsequent
discussion of the new greedy techniques.
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2.1 Reduced basis methods

Many applications related to computational optimization, control, and design require the abil-
ity to rapidly and accurately solve parameterized problems many times for different parameter
values within a given parametric domain D ⊂ Rp. While there are many suitable methods for
this, we shall focus here on the reduced basis method (RBM) [12, 14] which has proven itself
to be an very accurate and efficient method for such scenarios.

For any µ ∈ D, the goal is to evaluate an output functional s(µ) = `(u(µ);µ), where
u(µ) ∈ X is the solution of

a(u(µ), v;µ) = f(v;µ), ∀v ∈ X (2.1)

for some parameter dependent bilinear and linear forms a and f and X is a suitable functional
space.

Let Xfe be a finite element discretization subspace of X. Here, finite elements are used for
simplicity, and other types of discretizations can likewise be considered. For a fixed parameter
µ ∈ D, let ufe(µ) ∈ Xfe be the numerical solution of the following Galerkin problem,

a(ufe(µ), v;µ) = f(v;µ), ∀v ∈ Xfe, (2.2)

and let sfe(µ) = `(ufe(µ);µ) be the corresponding output functional of interest.
Both the variational problem (2.1) and the approximation problem (2.2) are assumed to

be well-posed. The following inf-sup stabilities are satisfied for µ-dependent positive constants
β(µ) and βfe(µ) respectively:

β(µ) = inf
u∈X

sup
v∈X

a(u, v;µ)
‖u‖X‖v‖X

and βfe(µ) = inf
u∈Xfe

sup
v∈Xfe

a(u, v;µ)
‖u‖Xfe‖v‖Xfe

, (2.3)

where ‖ · ‖X and ‖ · ‖Xfe are norms of the spaces X and Xfe, respectively.
For a collection of N parameters SN = {µ1, · · · ,µN} in the parameter domain D ⊂ Rp,

let WN = {ufe(µ1), · · · , ufe(µN )}, where ufe(µi) is the numerical solution of problem (2.2)
corresponding to the parameter values µi, for 1 ≤ i ≤ N . Then, define the reduced basis space
as Xrb

N = span{WN}.
The reduced basis approximation is now defined as: For a µ ∈ D, find urb

N (µ) ∈ Xrb
N such

that
a(urb

N (µ), v;µ) = f(v;µ), ∀v ∈ Xrb
N , (2.4)

with the corresponding value of the output functional

srb
N (µ) = `(urb

N (µ);µ). (2.5)

Define the error function e(µ) = urb
N (µ) − ufe(µ) ∈ Xfe as the difference between the

reduced basis (RB) solution urb
N (µ) and the highly accurate finite element solution ufe(µ).

The residual r(v;µ) ∈ (Xfe)′ is defined as

r(v;µ) := f(v;µ)− a(urb
N , v;µ), ∀v ∈ Xfe, (2.6)

and its norm as
‖r(·;µ)‖(Xfe)′ := sup

v∈Xfe

r(v;µ)
‖v‖Xfe

. (2.7)

We define the relative estimator for the output as

η(µ,WN ) :=
‖r(·;µ)‖(Xfe)′‖`fe(·;µ)‖(Xfe)′

βfe(µ)|srb
N (µ)|

. (2.8)
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Other types of error estimators can also be used, see e.g., [14].
To build the parameter set SN , the corresponding basis set WN and the reduced basis space

Xrb
N , a greedy algorithm is used. For a train set Ξtrain ⊂ D, which consists of a fine discretiza-

tion of D of finite cardinality, we first pick a µ1 ∈ Ξtrain, and compute the corresponding basis
ufe(µ1). Let S1 = {µ1}, W1 = {ufe(µ1)}, and Xrb

1 = span{ufe(µ1)}. Now, suppose that we
already found N points in Ξtrain to form SN , the corresponding WN and Xrb

N , for some integer
N ≥ 1. Then, choose

µN+1 := argmaxµ∈Ξtrain
η(µ;WN ), (2.9)

to fix the next sample point and let SN+1 := SN ∪ {µN+1}. We then build the corresponding
spaces WN+1 and Xrb

N+1. The above procedure is repeated until N is large enough that
maxµ∈Ξtrain η(µ;WN ) is less than a prescribed tolerance.

For this approach to be successful, it is essential that the training set is sufficiently fine,
i.e., for problems with many parameters, the size of the train set Ξtrain could become very
large. Even with a rapid approach for evaluating η(µ;WN ) for all µ ∈ Ξtrain the cost of this
quickly becomes a bottleneck in the construction of the reduced basis.

2.2 Empirical interpolation method

One of the main attractions of the reduced basis method discussed above becomes apparent if
we assume that the parameter dependent problem (2.1) satisfies an affine assumption, that is,

a(u, v;µ) =
Qa∑
i=1

Θa
i (µ)ai(u, v), f(v;µ) =

Qf∑
i=1

Θf
i (µ)fi(v), and `(v;µ) =

Q∑̀
i=1

Θ`
i(µ)`i(v),

(2.10)
where Θa

i , Θf
i , and Θ`

i are µ-dependent functions, and ai, fi, `i are µ-independent forms.
With this assumption, for a reduced basis space Xrb

N with N bases, we can applu the so-called
offline/online strategy. In the offline step, one can precompute the matrices and vectors related
to forms ai, fi, and `i, for i = 1, · · · , N . The cost of this may be substantial but is done only
once. In the online step, we now construct the matrices and vectors in the reduced basis
formulation (2.4), solve the resulting reduced basis problem, and then evaluate the output
functional (2.5). The amount of work of the online step is independent of the degrees of
freedom of Xfe, and only depends on the size of reduced basis N and the affine constants
Qa, Qf , and Q`. Hence, for a fixed µ ∈ D, the computation η(µ;WN ) includes the solving
procedure of the reduced basis problem, the evaluation of the residual (and output functional)
in the dual norm, and a possible linear programming problem to evaluate βfe(µ), see [2]. As
already anticipated, the amount of work does not depend on the size of Xfe, but only on N
and is, hence, very fast.

However, when the parameter dependent problem does not satisfy the affine assumption
(2.10), this key benefit is lost. To circumvent this, the empirical interpolation method (EIM)
[2, 9, 8] has been developed to enable one to treat the non-affine operators and approximate
them on the form (2.10) to maintain computational efficiency.

To explain the EIM, consider a parameter dependent function F : Ω × D → R or F :
Ω × D → C. The EIM is introduced in [2, 9, 11] and serves to provide parameter values
SN = {µ1, . . . ,µN} such that the interpolant

IN (F)(x;µ) :=
N∑

n=1

βn(µ)qn(x) (2.11)
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is an accurate approximation to F(x;µ) on Ω×D.
The sample points SN are chosen by the following greedy algorithm. Again, using a

train set Ξtrain ⊂ D which consists of a fine discretization of D of finite cardinality, we
first pick a µ1 ∈ Ξtrain, compute x1 = arg maxx∈ΩF(x;µ1) and the corresponding basis
q1(·) = F(·;µ1)/F(x1;µ1). Then, let S1 = {µ1} and W1 = {q1}.

Now, suppose that we already found N points in Ξtrain to form SN and WN = {q1, . . . , qN}
such that span{q1, . . . , qN} = span{F(·;µ1), . . . ,F(·;µN )}, for some integer N ≥ 1. We further
assume that a set of N points TN = {x1, . . . ,xN} is given such that

qj(xi) =


1 if i = j,

0 if i < j,

qj(xi) otherwise,

(2.12)

for all i, j = 1, . . . , N . Then, we denote the lower triangular interpolation matrix BN
ij = qj(xi),

i, j = 1, . . . , N , to define the coefficients {βn(µ)}Nn=1, for a given µ ∈ D, which are the solution
of the linear system

N∑
j=1

BN
ij βj(µ) = F(xi;µ), ∀i = 1, . . . , N.

The approximation of level N of F(·;µ) is given by the interpolant defined by (2.11). We then
set

η(µ;WN ) := ‖F(·;µ)− IN (F)(·;µ)‖L∞(Ω)

and choose
µN+1 := argmaxµ∈Ξtrain

η(µ;WN ), (2.13)

to fix the next sample point and let SN+1 := SN ∪ {µN+1}. The interpolation point xN+1 is
defined by

xN+1 = argmaxx∈Ω

(
F(·;µ)− IN (F)(·;µ)

)
and the next basis function by

qN+1 =
F(·;µ)− IN (F)(·;µ)

F(xN+1;µ)− IN (F)(xN+1;µ)
.

By construction, we therefore satisfy the condition (2.12) since the interpolation is exact for all
previous sample points in SN . The algorithm is stopped once the error maxµ∈Ξtrain η(µ;WN )
is below some prescribed tolerance. As one can observe, the EIM also uses a greedy algo-
rithm to choose the sample points with only slight differences to the case of the reduced basis
method. Hence, in the case of a high dimensional parameter space, the computational cost of
constructing the empirical interpolation can be substantial.

3 Improved greedy algorithms

Having realized the key role the greedy approach plays in the two methods discussed above,
it is clear that even if the greedy approach is used only in the offline phase, it can result in a
very considerable computational cost, in particular in the case of a high-dimensional parameter
space. Let us in the following discuss two ideas aimed to help reduce the computational of the
greedy approach in this case.
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3.1 A typical greedy algorithm

To make the algorithm more general than discussed in the above, we make several assumptions.
For each parameter µ in the parameter domain D ⊂ Rp, a µ-dependent basis function v(µ)
can be computed. Let

SN = {µ1, · · · ,µN}

be a collection of N parameters in D and

WN = {v(µ1), · · · , v(µN )}

be the collection of N basis functions based on the parameter set SN . For each parameter
µ ∈ D, suppose that we can compute an error estimator η(µ;WN ) of the approximation based
on WN .

The following represent a typical greedy algorithm.

Input: A train set Ξtrain ⊂ D, a tolerance tol > 0
Output: SN and WN

1: Initialization: Choose an initial parameter value µ1 ∈ Ξtrain, set S1 = {µ1}, compute
v(µ1), set W1 = {v(µ1)}, and N = 1 ;

2: while maxµ∈Ξ η(µ;WN ) > tol do
3: For all µ ∈ Ξtrain, compute η(µ;WN ) ;
4: Choose µN+1 = argmaxµ∈Ξtrain

η(µ;WN );
5: Set SN+1 = SN ∪ {µN+1};
6: Compute v(µN+1), and set WN+1 = WN ∪ {v(µN+1)};
7: N ← N + 1;
8: end while

Algorithm 1: A Typical Greedy Algorithm

Note that SN and WN are hierarchical:

SN ⊂ SM , WN ⊂WM if 1 ≤ N ≤M.

3.2 An improved greedy algorithm based on a saturation assumption

As mentioned before, on step 3 of the greedy algorithm 1, we have to compute η(µ;WN ) for
every µ ∈ Ξtrain. When the size of Ξtrain is large, the computational cost of this task is very
high. Fortunately, in many cases, the following saturation assumption holds:

Definition 3.1. Saturation Assumption
Assume that η(µ;WN ) > 0 is an error estimator depending on a parameter µ and a hier-

archical basis space WN . If the following property

η(µ;WM ) ≤ Csa η(µ;WN ) for some Csa > 0 for all 0 < N < M (3.14)

holds, we say that the Saturation Assumption is satisfied.

Remark 3.2. When Csa = 1, it implies that η(µ;WN ) is not increasing for a fixed µ and
increasing N . When Csa < 1, this is a more aggressive assumption, ensuring that η(µ;WN )
is strictly decreasing. This assumption with Csa < 1 is very common in the adaptive finite
element method community, see [1]. The assumption Csa > 1 is a more relaxed assumption,
allowing that η(µ;WN ) might not be monotonically decreasing, but can oscillating. Since the
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underlying assumption of the greedy algorithm is that η(µ,WN ) will converge to zero as N
approaches infinity, we can safely assume that even if η(µ,WN ) might exhibit intermittend
non-monotone as N is increasing, overall it is decreasing.

Utilizing this assumption, we can design an improved greedy algorithm. First, for each
parameter value µ ∈ Ξtrain, we create an error profile ηsaved(µ). For instance, initially, we can
set ηsaved(µ) = η(µ;W0) = ∞. Now suppose that SN and WN are determined and that we
aim to find the next sample point µN+1 = argmaxµ∈Ξtrain

η(µ;WN ). When µ runs through
over the train set Ξtrain, we naturally keep updating a temporary maximum (over Ξtrain),
until we have searched the whole set Ξtrain. In this loop, we may require that, for each µ,
ηsaved(µ) = η(µ;WL) for some L < N . Now, since the Saturation Assumption η(µ;WN ) ≤
Csa η(µ;WL) for L < N holds and if Csa ηsaved(µ) is less than the current temporary maximum,
η(µ,WN ) can not be greater than the current temporary maximum. Hence, we may skip the
computation of η(µ,WN ), and leave ηsaved(µ) untouched. On the other hand, if Csa ηsaved(µ)
is greater than the current temporary maximum, it is potentially the maximizer. Hence, we
compute η(µ,WN ), update ηsaved(µ), and compare it with the current maximum to see if an
update of the current temporary maximum is needed. We notice that if we proceed in this
manner, then the requirement that for each µ, ηsaved(µ) = η(µ;WL) for some L < N holds.

The algorithm 2 in pseudo-code of the Saturation Assumption based algorithm is given as:

Input: A train set Ξtrain ⊂ D, Csa, and a tolerance tol
Output: SN and WN

1: Choose an initial parameter value µ1 ∈ Ξtrain, set S1 = {µ1}; compute v(µ1), set
W1 = {v(µ1)}, and N = 1;

2: Set a vector ηsaved with ηsaved(µ) =∞ for all µ ∈ Ξtrain ;
3: while maxµ∈Ξtrain ηsaved(µ) ≥ tol do
4: errortmpmax = 0;
5: for all µ ∈ Ξtrain do
6: if Csaηsaved(µ) > errortmpmax then
7: Compute η(µ;WN ) , and let ηsaved(µ) = η(µ,WN );
8: if ηsaved(µ) > errortmpmax then
9: errortmpmax = ηsaved(µ), and let µmax = µ;

10: end if
11: end if
12: end for
13: Choose µN+1 = µmax, set SN+1 = SN ∪ {µN+1};
14: Compute v(µN+1), set WN+1 = WN ∪ {v(µN+1)};
15: N ← N + 1;
16: end while

Algorithm 2: A greedy algorithm based on a saturation assumption

Remark 3.3. Initially, we set ηsaved(µ) =∞ for any µ ∈ Ξtrain to make ensure every η(µ,W1)
will be computed.

Remark 3.4. Due to round-off errors, the error estimator may stagnate even if we add more
bases, or the greedy algorithm will select some point already in SN . In this case, the greedy
algorithm should be terminated.
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3.3 An adaptively enriching greedy algorithm

Even though the above saturation assumption based algorithm has the potential to reduce
the overall computational cost, it may still be too costly for problems with a high number of
parameters. Notice that, in the above algorithms, the assumption that the train set Ξtrain is a
fine enough discrete subset of D is essential; otherwise, we might miss some phenomena that
are not represented by Ξtrain. The consequence of this is that for the final sets of SN and WN ,
there may be some parameter µ̃ in D but not in Ξtrain such that η(µ̃,WN ) is greater (or even
much greater) than tol.

Thus, for high dimensional parameter problems, we will likely have to face the problem
that the train set is not rich enough. To address this problem, we first build the set of basis
WN based on a train set with a relatively small number of points.

To ensure that the set of basis functions corresponding to this train set is good enough,
we add a ”safety check” step at the end, that is, we test the bases by a larger number of test
parameters, to see if the resulting error estimators are less than the prescribed tolerance on this
larger parameter set too. If for all test points, the estimated errors are less then the tolerance,
we may conclude that the basis set is good enough. Otherwise, we add the first failed test
point (whose error is larger than the tolerance) to SN , and redo the ”safety check” step until
the set of basis WN passes the ”safety check”.

For problems with a high number of of parameters, it is in practice hard to construct a rich
enough train set. First, it is almost impossible to construct a tensor product based train set
for p > 10. Even if we only put 3 points for each parameter, which is of course far from rich,
a train set of 311 = 177’147 points is quite big. For a bigger p, the curse of dimensionality is
inevitable.

Instead of starting from a tensor product train set, we consider a (quasi-)random train
set. However, the random train set faces the same problem: it is far from ”rich enough” for
a high dimensional parameter problem. Fortunately, we can adaptively change the train set
by removing useless points and enriching new points. Notice that, after we have determined
a set of basis functions, the estimated errors corresponding to some points in the train set are
already smaller than the prescribed tolerance. There is no value in retaining these points in
SN they should be removed from the train set. Indeed, we can add some new random points
to the train set to make the size of the train set of constant cardinality.

Notice that for the unchanged part of the train set, we can still apply the saturation
assumption based algorithm to save working load, and thus combine the two ideas.

The algorithm 3 is the pseudo-code of the adaptively enriching greedy algorithm.

Remark 3.5. The algorithm can further be modified in the way that any new parameter point
in Ξtrain is subject to some optimization procedure. For instance, one can apply a random walk
with decreasing step size and only accept a new state if the error estimator is increased. Or,
a more complex procedure such as the simulated annealing algorithm can be applied. Such a
procedure will additionally (at some cost though) increase the quality of each added parameter
point.

4 Application to the empirical interpolation method

In the following we study how the previous ideas can be used to improve the greedy algorithm
incorporated in the empirical interpolation method (EIM).
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Input: M : the number of sample points in each round of searching,
Nsc: the number of sample points to pass the safety check,
Csa, and a tolerance tol.

Output: SN and WN

1: Set Nsafe = ceil(Nsc/M);
2: Generate an initial train set Ξtrain with M parameter samples (randomly, or do your

best);
3: Choose an initial parameter value µ1 ∈ Ξtrain and set S1 = {µ1} and N = 1;
4: Set a vector ηsaved with ηsaved(µ) =∞ for all µ ∈ Ξtrain;
5: Compute v(µ1), set W1 = {v(µ1)}, set safe = 0, errortmpmax = 2 ∗ tol;
6: while (errortmpmax ≥ tol or safe ≤ Nsafe) do
7: errortmpmax = 0;
8: for all µ ∈ Ξ do
9: if Csaηsaved(µ) > errortmpmax then

10: Compute η(µ;WN ) , and let ηsaved(µ) = η(µ,WN );
11: if ηsaved(µ) > errortmpmax then
12: errortmpmax = ηsaved(µ), and let µmax = µ;
13: end if
14: if ηsaved(µ) < tol then
15: flag µ; // all flagged parameters will be removed later
16: end if
17: end if
18: end for
19: if errortmpmax > tol then
20: Choose µN+1 = µmax, set SN+1 = SN ∪ µN+1;
21: Compute v(µN+1), set WN+1 = WN ∪ {v(µN+1)};
22: Discard all flagged parameters from Ξtrain and their corresponding saved error

estimation in ηsaved;
23: Generate M − sizeof(Ξtrain) new samples, add them into Ξtrain such that

sizeof(Ξtrain) = M ; set ηsaved of all new points to ∞;
24: N ← N + 1;
25: safe =0;
26: else
27: safe = safe +1;
28: Discard Ξtrain, generate M new parameters to form Ξtrain and set ηsaved to be ∞ for

all µ ∈ Ξtrain;
29: end if
30: end while

Algorithm 3: An Adaptively Enriching Greedy Algorithm
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4.1 Saturation assumption

We first test the saturation assumption based algorithm for two test problems with low dimen-
sional parameter spaces.

Test 4.1. Consider the complex-valued function

F1(x; k) =
eikx − 1

x

where x ∈ Ω = (0, 2] and k ∈ D = [1, 25]. The interval Ω is divided into a equidistant point set
of cardinality 15’000 points to build Ωh where the error ‖F1(x;µ) − IN (F1)(x;µ)‖L∞(Ωh) is
computed. For the standard greedy algorithm, the train set Ξtrain consists of 5’000 equidistant
points in D.

Test 4.2. As a second and slightly more complicated example, consider the complex-valued
function

F2(x;µ) = eikk̂·x

where the directional unit vector k̂ is given by

k̂ = −(sin θ cos ϕ, sin θ sinϕ, cos θ)T

and µ = (k, θ, ϕ) ∈ D = [1, 5]×[0, π]×[0, 2π]. As domain Ω we take a unit sphere. For practical
purpose, we take a polyhedral approximation to the sphere, as illustrated in Figure 1, and the
discrete number of points Ωh (where again the error ‖F2(x;µ)−IN (F2)(x;µ)‖L∞(Ωh) is com-
puted) consists of the three Gauss points on each triangle. For the standard greedy algorithm,
the train set Ξtrain consists of a rectangular grid of 50 × 50 × 50 points. In computational

Figure 1: Discrete surface for the unit sphere.

electromagnetics, this function is widely used since pF2(x;µ) represents a plane wave with
wave direction k̂ and polarization p ⊥ k̂ impinging onto the sphere. See [8].

In Figure 2 we show the evolution of the average and maximum value of

C(N) =
η(µ,WN )

η(µ,WN−1)
(4.15)

over Ξtrain along with the standard greedy sampling process Algorithm 1. This quantity is an
indication of Csa. We observe that assuming, in this particular case, that Csa = 2 is a safe
choice, for both cases. For this particular choice of Csa, we illustrate in Figure 3 the savings
in the loop over Ξtrain at each iteration of the standard greedy sampling. Indeed, the result
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Figure 2: Evolution of the quantity (4.15) along the greedy sampling for F1 (left) and F2

(right).

indicates, that at each step N , the percentage of the work that needs to be done by using the
saturation assumption compared to using the standard greedy algorithm and thus compares
the different workloads, at each loop over Ξtrain of Algorithm 1 and 2. One observes that,
while for the first example the improvement is already significant, one achieves an average
(over the different values of N) saving of workload of about 50% (dotted red line) for the
second example.
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Figure 3: Percentage of work at each step N , using the Saturation Assumption based greedy
algorithm, compared to the workload using the standard greedy algorithm, for F1 (left) and
F2 (right).

4.2 Adaptively enriching greedy algorithm

Let us also test the adaptively enriching greedy algorithm (for convenience denoted by AEGA)
first for the previously introduced function F2, and then for two test problems with high
dimensional parameter spaces.

Considering F2, we set M = 1’000, 5’000, 25’000, Nsc = 125’000 and Csc = 2. In Figure 4
we plot the convergence of the new algorithm (in red solid lines) and the corresponding error
over the large control set Ξtrain (in dotted lines) consisting of 125’000 equidistant points. For
comparison, we illustrate the convergence of the standard greedy algorithm using the train set
Ξtrain (in dashed lines).

We observe that as we increase the value of M , the convergence error provided by the
AEGA and the error of the AEGA over the larger control set become (not surprisingly) closer
and closer and converge to the error provided by the standard EIM using training set Ξtrain.
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Figure 4: Convergence behavior of the adaptively enriching greedy algorithm for F2 with
M = 1’000 (left), M = 5’000 (middle) and M = 25’000 (right).
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Figure 5: Evolution of the number of points where the accuracy is
checked of the adaptively enriching greedy algorithm for different
values of M (Safety check not included).

Figure 5 shows the evolution of the number of points which were part of the train set during
new greedy algorithm for all values of M . We observe that in all three cases the error was
also tested on at least 125’000 different points over the iterations of the algorithm, but of low
number M at each iteration.

In Fig. 6, we present, for all values of M , two quantities. The first one consists of the
percentage of work (w.r.t. M), at each step N , that needs to be effected and cannot be
skipped by using the saturation assumption. The second one consists of the percentage of
points (w.r.t. M) that remain in the train set after each step N . One can observe that at the
end, almost all points in the train set are withdrawn (and thus the corresponding errors need
to be computed). During a long time, we observe that the algorithm works with the initial
train set until the error tolerance is satisfied on those points before they are withdrawn. In
consequence, the accuracy need only to be checked for a low percentage of points of the trial
set using the saturation assumption. Towards the end, the number of points that remain in
the train set after each iteration decreases and consequently for each new sample point in the
train set the saturation assumption cannot be used.

Remark 4.1. Algorithm 3 is subject to randomness. However, we plot only one realization of
the adaptively enriching greedy algorithm. Due to the presence of a lot of repeated randomness
(each newly generated parameter value of Ξ is random) these illustration are still meaningful.

Test 4.3. Introduce the following real-valued function

F3(x;µ) = sin(2πµ1(x1 − µ2)) sin(2πµ3(x2 − µ4)) sin(4πµ5(x1 − µ6)) sin(4πµ7(x2 − µ8))

12



0 50 100 150 200 250
N

-100

-50

0

50

100

Pe
rc

en
ta

ge
 (%

)

Number of points where accuracy is checked (and the SA cannot be used)
Number of points remained in training set

0 50 100 150 200 250
N

-100

-50

0

50

100
Pe

rc
en

ta
ge

 (%
)

Number of points where accuracy is checked (and the SA cannot be used)
Number of points remained in the training set

0 50 100 150 200 250
N

-100

-50

0

50

100

Pe
rc

en
ta

ge
 (%

)

Number of points where accuracy is checked (and the SA cannot be used)
Number of points remained in the training set

Figure 6: Percentage of work (effected at each step N) w.r.t. to the total number of points
M and of the number of points remained in the train set (at each step N) of the adaptively
enriching greedy algorithm for F2 and different values of M = 1’000, 5’000, 25’000.

with x = (x1, x2) ∈ Ω = [0, 1]2 and µ1, µ3 ∈ [0, 2], µ2, µ4, µ6, µ8 ∈ [0, 1], µ5, µ7 ∈ [1, 2]. The
domain Ω is divided into a grid of 100× 100 equidistant points to build Ωh. Recall that in the
implementation, Ωh is used to compute the norm ‖ · ‖L∞(Ω).

In Fig. 7 and 8 we plot the convergence behaviour of the adaptive enriching greedy algo-
rithm for the function F3 and tol = 10−4. The value of Nsc is set for all different choices of
M = 100, M = 1’000 and M = 10’000 equal to Nsc = 100’000. Figure 8 is a zoom of Figure 7
towards the end of the convergence to highlight how the safety check acts. We observe that in
the case of M = 10’000 the safety check is passed in only a few attempts whereas for M = 100
the safety check fails 34 times until finally successful. This means that during each safety check
there was at least one parameter value where the interpolation error was above the tolerance.
Finally, passing the safety check means that the interpolation error on 100’000 random sample
points was below the prescribed tolerance, in all three cases.

In Fig. 9, the accumulated number of points belonging to the train set Ξ is illustrated. We
observe an increase of this quantity towards the end where the safety check is active. During
this period all parameter points are withdrawn at each iteration, leading to the increase.

Test 4.4. Finally we consider the following real-valued function

F4(x;µ) =
(

1 + exp
(
−(x1 − µ1)2

µ9
− (x2 − µ2)2

µ10

)) (
1 + exp

(
−(x1 − µ3)2

µ11
− (x2 − µ4)2

µ12

))
·
(

1 + exp
(
−(x1 − µ5)2

µ13
− (x2 − µ6)2

µ14

)) (
1 + exp

(
−(x1 − µ7)2

µ15
− (x2 − µ8)2

µ16

))
with x = (x1, x2) ∈ Ω = [0, 1]2 and µ1, . . . , µ8 ∈ [0.3, 0.7], µ9, . . . , µ16 ∈ [0.01, 0.05]. The
domain Ω = [0, 1]2 is divided into a grid of 100× 100 equidistant points to build Ωh.

In Fig. 10, the convergence behavior of the adaptive enriching greedy algorithm for the
function F4 and tol = 10−4 is plotted. The value of Nsc is set for all different choices of
M = 10’000, M = 100’000 and M = 1’000’000 equal to Nsc = 10’000’000. Fig. 11 is
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Figure 7: Convergence behavior of the
adaptive enriching greedy algorithm for F3.
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Figure 8: Convergence behavior of the
adaptive enriching greedy algorithm for F3

zoomed in towards the end where the safety
check is active.
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Figure 9: Evolution of the number of points where the accuracy is
checked of the adaptively enriching greedy algorithm for different
values of M (Safety check included).

again a zoom of Fig. 10 towards the end of the convergence. We observe a similar behavior
as in the previous case. Note that in all three cases, the safety check is passed and the
tolerance is satisfied for 10’000’000 subsequent parameter points. A bit surprisingly, both
cases of M = 10’000 and M = 100’000 results in the same number of added modes N .

5 Application to the Reduced Basis Method

In this section we apply the improved greedy algorithms in the context of the Reduced Basis
Method (RBM). As in the last section, we first test the benefit of the saturation assumption
for some low dimensional parametric problems, and then proceed to test a problem with 15
parameters using the adaptively enriching greedy algorithm.

5.1 Saturation Assumption

Before performing the numerical test, we shall show that for some variational problems, the
saturation assumption is satisfied with Csa = 1 if the error is measured in the intrinsic energy
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Figure 10: Convergence behavior of the
adaptive enriching greedy algorithm for F4.
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Figure 11: Convergence behavior of the
adaptive enriching greedy algorithm for F4

zoomed in towards the end where the safety
check is active.

norm.
Suppose the variational problem is based on a minimization principle,

u = argminv∈XJ(v), (5.16)

where J(v) is an energy functional. Then the finite element solution ufe on Xfe ⊂ X is

ufe = argminv∈XfeJ(v). (5.17)

Similarly, the reduced basis solution urb
N on Xrb

N ⊂ Xfe ⊂ X is

urb
N = argminv∈Xrb

N
J(v). (5.18)

The error between ufe and urb
N can be measured by the nonnegative quantity

J(urb
N )− J(ufe). (5.19)

Since WN ⊂ WN+1 and thus Xrb
N ⊂ Xrb

N+1, we have J(urb
N+1) ≤ J(urb

N ) and in consequence
there holds

J(urb
N+1)− J(ufe) ≤ J(urb

N )− J(ufe). (5.20)

Observe that if the error is measured exactly as J(urb
N )− J(ufe), the saturation assumption is

satisfied with Csa = 1.
Let us give an example of the above minimization principle based problem. Consider the

symmetric coercive elliptic problem,
−∇ · (α(µ)∇u) = f in Ω,

u = 0 on ΓD,
α(µ)∇u · n = g on ΓN ,

(5.21)

where ΓD and ΓN are the Dirichlet and Neumann boundaries of ∂Ω, and ΓD ∪ ΓN = ∂Ω.
For simplicity, we assume ΓD 6= ∅. The functions f and g are L2–functions on Ω and ΓN
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respectively. The parameter dependent diffusion coefficients α(µ) are always positive. Let
X = H1

D(Ω) := {v ∈ H1(Ω) : v|ΓD
= 0}. Then its variational formulation is

a(u, v;µ) = f(v), ∀v ∈ X, (5.22)

where
a(u, v;µ) =

∫
Ω

α(µ)∇u∇vdx, f(v) =
∫

Ω
fvdx +

∫
ΓN

gvds.

The energy functional is
J(v) = 1

2‖(α(µ))1/2∇v‖20,Ω − f(v),

and we have

J(urb
N )− J(ufe) = 1

2

(
‖α1/2∇urb

N‖20,Ω − ‖α1/2∇ufe‖20,Ω

)
− f(urb

N − ufe)

= 1
2‖α

1/2∇(urb
N − ufe)‖20,Ω +

∫
Ω

α∇ufe · ∇(urb
N − ufe)dx− f(urb

N − ufe)

= 1
2‖α

1/2∇(urb
N − ufe)‖20,Ω.

In the last step, Galerkin orthogonality∫
Ω

α∇ufe · ∇wdx = f(w) ∀ w ∈ Xfe

is used. The above analysis is standard, see [13].
If we measure the error by this intrinsic energy norm ‖α(µ)1/2∇v‖0,Ω, the error satisfies

the saturation assumption with Csa = 1,

‖α(µ)1/2∇(urb
M − ufe)‖0,Ω ≤ ‖α(µ)1/2∇(urb

N − ufe)‖0,Ω for 0 < N < M. (5.23)

Unfortunately, even for the above model problem, the a posteriori error estimator used in the
reduced basis method is not equivalent to the energy norm of the error exactly.

For the problem (5.21), we choose the underlying norm of X and Xfe to be the H1–semi-

norm ‖v‖X =
√∫

Ω(∇v)2dx. Notice, due to the fact that the dual norm of the Xfe–norm

needs to be computed, involving an inverse of the matrix associated with the Xfe–norm, this
Xfe–norm cannot be parameter dependent. Otherwise, we must invert a matrix of a size
comparable to the finite element space every time for a new parameter in the computation of
error estimator. This would clearly result in an unacceptable cost.

The functional based error estimator for (5.21) is defined as

η(µ;WN ) =
‖f‖X′‖r(·;µ)‖X′

β(µ)|f(urb
N (µ))|

. (5.24)

For this simple problem and this specific choice of norm, the stability constant is β(µ) =
minx∈Ω{α(µ)}. Note that

f(v) = a(v, v;µ) = ‖α(µ)1/2∇v‖20,Ω, ∀v ∈ X.

The error estimator η(µ;WN ) we used here is in fact an estimation of the relative error mea-
sured by the square of the intrinsic energy norm. In principle, since we already proved the
error measured in energy norm should be monotonically decreasing (or more precisely, non-
increasing), the constant Csa can be chosen to be 1. However, if we examine the error estimator
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η(µ;WN ) defined in (5.24) carefully, we find that for a fixed parameter µ, the values of ‖f‖X′

and β(µ) are fixed, the change of the value of |f(urb
N (µ))| is quite small if the approximation

urb
N (µ)) is already in the asymptotically region. The only problematic term is ‖r(·;µ)‖X′ . This

term is measured in a dual norm of a parameter independent norm (the H1–semi-norm), not
in the dual norm of the intrinsic energy norm ‖α(µ)1/2∇v‖0,Ω. It is easy to see that

‖α1/2∇e‖20,Ω = f(e) ≤ ‖f‖X′‖e‖X ≤ ‖f‖X′
‖r(·,µ)‖X′

β(µ)
.

Thus, the error estimator η(µ;WN ) is only an upper bound of the the relative error measured
by the square of the intrinsic energy norm. When the variation of α with respect to µ is
large, the difference between the H1–semi-norm and the energy norm ‖α1/2∇v‖0,Ω may be
large and we may find the error estimator is not monotonically decreasing as the number of
basis functions increasing.

In Test 5.1 below, we use a moderate variation of α ∈ [1/10, 10] and we observe that
the saturation assumption is satisfied with Csa = 1. In Tests 5.2 and 5.3, a wider range of
α ∈ [1/00, 100] is used. For the corresponding error estimator, the saturation assumption is
not satisfied with Csa = 1 but for a larger Csa.

Test 5.1. In this example, we will show that for a simple coercive elliptic problem, the
saturation assumption is satisfied numerically with Csa = 1 for some type of error estimators.

Consider the following thermal block problem, which is a special case of (5.21), see also
[14]. Let Ω = (0, 1)2, and

−∇ · (α∇u) = 1 in Ω,
u = 0 on Γtop = {x ∈ (0, 1), y = 1},

α∇u · n = 0 on Γside = {x = 0 and x = 1, y ∈ (0, 1)},
α∇u · n = 1 on Γbase = {x ∈ (0, 1), y = 0},

(5.25)

where α = 102µ−1 in R1 = (0, 0.5)2 and α = 1 in Rrest = Ω\(0, 0.5)2. We choose the one-
dimensional parameter domain D of µ to be [0, 1], which corresponds to α ∈ [1/10, 10] in R1.
Note that in this particular case the vector of parameters µ is indeed a scaler parameter µ.
The variational problem is given in (5.22). The output functional is chosen to be s(u) = f(u).

Let T be a uniform mesh on Ω with 80’401 of nodes (degrees of freedom), and P1(K) be
the space of linear polynomials on an element K ∈ T . We then define our finite approximation
space

Xfe = {v ∈ X : v|K ∈ P1(K), ∀K ∈ T }.

For a given µ, the finite element problem is seeking ufe(µ) ∈ Xfe, such that

a(ufe(µ), v;µ) = f(v) v ∈ Xfe. (5.26)

With a set of N reduced basis elements WN and the corresponding Xrb
N , and for a given

parameter µ, we solve the following reduced basis approximation problem: Seeking urb
N (µ) ∈

Xrb
N , such that

a(urb
N (µ), v;µ) = f(v) ∀v ∈ Xrb

N . (5.27)

We choose 101 equidistance sample points in D = [0, 1], i.e., Ξtrain = { i
100 , i = 0, 1, 2, · · · , 100},

a standard reduced basis greedy algorithm with the error estimator defined in (5.24) being used.
The first parameter µ1 is chosen to be 0.5, that is, S1 = {0.5}. The greedy algorithm chooses
the 2nd, 3rd, 4th, and 5th parameters as {0, 1.0, 0.15, 0.81}, so S5 = {0.5, 0, 1, 0.15, 0.81}. We
compute the reduced basis set WN and the reduced basis spaces Xrb

N corresponding to SN ,
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N = 1, · · · , 5. Then, for all points µ in Ξtrain, η(µ;WN ), N = 1, · · · , 5 is computed. Figure 12
shows the plots of η for each points in Ξtrain with number of reduced basis = 1, · · · , 5. Clearly,
we see that for each point µ ∈ Ξtrain, η(µ;W5) ≤ η(µ;W4) ≤ η(µ;W3) ≤ η(µ;W2) ≤ η(µ;W1).
For this problem, the saturation assumption is clearly satisfied for Csa = 1 in the first several
steps.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

10 6

10 4

10 2

100

va
lu

es
 o

f e
rro

r e
st

im
at

or

distribution of samples in train set
 

 

N = 1
N = 2
N = 3
N = 4
N = 5

Figure 12: A verification of Saturation Assumption for a symmetric positive definite problem
with 1 parameter.

Test 5.2. We now test the potential for cost savings when the saturation assumption based
algorithm is used in connection with the reduced basis method.

For equation (5.25), we decompose the domain Ω into 3 subdomains: R1 = (0, 0.5)×(0.5, 1),
R2 = (0.5, 1)× (0, 0.5), and R3 = (0, 1)2\(R1 ∪R2). The diffusion constant α is set to be

α =
{

αi = 1002µi−1, x ∈ Ri, i = 1, 2,
α3 = 1, x ∈ R3,

where µ = (µ1, µ2) ∈ [0, 1]2. The domain of αi, i = 1, 2 is set to [1/100, 100]. The bilinear form
then becomes

a(u, v;µ) =
2∑

i=1

1002µi−1

∫
Ri

∇u · ∇vdx +
∫

R3

∇u · ∇vdx. (5.28)

All other forms and spaces are identical to the ones of Test 5.1. Further, let N100 = {0, 1, 2, · · · , 100},
the train set is given by

Ξtrain = {(x(i), y(j)) : x(i) = i
100 , y(j) = j

100 , for i ∈ N100, j ∈ N100}.

We set the tolerance to be 10−3 and use the error estimator defined in (5.24).
Both the standard greedy algorithm and the saturation assumption based greedy algorithm

requires 20 reduced bases to reduce the estimated error to less than the tolerance. For this
problem, if the error is measured in the intrinsic energy norm, we can choose Csa = 1 as
indicated above. Due to the inaccuracy of the error estimator, the saturation assumption
based algorithm chooses a slightly different set of SN . If we choose Csa = 1.1 slightly larger,
we get however the same set SN as the standard greedy algorithm.
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See Fig. 13 for a comparisons of the workloads using the standard algorithm and the
new approach based on the saturation assumption with Csa = 1 and Csa = 1.1, respectively.
The mean percentage is computed as

∑N
i=1(percentage at step i)/N . The mean percentages

of Csa = 1 and Csa = 1.1 is about 32% and 34% respectively. Since the computational cost for
each evaluation of η(µ;N) is of O(N3), the average percentages do not represent the average
time saving, and only give a sense of the saving of the workloads at each step.

In Fig. 14, we present the selections of the sample points SN by the standard algorithm
and the Saturation Assumption based greedy algorithm with Csa = 1. Many sample points
are identical. In the case Csa = 1.1, the samples SN are identical to the ones of the standard
algorithm.
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Figure 13: Percentage of work at each step N
using saturation assumption based greedy al-
gorithm with Csa = 1, compared to the work-
load using the standard greedy algorithm for
Test 5.2.
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Figure 14: SN obtained by standard and sat-
uration assumption based greedy algorithms
for Test 5.2.

Test 5.3. We continue and test a problem with 3 parameters. For (5.25), we decompose the
domain Ω into 4 subdomains: Rk = ( i−1

2 , i
2)×( j−1

2 , j
2), for i = 1, 2, j = 1, 2, and k = 2(i−1)+j.

The diffusion constant α is set to be

α =
{

αk = 1002µk−1 x ∈ Rk, k = 1, 2, 3,
α4 = 1 x ∈ R4,

where µ = (µ1, µ2, µ3) ∈ [0, 1]3. The bilinear form is

a(u, v;µ) =
3∑

k=1

1002µk−1

∫
Rk

∇u · ∇vdx +
∫

R4

∇u · ∇vdx, (5.29)

All other forms and spaces are identical to the ones of Test 5.1. We again choose the output
functional based error estimator as Test 4.1 and the tolerance is set to be 10−3. Let N50 =
{0, 1, 2, · · · , 50}, the train set is given by

Ξtrain = {(x(i), y(j), z(k)) : x(i) = i
50 , y(j) = j

50 , z(k) = k
50 , i ∈ N50, j ∈ N50, k ∈ N50}.

The standard greedy algorithm needs 24 reduced bases to reduce the estimated error less than
the tolerance. If Csa is chosen to be 1, 25 reduced bases are needed to reduce the estimated error
less than the tolerance. The set SN obtained by the Saturation Assumption based algorithm
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with Csa = 1 is also different from the standard algorithm. As discussed before, this is mainly
caused by the inaccuracy of the error estimator. If we choose Csa = 3, we obtain the same
sample points SN as the standard greedy algorithm. See Figure 15 for the comparisons of the
workloads using the standard algorithm and the saturation assumption based algorithm with
Csa = 1 and Csa = 3, respectively. The mean percentages of workload for Csa = 1 and Csa = 3
are 21.6% and 33.7%, respectively.
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Figure 15: Percentage of work at each step N
using saturation assumption based greedy al-
gorithm with Csa = 1 and Csa = 3, compared
to the work load using the standard greedy
algorithm for Test 5.3.
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Figure 16: Convergence behavior of the
adaptively enriching greedy algorithm for
Test 5.4 with M = 100, 500, and 1’000.

Remark 5.1. For the type of compliance problem discussed in Tests 5.1, 5.2 and 5.3, other
types of error estimator are suggested in [14]:

ηe(µ,WN ) :=
‖r(·;µ)‖(Xfe)′

βfe(µ)1/2|urb
N (µ)|

and ηs(µ,WN ) :=
‖r(·;µ)‖2

(Xfe)′

βfe(µ)|srb
N (µ)|

. (5.30)

As discussed above, the most important term in the error estimator of the Saturation Assump-
tion is the dual norm of the residual ‖r(·;µ)‖(Xfe)′. For the error estimator ηe(µ;WN ), the
behavior is similar to that of η(µ;WN ). For the error estimator ηs(µ;WN ), the dual norm of
the residual is squared. The dual norm is computed with respect to a parameter independent
reference norm. The square makes the difference between the dual norm based on the intrinsic
energy norm and on the reference norm larger. Normally, if the error estimator ηs(µ;WN ) is
used, we need a more conservative Csa. Numerical tests show that even if Csa = 20 is set for
Test 5.3, the workload of the saturation assumption based algorithm is still only about 45% (on
average) of the standard greedy algorithm.

5.2 Adaptively enriching greedy algorithm

Test 5.4 We test the adaptively enriching greedy algorithm for the reduced basis method for
a problem with 15 parameters.

For (5.25), we decompose the domain Ω into 16 subdomains: Rk = ( i−1
4 , i

4)× ( j−1
4 , j

4), for
i = 1, 2, 3, 4, j = 1, 2, 3, 4, and k = 4(i− 1) + j. The diffusion constant α is set to be

α =
{

αk = 52µk−1, x ∈ Rk, k = 1, 2, · · · , 15,
α16 = 1, x ∈ R16.
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where µ = (µ1, µ2, · · · , µ15) ∈ [0, 1]15. The domain of αk, k = 1, 2, . . . , 15, is given by [1/5, 5].
The bilinear form then consists of

a(u, v;µ) =
15∑

k=1

52µk−1

∫
Rk

∇u · ∇vdx +
∫

R16

∇u · ∇vdx. (5.31)

All other forms and spaces are identical to the ones of Test 5.1. Due to the many jumps of the
coefficients along the interfaces of the subdomains, the solution space of this problem is very
rich. We set Csa = 1, tol = 0.05, Nsc = 10’000. Since there is a “safety check” step to ensure
the quality of the reduced bases, we should not worry that the choice of constant Csa is too
aggressive. We test three cases: M = 100, M = 500, and M = 1’000. The convergence for
one realization is plotted in Fig. 16. The number of reduced basis for M = 100 is 52, and for
the other two cases is 50. This suggests us that a bigger M will lead to a smaller number of
the bases. The percentage of work (effected at each step N) with respect to the total number
of points M and of the number of points remained in the train set (at each step N) of the
adaptively enriching greedy algorithm for different values of M = 100, 500, and 1000 are shown
in 17. At the beginning stage, the estimated errors are larger than tolerance for almost all
points in the train set, when the RB space is rich enough, more and more points are removed,
and eventually, almost all points in the trained set are removed in later stages. For the number
of the points where the error estimators are computed, that is, the saturation assumption part,
it behaves like the Algorithm 2 with a fixed train set since the train set barely changed in the
beginning. In the later stage, since almost all points are new points, the percentage of the
number of the points where the error estimators are computed is close to 100%.
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Figure 17: Percentage of work (effected at each step N) w.r.t. the total number of points
M and of the number of points remained in the train set (at each step N) of the adaptively
enriching greedy algorithm for Test 5.4 and different values of M = 100, 500, and 1’000.

Remark 5.2. For a fixed M and provided the algorithm is performed several times, we observe
that even though the train set is generated randomly each time, the numbers of the reduced bases
needed to reduce the estimated error to the prescribed tolerance are very similar. This means
that even if we start with a different and very corse random train set, the algorithm is quite
stable in the sense of capturing the dimensionality of the reduced basis space.
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6 Conclusions

In this paper, we propose two enhanced greedy algorithms designed to improve sampling ap-
proaches for high dimensional parameters spaces. We have demonstrated the efficiency of these
new techniques on the empirical interpolation method (EIM) and the reduced basis method
(RBM). Among other key observations, we have documented the potential for substantial sav-
ings over standard greedy algorithm by utilization of a simple saturation assumption. Com-
bining this with a ”safety check” step guaranteed adaptively enriching greedy algorithm, the
EIM and RBM for problems with a high number of parameters are now workable and more
robust.

With some possible modifications, the algorithms developed here can be applied to other
scenarios where a greedy algorithm is needed, for example, the successive constraint linear
optimization method for lower bounds of parametric coercivity and inf-sup constants [3, 4, 5,
10].
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