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Numerical quadrature

Consider the problem of integrating a function in 1 spatial dimension∫
Ω

f (x)W (x)dx ≈
N∑
i=1

f (xi )ωi

Finding quadrature points xi and weights ωi is well-studied

I Is f smooth? Use Gaussian quadratures for a standard W

I Is f non-smooth? Use trapezoidal or Simpson’s rule

I Error estimator? Gauss-Kronrod rule
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Parameterized integrations

Consider the parameterized problem in 1 spatial dimension

〈f , g〉 (µ, ν) =

∫
Ω

f ∗(x ;µ)g(x ; ν)W (x)dx ≈
N∑
i=1

f ∗(xi ;µ)g(xi ; ν)ωi

computed with any ordinary quadrature rule with an integrand f ∗(x)g(x)

Outlook

I If 106 values of (µ, ν) are needed, each ≈ 1s, our code takes 12 days!

I We might design a custom quadrature rule tailored to our functions

I Invest time to build worthwhile if its faster to use (and reuse)
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Difficulties with parameterized integration

〈f , g〉 (µ, ν) =

∫
Ω

f ∗(x ;µ)g(x ; ν)W (x)dx

Existing numerical quadrature rules could be expensive whenever...

I f (x ;µ) or g(x ; ν) are not well approximated by standard functions

I f (x ;µ) or g(x ; ν) highly oscillatory or different length scales

I f (x ;µ) is a stream of noisy data s(x), sampling dictated by experiment

I W (x) is something strange, perhaps empirically derived
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Observations and strategies

〈f , g〉 (µ, ν) =

∫
Ω

f ∗(x ;µ)g(x ; ν)W (x)dx

Some common situations...

I Needs to be computed for many values of (µ, ν)

I Won’t know ahead of time which parameters to compute for

I Could be a serial procedure: selected (µi , νi ) depends on previous i − 1

I If g(x ; ν) = s(x) noisy data, integration often depends smoothly on µ
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Observations and strategies

〈f , g〉 (µ, ν) =

∫
Ω

f ∗(x ;µ)g(x ; ν)W (x)dx

Plan of attack...

I Invest effort to build an application-specific quadrature rule offline

I Once built it is reused online, for example when new data is available

I If 〈f , g〉 has smooth parametric dependence we expect fast, accurate rule

Scott Field ROQ for parameterized inner products with noisy data



Introduction
Reduced order quadratures

Experiments and applications

Parameterized integration
Gravitational wave parameter estimation

Motivations

Gravitational waves emitted from two orbiting black holes.
These sources could be in our galaxy or another one far, far away.
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Motivations
Parameterized integrations in gravitational wave (GW) data analysis

1. A GW detector records some
signal s(t) = h(t;λ) + n(t)

2. Noise |n(t)| � |hλ(t)|
3. Parameter estimation by

correlating signal with model
h(t;µ) to recover parameter λ

4. Analysis can take hours to many
months depending on data and
model

1. Noise free signal h(t;λ)
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Motivations
Parameterized integrations in gravitational wave (GW) data analysis

1. A GW detector records some
signal s(t) = h(t;λ) + n(t)

2. Noise |n(t)| � |hλ(t)|
3. Parameter estimation by

correlating signal with model
h(t;µ) to recover parameter λ

4. Analysis can take hours to many
months depending on data and
model

3. To recover λ multiple evaluations of∫ fhigh

flow

s∗(f )h(f ;µ)W (f )df

and W (f ) describes detector noise
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Motivations
Parameterized integrations in gravitational wave (GW) data analysis

1. A GW detector records some
signal s(t) = h(t;λ) + n(t)

2. Noise |n(t)| � |hλ(t)|
3. Parameter estimation by

correlating signal with model
h(t;µ) to recover parameter λ

4. Analysis can take hours to many
months depending on data and
model

4. This may take a while
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Preview of talk

I Algorithms to build application-specific quadrature rules for generic,
parameterized integrals

I Work largely motivated by bottlenecks encountered in data analysis
studies

I Examples typically draw from GW physics, however approach is general
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Problem Formulation

Parametrized Functions

I Let
F := {hµ : Ω→ C | µ ∈ P, hµ ∈ C}

be a set of parametrized functions where Ω, P denote the “physical” and
parameter domains and F denotes a compact subset of a Hilbert space H ⊃ F .

I hµ could be closed-form, solutions to ODEs or PDEs

I In data analysis context hµ is the parameterized model

Inner Product Computation

I Given two arbitrary parameters µ1, µ2 ∈ P, consider

〈f , g〉 (µ1, µ2) =

∫
Ω

f ∗
µ1

(x)gµ2 (x)W (x)dx

Scott Field ROQ for parameterized inner products with noisy data



Introduction
Reduced order quadratures

Experiments and applications

Model’s n-width and the greedy algorithm: the basis
Empirical interpolation: the nodes
Building an ROQ

Introduction to reduced order quadratures (ROQ)

ROQ roadmap

1. We have an existing quadrature rule and a set of functions F

2. Find an accurate and compact basis to represent any element of F . The
basis will be a non-standard, application-specific one

3. Find points in the physical domain Ω for good integration
I Points could be a subset of the existing quadrature rule
I Accurate and stable (recall Newton-Cotes becomes ill-conditioned)

4. {xi , ωi}Ni=1 → {Xi , ω
ROQ
i }ni=1. Typically n� N.

I Algorithms/framework draw from recent developments in model order
reduction
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Approximations

Approximation of parameterized functions F with an n-dimensional space Xn

sup
hµ∈F

inf
f ∈Xn

‖hµ − f ‖ ≤ ε

where ε is a user defined approximation tolerance (≈ 10−6)

Non-adaptive approximations

I Space Xn fixed and independent of F
I Example: Xn degree n polynomials (Gaussian quadratures)

Adaptive approximations

I Space Xn tailored to F
I Example: Basis of Xn drawn from F (reduced order quadratures)
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When to seek adaptive approximations?

I Time invested to find adaptive approximations worthwhile
I Expect to reuse information

I Non-adaptive approximations are poor
I High evaluation cost hµ(xi ) at each xi ∈ Ω

I Even moderately fewer xi will be useful

When will adaptive approximations converge quickly??
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Kolmogorov n-width of F in H

dn(F ;H) := inf
dimXn≤n

sup
hµ∈F

inf
f ∈Xn

‖hµ − f ‖ = inf
dimXn≤n

sup
hµ∈F

‖hµ − Pnhµ‖ ,

measures error of the best n-dimensional subspace Xn ⊂ H approximating F

Orthogonal projection Pn : F → Xn

hµ ≈ Pnhµ :=
n∑

i=1

〈ei , hµ〉ei ,

Pnhµ is best representation of hµ in Xn and {ei}ni=1 an orthonormal basis of Xn

Bottleneck: Sadly, finding Xn is in general not possible!
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Approximate solution to the n-width problem

1. Sample the continuum

Define training set through sampling at parameter points TK = {µi}Ki=0

FK = {hµ ∈ F : µ ∈ TK}

Note: Sampling must be dense enough

2. Greedy strategy

Find Fn ≈ FK by solving n easy problems

I Given Fi the algorithm optimally chooses Fi+1 and continues to Fn

I Sequence of hierarchical spaces are constructed F1 ⊂ F2 ⊂ ... ⊂ Fn

Scott Field ROQ for parameterized inner products with noisy data
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Greedy algorithm (setup)

Goal: Find Fn ≈ F

1. Choose a parameter P and physical Ω domains

2. Sample continuum P with dense training set TK = {µi}Ki=0

3. Initialize algorithm with random µ1 and let F1 = span{hµ1}

To go from Fi to Fi+1...
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Greedy algorithm

Define greedy error σi (FK ;H) := supµ∈TK ‖hµ − Pihµ‖

While σi (FK ;H) ≥ Tol

i → i + 1

1. For all µ ∈ TK compute ||hµ − Pihµ||
2. Find the parameter µi+1 which maximizes the error of step 1

3. Let hi+1 = hµi+1 and Fi+1 = span{h1, ..., hi+1}

Output: Collection of points {µi}ni=1 and corresponding basis {hi}ni=1

Result: Fn = span{hi}ni=1 approximates training space FK up to Tol
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Result [Binev 2011, DeVore 2012]: If n-width decays exponentially (or with
polynomial order) so does the greedy error

dn(F ;H) ≤ Ce−c0nα → σn(F ;H) ≤
√

2C e−c1nα

where C , c0, α, and c1 := 2−1−2αc0 are positive constants.

Remarks

I FN found through greedy algorithm nearly optimal compared to best space

I If we define an M-by-K matrix A = [hµ1(x), . . . , hµK (x)] the greedy
selects n columns from A which serve as a low-rank approximation

I Basis identified through greedy allows ROQ error to be controlled by
n-widths thanks to Binev, DeVore, et al
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Quadrature nodes

To complete the ROQ rule we must select nodes from physical domain Ω

I What are good points for integrating in space Fn?

I In data analysis applications points cannot be freely drawn from Ω
I Hierarchical nodal set advantageous

I Faster to find
I Leads to embedded ROQ rules

Preview: We will find n nodes and derive an interpolatory quadrature formula
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Recall a greedy algorithm has identified a basis {ei}ni=1

Empirical interpolant

I If we know n “good” nodes

{Xi}ni=1 ⊂ Ω

then any hµ ∈ F can be written as

In[hµ](x) :=
n∑

i=1

ci (µ)ei (x)

where the ci coefficients are solutions to the interpolation problem

In[hµ](Xk) = hµ(Xk), ∀ k = 1, . . . , n.

I ROQ rule is found by some version of “
∫

Ω In[hµ](x)dx”

Scott Field ROQ for parameterized inner products with noisy data
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Empirical Interpolation Method1 (EIM)

I For application-specific bases where points are not known a-priori

I Algorithm selects interpolation points through a greedy criteria

Training set of physical points
Let ~x = (x1, x2, . . . , xN)T denote a vector of points where the set

{xi}Ni=1 ⊂ Ω

Goal: n points {Xi}ni=1 ⊂ {x}Ni=1 such that

‖hµ − In[hµ]‖ ≈ σn(F ;H)

Recall best L2 approximation: ‖hµ − Pnhµ‖ ≤ σn(F ;H)

1Barrault 2004, Maday 2009, Chaturantabut 2009, Sorensen 2009
Scott Field ROQ for parameterized inner products with noisy data
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Input: n evaluated basis functions {~ei}ni=1, where ~ei = ei (~x)

i = argmax|~e1| Comment: argmax returns the index of its largest entry.
Set X1 = xi

For j = 2→ n do

1. Find Ij−1[ej ](~x)

2. Compute the point-wise error ~r = Ij−1[ej ](~x)− ~ej
3. i = argmax|~r |
4. Set Xj = xi

Output: n points {Xi}ni=1 ⊂ {xi}Ni=1

Scott Field ROQ for parameterized inner products with noisy data
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Interpolation Error Estimate
Let the set of greedy (reduced) basis {ei}ni=1 be orthonormal and Pnhµ ∈ Fn

be the optimal approximation of hµ with respect to the L2-norm. Then for
every µ ∈ P

‖hµ − In[hµ]‖ ≤ Λn‖hµ − Pnhµ‖ ≤ Λnσn(F ;H)

where Λn = |||In|||2 is a Lebesgue-like constant

I Λn is computable once basis and nodes are known

I No bounds on Λn’s growth with n

I Slow growth observed in practice

Scott Field ROQ for parameterized inner products with noisy data
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Standard quadrature

I Let {αi , xi}Ni=1 denote quadrature weights and points then∫
Ω

hµ(x)dx ≈
N∑
i=1

αihµ(xi )

Reduced order quadrature

I The set F is approximated by an n-dim space Fn = span{ei}ni=1

I EIM points {Xi}ni=1 are accurate and well conditioned for interpolation in Fn

N∑
i=1

αihµ(xi ) ≈
N∑
i=1

αiIn[hµ](xi ) =
n∑

i=1

ωROQ
i hµ(Xi )

Numerical experiments show n� N
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Define

Ic =

∫
Ω

hµ(x)dx , Id =
N∑
i=1

αihµ(xi ), IROQ =
n∑

i=1

ωROQ
i hµ(Xi )

ROQ error estimates
Let σn(F ;H) ≤ ε then ∀hµ ∈ F

|Id − IROQ| < σn(F ;H)|Ω|Λn‖hµ‖d < ε|Ω|Λn‖hµ‖d

where σn is the greedy error, ε an error tolerance, and Λn = |||In|||2

|Ic − IROQ| < |Ic − Id|+ ε|Ω|Λn‖hµ‖d.

Remarks

I ROQ converges to Id with same rate as n-width

I If Id ≈ Ic then convergence to exact result with same rate like n-width
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Noisy data s

〈s, hµ〉 ≈
N∑
i=1

αi s
∗(xi )hµ(xi ) ≈

N∑
i=1

αi s
∗(xi )In[hµ](xi ) =

n∑
i=1

ωROQ
i hµ(Xi )

Parameterized products ∫
Ω

h∗µi (x)hµj (x)dx

I Approximation of F̃ = {h∗µi hµj | hµi , hµj ∈ F}
I Two-step greedy leads to significantly faster offline building of basis

I Training set for F̃ uses greedy points found from Fn ≈ F

Scott Field ROQ for parameterized inner products with noisy data
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A few considerations

Implementing the rule

I Finding basis and points could be costly – save output

I Someone gives you a good quadrature rule before deriving ROQ

Typical applications
I ROQ rule will be used over and over

I Cost of building basis likely to outweigh single use

I You don’t know what parameters are ahead of time (e.g. data analysis)

I Naive quadrature has too many degrees of freedom (e.g. data analysis)
I Parameters drawn from continuum

I If you know the parameters, store the results to file!

I Functions smooth – ROQ converges exponentially fast

Scott Field ROQ for parameterized inner products with noisy data
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Experiment setup

Continuum

I x ∈ [−1, 1] and weight W (x) = 1

Discrete quadrature

I 24-point Gaussian quadrature

Reduced order quadrature

I 24 ROQ basis: Legendre polynomials, no greedy algorithm used

I 24 ROQ points: Subset of 1000 equidistant points sampling the basis
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Point and weight distribution
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Conditioning of quadrature

I Negative weights can lead to poorly conditioned quadrature

I n-point ROQ rule for n ∈ [2, 200]
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Let µ1, µ2 ∈ [−.1, .1] and consider integrals in 1 and 2 dimensions∫ 1

−1

[
(x − µ1)2 + 0.12

]−1/2
∫ 1

−1

∫ 1

−1

[
(x − µ1)2 + (y − µ2)2 + 0.12

]−1/2
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ROQ (2D)

I ROQ rule built from 150-point
(for 1D) or 1502-point (for
2D) GQ rule.

I 2D GQ rule from tensor
product grids

I ROQ nodal set formed by
scattered point distributions
tailored to the problem
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Gravitational waves (GWs)

Courtesy: NASA GSFC

I Pair of orbiting black holes and/or neutron stars inspiral, merge, and ringdown

I Parameters of the binary system: objects’ masses (2 parameters), spins (6
parameters), and location/orientation in sky/detectors (8 parameters)
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Gravitational wave detectors

I In absence of GWs the distance between two points is L

I A passing gravitational wave h(t) causes small ∆L changes in length L.

Before GW passes by this ring
of point masses has a radius L

Scott Field ROQ for parameterized inner products with noisy data
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Gravitational wave detectors

I In absence of GWs the distance between two points is L

I A passing gravitational wave h(t) causes small ∆L changes in length L.

Single frequency, cross polarization
h(t) = hx sin (ωt − kz)

Scott Field ROQ for parameterized inner products with noisy data
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Gravitational wave detectors

I In absence of GWs the distance between two points is L

I GW h(t) causes small ∆L change in length – Expect h(t) ∝ ∆L
L ≤ 10−20
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GW parameter estimation

I A detector alerts us to a signal in noisy data

I Correlate data with GW model to extract the physical parameters

Difficulties

I Model hµ(t) described by high dimensional parameter space

I Data s(ti ) = hλ(ti ) + n(ti ) is a long time series, λ true parameter
I N equally spaced samples; N = (observation time)×(sampling rate)

I Ex: 32s at 4096Hz suggests N ≈ 130, 000 samples

I Cost to process data scales with N, dominated by evaluating model hµ(t)

Scott Field ROQ for parameterized inner products with noisy data
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GW Bayesian parameter estimation (I)

The (posterior) probability distribution function provides complete information
about the parameters of the signal and is given by

p (µ|s) ∝ P(s|µ)

I p (µ|s) is probability of parameters µ given data s

I P(s|µ) is the likelihood that data s described by a particular µ

I For Gaussian noise the likelihood is

P (s|µ) ∝ exp
(
−χ2/2

)
, χ2 = 〈s(f )− hµ (f ) , s(f )− hµ (f )〉

which features Fourier transform of s(t) and hµ (t)

I Parameter estimation cost dominated by evaluation of χ2

Scott Field ROQ for parameterized inner products with noisy data
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GW Bayesian parameter estimation (II)

Markov chain Monte Carlo (MCMC)

I We want to compute probability p (µ|s)

I MCMC algorithms sample p (µ|s), efficient for high dimensional problems

I MCMC sequentially selects points, each requires evaluation of χ2

I Between hours and a year for algorithm to run!
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Notice
χ2 = 〈s, s〉+ 〈hµ, hµ〉 − 2<〈s, hµ〉

I 〈s, s〉 computed once

I 〈hµ, hµ〉 has simple (often closed-form) expression

Standard computation

〈s, hµ〉 ≈ ∆f
N∑
i=0

s(fi )h∗µ(fi )

where N is the number of data samples

I Widely (exclusively?) used for equally spaced, noisy data

I Pros: easy, robust. Cons: converges slowly with N, expense of hµ(fi )

I Model’s n-width (approximation properties) independent of data

Scott Field ROQ for parameterized inner products with noisy data
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Parameter estimation from “burst” signals

GW model
hµ(t) = Ae−(t−tc )2/(2α2) sin(2πf0(t − tc)) ,

describes merging black holes or supernovae GW signals.

I 4 dimensional model µ = (A, tc , α, f0)

Detector model

I Data segments of 32 second intervals

I Sampling rate of 64Hz such that observation every 1/64 seconds

I Frequency domain data samples (32 ∗ 64)/2
I White noise (set weight W = 1)

I Same average amplitude |n(fi )| at each frequency component fi

Scott Field ROQ for parameterized inner products with noisy data
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Offline (data independent)

Decide on suitable range of parameters, run greedy algorithm
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Offline (data independent)

Identify ROQ nodes from empirical interpolation method
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Summary so far

X Greedy basis and ROQ points stored to file.
X Verified accuracy of basis and interpolation points.
X ROQ rule for this set of functions “Good for all time”

Some signal has been recorded!! Carry out parameter estimation...

True signal parameters
α = 1 , f0 = 0.25 , tc = 0.1, A unfixed
Modeled noise
At each frequency n(fi ) = N (0, σ2)

Mock data: Prepare data s = h + n, recover parameters with MCMC

Scott Field ROQ for parameterized inner products with noisy data
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Startup (data dependent)

Compute weights

~ω T = ~E TA−1 Ej :=
N∑

k=1

s∗(fk)ej(fk)∆f

where the j th column of the matrix A is basis ej evaluated at ROQ nodes10
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Sample distribution p (µ|s) where likelihood P(s|µ) uses standard or ROQ

〈s, hµ〉 = ∆f
N∑
i=1

s∗(fi )hµ(fi ) ≈
n∑

i=1

ωihµ(Fi )
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Features

I Startup cost ≈ time to compute inner products of data with basis (fast)

I Once weights specified, evaluations of χ2 about 25 times faster

I Accuracy in recovered parameters is preserved
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What about more complicated GW signals?
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Two black holes of masses m1 and m2 rotate one another for long times

hµ(f ) = Af −7/6 · exp

(
i

{
−π

4
+

3

128

(
π · G

c3
· f · Mc

)−5/3
}

+ . . .

)
,

where µ =Mc = (m1m2)3/5(m1 + m2)−1/5.

P = [A,B] where A = 5× 1030 Kg and B = 50× 1030 Kg
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Detector’s noise curve

S(y) = 9× 10−46
[
(4.49y)−56 + 0.16y−4.52 + 0.52 + 0.32 · y 2

]
, y =

f

150Hz

is experimentally determined and implies a weight W = S−1

Parameterized inner products∫ 360

40
h∗µ1

(f )hµ2(f )W (f )df

where µ1, µ2 ∈ P

Building the ROQ

I Uses a two-step greedy approximate integrands h∗µ1
(f )hµ2(f )W (f )

Scott Field ROQ for parameterized inner products with noisy data
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Inner product errors using i) Gauss-Legendre quadrature, ii) trapezoidal, iii)
ROQ built from GQ, and iv) ROQ built from the trapezoidal
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I Similar behavior between both ROQ rules (same basis)

I Only factor of 2 savings compared to GQ (predetermined points)

I Factor of 50 when using equally spaced “data” samples
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Summary

I Introduced application/data specific quadrature for parameterized
integrals

I Motivated by need to perform fast, accurate GW parameter estimation

I ROQ error decays like Kolmogorov n-width times a Lebesgue-like constant

I Offline costs high, online significantly faster

Future work and open questions

I Implementation within existing GW analysis pipelines underway

I Uses as application specific nested quadrature rule?

I Better criteria to choose ROQ basis and points?

I Uses outside of data analysis?

Scott Field ROQ for parameterized inner products with noisy data
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