A reduced basis representation for chirp and ringdown gravitational wave templates

¹University of Maryland, Department of Physics
 ²California Institute of Technology, Jet Propulsion Laboratory
 ³Brown University, Division of Applied Mathematics
 ⁴University of Wisconsin–Milwaukee, Center for Gravitation and Cosmology
 ⁵Louisiana State University, Department of Physics and Astronomy

September 16, 2011

PRL 106, 221102 (2011)

・ 同下 ・ ヨト ・ ヨト

Outline

Greedy construction of a reduced basis catalog

Results

Conclusion

・ロン ・回と ・ヨン・

Motivation The reduced basis space Greedy algorithm

Outline

Greedy construction of a reduced basis catalog

Results

Conclusion

Scott Field A RB representation for GW templates

・ロン ・回と ・ヨン ・ヨン

Motivation The reduced basis space Greedy algorithm

Motivation

- Matched filtering: gravitational waveform templates from a catalog are correlated with detector data
- Templates chosen so that few signals are "missed"
- Minimal match (MM) characterizes the event loss for a given catalog
- Many templates needed, scales like $(1 MM)^{-(Parameter dimension)/2}$

Desire for ...

 Faster and cheaper searches, generate alerts for EM counterparts (LLOID¹), use higher dimensional waveforms, reduced burden of overlap computation for parameter estimation

¹K. Cannon et al., Toward Early-Warning Detection of Gravitational Waves from Compact Binary Coalescence, arXiv:1107.2665v1.

Motivation The reduced basis space Greedy algorithm

Reduced basis method

Highlights include ...

- Generation of an accurate and compact reduced basis space of waveforms
- Significantly fewer templates (basis) for a given MM
- Selection of nearly optimal parameter points
- Non-linear "space of waveforms" can be represented as a small linear space with arbitrarily high accuracy

イロト イポト イヨト イヨト

Greedy construction of a reduced basis catalog	Motivation
Results	The reduced basis space
Conclusion	Greedy algorithm

The reduced basis space and an algorithm to find it

- 3 ≥ >

Motivation The reduced basis space Greedy algorithm

Problem statement

- ▶ Given: P parameters µ = {µ₁,...,µ_P} and the space of all normalized waveforms H
 - Chirp, ringdown, reduced models, analytic waveforms, etc.
- Each waveform is denoted $h_{ec\mu} \in \mathcal{H}$

GOAL:

- Find an N dimensional linear space W_N to accurately represent \mathcal{H}
 - Ansatz: Basis vectors of W_N are waveforms chosen from $\mathcal H$
- W_N is called the *reduced basis space*

・ロン ・回と ・ヨン ・ヨン

Motivation The reduced basis space Greedy algorithm

When should we look for a reduced basis space?

▶ Projection operator $P_N : H \to W_N$ for an orthonormal basis e_i of W_N

$$P_N h \equiv \sum_{i=1}^N \langle e_i, h \rangle e_i \qquad \langle g, f \rangle \equiv \int_a^b \frac{gf^*}{S_n(f)} df$$

- **Remark:** $P_N h$ is the best approximation to h
- Kolmogorov N-width specifies error for an optimal W_N

$$d_N(\mathcal{H}) = \min_{W_N} \max_{\vec{\mu} \in \mathcal{H}} ||P_N h_{\vec{\mu}} - h_{\vec{\mu}}||$$

If solutions have smooth dependence on parameters one expects

$$d_N(\mathcal{H}) \leq Ae^{-bN}$$

イロト イポト イヨト イヨト

Motivation The reduced basis space Greedy algorithm

A practical approach to finding W_N

Finding the best space is computationally challenging, so...

- 1. Sample $\mathcal H$ at a finite set of (*training space*) points $\mathcal T$
 - ▶ Now we seek to approximate $\mathcal{H}_{\mathcal{T}} = \{h_{\vec{\mu}} \in \mathcal{H} : \vec{\mu} \in \mathcal{T}\}$ by W_N
- 2. Build W_N by solving N easy problems (Greedy approach)
 - ▶ Suppose we have W_i . The algorithm optimally chooses W_{i+1} and continues to W_N
 - ▶ Sequence of hierarchical spaces are constructed $W_1 \subset W_2 \subset ... \subset W_N$
- ► *W_N* nearly optimal² compared to *W_N*^{Kol}. If N-width decays exponentially so does the approximation error for *W_N*.

 $^2\text{P}.$ Binev et al., Convergence rates for greedy algorithms in reduced basis methods are

Motivation The reduced basis space Greedy algorithm

Greedy algorithm (setup)

- Choose a parameter and waveform space (continuous and discrete)
- Initialize reduced basis with choice of $\vec{\mu}_1$ and thus $W_1 = \operatorname{span}(\{h_1\})$

To go from W_i to W_{i+1} ...

(4回) (日) (日)

Motivation The reduced basis space Greedy algorithm

Greedy algorithm

• The greedy error $\varepsilon_i \equiv \max_{\vec{\mu} \in \mathcal{T}} ||h_{\vec{\mu}} - P_i h_{\vec{\mu}}||$

イロト イポト イヨト イヨト

Motivation The reduced basis space Greedy algorithm

Greedy algorithm

• The greedy error $\varepsilon_i \equiv \max_{\vec{\mu} \in \mathcal{T}} ||h_{\vec{\mu}} - P_i h_{\vec{\mu}}||$

 $i \rightarrow i + 1$

<ロ> (日) (日) (日) (日) (日)

Motivation The reduced basis space Greedy algorithm

Greedy algorithm

• The greedy error $\varepsilon_i \equiv \max_{\vec{\mu} \in \mathcal{T}} ||h_{\vec{\mu}} - P_i h_{\vec{\mu}}||$

 $i \rightarrow i+1$

1. For all $\vec{\mu} \in \mathcal{T}$ compute $||h_{\vec{\mu}} - P_i h_{\vec{\mu}}||$

・ロン ・回と ・ヨン ・ヨン

Motivation The reduced basis space Greedy algorithm

Greedy algorithm

• The greedy error $\varepsilon_i \equiv \max_{\vec{\mu} \in \mathcal{T}} ||h_{\vec{\mu}} - P_i h_{\vec{\mu}}||$

$i \rightarrow i + 1$

- 1. For all $\vec{\mu} \in \mathcal{T}$ compute $||h_{\vec{\mu}} P_i h_{\vec{\mu}}||$
- 2. Find the parameter $\vec{\mu}_{i+1}$ which maximizes the error of step 1

イロン イヨン イヨン -

Motivation The reduced basis space Greedy algorithm

Greedy algorithm

• The greedy error $\varepsilon_i \equiv \max_{\vec{\mu} \in \mathcal{T}} ||h_{\vec{\mu}} - P_i h_{\vec{\mu}}||$

$i \rightarrow i + 1$

- 1. For all $ec{\mu} \in \mathcal{T}$ compute $||h_{ec{\mu}} P_i h_{ec{\mu}}||$
- 2. Find the parameter $\vec{\mu}_{i+1}$ which maximizes the error of step 1
- 3. Let $h_{i+1} = h_{\vec{\mu}_{i+1}}$ and $W_{i+1} = \operatorname{span}(\{h_1, ..., h_{i+1}\})$

イロン イヨン イヨン ・ ヨン

Motivation The reduced basis space Greedy algorithm

Greedy algorithm

• The greedy error $\varepsilon_i \equiv \max_{\vec{\mu} \in \mathcal{T}} ||h_{\vec{\mu}} - P_i h_{\vec{\mu}}||$

$i \rightarrow i + 1$

- 1. For all $ec{\mu} \in \mathcal{T}$ compute $||h_{ec{\mu}} P_i h_{ec{\mu}}||$
- 2. Find the parameter $\vec{\mu}_{i+1}$ which maximizes the error of step 1
- 3. Let $h_{i+1} = h_{\vec{\mu}_{i+1}}$ and $W_{i+1} = \operatorname{span}(\{h_1, ..., h_{i+1}\})$
- W_N approximates $\mathcal{H}_\mathcal{T}$ with an error of better than Tol
- Outputs a collection of points $\{\vec{\mu}_i\}_{i=1}^N$ and corresponding waveforms $\{h_i\}_{i=1}^N$ such that $W_N = \operatorname{span}\left(\{h_i\}_{i=1}^N\right)$

Motivation The reduced basis space Greedy algorithm

Greedy construction

ъ

Motivation The reduced basis space Greedy algorithm

Remarks

- Straightforward to implement
- Constructing W_N is O(N)
- Resulting reduced basis is an "application-specific spectral basis"
- Simplest matched filtering search between the signal s and every member of the training space

$$< s, P_N h_j > = \sum_{i=1}^N \langle s, e_i \rangle \langle e_i, h_j \rangle$$

► Since (e_i, h_j) has been precomputed offline, filtering now involves significantly fewer integrals

イロン イヨン イヨン -

2PN chirp waveforms Ringdown waveforms

Outline

Greedy construction of a reduced basis catalog

Results

Conclusion

Scott Field A RB representation for GW templates

< 日 > < 四 > < 回 > < 回 > < 回 > <

э

2PN chirp waveforms Ringdown waveforms

Chirp Waveforms

- 2PN stationary-phase-approximation chirp waveforms
- 2 dimensional parameter space described by the compact objects' masses, m₁ and m₂
- Recall total mass $M = m_1 + m_2$ and symmetric mass ratio $\eta = m_1 m_2/M^2$
- Dense training space where points are uniformly spaced in m_1 and m_2

- 4 回 ト 4 ヨ ト 4 ヨ ト

2PN chirp waveforms Ringdown waveforms

Results for $[1-3]M_{\odot}$ with Initial LIGO

Figure: Expected exponential convergence of algorithm. Same generic feature for all mass ranges considered.

2PN chirp waveforms Ringdown waveforms

Distribution of selected parameters

[1-3] M_{\odot} with Initial LIGO (ChirpM = $\eta^{3/5}M$)

Figure: Reduced basis with $MM = 1 - 10^{-12}$

Figure: Metric placement with MM = .97

2PN chirp waveforms Ringdown waveforms

Results

Table: Number of reduced basis ($N_{\rm RB}$) and metric placed ($N_{\rm metric}$) waveforms for different minimal matches MM.

Detector	$1-\mathrm{MM}$	BBH		BNS	
		$N_{ m RB}$	$N_{ m metric}$	N _{RB}	$N_{ m metric}$

<ロ> (四) (四) (三) (三) (三)

2PN chirp waveforms Ringdown waveforms

Results

Table: Number of reduced basis ($N_{\rm RB}$) and metric placed ($N_{\rm metric}$) waveforms for different minimal matches MM.

Detector	$1-\mathrm{MM}$	BBH		BNS	
		$N_{ m RB}$	$N_{ m metric}$	$N_{ m RB}$	$N_{ m metric}$
AdvLIGO	10 ⁻²	1,058	19, 336	5,395	72, 790
	10^{-5}	1,687	$1.1 imes10^7$	8,958	$3.2 imes10^7$
	$2.5 imes10^{-13}$	1,700	$8.0 imes10^{13}$	8,976	$1.4 imes10^{14}$
AdvVirgo	10^{-2}	1,395	42, 496	7,482	156, 127
	10^{-5}	1,690	$3.2 imes 10^7$	8,960	$2.6 imes10^7$
	$2.5 imes10^{-13}$	1,703	$1.4 imes10^{14}$	8,977	$2.9 imes10^{14}$

イロト イヨト イヨト イヨト

2PN chirp waveforms Ringdown waveforms

Results for $[1-3]M_{\odot}$ with Initial LIGO

Asymptotic result dim $(W_N) = 921$. Confirms expectation that we are converging to finite dimensional space for fixed error tolerance.

(4回) (三) (三)

2PN chirp waveforms Ringdown waveforms

Ringdown Waveforms

- Superposition of quasi-normal (i.e. exponentially damped) modes
- Dimension of parameter space is...
 - ▶ 2 for dominate l = m = 2 one-mode waveform: central frequency f_{22} and quality factor Q_{22}
 - ▶ 5 for two-mode waveform: central frequencies f_{22} and f_{33} , quality factors Q_{22} and Q_{33} , and relative amplitude A
 - ▶ 3 for two-mode waveform constrained by general relativity as $f_{33}(f_{22}, Q_{22})$ and $Q_{33}(f_{22}, Q_{22})$
- Training space given by metric placement algorithm and MM = .99

・ロン ・回と ・ヨン・

2PN chirp waveforms Ringdown waveforms

Single mode: convergence and initialization

Figure: Greedy error as a function of the number of reduced basis waveforms for *all* possible initializations. The dark line shows the average and the shaded area the maximum dispersion around it. No fine tuning is needed!

2PN chirp waveforms Ringdown waveforms

Constrained two-mode: Selected parameters

Waveform given by $h = C [(1 - A)h_{220} + Ah_{330}]$

Figure: The metric-based training space (points) and parameter values selected by the greedy algorithm (bars), with (2, 2, 0) mode (red) and (3, 3, 0) mode (blue).

Figure: Values for the relative amplitude parameter A selected by the greedy algorithm. 1,000 samples were used for $\mathcal{A} \in [0, 1]$.

2PN chirp waveforms Ringdown waveforms

Constrained two-mode: Monte Carlo study of errors

Figure: Error in representing *any* template (i.e. outside of the training space) using reduced basis waveforms. Axes defined by $\mathcal{A} \in [0, 1]$ $f_{22} \in [10, 4000] Hz$ $Q_{22} \in [2.1187, 20]$

- (同) (三)

Greedy construction of a reduced basis catalog Results	2PN chirp waveforms
Conclusion	Kinguown wavelorms

$1-\mathrm{MM}$	2-mode, GR		2-mode	
	$N_{ m metric}$	$N_{ m RB}$	$N_{ m metric}$	$N_{ m RB}$
0.03	$3.5 imes10^3$	737	$3.4 imes10^{6}$	1,198
10^{-2}	$1.8 imes10^4$	751	$5.3 imes10^7$	1,237
10^{-3}	$5.8 imes10^5$	958	$1.9 imes10^{10}$	1,495
10^{-4}	$1.8 imes10^7$	1,007	$5.3 imes10^{12}$	1,567
10^{-5}	$5.8 imes10^8$	1,018	$1.9 imes10^{15}$	1,590

Table: Number of reduced basis waveforms ($N_{\rm RB}$) needed to represent 2-mode training spaces with (ℓ , m, n) = (2, 2, 0) and (3, 3, 0) for different minimal matches MM. Values of $N_{\rm metric}$ in the second column courtesy of V. Cardoso.

Conclusion

Outline

Greedy construction of a reduced basis catalog

Results

Conclusion

< 日 > < 四 > < 回 > < 回 > < 回 > <

æ

Conclusion

Conclusion

- Demonstrated the space of waveforms can be accurately represented by a compact set of basis function
- Proposed an efficient algorithm for finding this space
- Applied the algorithm to chirp and multi-mode ringdown waveforms
 - Selects most relevant parameter points
- Significant compressions, especially high dimensional ones like multi-mode ringdown

Current work includes...

- Interpolation
- Waveforms with spin (anti-)aligned with orbital momentum

・ 同 ト ・ ヨ ト ・ ヨ ト

QUESTIONS?

Conclusion

Scott Field A RB representation for GW templates

æ