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Broadly speaking...

Gravitational wave astronomy: Observation of gravitational waves and
parameter estimation

Gravitational wave physics: Modeling expected gravitational wave
signals (PDEs, ODEs, closed-form expressions)

Computational relativity: Compute a gravitational wave signal given i)
some model (e.g. PDEs such as Einstein’s equation) plus ii) information
about sources (e.g. 2 orbiting neutron stars)
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First, what is gravity? Newton’s answer

Gravitational potential: given by Poisson’s equation ∇2φgrav = 4πGρ
Gravitational force: produced by masses Fgrav = m1∇φ2 = G m1m2

r2
r̂

Mechanics: force changes motion Fgrav = m1a1 = m1ẍ1
Gravitational waves? No, Poisson’s equation instantaneously gives
φgrav for the distribution ρ
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First, what is gravity? Einstein’s answer

Bending of spacetime: Given by Einstein’s equation

Gαβ ≡ Rαβ − 1

2
Rgαβ = 8π

G

c4
Tαβ

◮ Gαβ (gµν)
is second order PDE for gαβ

◮ Stress-energy tensor
Tαβ contains all matter
fields (like m1 and m2)

◮ Solve for gαβ , determines
geometry (measurements of distances and durations)

Mechanics: Objects move according to geodesic equation absent of
forces
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Gravitational waves

Gravitational Waves? Yes! The solution gαβ obeys a finite speed of
propagation. These radiative solutions are driven by moving masses.

◮ Observers on Earth will measure these solutions as “small” metric
fluctuations, a stretching and squeezing of space

gαβ = gEarth
αβ + hαβ =⇒

(
− 1

c2
∂2t +∇2

)
ĥαβ = 0

◮ 2 physical radiative degrees of freedom
hxy = hyx = hx sin (ωt − kz) hxx = −hyy = h+ sin (ωt − kz)
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Astrophysical gravitational wave sources

◮ Pair of orbiting black holes and/or neutron stars which inspiral,
merge, and ringdown

◮ Observed GWs depend on the parameters of the binary system, and
the objects’ masses (2 parameters) are very important
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Gravitational Wave detectors

◮ A passing gravitational wave causes a path length change ∆L in the
interferometer’s arm L. Detector measures hαβ ∝ ∆L

L
≤ 10−20

1

Requires inner product of data with templates (matched filtering)

1Fig. by Lee Lindblom
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Extreme mass ratio binaries = EMRB

◮ We focus on astrophysical sources where a compact object, mp ,
orbits a “massive” blackhole, M. Require µ = mp/M ≪ 1

◮ Supermassive M > 105 M⊙ and stellar sized mp < 30M⊙ black holes
◮ (Currently) impossible to model EMRBs with full GR equations due

to disparity of length scales (open problem!).
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Perturbation equations (I)

Recall Einstein’s equation Gµν(gαβ) = 8π G
c4
Tµν

◮ Assume a background solution (i.e. spacetime metric)
ĝαβdx

αdxβ = −f dt2 + f −1dr2 + r2dΩ2, f = 1− 2M/r .

◮ Assumption: small mass mp causes small metric perturbations,
gαβ = ĝαβ + hαβ .

◮ Stress energy tensor Tµν = mp

∫
dτ(−g)−1/2uµuνδ4(x − z(τ))

◮ Linearized Einstein equations...
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Perturbation equations (II)

◮ Decompose perturbation equations into multipoles → 16 coupled
PDE for each multipole

◮ Key insight: Introduce a “master function” Ψ(hαβ)

(−∂2t + ∂2x − V (x))Ψ = G (x , t)δ(x − xp(t)) + F (x , t)δ′(x − xp(t))

◮ Potential V encodes supermassive black hole M, source terms
encode small object mp

◮ Caveat: tortoise coordinate x = r + 2M log(12 r/M − 1)

◮ Metric perturbations can be reconstructed everywhere
◮ [Ψ,Ψ′,Ψ′′, Ψ̇] ⇐⇒ [hαβ ] which carry (ℓ,m) multipole labels
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Relevant quantities

From Ψ one can calculate...

◮ Gravitational wave signal

hℓm+ + ihℓmx =
1

2r

√
(ℓ+ 2)!

(ℓ− 2)!

[
ΨPolar + iΨAxial

]
−2Y

ℓm

◮ Energy carried away by waves

Ėℓm =
1

64π

(ℓ+ 2)!

(ℓ− 2)!

(∣∣Ψ̇ℓm

∣∣2), L̇ℓm =
im

64π

(ℓ+ 2)!

(ℓ− 2)!

(
Ψ̄ℓmΨ̇ℓm

)
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Just a 1D wave-like equation?

◮ Large errors due to distributional source terms
◮ Previous methods approximate sources (e.g. by narrow Gaussian)
◮ Our method effectively removes the particle. No accuracy loss

◮ Smooth fields to left and right of particle should be exploited
◮ Previous methods use finite difference

◮ Applications require long time evolutions and good phase resolution
◮ Our method is high order (similar to spectral element)

◮ Finite computational domain – artificial reflections and inaccurate
waveforms

◮ We employ exact outgoing BCs and waveform extraction techniques
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Discontinuous Galerkin Methods

Recipe for a DG scheme in 4 steps...
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DG method: space (step 1 of 4)

◮ Approximate physical domain Ω by local subdomains Dk such that
Ω ∼ Ωh = ∪K

k=1D
k

◮ In general the grid is unstructured. We choose lines, triangles, and
tetrahedrons for 1D, 2D, and 3D respectively.

2

2Figures from Jan Hesthaven’s online lectures
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DG Method: Solution (step 2 of 4)

◮ Local solution expanded in set of basis functions

x ∈ Dk : Ψk
h(x , t) =

N∑

i=0

Ψk
h(xi , t)l

k
i (x)

◮ Numerical solution is a polynomial of degree at most N on Dk .

◮ Global solution is a direct sum of local solutions

Ψh(x , t) =

K⊕

k=1

Ψk
h(x , t)

◮ Solutions double valued along point, line, surface.
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DG Method: Residual (step 3 of 4)

◮ Suppose our PDE is of the form LΨ = ∂tΨ+ ∂x f (Ψ) + VΨ = 0,
where Ψ and f are vectors, and V a matrix.

◮ Integrate the residual LΨh against all basis functions Dk

∫

Dk

(LΨh) l
k
i (x)dx = 0 ∀i ∈ [0,N]

◮ We still must couple the subdomains Dk to one. Our choices will
determine the scheme’s stability...
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DG method: Numerical flux (step 4 of 4)

◮ To couple elements first perform IBPs

∫

Dk

(
lki ∂tΨh − f (Ψh) ∂x l

k
i + VΨhl

k
i

)
dx = −

∮

∂Dk

lki n̂ · f ∗ (Ψh)

where the numerical flux is f ∗ (Ψh) = f ∗ (Ψ+,Ψ−)

◮ Ψ+ and Ψ− are the solutions exterior and interior to subdomain Dk ,
restricted to the boundary

◮ Example: Central flux f ∗ = f (Ψ+)+f (Ψ−)
2

◮ Passes information between elements, implements boundary
conditions, and ensures stability of scheme

◮ Choice of f ∗ is, in general, problem dependent
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Summary so far

We now have a useful numerical scheme. For sufficiently smooth
solutions the error decays like

‖Ψ−Ψk
h‖Dk ≤ C (t)

(
|Dk |

)N+1

What about the δ-type source terms?
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Discontinuous Galerkin Method: the δ

◮ Generalized dG (GDG) Method extends dG to solutions
(analytically) discontinuous at an interface3

◮ Key idea: treat the δ function as an additional numerical flux term
◮ Let the global test function be v(x) =

⊕K

i=1 v
i (x) and require the

usual δ property over Ω
∫

Ω

δ(x)v(x)dx = v(0)

◮ Freedom to choose how to “split it” between adjacent elements∫

Dk∪Dk+1

δ(x)v(x)dx =

∫

Dk

δ(x)vk (x)dx +

∫

Dk+1

δ(x)vk+1(x)dx = avk(0) + bvk+1(0) = v(0)

3K. Fan, W. Cai, X. Ji. J. Comp. Phys., 227 (2008) 2387-2410.
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Discontinuous Galerkin Method: the δ

For hyperbolic problems we find the splitting is motivated by how
information is flowing. Consider

1

c
∂tΨ+ ∂xΨ = G (t)δ(x)

A standard numerical flux choice is upwinding, given schematically by

◮ What about our problem?

Scott Field Generalized Discontinuous Galerkin Scheme for Accurate Modeling



Problem motivation
Numerics: Scheme, boundary conditions, asymptotic signal

Results

Discontinuous Galerkin method
Discontinuous Galerkin method + δ
Exact radiation boundary conditions
Asymptotic waveform extraction

As a first order system (I)

Specializing to circular orbits (xp(t) = xp)
Compute the jumps...

(−∂2t + ∂2x − V )Ψ = G (x , t)δ(x − xp) + F (x , t)δ′(x − xp)

[[
Ψ
]]
(t) ≡ lim

ǫ→0+

[
Ψ(t, xp + ǫ)−Ψ(t, xp − ǫ)

]

[[
− ∂tΨ

]]
xp

= JΠ(t;G ,F )
[[
∂xΨ

]]
xp

= JΦ(t;G ,F )

...suggesting the first order system [recall ∂xH(x) = δ(x)]

∂tΨ = −Π

∂tΠ = −∂xΦ+ VΨ+ JΦδ(x − xp)

∂tΦ = −∂xΠ + JΠδ(x − xp),

Scott Field Generalized Discontinuous Galerkin Scheme for Accurate Modeling
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As a first order system (II)

Notice that

∂tΨ = −Π

∂tΠ = −∂xΦ+ VΨ+ JΦδ(x − xp)

∂tΦ = −∂xΠ + JΠδ(x − xp),

is equivalent to the original system

◮ Subject to the constraint Φ = ∂xΨ−
[[
Ψ
]]
δ(x − xp)

◮ Φ− ∂xΨ = 0 away from xp – estimate of method error
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GDG for the first order system

To incorporate the effect of the δ functions for the system

1. Diagonalize (W = −Π− Φ and X = −Π + Φ)

∂tΨ =
1

2
(W + X )

∂tW = −∂xW − VΨ− (JΦ + JΠ)δ(x − xp)

∂tX = ∂xX − VΨ+ (JΠ − JΦ)δ(x − xp),

2. “2 copies of advection equation”: Perform δ splitting according to
characteristics

3. Transform back to system (Ψ, Π, Φ) variables

Scott Field Generalized Discontinuous Galerkin Scheme for Accurate Modeling



Problem motivation
Numerics: Scheme, boundary conditions, asymptotic signal

Results

Discontinuous Galerkin method
Discontinuous Galerkin method + δ
Exact radiation boundary conditions
Asymptotic waveform extraction

Summary of Scheme

◮ On each subdomain we interpolate with Lagrange polynomials at
Legendre-Gauss-Lobatto nodal points

◮ In the implementation of a dG scheme we compute and store local
mass and stiffness matrices

Mk
ij =

∫

Dk

lki (x)l
k
i (x) Sk

ij =

∫

Dk

∂lki (x)

∂x
lki (x)

◮ Upwind numerical flux is chosen, that is we pass information along
characteristics

◮ δ’s are split according to direction of characteristics

◮ Timestep with a classical 4th order Runge-Kutta
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Boundary Conditions

◮ Goal: non-reflecting BC, as if no boundary at all

◮ Reduces domain size, especially useful for long evolutions

◮ Sommerfeld BC works well near BH horizon as V ∼ 0

◮ At the right boundary Sommerfeld fails as V ∼ r−2, instead consider

(∂t + ∂x)Ψ = F (t, xb,Ψ,V )

Brief history of exact boundary conditions

◮ Marcus Grote and Joseph Keller derived exact nonreflecting
boundary condition for 3D wave equation (1995)

◮ Bradley Alpert, Leslie Greengard and Thomas Hagstrom showed how
to “compress” these boundary kernels (2002)

◮ Stephen Lau generalized to wave propagation on curved geometry
with AGH compression (2005)
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Example: ordinary wave equation

We wish to solve...

(−∂2t + ∂2x + ∂2y + ∂2z )ψ = 0
Problem posed on spatially unbounded
domain and with compactly supported
initial data.
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Example: ordinary wave equation

We wish to solve...

(−∂2t + ∂2x + ∂2y + ∂2z )ψ = 0
Problem posed on spatially unbounded
domain and with compactly supported
initial data.

We actually solve...

◮ For computational reasons the problem is solved on a spatially finite
domain

◮ Outer computational boundary is a sphere located at r = rb

GOAL: mimic open space problem by i) supplying correct non-reflecting
boundary conditions and ii) recovering solution which escapes to infinity.
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Example: ordinary wave equation (outgoing solutions)

◮ Flatspace wave equation for spherical harmonic modes:

ψ =
∑

ℓm

1

r
Ψℓm(t, r)Yℓm(θ, φ) →

[
∂2

∂t2
− ∂2

∂r2
+
ℓ(ℓ+ 1)

r2

]
Ψℓm = 0
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Example: ordinary wave equation (outgoing solutions)

◮ Flatspace wave equation for spherical harmonic modes:

ψ =
∑

ℓm

1

r
Ψℓm(t, r)Yℓm(θ, φ) →

[
∂2

∂t2
− ∂2

∂r2
+
ℓ(ℓ+ 1)

r2

]
Ψℓm = 0

◮ Laplace transformed solution Ψ̂ℓm(s, r) =
∫∞
0 Ψℓm(t, r)e

−stdt solves
[
s2 − ∂2

∂r2
+
ℓ(ℓ+ 1)

r2

]
Ψ̂ℓm =

∂Ψℓm

∂t
(0, r) + sΨℓm(0, r)
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Example: ordinary wave equation (outgoing solutions)

◮ Flatspace wave equation for spherical harmonic modes:

ψ =
∑

ℓm

1

r
Ψℓm(t, r)Yℓm(θ, φ) →

[
∂2

∂t2
− ∂2

∂r2
+
ℓ(ℓ+ 1)

r2

]
Ψℓm = 0

◮ Laplace transformed solution Ψ̂ℓm(s, r) =
∫∞
0 Ψℓm(t, r)e

−stdt solves
[
s2 − ∂2

∂r2
+
ℓ(ℓ+ 1)

r2

]
Ψ̂ℓm =

∂Ψℓm

∂t
(0, r) + sΨℓm(0, r)

◮ General outgoing solution: Ψ̂ℓ(s, r) = a(s)sℓe−srWℓ(sr)

◮ Wℓ(sr) = (sr)−ℓ
∑ℓ

k=0 cℓk(sr)
k

◮ Example W2(sr) = (sr)−2
[
3 + 3sr + (sr)2

]

Scott Field Generalized Discontinuous Galerkin Scheme for Accurate Modeling
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Example: ordinary wave equation (BCs)

◮ We supply 1 piece of information: (∂t + ∂r )Ψℓ = ???

◮ Apply Sommerfeld operator s + ∂r to Ψ̂ℓ(s, r) = a(s)sℓe−srWℓ(sr)

sΨ̂ℓ(s, r) + ∂r Ψ̂ℓ(s, r) =
1

r

[
sr
W ′

ℓ(sr)

Wℓ(sr)

]
Ψ̂ℓ(s, r)

=
1

r

[
ℓ∑

k=1

bℓ,k/r

s − bℓ,k/r

]
Ψ̂ℓ(s, r) ≡

1

r
Ω̂ℓ(s, r)Ψ̂ℓ(s, r)

◮ bℓ,k are zeros of Wℓ(bℓ,k) = 0

◮ Ω̂ℓ(s, r) is the boundary kernel – evidently a sum-of-poles

Scott Field Generalized Discontinuous Galerkin Scheme for Accurate Modeling



Problem motivation
Numerics: Scheme, boundary conditions, asymptotic signal

Results

Discontinuous Galerkin method
Discontinuous Galerkin method + δ
Exact radiation boundary conditions
Asymptotic waveform extraction

Example: ordinary wave equation (BCs)

Using well known properties of inverse Laplace transforms...

∂tΨℓ + ∂rΨℓ =
1
r

∫ t

0 Ωℓ(t − t ′, r)Ψℓ(t
′, r)dt ′

where Ωℓ(t, r) =
∑ℓ

k=1
bℓ,k
r

exp
(
bℓ,k t

r

)
.

Observations

◮ Exact outgoing boundary condition in time domain at any rb

◮ Numerical solution computed with boundary at rb and ∞ are
identical

Scott Field Generalized Discontinuous Galerkin Scheme for Accurate Modeling



Problem motivation
Numerics: Scheme, boundary conditions, asymptotic signal

Results

Discontinuous Galerkin method
Discontinuous Galerkin method + δ
Exact radiation boundary conditions
Asymptotic waveform extraction

BC for EMRB equations

Similar to ordinary wave equation but with extra complications4

1. Numerically compute Ω̂ℓ(s, xb;V ) where (s + ∂x)Ψ = (1/rb)Ω̂Ψ

4Lau, gr-qc/0401001
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BC for EMRB equations

Similar to ordinary wave equation but with extra complications4

1. Numerically compute Ω̂ℓ(s, xb;V ) where (s + ∂x)Ψ = (1/rb)Ω̂Ψ

2. Evaluate Ω̂ℓ(s, xb ;V ) along the path of inversion s ∈ iR

4Lau, gr-qc/0401001
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BC for EMRB equations

Similar to ordinary wave equation but with extra complications4

1. Numerically compute Ω̂ℓ(s, xb;V ) where (s + ∂x)Ψ = (1/rb)Ω̂Ψ

2. Evaluate Ω̂ℓ(s, xb ;V ) along the path of inversion s ∈ iR

3. AGH rational approximation to good agreement on s ∈ iR

Ω̂ℓ(s, xb;V ) ≈ degree d − 1 polynomial

degree d polynomial
=

d∑

i=1

γi
s − βi

where γi and βi are outputs

4Lau, gr-qc/0401001
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BC for EMRB equations

Similar to ordinary wave equation but with extra complications4

1. Numerically compute Ω̂ℓ(s, xb;V ) where (s + ∂x)Ψ = (1/rb)Ω̂Ψ

2. Evaluate Ω̂ℓ(s, xb ;V ) along the path of inversion s ∈ iR

3. AGH rational approximation to good agreement on s ∈ iR

Ω̂ℓ(s, xb;V ) ≈ degree d − 1 polynomial

degree d polynomial
=

d∑

i=1

γi
s − βi

where γi and βi are outputs

4. Invert rationally approximated kernel

∂tΨℓ + ∂xΨℓ =
1
r

∫ t

0 Ωℓ(t − t ′, r)Ψℓ(t
′, r)dt ′

4Lau, gr-qc/0401001
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ℓ = 2, rb = 30M boundary kernel evaluated along s = iy
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Access to asymptotic waveform

Problem: Short computational domain, but we need the signal at large
distances (black holes are in other galaxies!)

Goal: From a signal (as a time-series) recorded at a fixed rb ≈ 30,
recover the signal at (say) r ≈ 1015

Preview: Very similar to boundary condition approach
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Signal “teleportation” for outgoing solution

◮ From the outgoing solution Ψ̂ℓ(s, r) = a(s)sℓe−srWℓ(sr)

Ψ̂ℓ(s, r2) = es(r1−r2)

[
Wℓ(sr2)

Wℓ(sr1)

]
Ψ̂ℓ(s, r1) ≡ es(r1−r2)Φ̂ℓ(s, r1, r2)Ψ̂ℓ(s, r1)

◮ Φ̂ℓ(s, r1, r2) is the teleportation kernel5

◮ When r2 ≈ ∞, Φ̂ℓ(s, r1,∞) is the asymptotic waveform kernel

◮ Straightforward to show

Φ̂ℓ(s, r1, r2) =
Wℓ(sr2)

Wℓ(sr1)
= exp

[∫ r2

r1

Ω̂ℓ(s, η)

η
dη

]

Teleportation kernel is an integral over boundary kernels
5Disclaimer: must define Φ̂ℓ(s, r1, r2) = Wℓ(sr2)/Wℓ(sr1)− 1 so that Φ̂ℓ → 0

along path of inverse Laplace transform. This amounts to offsetting by Ψ̂ℓ(s, r1)
Scott Field Generalized Discontinuous Galerkin Scheme for Accurate Modeling
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ℓ = 2, r1 = 30M , r2 = ∞ extraction kernel along s = iy

Numerically compute Φ̂2(s) = exp
[∫∞

30M
Ω̂2(s,η)

η dη
]
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Pole # Gamma strengths Beta locations

1 -1.7576263057e-08 + 0i -5.4146529341e-01 + 0i

2 -6.4180514293e-08 + 0i -4.1310954989e-01 + 0i

3 -6.2732971050e-06 + 0i -3.1911338482e-01 + 0i

4 -6.9363117988e-05 + 0i -2.4711219871e-01 + 0i

5 -5.7180637750e-04 + 0i -1.9108163722e-01 + 0i

6 -2.7884247577e-03 + 0i -1.4749601558e-01 + 0i

7 -5.8836792033e-03 + 0i -1.1366299945e-01 + 0i

8 -3.6549136132e-03 + 0i -8.6476935381e-02 + 0i

9 -1.0498746767e-03 + 0i -6.4512065175e-02 + 0i

10 -2.4204781878e-04 + 0i -4.7332374442e-02 + 0i

11 -5.5724464176e-05 + 0i -3.4115775484e-02 + 0i

12 -1.2157296793e-05 + 0i -2.4048935704e-02 + 0i

13 -2.6651813247e-06 + 0i -1.6468632919e-02 + 0i

14 -4.8661708981e-07 + 0i -1.0845690423e-02 + 0i

15 -8.6183677612e-08 + 0i -6.7552918597e-03 + 0i

16 -9.3735071189e-09 + 0i -3.8525630196e-03 + 0i

17 -8.7881787023e-10 + 0i -1.8481215040e-03 + 0i

18 -9.1164536027e-02 -5.3953709155e-02i -9.4779490815e-02 +5.9927979877e-02i

19 -9.1164536027e-02 +5.3953709155e-02i 9.4779490815e-02 -5.9927979877e-02i

For s ∈ iR, Φ̂2(s) ≈
∑19

i=1
γi

s−βi
→ Φ2(t) ≈

∑19
i=1 γi exp (βi t)
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Implementation and features

◮ Suppose we have evolved the EMRB equations, recording a
(discrete) time-series Ψn = Ψ(tn, xb) at the outer boundary xb

◮ Discrete times from the numerical scheme are tn = 0 + n∆t

◮ From Ψ(tn, xb) we compute Ψ(tn +∞, xb +∞) by

Ψ(t +∞, b +∞) ≃
d∑

q=1

γq

∫ t

0
eβq(t−t′)Ψ(t ′, b)dt ′ +Ψ(t, b)

Key features of this technique

◮ With a time-series at ANY radial location one can EXACTLY

teleport it to any other radial value

◮ Non-intrusive to existing code (possibly as post-processing step)
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Trivial Data

◮ One must provide initial conditions to solve the partial differential
equation. Physically motivated initial conditions are presently
unknown for this problem

◮ It is common to set all the fields to zero

◮ This is clearly wrong initial data since it
◮ Does not capture information about physics in any way
◮ Inconsistent with the PDE as

0 = G(x , t)δ(x − xp(t)) + F (x , t)δ′(x − xp(t))
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Consequences of Trivial Data

Standard argument...

◮ Because we are solving a wave–like equation, the violations
introduced will propagate away (perhaps difficult to verify?)

Recall our first order system

∂tΨ = −Π

∂tΠ = −∂xΦ+ VΨ+ JΦδ(x − xp)

∂tΦ = −∂xΠ + JΠδ(x − xp),

subject to the constraint Φ = ∂xΨ−
[[
Ψ
]]
δ(x − xp)

Initial data is (distributionally) constraint violating. What to expect?

Scott Field Generalized Discontinuous Galerkin Scheme for Accurate Modeling



Problem motivation
Numerics: Scheme, boundary conditions, asymptotic signal

Results

Initial data and “static” junk solutions
Code diagnostics
EMRB evolutions

Development of Static Junk: 1+1 Example

◮ Consider the V = 0 case, corresponding to

−∂2tΨ+ ∂2xΨ = cos(t)δ(x) − i cos(t)δ′(x)

◮ Subtract numerical solutions with (trivial data) and without
constraint violating data

◮ Empirically: ΨJunk = CLΘ(−x)Θ(t + x) + CRΘ(x)Θ(t − x)

(−∂2t + ∂2x )ΨJost =
[[
ΨJunk

]]
Θ(t)δ′(x) = (CR − CL)Θ(t)δ′(x)

◮ Constraint violating at x = 0 – NOT A SOLUTION!
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Alternative Source Description

◮ Without the exact initial data, we consider modifying the source
terms such that they...

◮ Are consistent with the choice of trivial initial data to machine
precision

◮ Become the physical sources in a finite (short) time

◮ “Switched on” the source terms smoothly by multiplying with a
function that interpolates 0 and 1, we use

1
2 [erf(

√
δ(t − τ/2) + 1] for 0 ≤ t ≤ τ

1 for t > τ,
(1)
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Observing Junk Solutions

◮ Define Ψ̂ = 1
2∂tΨ

◮ Equations for Ψ and Ψ̂ have different distributional source terms,
but the same potential

◮ They are related by

Ψ̂− 1
2∂tΨ = 0

◮ Evolve 2 systems with trivial data, one for Ψ̂ and one for Ψ

◮ Violations of above relationship necessarily due to numerical errors
and/or incorrect initial conditions
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Summary of Static Junk

Features...

◮ Constraint violating solution has analytic solution in terms of
Gauss-Hypergeometric functions

◮ Discontinuous at the particle

◮ ΨJunk decays faster than 1/r

◮ Small effect on gravitational wave signal

Remedy...

◮ By slowly turning on sources the constraint violation is arbitrarily
well suppressed
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Convergence with Approximation Order

◮ For a fixed velocity v obeying |v | < 1 and V = 0

−∂2tΨ+ ∂2xΨ = cos(t)δ(x − vt)− i cos(t)δ′(x − vt)

and the solution to the homogeneous problem is

Ψ(t, x) = −1
2 sinϑ+ 1

2 iγ
2[v + sgn(x − vt)] cos ϑ

ϑ = γ2(t − xv − |x − vt|) γ = (1− v2)−1/2

◮ Ψ(t = 0, x) and ∂tΨ(t = 0, x) supplies initial data.
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Convergence with polynomial order
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BC Test for (−∂2
t + ∂2

x − V ℓ)Ψ = 0 and ℓ = 2

Use smooth compactly supported initial data.
Experiment: Generate Ψref causally disconnected from outer boundary
and a second solution Ψ with RBCs (time = 100)
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◮ A small blackhole (mp ≪ 1) orbits a large blackhole (take M = 1)

◮ Ψ determines metric perturbation (GW signal h+ = 1
r

(
ΨℓmZ

ℓm
θθ

)
)

(−∂2t + ∂2x − V (x))Ψ = G (x , t)δ(x − xp(t)) + F (x , t)δ′(x − xp(t))

and

V axial(r) =
f (r)

r2

[
ℓ(ℓ+ 1)− 6M

r

]

V polar(r) =
2f (r)

(nr + 3M)2

[
n2

(
1 + n +

3M

r

)
+

9M2

r2

(
n +

M

r

)]
.

with n = 1
2(ℓ− 1)(ℓ+ 2)

◮ We are typically interested in (ℓ,m) = (2, 2) multipole solutions

◮ Orbital motion (must solve ODEs) specifies
G (x , t)δ(x − xp(t)) + F (x , t)δ′(x − xp(t))
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Circular Orbits: M = 1, rp = 10M (horizon at r = 2M)

(ℓ,m) = (2, 2) perturbations. Scale Ψ by mp << 1
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Eccentric Orbit

Same (ℓ,m) = (2, 2), M = 1, eccentricity = 0.76412402, semi-latus
rectum = 8.75456059

Scott Field Generalized Discontinuous Galerkin Scheme for Accurate Modeling



Problem motivation
Numerics: Scheme, boundary conditions, asymptotic signal

Results

Initial data and “static” junk solutions
Code diagnostics
EMRB evolutions

Eccentric Orbit: eccentricity = 0.76412402, semi-latus

rectum = 8.75456059
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Eccentric Orbit

Selected energy and angular momentum flux calculated at null infinity.
Averages computed according to

< Ėℓm >=
1

Tf − T0

∫ Tf

T0

Ėℓmdt Tf − T0 = 4Tradial

Total ℓ = 2 energy luminosity m−2
p

∑2
m=−2〈Ė2m〉

Orbit parameters dG FR
e = 0.76412402, p = 8.75456059 1.57120 × 10−4 1.57131 × 10−4

Total ℓ = 2 angular momentum luminosity m−2
p

∑2
m=−2〈L̇2m〉

Orbit parameters dG FR
e = 0.76412402, p = 8.75456059 2.09220 × 10−3 2.09221 × 10−3
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Summary...
◮ Introduced discontinuous Galerkin method for EMRB modeling
◮ Particular attention to treatment of delta functions, boundary

conditions and asymptotic signal
◮ Observed static junk solution seeded by constraint violating initial

data
◮ Taken together, scheme is very accurate and most sources of error

have been isolated
◮ Future prospects: Would like to look at improved waveform

extraction techniques, waveform compression techniques
◮ Would be interesting to apply similar numerical techniques to Kerr

case

Future work...
◮ Apply method to so-called Lorentz formulation (similar, better

suited at adding in relevant physics)
◮ Would be interesting to apply similar numerical techniques to Kerr

case (spinning black holes)
◮ Applications to other fields (e.g. ability to recover asymptotic
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