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Motivation

Modeling of gravitational waves from compact binary coalescences and/or
analysis of data represents a high dimensional challenge...

I Large number of intrinsic/extrinsic parametric dimensions
I Waveform’s physical dimension

I Long durations with large number of cycles

The high dimensionality of the problem is a bottleneck for most tasks...

I Waveform generation through solving ODEs or PDEs

I Parameter estimation using effective models

I Template based detection algorithms
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Even easy problems are hard

Consider the simple TaylorF2 frequency-domain inspiral waveform

h(f ;µ) = A(µ)f −7/6eiΨ(f ;µ)

where µ labels the parameters

Timings

I Evaluation at a single parameter and frequency value takes ∼ 10−7s

I Typical BNS waveform starting at 40Hz ∼ 5× 10−3s

I LIGO parameter estimation study with a BNS signal ∼ days

I ALIGO parameter estimation study at 10Hz ∼ weeks

Scott Field Surrogate gravitational waveform models
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Strategy for parameterized problems

Parameterized problems can be split into two phases

Offline

I Before study/analysis begins – data unknown

I Extra computational and human resources

Train a fast to evaluate surrogate GW model

Online

I Data is known

I Evaluate the model at many (data dependent) parameter values

I Surrogate must be accurate and fast to justify offline efforts

Scott Field Surrogate gravitational waveform models
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Surrogate/Reduced order models have been employed in other fields such as
optimization of airplane design, Radar detection, blood flow

Active area of research. Annual SIAM meeting (2013) featured 22
minisymposia with over 80 talks

First GR workshop on this topic: www.tapir.caltech.edu/~rom-gr

Surrogate and reduced order models. What is it? When could it work?

Scott Field Surrogate gravitational waveform models
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What is a surrogate model? (I)

Surrogate (Merriam-webster)
: one that serves as a substitute

Surrogate (This talk)
: Easy-to-compute model that mimics
behavior of the full, underlying model for
a fixed range of the parameter/physical
variable
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What is a surrogate model? (II)

Features

I NOT reduced physics, but reduced representations of underlying model

I Surrogate will converge to underlying model as representation is improved

I Only reproduces GW, not other quantities such as objects’ motion

Decisions

I Where to sample the underlying model?

I How to tie together these samples?

Examples

I Fits/interpolation

I Machine learning

I Reduced order modeling

Scott Field Surrogate gravitational waveform models
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What is a reduced order model?

I Seek a representation of the gravitational wave model

hµ(t) or hµ(f )

where µ labels the parameterization, such that

hµ ≈
m∑
i=1

ci (µ)ei

for as small an m as possible

I Leverage representation to accelerate a computation of interest

Whats special about ei

I Application-specific basis

I Numerical problem’s degrees of freedom = # of basis

I Fewer basis → faster computations

Scott Field Surrogate gravitational waveform models
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Reduced basis (RB)-greedy algorithm

Algorithm to generate the ei

Definitions

I Kolmogorov n-width problem: From all possible basis find the minimum
number to achieve accurate approximations hµ ≈

∑m
i=1 ci (µ)ei for all µ

I RB-Greedy algorithm: Approximately solve n-width problem
I Other approaches for basis generation are possible (SVD)

Key features

I Near-optimal basis selection (Binev 2011, DeVore 2012)

I Basis elements are evaluations of the physical model

I Parameter and basis selections carried out simultaneously

Scott Field Surrogate gravitational waveform models
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Slide courtesy of Chad Galley
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Example: Parameterized Heaviside (toy IMR model)

Continuum:

H(µ− x)

x ∈ [−1, 1]

µ ∈ [−.2, .2]

Training set:

{H(µi − x)}

µi = −.2 +
.4

4000
i

i ∈ [0, . . . , 4000]
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µ = -.2

µ = .2

Two representative functions
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Example: Parameterized Heaviside (toy IMR model)

1. Select first basis (seed):

H(−.2− x)
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µ = -.2
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Example: Parameterized Heaviside (toy IMR model)

1. Select first basis (seed):

H(−.2− x)

2. Find worst approximation:

Erri =

H(µi − x)− cH(−.2− x)
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Error
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Example: Parameterized Heaviside (toy IMR model)

1. Select first basis (seed):

H(−.2− x)

2. Find worst approximation:

Erri =

H(µi − x)− cH(−.2− x)

3. Second basis:

µ = .2 → H(.2− x)
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Error

Repeat steps 2 & 3 until an approximation threshold is achieved
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Greedy output (basis):

µRB = { − 0.2, 0.2, 0.0203,

− 0.0844, 0.1147, . . . }

20 40 60 80 100 120

10
−1

10
0

Dimension of approximation space

Approximation error

I Greedy algorithm “fails”. Non-smooth w.r.t. parameter variations.

I If we let y(µ) = µ− x then only 1 basis function H(y) needed

Scott Field Surrogate gravitational waveform models
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Assumption: For reduced/surrogate models to be successful there must be
(smooth) structure of the solution with respect to parameter variations...
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“Well chosen” samples should be
representative and lead to accurate
approximations
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Checking the assumption: EOB results

Example with EOBNRv2 waveforms

I (2,2) mode for q ∈ [1, 2],
duration ≈ 12, 000M and
cycles ≈ 65-70

I Must align at peak (Heaviside example)

I Fast decay of approximation error

‖hµ −
∑m

i=1 ci (µ)ei‖

Other evidence

I Observed across models, regimes
I Observed by groups using POD/SVD

I Ex: Cannon et al (arXiv:1005.0012)
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Waveform compression application (ex: q ∼ 1.2040)

Ortho.
Basis

Approx:

0 2000 4000 6000 8000 10000 12000 14000
−1.5

−1

−0.5

0

0.5

1

1.5

2

t/M

Basis #2

0 2000 4000 6000 8000 10000 12000 14000
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

t/M

h(t) ≈ c1e1(t) + c2e2(t)

(a) 2 term, err ∼ 1
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(b) 4 term, err ∼ 10−1
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(c) 6 term, err ∼ 10−6
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Now what?

Need a fast way to compute the coefficients ci (µ) for any parameter µ

hµ(t) ≈
∑m

i=1 ci (µ)ei (t)

First we look for a convenient expression for ci (µ)...

Scott Field Surrogate gravitational waveform models
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Interpolation in time

In principle we can find the approximation

hµ(t) ≈ Im[h] =
m∑
i=1

ci (µ)ei (t)

by solving an interpolation problem

m∑
i=1

ci (µ)ei (Tj) = hµ(Tj), j = 1, . . . ,m

I Provided we know m “good” times to sample hµ(t)

I Naively selected points do not guarantee a solution or accuracy

I For application-specific basis good points are not known a-priori

Scott Field Surrogate gravitational waveform models
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Empirical interpolation method1

I Input: m basis {ei (t)}mi=1

I Output: Nearly optimal selection of m times {Ti}mi=1

I These times are adapted to the problem/basis - unlike Chebyshev nodes

Algorithm

I Sequential selection of points: {T1} → {T1,T2} → . . .

I Set of points {Tj}i−1
j=1 for interpolation with the first i − 1 basis

I Extend set {Tj}i−1
j=1 → {Tj}ij=1 to minimize the approximation error.

Equivalent to selecting

Ti = argmaxt |ei (t)− Ii−1[ei ](t)|

1Barrault 2004, Maday 2009, Chaturantabut 2009, Sorensen 2009
Scott Field Surrogate gravitational waveform models
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Example: Points for polynomial interpolation

Basis are normalized Legendre polynomials defined on [−1, 1]

P0(x) =
1√
2

P1(x) =

√
3

2
x

P2(x) =

√
5

8

(
3x2 − 1

)
...
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legendre polynomials

x

P
 (

x)
n

P₀(x)
P₁(x)
P₂(x)
P₃(x)
P₄(x)
P₅(x)

the six first legendre polynomials http://upload.wikimedia.org/wikipedia/commons/c/c8/Legen...

1 of 1 11/18/2013 11:20 AM

Q: What are the EIM points?
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Example: Points for polynomial interpolation

Basis:

P0(x) =
1√
2

Residual:

P0(x)− 0 =
1√
2

Point selection (no preference):

x = 0
−1 −0.5 0 0.5 1
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x
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Example: Points for polynomial interpolation

Basis:

P1(x) =

√
3

2
x

Residual:

P1(x)− c0P0 =

√
3

2
x

Point selection (either ±1):

x = −1
−1 −0.5 0 0.5 1
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P1 - c0P0
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Example: Points for polynomial interpolation

Basis:

P2(x) =

√
5

8

(
3x2 − 1

)
Residual:

P2(x)− (c0P0 + c1P1)

Point selection:

x = 1
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P2 - c0P0 - c1P1
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Example: Points for polynomial interpolation

Continue the process until # points = # basis
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Legendre
ROQ

1.0 0.5 0.0 0.5 1.0
x

Chebyshev nodes

EIM nodes

Distribution and approximation error properties similar to Chebyshev nodes
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Interpolation points for EOB waveforms

What are the best temporal interpolation points for an EOB-basis?
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I We do not know and, for example, Chebyshev nodes won’t work.

I Identify these points by empirical interpolation method
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Model: non-spinning EOB, q ∈ [1, 2], 65-70 wave cycles (previous example)
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1

0

1

2

I Any waveform in the above range can be recovered through its evaluation
at these 5 (error ∼ 10−4) to 19 (error ∼ 10−12) empirical time nodes

hµ(t) ≈ I[hµ](t) =
m∑
i

ci (µ)ei (t) =
m∑
i

Bi (t)hµ(Ti )

where ci solved the interpolation problem
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Review

Engines of surrogate and reduced order model generation

I RB-greedy algorithm will select points in parameter space which are most
representative of the waveform family and comprises an accurate basis

I EIM algorithm will select most representative time samples which lead to
an accurate (temporal) interpolation scheme
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GW parameter estimation

I Time series of N data samples s(ti ) = hλ(ti ) + n(ti ), λ true parameter
I Ex: 32s at 4096Hz suggests N ≈ 130, 000 samples

I Bayesian parameter estimation to compute a posterior probability
I Computational cost dominated by likelihood evaluations

p (s|µ,H) ∝ exp
(
−χ2/2

)
, χ2 = 〈s − hµ, s − hµ〉 = ∆f

N∑
i=1

|s(fi )− hµ (fi )|2

Sn(fi )

where Sn(f ) is the detector’s noise curve

I Each particular µ0 requires N evaluations of hµ0(t)

I Overall cost scales with N

Scott Field Surrogate gravitational waveform models
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Notice
χ2 = 〈s, s〉+ 〈hµ, hµ〉 − 2<〈s, hµ〉

I 〈s, s〉 computed once

I 〈hµ, hµ〉 often has simple expression (e.g. closed form)

Cost dominated by 〈s, hµ〉, let us focus on this piece...

Plan of attack

I Design a custom quadrature rule tailored to our model hµ(f )

I Once built the rule is reused online, e.g. when new data is available

Scott Field Surrogate gravitational waveform models
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Reduced order quadrature approximation

Given data {si}Ni=1 and the empirical interpolation representation of hµ(f )

〈s, hµ〉 = ∆f
N∑
i=1

s∗(fi )hµ(fi )

Sn(fi )
≈ ∆f

N∑
i=1

s∗(fi )In[hµ](fi )

Sn(fi )
=

m∑
i=1

ωihµ(Fi )

where the data-specific weights

~ω T = ~E TV−1 Ej := ∆f
N∑
i=1

s∗(fi )ej(fi )

Sn(fi )

comprise the startup cost. Here V is the interpolation matrix.

Properties

I N is a property of the experiment whereas m is a property of the model

I Model’s approximation properties are independent of data, m� N

Scott Field Surrogate gravitational waveform models
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Mock data: 4-dimensional burst signal in Gaussian noise

102 104 106
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 MCMC Timing
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m

e 
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]

 # MCMC points 

 

 

Full
ROQ

I About 25 times faster

I Anticipated speedup is
(N = data samples)/(m = basis)

I Mean values accurately recovered
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Roadmap to a surrogate model

Goal: Fast and accurate evaluation of a parameterized underlying GW model

Problem setup

1. Given a model: It is not the job of the surrogate to propose a model

2. Given a range of parameters: Surrogate will only work in this range

3. Given a ODE/PDE solver: Surrogate will not solve equations for you

Attributes

1. Non-intrusive: Existing codes are complicated, we don’t want to edit them

Scott Field Surrogate gravitational waveform models
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Test Case

Model: Effective One Body (EOB) for inspiral-merger-ringdown of
non-spinning binary black holes based on Pan et al. 2011 (arXiv:1106.1021)

Parameter/physical ranges: Mass ratio in the 1:2 and 9:10 ranges, for 65-80
wave cycles before merger. Results will be shown for 1-2 mass ratio case

Solver: Model implemented in the routine EOBNRv2 as part of the publicly
available LIGO Analysis Library (LAL)

Scott Field Surrogate gravitational waveform models
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Building our surrogate model in 3 steps

q

t

0

T

1. Greedy algorithm. Build the basis, the greedy
parameter selections are here shown as red points
in the horizontal axis. The rb waveforms are solved
for at those parameter values. Offline
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Building our surrogate model in 3 steps

q

t

1. Reduced basis waveforms hRB
i (t), greedy

parameters qi

2. Find a set of empirical time samples (blue points
in the vertical axis) for accurate temporal
interpolation with rb waveforms. Offline
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Likelihood computations
EOB surrogates

Building our surrogate model in 3 steps

q

t

1. Reduced basis waveforms hRB
i (t), greedy

parameters qi

2. Empirical time samples Ti

3. At each empirical time build a fit for the
waveform’s parametric dependence only using
waveforms evaluated at qi . Offline
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Fit errors for the amplitude (relative) and phase
(absolute) for the mass ratio value for which these
errors are largest
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Building our surrogate model in 3 steps

q

t

1. Reduced basis waveforms hRB
i (t), greedy

parameters qi

2. Empirical time samples Ti

3. Fits hFITµ (Ti ) at each empirical time Ti

4. Online: Evaluate the surrogate at any parameter
value (yellow points) by i) evaluating the fits at
each empirical time which ii) specifies the full
waveform via the empirical interpolant.

hSµ(t) ≡
m∑
i=1

Bi (t)hFITµ (Ti ) , Bj(t) ≡
m∑
i=1

hRB
i (t)

(
V−1

)
ij

where V is the interpolation matrix and {Bi} are
precomputed offline
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Evaluation speedup
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The figure of interest is a sampling
rates around 211 ≈ 2048Hz

Speedup of more than three orders of
magnitude compared to solving the
original EOB equations

Surrogate’s evaluation cost is
independent of computational costs of
the ODE/PDE solver
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Putting the pieces together. Full surrogate model
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Top: overlap error of the surrogate model
compared to solving the original EOB equations

Center: waveform for the mass ratio for which
the overlap error is the largest

Bottom: amplitude and phase errors for the
same waveform as center plot.

These errors are smaller than the errors of the
model itself and those of numerical relativity
simulations. Equivalent to underlying model.
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What if we cannot build a dense training set?

Cost of full Einstein solver prohibits a proper training set....

Algorithm wish list

1. Make the most of limited number of physical model solves

2. Surrogate model should converge to physical model as solves →∞
3. Guidance for where to solve physical model

Status

I Run solver at greedy points selected for EOB model

I Distribution of greedy points likely more important than actual values

I Jonathan Blackman and Bela Szilagyi are performing runs – we should
know soon

Scott Field Surrogate gravitational waveform models



Introduction
Surrogate/Reduced order models

Applications to gravitational waves

Likelihood computations
EOB surrogates
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Cost of full Einstein solver prohibits a proper training set....

Algorithm wish list

1. Make the most of limited number of physical model solves

2. Surrogate model should converge to physical model as solves →∞
3. Guidance for where to solve physical model

Status

I Run solver at greedy points selected for EOB model

I Distribution of greedy points likely more important than actual values

I Jonathan Blackman and Bela Szilagyi are performing runs – we should
know soon
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Remarks

I Surrogate and reduced order modeling offers an exciting new approach to
overcome a variety of computationally challenging problems of GW physics

I Proposed specific surrogate based on three offline steps. Online
evaluation fast and accurate

I Reduced order quadratures directly offset cost of overlap inner products

Future outlook

I Multi-mode surrogates for larger mass ratio, more cycles and with spin

I Potentially applicable to full numerical relativity waveforms

I PE accelerated by surrogates and/or reduced order quadratures

I Making these tools publicly available

I More broadly, continue to adapt tools from engineering and applied math
communities for GWs
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