Greedy algorithm for building a reduced basis of gravitational wave templates

¹Brown University, Department of Physics
 ²California Institute of Technology, Jet Propulsion Laboratory
 ³University of Maryland, Department of Physics
 ⁴Brown University, Division of Applied Mathematics
 ⁵University of Wisconsin–Milwaukee, Center for Gravitation and Cosmology

January 14, 2011

・ロン ・回と ・ヨン・

Outline

- Gravitational wave templates and matched filtering
- Greedy construction of a reduced basis catalog
- Results: 2 parameter stationary phase approximation (SPA) waveforms at the 2nd post–Newtonian (PN) order
- Future work and conclusion

イロン イヨン イヨン ・ ヨン

Gravitational wave templates and matched filtering

イロン イロン イヨン イヨン 三日

Compact binary sources and detectors Matched filtering Goal of talk

Physical Motivation: Gravitational Wave Sources

- We focus on astrophysical gravitational wave sources where two compact objects inspiral, merge, and ringdown
 - Binary neutron star (1-3 solar masses) and stellar sized binary black holes (3-30 solar masses)
 - Initial and advanced LIGO, Virgo
 - Detection rates of 1 to 10³ per year (LIGO collaboration)

Figure: Chirp waveform for two 3 solar mass objects

Scott Field Greedy algorithm for building a RB of GW templates

< 🗇 🕨

Compact binary sources and detectors Matched filtering Goal of talk

Physical Motivation: Gravitational Wave Sources

- Let P parameters µ = {µ₁,...,µ_P} be associated with the sources (compact objects)
- Any relevant intrinsic or extrinsic parameters could be considered
 - Will specialize to compact objects' mass (2)
- ► Let *H* be the space of all normalized waveforms for the considered sources
 - Solutions to Einstein's equation, reduced models, analytic waveforms

イロン イ部 とくほど くほとう ほ

Compact binary sources and detectors Matched filtering Goal of talk

Physical Motivation: Gravitational Wave detectors

- A passing gravitational wave causes a path length change in the interferometer's arm
 - $\Delta L/L \sim 10^{-20}$ and smaller
- A time series is recorded at some sample rate
- Data segments are Fourier transformed and analyzed
- Detector noise in frequency domain given by $S_n(f)$

Scott Field Greedy algorithm for building a RB of GW templates

Compact binary sources and detectors Matched filtering Goal of talk

Physical Motivation: Matched filtering

- Weak signals are buried in noise
- Gravitational waveform templates h from a catalog C are correlated with data s through a process known as matched filtering

$$< h, s >_{MF} = 4 \operatorname{Re} \int_{a}^{b} \frac{hs^{*}}{S_{n}(f)} df$$

- ▶ When *h* normalized, signal-to-noise $\rho_C = \langle h, s \rangle_{MF}$
- Minimal match measures the closeness of a catalog C w.r.t. the continuum H

$$\min_{s \in \mathcal{H}} \max_{h \in C} < h, s >_{MF} = MM \leq 1$$

- $\rho_{\mathcal{C}} \geq \rho_{\mathcal{H}} \times MM$
- "Detection" when $\rho_C \ge 8$ in multiple detectors

Compact binary sources and detectors Matched filtering Goal of talk

Physical Motivation: Matched filtering

Matched filtering bottlenecks...

- How do we populate the catalog? Metric based approach
 - Taylor expand analytic waveform expression in parameters
 - Analytic expressions and best coordinates to use
 - Metric must be worked out on a case by case basis
 - Large number of required templates goes like $(1 MM)^{-P/2}$
- With 2 mass parameters, many thousands of templates in a catalog for MM = .97
- Performing < h, s >_{MF} over many templates can be computationally expensive
- As the noise curve changes we must recompute the catalog
- What if waveforms are solutions to ODEs or PDEs?

イロト イヨト イヨト イヨト

Compact binary sources and detectors Matched filtering Goal of talk

Goal of talk

Introduce a generic reduced basis method for...

- Generation of an accurate and compact reduced basis space of waveforms
- Selection of nearly optimal parameter points

Will also show...

- Non-linear "space of waveforms" can be represented as a linear space with arbitrarily high accuracy
- $MM \sim 1 10^{-10}$ for all parameter values (and at low cost)
- Significantly fewer templates (basis) for a given MM
- Reduced basis space is robust against changes to noise curve

イロン イヨン イヨン ・ ヨン

Overview The reduced basis space Greedy algorithm

Greedy construction of a reduced basis catalog

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Overview The reduced basis space Greedy algorithm

Problem statement

- ▶ Given: P parameters µ = {µ₁,...,µ_P} and the space of all normalized waveforms H
- Each waveform is denoted $h_{ec{\mu}} \in \mathcal{H}$
- ▶ Seek an *N* dimensional linear space W_N to accurately represent H
 - Ansatz: W_N is span of N waveforms chosen from \mathcal{H}
- W_N is called the *reduced basis space*

イロト イヨト イヨト イヨト

Overview The reduced basis space Greedy algorithm

Notation: inner product, projection, and errors

▶ Weighted complex inner product (not to be confused with <>_{MF})

$$\langle g, f \rangle \equiv \int_a^b rac{gf^*}{S_n(f)} df \qquad ||g|| = \sqrt{\langle g, g \rangle}$$

▶ Projection operator $P_N : H \to W_N$ defined wrt to its action on the orthonormal basis e_i of W_N

$$P_N(h) \equiv \sum_{i=1}^N \langle e_i, h
angle e_i$$

Orthogonal projection in sense of ...

・ロト ・回ト ・ヨト・

Overview The reduced basis space Greedy algorithm

P_N operator

- \mathcal{H}^+ such that $\mathcal{H} \subset \mathcal{H}^+$ and \mathcal{H}^+ is a Hilbert space
- Existence of $W_N^{\perp} = \{ \delta h \in \mathcal{H}^+ : < \delta h, w \ge 0 \ \forall w \in W_N \}$
- Unique decomposition $h = P_N h + \delta h$, $\langle P_N h, h P_N h \rangle = 0$
- ▶ In \mathcal{H} , $P_N h$ closest element to h: $||h w||^2 = ||P_N h + \delta h w||^2 = ||P_N h w||^2 + ||\delta h||^2 \ge ||\delta h||^2 = ||h P_N h||^2$

Overview The reduced basis space Greedy algorithm

When and how should we look for W_N ?

Kolmogorov N–width

$$d_N(\mathcal{H}) = \min_{W_N} \max_{ec{\mu}} \min_{u \in W_N} ||u - h_{ec{\mu}}||$$

- Measurements in L^{∞} over the parameter domain, L^2 over frequency
- There exists a "best" N dimensional space W_N^{Kol}
- Challenges to finding W_N^{Kol}
 - Minimization over W_N is computationally challenging
 - Sampling H at an infinite number of parameters
- If solutions depend smoothly on the parameters

$$d_N(\mathcal{H}) \leq Ae^{-bN}$$

イロト イポト イヨト イヨト

Overview The reduced basis space Greedy algorithm

A practical approach to finding W_N

- Sample \mathcal{H} at a finite set of points
 - ► Training space of points Ξ, not necessarily tied to a pre-existing (metric based) selection
 - ▶ Now we seek to approximate $\mathcal{H}_{\Xi} = \{h(\vec{\mu}) \in \mathcal{H} : \vec{\mu} \in \Xi\}$ by W_N
 - Show convergence with finer sampling
 - If this were the only approximation, we expect convergence to $W_N^{
 m Kol}$
- Build W_N by solving N easier problems
 - ▶ Sequence of spaces are constructed $W_1 \subset W_2 \subset ... \subset W_N$
 - (reminder) Ansatz: W_N is span of N waveforms chosen from \mathcal{H}
 - ► Greedy algorithm outputs a collection of points {µi,}^N_{i=1} and corresponding waveforms {h_i}^N_{i=1} such that W_N = span ({h_i}^N_{i=1})

イロン イヨン イヨン ・ ヨン

Overview The reduced basis space Greedy algorithm

The greedy algorithm

- Definition: A greedy algorithm is any algorithm that solves the problem by making the locally optimal choice at each stage with the hope of finding the global optimum. (Wikipedia)
- ► Suppose we have W_i. The algorithm optimally chooses W_{i+1} and continues to W_N
- Expect that W_N is sub-optimal compared to W_N^{Kol}
- Nearly optimal, expected convergence ¹

If
$$d_N(\mathcal{H}) \leq Ae^{-bN}$$
 then $\max_{\vec{\mu}} \min_{u \in W_N} ||u - h_{\vec{\mu}}|| \leq \tilde{A}e^{-\tilde{b}N}$

¹P. Binev et al., Convergence rates for greedy algorithms in reduced basis methods, in Preprint, 2010.

Overview The reduced basis space Greedy algorithm

Greedy error

The greedy error

$$\varepsilon_N \equiv \max_{\vec{\mu} \in \Xi} ||h_{\vec{\mu}} - P_N(h_{\vec{\mu}})||$$

• Recall that $P_N h$ realizes the minimum over $u \in W_N$

•
$$\varepsilon_N^2 = 1 - \max_{\vec{\mu} \in \Xi} \langle h_{\vec{\mu}}, P_N(h_{\vec{\mu}}) \rangle_{MF}$$

Recall the minimal match

$$\min_{s \in \mathcal{H}} \max_{\vec{\mu} \in \Xi} \langle s, h_{\vec{\mu}} \rangle_{MF} = MM$$

▶ In limit dim(Ξ) → ∞, 1 – MM ~ ε_N^2

イロト イヨト イヨト イヨト

Overview The reduced basis space Greedy algorithm

Greedy algorithm

- Setup: choose a parameter and waveform space (continuous and discrete)
- Initialize reduced basis with choice of $\vec{\mu}_1$ and thus $W_1 = \operatorname{span}(\{h_1\})$

While $\varepsilon_N \geq \text{Tol}$

 $i \rightarrow i + 1$

イロン イ部ン イヨン イヨン 三日

Overview The reduced basis space Greedy algorithm

Greedy algorithm

- Setup: choose a parameter and waveform space (continuous and discrete)
- Initialize reduced basis with choice of $\vec{\mu}_1$ and thus $W_1 = \operatorname{span}(\{h_1\})$

While $\varepsilon_N \geq \text{Tol}$

$i \rightarrow i + 1$

1. For all $\vec{\mu} \in \Xi$ compute $||h_{\vec{\mu}} - P_i(h_{\vec{\mu}})||$

イロン イ部ン イヨン イヨン 三日

Overview The reduced basis space Greedy algorithm

Greedy algorithm

- Setup: choose a parameter and waveform space (continuous and discrete)
- Initialize reduced basis with choice of $\vec{\mu}_1$ and thus $W_1 = \operatorname{span}(\{h_1\})$

While $\varepsilon_N \geq \text{Tol}$

$i \rightarrow i + 1$

- 1. For all $\vec{\mu} \in \Xi$ compute $||h_{\vec{\mu}} P_i(h_{\vec{\mu}})||$
- 2. Find the parameter which maximizes the error of step 1

・ロ・ ・ 日・ ・ ヨ・

Overview The reduced basis space Greedy algorithm

Greedy algorithm

- Setup: choose a parameter and waveform space (continuous and discrete)
- Initialize reduced basis with choice of $\vec{\mu}_1$ and thus $W_1 = \operatorname{span}(\{h_1\})$

While $\varepsilon_N \geq \text{Tol}$

$i \rightarrow i + 1$

- 1. For all $\vec{\mu} \in \Xi$ compute $||h_{\vec{\mu}} P_i(h_{\vec{\mu}})||$
- 2. Find the parameter which maximizes the error of step 1
- 3. $W_{i+1} = \operatorname{span}(\{h_1, ..., h_{i+1}\})$
- W_N approximates \mathcal{H}_{Ξ} with an error of better than Tol
- To show this for \mathcal{H} we can increase the size of Ξ_{a}

Overview The reduced basis space Greedy algorithm

The greedy algorithm: Implementation details

- Basis vectors are kept orthonormal by Gram–Schmidt
 - Otherwise some linear degeneracy, projection will become numerically unstable
- Hierarchical basis structure exploited: $P_{i+1} = P_i + (P_{i+1} P_i)$
 - Extending the basis is independent of dim (W_i)
- Loop over $||h_{\vec{\mu}} P_i(h_{\vec{\mu}})||$ is embarrassingly parallel
 - Computational time weakly scales with finer sampling of H
- ► Smart choice of training space Ξ
 - If chosen points cluster, should insert more training space points there

ヘロン 人間 とくほど くほとう

Overview The reduced basis space Greedy algorithm

The greedy algorithm: Features

- Straightforward to implement
- ► Error measured in the L[∞] norm, ensuring a strict upper bound over the entire parameter space
- Globally selects points of interest
 - Not restricted to choosing point in a small neighborhood
 - *hp* adaptive greedy can be implemented
 - Points are good for interpolation
- Constructing W_N is O(N)
- Resulting reduced basis
 - Captures most dominant solution features
 - Application–specific spectral basis

イロト イポト イヨト イヨト

Numerical results Analytic results Using the reduced basis

Results: 2 parameter stationary phase approximation (SPA) waveforms at the 2nd post–Newtonian (PN) order

イロン イヨン イヨン ・ ヨン

3

Numerical results Analytic results Using the reduced basis

Analytic waveforms

- 2 dimensional parameter space described by the compact objects' masses, m₁ and m₂
- Ignore extrinsic parameters for now
- Stationary phase approximation of restricted 2nd PN inspiral waveforms

$$h(f) = \mathcal{A}f^{-7/6} \exp\left(-i\pi/4 + \frac{3i}{128\eta} \left(\frac{GM}{c^3}\pi f\right)^{-5/3} + ...\right)$$

- \blacktriangleright ${\cal A}$ Depends on the distance and orientation of the source
- Total mass $M = m_1 + m_2$, and symmetric mass ratio $\eta = m_1 m_2/M^2$

イロン イヨン イヨン ・ ヨン

Numerical results Analytic results Using the reduced basis

Analytic waveforms

- Waveforms terminated at the greatest innermost stable circular orbit (ISCO) frequency in parameter space
 - With a parameter dependent ISCO cut, waveforms are nonsmooth function of parameters, spoiling exponential decay
 - Not a problem for inspiral, merger, and ringdown waveforms
 - Our method continues to work for ISCO cut waveforms (will address in Future Work)
- ► Waveforms are normalized w.r.t. the detectors noise curve

イロト イポト イヨト イヨト

Numerical results Analytic results Using the reduced basis

Results for $[1-3]M_{\odot}$ with Initial LIGO

Plot of 1-MM (or ε_N^2). Same generic feature for all mass ranges considered.

Numerical results Analytic results Using the reduced basis

Results for [1-3] M_{\odot} with Initial LIGO (ChirpM = $\eta^{3/5}M$)

Scott Field Greedy algorithm for building a RB of GW templates

Numerical results Analytic results Using the reduced basis

Metric Template with MM = .97

Numerical results Analytic results Using the reduced basis

Results

Table: Accuracy measures 1-MM. TM = template metric (number of templates) and RB = reduced basis (dimension of space)

Detector	Overlap	BBH		BNS	
	Error	RB	ТМ	RB	ТМ

イロト イヨト イヨト イヨト

Numerical results Analytic results Using the reduced basis

Results

Table: Accuracy measures 1-MM. TM = template metric (number of templates) and RB = reduced basis (dimension of space)

Detector	Overlap	BBH		BNS	
	Error	RB	ТМ	RB	ТМ
InitLIGO	10^{-2}	165	2,450	898	10,028
	10^{-5}	170	$6.6 imes10^5$	904	$2.2 imes10^{6}$
	$2.5 imes10^{-13}$	182	$8.5 imes10^{11}$	917	$1.5 imes10^{12}$

イロト イヨト イヨト イヨト

Numerical results Analytic results Using the reduced basis

Results

Table: Accuracy measures 1-MM. TM = template metric (number of templates) and RB = reduced basis (dimension of space)

Detector	Overlap	BBH		BNS	
	Error	RB	ТМ	RB	ТМ
InitLIGO	10^{-2}	165	2,450	898	10,028
	10^{-5}	170	$6.6 imes10^5$	904	$2.2 imes10^{6}$
	$2.5 imes10^{-13}$	182	$8.5 imes10^{11}$	917	$1.5 imes10^{12}$
AdvLIGO	10^{-2}	1,058	19,336	5,395	72,790
	10^{-5}	1,687	$1.1 imes10^7$	8,958	$3.2 imes10^7$
	$2.5 imes10^{-13}$	1,700	$8.0 imes10^{13}$	8,976	$1.4 imes 10^{14}$

イロト イポト イヨト イヨト

Numerical results Analytic results Using the reduced basis

Results

Table: Accuracy measures 1-MM. TM = template metric (number of templates) and RB = reduced basis (dimension of space)

Detector	Overlap	BBH		BNS	
	Error	RB	ТМ	RB	ТМ
InitLIGO	10^{-2}	165	2,450	898	10,028
	10^{-5}	170	$6.6 imes10^5$	904	$2.2 imes10^{6}$
	$2.5 imes10^{-13}$	182	$8.5 imes10^{11}$	917	$1.5 imes10^{12}$
AdvLIGO	10^{-2}	1,058	19,336	5,395	72,790
	10^{-5}	1,687	$1.1 imes10^7$	8,958	$3.2 imes10^7$
	$2.5 imes10^{-13}$	1,700	$8.0 imes10^{13}$	8,976	$1.4 imes10^{14}$
AdvVirgo	10^{-2}	1,395	42, 496	7,482	156, 127
	10^{-5}	1,690	$3.2 imes10^7$	8,960	$2.6 imes10^7$
	$2.5 imes10^{-13}$	1,703	$1.4 imes10^{14}$	8,977	$2.9 imes10^{14}$

Scott Field

Greedy algorithm for building a RB of GW templates

Numerical results Analytic results Using the reduced basis

Results for $[1-3]M_{\odot}$ with Initial LIGO

Confirms expectation that we are converging to a "unique" space (choice of initial pick could be important). dim $(W_N) = 921$ for error of 10^{-8} .

▲圖▶ ▲ 国▶ ▲ 国▶

Numerical results Analytic results Using the reduced basis

Analytic results: PSD drifts

- The PSD will fluctuate in time
- Since the PSD weights the inner products, will a new RB need to be constructed? One can show

$$\delta_{1} \equiv ||h_{\vec{\mu},1} - P_{N}(h_{\vec{\mu},1})||_{1} \leq \varepsilon_{N} \frac{||h_{\vec{\mu}}||_{0}}{||h_{\vec{\mu}}||_{1}} \sqrt{\max_{f \in [f_{L},f_{U}]} \left(\frac{S_{0}}{S_{1}}\right)}$$

- Where 1 and 0 subscripts refer to the old and new PSD
- RB space is robust against large perturbations in the PSD, no need to recompute
 - Order 1 change in accuracy

イロン イヨン イヨン ・ ヨン

Numerical results Analytic results Using the reduced basis

What have we gained?

- To compute the matched filter integral, integrate against the basis functions e_j
 - Recover this integral for any $h_i \in \mathcal{H}$ through $P_N h_i = \alpha_{ij} e_j$
 - Off-line computation of α_{ij} is done once and stored
 - ► For a given minimal match, significantly fewer integrations needed
 - ► Factor of 10 fewer integrations for MM = .99, a few additional RB resolves H to machine precision
- It appears the set of (inspiral) gravitational waves can be represented by a finite linear one with arbitrarily high accuracy

イロト イポト イヨト イヨト

Future work Conclusion

Future work and conclusion

Scott Field Greedy algorithm for building a RB of GW templates

< □ > < □ > < □ > < □ > < □ > < Ξ > = Ξ

Future work Conclusion

Future work

Interpolation with selected points (Empirical Interpolation)

▶ Not yet implemented, but expect error on the order of ε_N False alarms

- How do glitches project into the space? Will they be easier or harder to identify?
- Solutions to $\mathsf{PDE}/\mathsf{ODE}$
 - Can the method be extended when we must solve for the waveform at each point in parameter space? Must estimate the error

イロン イヨン イヨン -

Future work Conclusion

Future work

ISCO cut–off moved from b to c

- Parameter dependent chopping leads to a nonsmooth solution
- With more realistic waveforms this is not a problem
- One can smoothly transition between inspiral and 0
- ▶ Note that $||h_{\vec{\mu}} P_i(h_{\vec{\mu}})||_{\Omega(a,b)}$ is positive definite, so we can bound

$$\frac{||h_{\vec{\mu}} - P_N(h_{\vec{\mu}})||_{\Omega(a,c)}}{||h_{\vec{\mu}}||_{\Omega(a,c)}} \le \varepsilon_N X(c)$$

- Where c is new cut, $c \leq b$
- $X(c) = 1 + (\int_{c}^{b} f^{-7/3}/S_n) / (\int_{a}^{c} f^{-7/3}/S_n)$
- Assumes all error in range [c, b], in practice we find 1 order of magnitude worst

(ロ) (同) (E) (E) (E)

Future work Conclusion

Conclusion

- Motivation for the conjecture that the space of waveforms can be accurately represented by a compact set of basis function
- Proposed an efficient algorithm for finding this space
- Applied the algorithm to SPA waveforms at the 2 PN order and compared results to standard methods
 - Compact, accurate, and selects points of interest
- Many questions remain (Interpolation, false alarms, etc.)

イロト イヨト イヨト イヨト