HW5 Solutions

1. (a) The masses of an electron and positron are both $M_{e}=9 \times 10^{-31} \mathrm{Kg}$. If they are at rest the initial energy is

$$
E_{i}=2 M_{e} c^{2} \approx\left(18 \times 10^{-31} \mathrm{Kg}\right)\left(9 \times 10^{16} \mathrm{~m}^{2} / \mathrm{s}^{2}\right) \approx 10^{-13} \mathrm{~J}
$$

By conservation of mass-energy $E_{i}=E_{f}$, which is the total energy carried away by the two photons.
While not asked in the problem, one might wonder how E_{f} relates to each individual photon's energy E_{1} and E_{2} ? By conservation of momentum each photon's momentum is equal and opposite amounts (because the initial momentum is zero). Since the magnitude of relativistic momentum of photon 1 and 2 are equal $P_{1}=P_{2}$ so are their energies $E_{1}=E_{2}$. That is, each photon will carry away half of E_{i}.
(b) 26.9 million Joules is 2.69×10^{7} Joules. From the calculation of part a, we estimate about

$$
\left(2.69 \times 10^{7}\right) / 10^{-13} \approx \times 10^{20}
$$

electron-positron annihilations are necessary, and around 10^{20} positrons in total. The mass of a single positron (again, from part a) is $9 \times 10^{-31} \mathrm{Kg}$, and so we need a supply of positrons whose mass is

$$
\left(9 \times 10^{-31} \mathrm{Kg}\right) \times\left(10^{20}\right) \approx 9 \times 10^{-11} \mathrm{Kg} \approx 10^{-10} \mathrm{Kg}
$$

According to NASA, a well-designed machine can produce "10 milligrams of positrons for [...] about 250 million dollars". Noting that 10 milligrams is $10^{-5} \mathrm{Kg}$, the cost is about

$$
\frac{\$ 250,000,000}{10^{-5} \mathrm{Kg}} \times 10^{-10} \mathrm{Kg} \approx \$ 250,000,000 \times 10^{-5} \approx \$ 2,500
$$

2.
3. Start by drawing a figure and label the angle made by the two lines meeting at the north pole by ϕ. Since the other two angles are 90 degrees each (equivalently $\pi / 2$ each) the sum of Angles is

$$
\text { Angles }=\pi+\phi
$$

Next, recall that the area of a ball of radius r is $4 \pi r^{2}$. So, as a special case, whenever $\phi=2 \pi$ the entire northern hemisphere of the ball is "covered" by our triangle - the triangle's area would be $2 \pi r^{2}$. If $\phi=0$ the area would be 0 . With a little thought we see the triangle's area to be

$$
\text { Area }=\frac{4 \pi r^{2}}{2(2 \pi / \phi)}=\phi r^{2}
$$

From the angle and area formulas we have

$$
\text { Angles }=\pi+\frac{\text { Area }}{r^{2}}
$$

HWY
(1) a)

$$
\begin{aligned}
& v=a c \\
& v=10^{6} \mathrm{~m} \\
& \text { joe } \\
& \text { measured by joe }
\end{aligned}
$$

b)

$$
L_{\text {moe }}=L_{\text {Joe }} \sqrt{1-\frac{v^{2}}{c^{2}}}=L_{\text {Joe }} \sqrt{1-.81} \sim 4 \times 10^{5} \mathrm{~m}
$$

To moe, Earth is approaching at ,9C, hence the distance is contracted.

