HWY
(3) a) $\tau_{\mu}=10^{-6} \mathrm{~s}$

The half-life is the time, on average, for your muon supply to reduce by $\frac{1}{2}$. Some points for the graph are

$$
\left.\begin{array}{l}
(100,0 s) \\
\left(50, \tau_{\mu}\right) \\
\left(25,2 \tau_{\mu}\right) \\
\left(12.5,3 \tau_{\mu}\right) \\
\left(6.25,4 \tau_{\mu}\right) \\
\left(3.125,5 \tau_{\mu}\right)
\end{array}\right] \rightarrow
$$

$$
\begin{aligned}
& b) V=.999 c \\
& \left(\tau_{\mu}\right)_{L a b}=\frac{\left(\tau_{\mu}\right)}{\sqrt{1-\frac{v^{2}}{c^{L}}}} \approx 22 \tau_{\mu} \\
& (100,0 s) \\
& \left(50,22 \tau_{\mu}\right) \\
& \left(25,44 \tau_{\mu}\right) \\
& \left(12.5,88 \tau_{\mu}\right)
\end{aligned}
$$

2. (Optional)

In the candle's reference frame the period between peak's will be $T_{\text {candle }}=1 / f$. Suppose the candle is moving away from you at a speed V. From the effect of time dilation we know the period between peaks will be $\delta t_{1}=\gamma T_{\text {candle }}$. During the time interval δt_{1} the candle has moved a distance $d=v \delta t_{1}$. Since light travels at a finite speed c, the light emitted at the second peak must travel an additional distance d to reach you, which adds an extra time-delay of $\delta t_{2}=d / c$. Hence, you observe the period between peaks to be

$$
\begin{aligned}
T_{\text {you }} & =\delta t_{1}+\delta t_{2} \\
& =\gamma T_{\text {candle }}+\frac{v \gamma T_{\text {candle }}}{c} \\
& =T_{\text {candle }}\left[\gamma\left(1+\frac{v}{c}\right)\right] \\
& =T_{\text {candle }} \frac{1+\frac{v}{c}}{\sqrt{1-v^{2} / c^{2}}} \\
& =T_{\text {candle }} \frac{\sqrt{\left(1+\frac{v}{c}\right)^{2}}}{\sqrt{(1+v / c)(1-v / c)}} \\
& =T_{\text {candle }} \sqrt{\frac{1+\frac{v}{c}}{1-\frac{v}{c}}}
\end{aligned}
$$

The Doppler shift formula becomes

$$
f_{\text {you }}=f_{\text {candle }} \sqrt{\frac{1-\frac{v}{c}}{1+\frac{v}{c}}}
$$

3. (Optional)
(i): find the dimensions of $G^{(d)}$. Notice that in both 3 and d spatial dimensions forces have the same units, and so $[F]=\left[G^{(d)} \frac{m M}{r^{d-1}}\right]$ and $[F]=\left[G^{(3)} \frac{m M}{r^{2}}\right]$ have the same units. From this observation we write

$$
\left[G^{(d)}\right]=\left[G^{(3)}\right]\left[\frac{r^{d-1}}{r^{2}}\right]=\left[G^{(3)}\right]\left[r^{d-3}\right]
$$

Notice that each extra spatial dimension beyond 3 adds a factor of meters to the units of $G^{(d)}$. Next we note that

$$
\left[r^{d-3}\right]=\left[G^{(d)}\right] /\left[G^{(3)}\right]
$$

follows from the previous equation, which suggests that the combination of $G^{(d)}$ and $G^{(3)}$ to relate with L is

$$
L^{d-3}=G^{(d)} / G^{(3)}
$$

(ii): recall the 3 dimensional plank length $\left(L_{p}^{(3)}\right)^{2}=\frac{G^{(3)} h}{c^{3}}$. If we want to replace $G^{(3)}$ by $G^{(d)}$ in this expression we must add factors of meters to the left hand side. This discussion leads to an expression

$$
\left(L_{p}^{(d)}\right)^{2+(d-3)}=\frac{G^{(d)} h}{c^{3}}
$$

(iii): From step 2 we know

$$
\frac{h}{c^{3}}=\frac{\left(L_{p}^{(d)}\right)^{d-1}}{G^{(d)}}
$$

therefore

$$
\left(L_{p}^{(3)}\right)^{2}=\frac{G^{(3)} h}{c^{3}}=\frac{G^{(3)}}{G^{(d)}}\left(L_{p}^{(d)}\right)^{d-1}
$$

The final result is

$$
\frac{G^{(d)}}{G^{(3)}}=L^{d-3}=\frac{\left(L_{p}^{(d)}\right)^{d-1}}{\left(L_{p}^{(3)}\right)^{2}}
$$

