HW3 Solutions

1. (a) $\gamma=\frac{1}{\sqrt{1-\left(v^{2} / c^{2}\right)}}$ is plotted in the figure below. Notice that the plot is (i) symmetric about $v=0$, (ii) becomes infinitely large as $v \rightarrow c$ (equivalently $v / c \rightarrow 1$), (iii) the plot is more easily depicted with v / c on the x -axis and using a logarithmic scale on the y-axis. Plots which did not use these choices are perfectly acceptable too.

(b) The problem becomes easier if we let $x=v / c$, and then $\gamma=\frac{1}{\sqrt{1-x^{2}}}$. Solving for x I find

$$
x= \pm \sqrt{1-\frac{1}{\gamma^{2}}}
$$

and so

$$
v= \pm c \sqrt{1-\frac{1}{\gamma^{2}}}
$$

Plugging in values for γ we have $|v| \approx .86 c$ when $\gamma=2,|v| \approx 0.9950 c$ when $\gamma=10$, and $|v| \approx 0.9999 c$ when $\gamma=100$.
2. (a) $\left(\frac{99.9 K m}{\text { hour }}\right)\left(\frac{1 \mathrm{hr}}{3600 \mathrm{~s}}\right)\left(\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right)=2.77 \mathrm{~m} / \mathrm{s}$ and so $v / c \approx 10^{-8}$ and $\gamma \approx 1.000000000000000005$. From the clerk's point of view you are 10 Km away traveling at $99.9 \mathrm{~km} / \mathrm{hour}$, so the total trip time (as seen by the clerk) is about 6 minutes. Your clocks duration will be $\frac{6}{\gamma}$ minutes, and so your clock is slow by $\frac{6}{\gamma}-6 \approx 0$ minutes. Jumping right to the answer (not slower) is OK too, and encouraged.
(b) Now the speed of light is $100 \mathrm{~km} /$ hour and $\gamma \approx 22$. Your clocks duration will be $\frac{6}{22}$ minutes, so your watch is slow by $\frac{6}{22}-6 \approx-5.7$ minutes.
3. Simply travel in a train or car at speeds close to $100 \mathrm{~km} /$ hour, within a few minutes (according to your watch) apply the breaks. It will be Friday. Unfortunately there is no way to come back to Wednesday (no backwards in time travel).
4. (Optional)
(a)

$$
\binom{x^{\prime}}{y^{\prime}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{1}\\
-\sin \theta & \cos \theta
\end{array}\right)\binom{x}{y}
$$

(b) Directly from the equations is straightforward: plug in the definitions of x^{\prime} and y^{\prime} in terms of x and y, then use trig properties. With Matrices let

$$
M=\left(\begin{array}{cc}
\cos \theta & \sin \theta \tag{2}\\
-\sin \theta & \cos \theta
\end{array}\right) \quad V=\binom{x}{y} \quad V^{\prime}=\binom{x^{\prime}}{y^{\prime}}
$$

Then the equation in part a is $V^{\prime}=M V$. And $\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=\left(V^{\prime}\right)^{T} V^{\prime}$ where $\left(V^{\prime}\right)^{T}$ is the transpose of a vector. Finally, showing that $\left(V^{\prime}\right)^{T} V^{\prime}=V^{T} M^{T} M V=V^{T} V$ comes down to showing $M^{T} M$ has 1 on the diagonal and 0 on the off-diagonal. This can be shown by carrying out the matrix-matrix project and using $\sin ^{2}+\cos ^{2}=1$.
(c) The Lorentz transformations given in class can be written as

$$
\left(\begin{array}{c}
c t^{\prime} \tag{3}\\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right)=\left(\begin{array}{cccc}
\gamma & -\frac{v}{c} \gamma & 0 & 0 \\
-\frac{v}{c} \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right)
$$

which you can explicitly check to be true.
(d) Notice that $y^{\prime 2}=y^{2}$ and $z^{\prime 2}=z^{2}$ so theres nothing interesting to do for those coordinates. For the remaining two compute

$$
\begin{aligned}
x^{\prime 2}+\left(c t^{\prime}\right)^{2} & =\left[\gamma\left(x-\frac{v}{c} c t\right)\right]^{2}-\left[\gamma\left(c t-\frac{v}{c} x\right)\right]^{2} \\
& =\gamma^{2}\left[x^{2}\left(1-\frac{v^{2}}{c^{2}}\right)-(c t)^{2}\left(1-\frac{v^{2}}{c^{2}}\right)\right] \\
& =x^{2}-(c t)^{2}
\end{aligned}
$$

where I've skipped over some of the algebraic steps.
Since one can write the Lorentz transformations as a matrix-vector ("linear") equation, and a kind-of distance is preserved, we conclude by analogy with more familiar spatial rotations that this is a rotation in spacetime. More closely mimicking the spatial rotations example done in parts a and b would require the knowledge of tensors and hyperbolic sine and cosine. The entry on wikipedia is pretty good for this: http://en. wikipedia. org/wiki/Lorentz_transformation\#Rapidity.

