HW1 Solutions

1. First rearrange the equation $G=\frac{F r^{2}}{M m}$ and using dimensional analysis we see

$$
[G]=\left[\frac{F r^{2}}{M m}\right]=\frac{[F]\left[r^{2}\right]}{[M][m]}=\frac{\left(k g \frac{m}{s^{2}}\right) m^{2}}{(k g)^{2}}=\frac{m^{3}}{s^{2} k g}
$$

For this calculation we used the fact that $[F]=k g \frac{m}{s^{2}},\left[r^{2}\right]=m^{2}$, and $[M]=[m]=k g$.
2. 1 hour $=60 \times(60 s)=3600 s$

1 mile $=1609.3$ meters
So in miles per hour the speed of light is

$$
\left(3 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(\frac{1 \text { mile }}{1609.3 \text { meters }}\right)\left(\frac{3600 \mathrm{~s}}{1 \text { hour }}\right) \approx 6.7 \times 10^{8} \text { miles } / \text { hour }
$$

If the sun is about 93×10^{6} miles from Earth it takes

$$
\text { Time }=\frac{\text { Distance }}{\text { Speed }}=\frac{93 \times 10^{6} \text { miles }}{6.7 \times 10^{8} \text { miles } / \text { hour }} \approx .139 \text { hours },
$$

or about 8 minutes for the sun's light to reach Earth.
3. The physical constants we are allowed to use have units of $[G]=\frac{m^{3}}{s^{2} k g},[c]=m / s$, and $[\hbar]=k g \times m^{2} / s$. Notice that $\left[G \hbar / c^{3}\right]=m^{2}$, and so $\left[G \hbar / c^{5}\right]=\left(m^{2}\right)\left(\frac{s^{2}}{m^{2}}\right)=s^{2}$. The Plank time and length are

$$
\begin{aligned}
L_{\text {Plank }} & =\sqrt{G \hbar / c^{3}} \\
T_{\text {Plank }} & =\sqrt{G \hbar / c^{5}} .
\end{aligned}
$$

Using wikipedia I found the physical constants to be (in MKS units) roughly $G=6 \times 10^{-11}, c=3 \times 10^{8}$, $\hbar=6 \times 10^{-34}$

$$
\begin{aligned}
& L_{\text {Plank }}=\sqrt{G \hbar / c^{3}} \approx \sqrt{\frac{\left(6 \times 10^{-11}\right)\left(6 \times 10^{-34}\right)}{\left(3 \times 10^{8}\right)^{3}}} \approx \sqrt{\frac{36 \times 10^{-45}}{27 \times 10^{24}}} \approx 10^{-35} \\
& T_{\text {Plank }}=\sqrt{G \hbar / c^{5}} \approx \frac{10^{-35}}{10^{8}}=10^{-43}
\end{aligned}
$$

Because we are working in MKS units these values are in meters and seconds, respectively.
4. Place Trafalgar square at the origin of the coordinate system. Step 1: using, say, a 200 meter ruler measure equally space 'ticks' (denoted by the red stars) from the ground to the original location of the cloud and call this the y-axis. Step 2: Now switch to, say, a 50 meter ruler. Starting from each tick on the y-axis lay down equally spaced 'ticks' to the right (at a 90 degreed angle from the x-axis). Step 3: continue the process until you have finished building your Cartesian coordinate system. See figure below. The Pythagorean theorem tells us Distance $=\sqrt{(\Delta X)^{2}+(\Delta Y)^{2}}=\sqrt{(100 m)^{2}+(1000 m)^{2}} \approx 1005 m$.
5. In fact Einstein's measurement experiments provide good evidence that these distances will be the same. A proof can be given by observing that the smarter coordinate system can be "built" by rotating the first coordinate system by an angle θ in the counterclockwise direction. From the figure below we can find the location of the cloud is given by $x^{\prime}=x \cos \theta+y \sin \theta$ and $y^{\prime}=y \cos \theta-x \sin \theta$. The distance of the cloud from Trafalgar square is EXACTLY the same in both coordinate systems

$$
\left(x^{\prime}\right)^{2}+\left(y^{\prime}\right)^{2}=(x \cos \theta+y \sin \theta)^{2}+(y \cos \theta-x \sin \theta)^{2}=x^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+y^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=x^{2}+y^{2}
$$

If the x^{\prime}-axis is aligned with the cloud (so that $y^{\prime}=0$) you get $x^{\prime}=\sqrt{x^{2}+y^{2}}=$ Distance. So the clouds location on the x -axis directly measures the distance.

