Linear stability analysis for traveling waves of second order in time PDE's

Milena Stanislavova

Department of Mathematics
University of Kansas

November 5th, 2011
Geometric Methods for Infinite-Dimensional DS
Brown University, Providence, RI
Traveling waves

Consider the abstract second order in time nonlinear PDE
\[u_{tt} + \mathcal{L}_x u + N(u) = 0, \quad (t, x) \in \mathbb{R}_+^1 \times \mathbb{R}^d \text{ or } (t, x) \in \mathbb{R}^1 \times [-L, L]^d, \]
where \(\mathcal{L}_x \) is a given linear operator, acting on the \(x \) variable and \(N(u) \) is the nonlinear term.

Our interest is in the study of the stability properties of traveling waves in the form \(\varphi(x + \tilde{c}t) \). These satisfy the stationary PDE
\[\mathcal{L}_x \varphi + \sum_{i,j=1}^{d} c_i c_j \varphi_{x_i} \varphi_{x_j} + N(\varphi) = 0 \quad (1) \]

Introducing the operator \(H_{\tilde{c}} = \mathcal{L}_x + \sum_{j,k=1}^{d} c_j c_k \partial_{x_j} \partial_{x_k} + N'(\varphi) \),
we are lead to study the following problem
\[v_{tt} + 2 \langle \tilde{c}, \nabla_x v_t \rangle + Hu = 0. \quad (2) \]
Traveling waves

Consider the abstract second order in time nonlinear PDE
\[u_{tt} + L_x u + N(u) = 0, \quad (t, x) \in \mathbb{R}_+^1 \times \mathbb{R}^d \quad \text{or} \quad (t, x) \in \mathbb{R}_+^1 \times [-L, L]^d, \]
where \(L_x \) is a given linear operator, acting on the \(x \) variable and \(N(u) \) is the nonlinear term.
Our interest is in the study of the stability properties of traveling waves in the form \(\varphi(x + \tilde{c} t) \). These satisfy the stationary PDE
\[L_x \varphi + \sum_{i,j=1}^{d} c_i c_j \varphi_{x_i} \varphi_{x_j} + N(\varphi) = 0 \quad (1) \]
Introducing the operator \(H_{\tilde{c}} = L_x + \sum_{j,k=1}^{d} c_j c_k \partial_{x_j} \partial_{x_k} + N'(\varphi) \),
we are lead to study the following problem
\[v_{tt} + 2 \langle \tilde{c}, \nabla_x v_t \rangle + Hu = 0. \quad (2) \]
Consider the abstract second order in time nonlinear PDE
\[u_{tt} + \mathcal{L}_x u + N(u) = 0, \quad (t, x) \in \mathbb{R}_+^1 \times \mathbb{R}^d \text{ or } (t, x) \in \mathbb{R}_+^1 \times [\!-L, L]^d, \]
where \(\mathcal{L}_x \) is a given linear operator, acting on the \(x \) variable and \(N(u) \) is the nonlinear term.

Our interest is in the study of the stability properties of traveling waves in the form \(\varphi(x + \vec{c}t) \). These satisfy the stationary PDE
\[
\mathcal{L}_x \varphi + \sum_{i,j=1}^{d} c_i c_j \varphi_{x_i} \varphi_{x_j} + N(\varphi) = 0 \tag{1}
\]

Introducing the operator \(H_{\vec{c}} = \mathcal{L}_x + \sum_{j,k=1}^{d} c_j c_k \partial_{x_j} \partial_{x_k} + N'(\varphi) \), we are lead to study the following problem
\[
v_{tt} + 2 \langle \vec{c}, \nabla_x v_t \rangle + Hu = 0. \tag{2}
\]
Question: For which values of \bar{c}, the corresponding traveling wave φ_c determined by (1) is linearly/spectrally stable? More precisely, for which c, the equation $v_{tt} + 2cv_{tx} + Hu = 0$ has a solution in the form $e^{\lambda t} \psi$ and what is the sign of $\Re \lambda$?

- The **Evans function method** has been used to check the linear stability of such waves, more often for equations that are first order in time.
- The method of “indices counting”, used in KdV and Schrödinger type systems, also for spatially periodic waves and general Hamiltonian systems.
- To establish instability results, **direct construction of unstable modes** is also useful.

We present a complete answer to this question when H is self-adjoint with at most one negative eigenvalue and $d = 1$.
Linear stability

Question: For which values of \bar{c}, the corresponding traveling wave φ_c determined by (1) is linearly/spectrally stable? More precisely, for which c, the equation $v_{tt} + 2cv_{tx} + Hu = 0$ has a solution in the form $e^{\lambda t} \psi$ and what is the sign of $\Re \lambda$?

- The **Evans function method** has been used to check the linear stability of such waves, more often for equations that are first order in time.
- The method of “**indices counting**”, used in KdV and Schrödinger type systems, also for spatially periodic waves and general Hamiltonian systems.
- To establish instability results, **direct construction of unstable modes** is also useful.

We present a complete answer to this question when H is self-adjoint with at most one negative eigenvalue and $d = 1$.
Question: For which values of \bar{c}, the corresponding traveling wave φ_c determined by (1) is linearly/spectrally stable? More precisely, for which c, the equation $v_{tt} + 2cv_{tx} + Hu = 0$ has a solution in the form $e^{\lambda t} \psi$ and what is the sign of $\Re\lambda$?

- The Evans function method has been used to check the linear stability of such waves, more often for equations that are first order in time.
- The method of “indices counting”, used in KdV and Schrödinger type systems, also for spatially periodic waves and general Hamiltonian systems.
- To establish instability results, direct construction of unstable modes is also useful.

We present a complete answer to this question when H is self-adjoint with at most one negative eigenvalue and $d = 1$.
Question: For which values of \bar{c}, the corresponding traveling wave φ_c determined by (1) is linearly/spectrally stable? More precisely, for which c, the equation $v_{tt} + 2cv_{tx} + Hu = 0$ has a solution in the form $e^{\lambda t} \psi$ and what is the sign of $\Re \lambda$?

- The **Evans function method** has been used to check the linear stability of such waves, more often for equations that are first order in time.
- The method of "indices counting", used in KdV and Schrödinger type systems, also for spatially periodic waves and general Hamiltonian systems.
- To establish instability results, **direct construction of unstable modes** is also useful.

We present a complete answer to this question when H is self-adjoint with at most one negative eigenvalue and $d = 1$.
Linear stability

Question: For which values of \bar{c}, the corresponding traveling wave φ_c determined by (1) is linearly/spectrally stable? More precisely, for which c, the equation $v_{tt} + 2cv_{tx} + Hu = 0$ has a solution in the form $e^{\lambda t} \psi$ and what is the sign of $\Re \lambda$?

- The **Evans function method** has been used to check the linear stability of such waves, more often for equations that are first order in time.
- The method of "indices counting", used in KdV and Schrödinger type systems, also for spatially periodic waves and general Hamiltonian systems.
- To establish instability results, **direct construction of unstable modes** is also useful.

We present a complete answer to this question when H is self-adjoint with at most one negative eigenvalue and $d = 1$.

Milena Stanislavova, Atanas Stefanov

Stability of traveling waves of second order in time PDE's
Boussinesq-type model

\[u_{tt} + u_{xxxx} - u_{xx} + (u^p)_{xx} = 0, \quad (t, x) \in \mathbb{R}^1_+ \times \mathbb{R}^1 \]

There exists one-parameter family of traveling waves of the form \(\varphi(x - ct), \ c \in (-1, 1) \), which obey the equation

\[c^2 \varphi + \varphi'' - \varphi + \varphi^p = 0 \]

and which have the explicit form

\[\varphi_c(\xi) = \left[\left(\frac{p + 1}{2} \right) (1 - c^2) \right]^{\frac{1}{p-1}} \text{sech}^{\frac{2}{p-1}} \left(\frac{\sqrt{1 - c^2(p - 1)}}{2} \xi \right). \]
Boussinesq-type model

\[u_{tt} + u_{xxxx} - u_{xx} + (u^p)_{xx} = 0, \quad (t, x) \in \mathbb{R}_+^1 \times \mathbb{R}^1 \]

There exists one-parameter family of traveling waves of the form \(\varphi(x - ct), \ c \in (-1, 1), \) which obey the equation

\[c^2 \varphi + \varphi'' - \varphi + \varphi^p = 0 \]

and which have the explicit form

\[\varphi_c(\xi) = \left[\left(\frac{p + 1}{2} \right) (1 - c^2) \right]^{\frac{1}{p-1}} \text{sech}^{\frac{2}{p-1}} \left(\frac{\sqrt{1 - c^2(p - 1)}}{2} \xi \right). \]
The Klein-Gordon-Zakharov system

interactions of Langmuir wave and ion acoustic wave in plasma

\[
\begin{aligned}
 u_{tt} - u_{xx} + u + nu &= 0 \quad (t, x) \in \mathbb{R}_+^1 \times \mathbb{R}^1 \\
 n_{tt} - n_{xx} - \frac{1}{2}(|u|^2)_{xx} &= 0,
\end{aligned}
\]

admits a one parameter family of traveling wave solutions in the form \(u(t, x) = \varphi(x - ct), n(t, x) = \psi(x - ct) \) for \(c \in (-1, 1) \),

where

\[
\begin{aligned}
 \varphi(y) &= 2\sqrt{1 - c^2}\sech\left(\frac{y}{\sqrt{1 - c^2}}\right) \\
 \psi(y) &= -2\sech^2\left(\frac{y}{\sqrt{1 - c^2}}\right).
\end{aligned}
\]
The nonlinear beam equation

model of suspension bridge in McKenna, Walter in 1990

\[u_{tt} + \Delta^2 u + u - |u|^{p-1} u = 0, \quad (t, x) \in \mathbb{R}^1 \times \mathbb{R}^d \text{ or } (t, x) \in \mathbb{R}^1 \times [-L, L]^d, \]

where \(p > 1, L > 0 \) and either periodic boundary conditions (in the case \(x \in [-L, L] \)) or vanishing at infinity for \(x \in \mathbb{R}^d \).

Using variational methods, Levandosky has shown that traveling wave solutions exist and are orbitally unstable for small speeds, while orbitally stable solutions are observed for values of the parameter \(|\bar{c}| \sim \sqrt{2}, |\bar{c}| < \sqrt{2} \).

We are interested in the linear stability of such solutions in the solitary waves and the periodic waves case.
The nonlinear beam equation

model of suspension bridge in McKenna, Walter in 1990

\[u_{tt} + \Delta^2 u + u - |u|^{p-1} u = 0, \quad (t, x) \in \mathbb{R}^1 \times \mathbb{R}^d \text{ or } (t, x) \in \mathbb{R}^1 \times [-L, L]^d, \]

where \(p > 1, L > 0 \) and either periodic boundary conditions (in the case \(x \in [-L, L] \)) or vanishing at infinity for \(x \in \mathbb{R}^d \).

Using variational methods, Levandosky has shown that traveling wave solutions exist and are orbitally unstable for small speeds, while orbitally stable solutions are observed for values of the parameter \(|\bar{c}| \sim \sqrt{2}, |\bar{c}| < \sqrt{2} \).

We are interested in the linear stability of such solutions in the solitary waves and the periodic waves case.
The nonlinear beam equation

model of suspension bridge in McKenna, Walter in 1990

\[u_{tt} + \Delta^2 u + u - |u|^{p-1} u = 0, \quad (t, x) \in \mathbb{R}^1 \times \mathbb{R}^d \text{ or } (t, x) \in \mathbb{R}^1 \times [-L, L]^d, \]

where \(p > 1, L > 0 \) and either periodic boundary conditions (in the case \(x \in [-L, L] \)) or vanishing at infinity for \(x \in \mathbb{R}^d \).

Using variational methods, Levandosky has shown that traveling wave solutions exist and are orbitally unstable for small speeds, while orbitally stable solutions are observed for values of the parameter \(|\vec{c}| \sim \sqrt{2}, |\vec{c}| < \sqrt{2} \).

We are interested in the linear stability of such solutions in the solitary waves and the periodic waves case.
Consider the equation

$$u_{tt} + 2\omega u_{tx} + Hu = 0, \ (t, x) \in \mathbb{R}^1 \times \mathbb{R}^1 \ \text{or} \ \mathbb{R}^1 \times [-L, L] \quad (5)$$

where $H = H_{c,\phi}$ is a self-adjoint operator acting on L^2, with domain $D(H)$ and ω is a real parameter.

Definition

We say that the periodic wave φ is linearly unstable if there exists $\lambda : \Re \lambda > 0$, and a function ψ, such that the following equation is satisfied

$$\lambda^2 \psi + 2c\lambda \psi_x + H\psi = 0 \quad (6)$$

Otherwise, we say that the traveling wave φ is linearly stable.
Consider the equation

\[u_{tt} + 2\omega u_{tx} + Hu = 0, \quad (t, x) \in \mathbb{R}^1 \times \mathbb{R}^1 \text{ or } \mathbb{R}^1 \times [-L, L] \]

(5)

where \(H = H_{c,\phi} \) is a self-adjoint operator acting on \(L^2 \), with domain \(D(H) \) and \(\omega \) is a real parameter.

Definition

We say that the periodic wave \(\varphi \) is linearly unstable, if there exists \(\lambda : \mathbb{R} \lambda > 0 \), and a function \(\psi \), such that the following equation is satisfied

\[\lambda^2 \psi + 2c \lambda \psi_x + H\psi = 0 \]

(6)

Otherwise, we say that the traveling wave \(\varphi \) is linearly stable.
Shkalikov’s theory for the pencil

\[A(\lambda) = \lambda^2 F + (D + iG)\lambda + T \]
\[T = T^*, \quad F = F^*, \quad G = G^*, \quad D \geq 0 \]

for the case \(F = \text{Id} \), \(D = 0 \), \(G = -2i\omega \partial_x \), \(T = H_c \),

\[\#\{\lambda - \text{unstable}\} \leq \#\{\sigma(H_c) \cap (-\infty, 0)\} \]

Assumption

- \(H_c \) has one simple negative eigenvalue
- \(0 \) is simple eigenvalue for \(H_c \)
Stability/instability results for quadratic pencils

Shkalikov’s theory for the pencil

\[A(\lambda) = \lambda^2 F + (D + iG)\lambda + T \]

\[T = T^*, \quad F = F^*, \quad G = G^*, \quad D \geq 0 \]

for the case \(F = Id, \quad D = 0, \quad G = -2i\omega \partial_x, \quad T = H_c, \)

\[\#\{\lambda - \text{unstable}\} \leq \#\{\sigma(H_c) \cap (-\infty, 0)\} \]

Assumption

- \(H_c \) has one simple negative eigenvalue
- 0 is simple eigenvalue for \(H_c \)
Stability/instability results for quadratic pencils

Shkalikov’s theory for the pencil

\[A(\lambda) = \lambda^2 F + (D + iG)\lambda + T \]
\[T = T^*, F = F^*, G = G^*, D \geq 0 \]

for the case \(F = I_d, D = 0, G = -2i\omega \partial_x, T = H_c, \)

\[\#\{\lambda - \text{unstable}\} \leq \#\{\sigma(H_c) \cap (-\infty, 0)\} \]

Assumption

- \(H_c \) has one simple negative eigenvalue
- 0 is simple eigenvalue for \(H_c \)
Shkalikov’s theory for the pencil

\[A(\lambda) = \lambda^2 F + (D + iG)\lambda + T \]

\[T = T^*, F = F^*, G = G^*, D \geq 0 \]

for the case \(F = \text{Id}, D = 0, G = -2i\omega \partial_x, T = H_c, \)

\[\#\{\lambda - \text{unstable}\} \leq \#\{\sigma(H_c) \cap (-\infty, 0)\} \]

Assumption

- \(H_c \) has one **simple negative eigenvalue**
- 0 is **simple eigenvalue** for \(H_c \)
Shkalikov’s theory for the pencil

\[A(\lambda) = \lambda^2 F + (D + iG)\lambda + T \]

\[T = T^*, \quad F = F^*, \quad G = G^*, \quad D \geq 0 \]

for the case \(F = \text{Id}, \quad D = 0, \quad G = -2i\omega \partial_x, \quad T = H_c, \)

\[\#\{\lambda - \text{unstable}\} \leq \#\{\sigma(H_c) \cap \langle -\infty, 0 \rangle\} \]

Assumption

- \(H_c \) has one simple negative eigenvalue
- 0 is simple eigenvalue for \(H_c \)
Theorem

Let $\psi_0 : \|\psi_0\| = 1, H\psi_0 = 0$.

- If $\langle H^{-1}[\psi'_0], \psi'_0 \rangle \geq 0$, - instability for all $\omega \in \mathbb{R}^1$.
 Otherwise,

 - the problem (5) is unstable if

 \[
 0 \leq |\omega| < \frac{1}{2\sqrt{-\langle H^{-1}[\psi'_0], \psi'_0 \rangle}} =: \omega^*(H)
 \] \hspace{1cm} (7)

 - the problem (5) is stable, if

 \[
 |\omega| \geq \omega^*(H)
 \] \hspace{1cm} (8)
Theorem

Let \(\psi_0 : \|\psi_0\| = 1, H\psi_0 = 0 \).

- If \(\langle H^{-1}[\psi'_0], \psi'_0 \rangle \geq 0 \), - instability for all \(\omega \in \mathbb{R}^1 \).

Otherwise,

- the problem (5) is unstable if

\[
0 \leq |\omega| < \frac{1}{2 \sqrt{-\langle H^{-1}[\psi'_0], \psi'_0 \rangle}} =: \omega^*(H) \tag{7}
\]

- the problem (5) is stable, if

\[
|\omega| \geq \omega^*(H) \tag{8}
\]
Theorem

Let $\psi_0 : \|\psi_0\| = 1, H\psi_0 = 0$.

- If $\langle H^{-1}[\psi'_0], \psi'_0 \rangle \geq 0$, - instability for all $\omega \in \mathbb{R}^1$.

Otherwise,

- the problem (5) is unstable if

$$0 \leq |\omega| < \frac{1}{2\sqrt{-\langle H^{-1}[\psi'_0], \psi'_0 \rangle}} =: \omega^*(H)$$ (7)

- the problem (5) is stable, if

$$|\omega| \geq \omega^*(H)$$ (8)
Theorem

Let $\psi_0 : ||\psi_0|| = 1$, $H\psi_0 = 0$.

1. If $\langle H^{-1}[\psi'_0], \psi'_0 \rangle \geq 0$, - instability for all $\omega \in \mathbb{R}^1$.
 Otherwise,
2. the problem (5) is unstable if

 \[0 \leq |\omega| < \frac{1}{2\sqrt{-\langle H^{-1}[\psi'_0], \psi'_0 \rangle}} =: \omega^*(H) \]

3. the problem (5) is stable, if

 \[|\omega| \geq \omega^*(H) \]
Corollary

We can write (5) in the form

\[
\begin{pmatrix} u \\ ut \end{pmatrix}_t = \begin{pmatrix} 0 & 1 \\ -H & -2\omega \partial_x \end{pmatrix} \begin{pmatrix} u \\ ut \end{pmatrix} =: \mathcal{T} \begin{pmatrix} u \\ ut \end{pmatrix}
\]

Corollary

In the statement of Theorem 2, assume in addition that
\([Hh(\cdot)](x) = (Hh)(-x)\). Then, in the cases of instability, there is \(\lambda > 0\), so that \(\lambda, -\lambda\) are both eigenvalues of \(\mathcal{T}\) and moreover

\[
\sigma(\mathcal{T}) \subset \{\lambda\} \cup \{-\lambda\} \cup i\mathbb{R}^1.
\]

If on the other hand, there is stability, we have \(\sigma(\mathcal{T}) \subset i\mathbb{R}^1\).
Construction of a special function

\[\lambda^2 \psi + 2\omega \lambda \psi' + H\psi = 0 \]

Take \(\psi := \phi + \nu \), where \(H\phi = -\delta^2 \phi; \nu \perp \phi \).

\[
(\lambda^2 + 2\omega \lambda \partial_x + H)\nu = (\delta^2 - \lambda^2)\phi - 2\omega \lambda \phi' \quad \tag{9}
\]

Thus,

\[
\langle \nu, \phi' \rangle = \frac{\lambda^2 - \delta^2}{2\omega \lambda} \quad \text{and} \quad \nu = -2\omega \lambda [H + \lambda^2 + 2\omega \lambda P_0 \partial_x P_0]^{-1} [\phi'] \in \{\phi\}^\perp
\]
Construction of a special function

\[\lambda^2 \psi + 2\omega \lambda \psi' + H \psi = 0 \]

Take \(\psi := \phi + v \), where \(H\phi = -\delta^2 \phi \); \(v \perp \phi \).

\[(\lambda^2 + 2\omega \lambda \partial_x + H)v = (\delta^2 - \lambda^2)\phi - 2\omega \lambda \phi' \] \hspace{1cm} (9)

Thus,

\[\langle v, \phi' \rangle = \frac{\lambda^2 - \delta^2}{2\omega \lambda} \]

\[v = -2\omega \lambda [H + \lambda^2 + 2\omega \lambda P_0 \partial_x P_0]^{-1}[\phi'] \in \{ \phi \}^\perp \]
Construction of a special function

\[\lambda^2 \psi + 2 \omega \lambda \psi' + H \psi = 0 \]

Take \(\psi := \phi + \nu \), where \(H \phi = -\delta^2 \phi; \nu \perp \phi \).

\[(\lambda^2 + 2 \omega \lambda \partial_x + H) \nu = (\delta^2 - \lambda^2) \phi - 2 \omega \lambda \phi' \quad (9) \]

Thus,

\[\langle \nu, \phi' \rangle = \frac{\lambda^2 - \delta^2}{2 \omega \lambda} \]

\[\nu = -2 \omega \lambda [H + \lambda^2 + 2 \omega \lambda P_0 \partial_x P_0]^{-1}[\phi'] \in \{ \phi \}^\perp \]
Construction of a special function

\[\lambda^2 \psi + 2\omega \lambda \psi' + H \psi = 0 \]

Take \(\psi := \phi + \nu \), where \(H\phi = -\delta^2 \phi; \nu \perp \phi \).

\[(\lambda^2 + 2\omega \lambda \partial_x + H)\nu = (\delta^2 - \lambda^2)\phi - 2\omega \lambda \phi' \]

Thus,

\[\langle \nu, \phi' \rangle = \frac{\lambda^2 - \delta^2}{2\omega \lambda} \]

\[\nu = -2\omega \lambda [H + \lambda^2 + 2\omega \lambda P_0 \partial_x P_0]^{-1}[\phi'] \in \{\phi\}^\perp\]
Construction of a special function - “Evans function like behavior”

Proposition

\[
\mathcal{G}(\omega; \lambda) := \left\langle [H + \lambda^2 + 2\omega \lambda P_0 \partial_x P_0]^{-1} [\phi'], \phi' \right\rangle + \frac{\lambda^2 - \delta^2}{4\omega^2 \lambda^2} \quad (10)
\]

\(\mathcal{G}\) has a positive root.
We show the continuity of the function $G(\omega; \lambda)$ in $\mathbb{R}^1_+ \times \mathbb{R}^1_+$, then analyze its behavior close to $\lambda = \infty$ and close to $\lambda = 0$. We have that

$$
\lim_{\lambda \to \infty} G(\lambda) = \frac{1}{4\omega^2} > 0.
$$

Regarding the behavior close to $\lambda = \varepsilon \sim 0$, we compute the sign of $G(\omega; \varepsilon)$. If $G(\omega; \varepsilon) < 0$, we have instability. If $G(\omega; \varepsilon) > 0$, we have stability, two zeroes or a double zero. One can exclude the case of two zeroes by Schkalikov’s theory. The double zero needs a bit more work but can be excluded as well. Thus we can prove stability in this case.
We show the continuity of the function $\mathcal{G}(\omega; \lambda)$ in $\mathbb{R}_+^1 \times \mathbb{R}_+^1$, then analyze its behavior close to $\lambda = \infty$ and close to $\lambda = 0$. We have that

$$
\lim_{\lambda \to \infty} \mathcal{G}(\lambda) = \frac{1}{4\omega^2} > 0.
$$

Regarding the behavior close to $\lambda = \varepsilon \sim 0$, we compute the sign of $\mathcal{G}(\omega; \varepsilon)$. If $\mathcal{G}(\omega; \varepsilon) < 0$, we have instability. If $\mathcal{G}(\omega; \varepsilon) > 0$, we have stability, two zeroes or a double zero. One can exclude the case of two zeroes by Schkalikov’s theory. The double zero needs a bit more work but can be excluded as well. Thus we can prove stability in this case.
"good" Boussinesq model $u_{tt} + u_{xxxx} - u_{xx} + (u^p)_{xx} = 0$

\[
\begin{align*}
 v_{tt} + 2cv_{tx} + Tv &= 0 \\
 Tv &= \partial_x^4 v - (1 - c^2)\partial_x^2 v + p(\varphi_c^{p-1} v)_{xx},
\end{align*}
\]

Note: T is not self-adjoint. In the variable $z : z_x = v$ it becomes

\[
\begin{align*}
 z_{tt} + 2cz_{tx} + Hz &= 0 \\
 H = H^* &= \partial_x^4 - (1 - c^2)\partial_x^2 + p(\varphi_c^{p-1} (\cdot)_{xx}),
\end{align*}
\]

Note: H has one simple eigenvalue at zero and one simple negative eigenvalue.
"good" Boussinesq model $u_{tt} + u_{xxxx} - u_{xx} + (u^p)_{xx} = 0$

\[
v_{tt} + 2cv_{tx} + Tv = 0
\]
\[
Tv = \partial_x^4 v - (1 - c^2)\partial_x^2 v + p(\varphi_c^{p-1} v)_{xx},
\]

Note: T is not self-adjoint. In the variable $z : z_x = v$ it becomes

\[
z_{tt} + 2cz_{tx} + Hz = 0
\]
\[
H = H^* = \partial_x^4 - (1 - c^2)\partial_x^2 + p(\varphi_c^{p-1} (\cdot)_{x}^2)
\]

Note: H has one simple eigenvalue at zero and one simple negative eigenvalue.
"good" Boussinesq model \(u_{tt} + u_{xxxx} - u_{xx} + (u^p)_{xx} = 0\)

\[
\begin{align*}
v_{tt} + 2c v_{tx} + Tv &= 0 \\
Tv &= \partial_x^4 v - (1 - c^2)\partial_x^2 v + p(\varphi_c^{p-1} v)_{xx},
\end{align*}
\]

Note: \(T\) is not self-adjoint. In the variable \(z: z_x = v\) it becomes

\[
\begin{align*}
z_{tt} + 2cz_{tx} + Hz &= 0 \\
H &= H^* = \partial_x^4 - (1 - c^2)\partial_x^2 + p(\varphi_c^{p-1} (\cdot)_{x})_{x}
\end{align*}
\]

Note: \(H\) has one simple eigenvalue at zero and one simple negative eigenvalue.
"good" Boussinesq model $u_{tt} + u_{xxxx} - u_{xx} + (u^p)_{xx} = 0$

\[
\begin{align*}
\nu_{tt} + 2c\nu_{tx} + T\nu &= 0 \\
TV &= \partial_x^4 \nu - (1 - c^2)\partial_x^2 \nu + p(\varphi^{-1}_c \nu)_{xx},
\end{align*}
\]

Note: T is not self-adjoint. In the variable $z : z_x = \nu$ it becomes

\[
\begin{align*}
z_{tt} + 2cz_{tx} + Hz &= 0 \\
H &= H^* = \partial_x^4 - (1 - c^2)\partial_x^2 + p(\varphi^{-1}_c (\cdot))_x_x
\end{align*}
\]

Note: H has one simple eigenvalue at zero and one simple negative eigenvalue.
The traveling wave φ_c of the Boussinesq equation is linearly unstable, if $p \geq 5$. If $2 \leq p < 5$, then it is linearly unstable if $0 \leq |c| < \frac{\sqrt{p-1}}{2}$ and linearly stable, when $\frac{\sqrt{p-1}}{2} \leq |c| < 1$.

- Bona-Sachs’88 - orbital stability for $1 > |c| > \frac{\sqrt{p-1}}{2}, p < 5$
- Liu’93 - orbital instability for $p \geq 5$, or $|c| \leq \frac{\sqrt{p-1}}{2}, p < 5$
- Alexander-Pego-Sachs (’05) - the case $p = 2$, Evans functions.
The traveling wave φ_c of the Boussinesq equation is linearly unstable, if $p \geq 5$. If $2 \leq p < 5$, then it is linearly unstable if $0 \leq |c| < \frac{\sqrt{p-1}}{2}$ and linearly stable, when $\frac{\sqrt{p-1}}{2} \leq |c| < 1$.

- Bona-Sachs’88 - orbital stability for $1 > |c| > \frac{\sqrt{p-1}}{2}$, $p < 5$
- Liu’93 - orbital instability for $p \geq 5$, or $|c| \leq \frac{\sqrt{p-1}}{2}$, $p < 5$
- Alexander-Pego-Sachs (’05) - the case $p = 2$, Evans functions.
The traveling wave ϕ_c of the Boussinesq equation is linearly unstable, if $p \geq 5$. If $2 \leq p < 5$, then it is linearly unstable if $0 \leq |c| < \frac{\sqrt{p-1}}{2}$ and linearly stable, when $\frac{\sqrt{p-1}}{2} \leq |c| < 1$.

- Bona-Sachs’88 - orbital stability for $1 > |c| > \frac{\sqrt{p-1}}{2}$, $p < 5$
- Liu’93 - orbital instability for $p \geq 5$, or $|c| \leq \frac{\sqrt{p-1}}{2}$, $p < 5$
- Alexander-Pego-Sachs ('05)- the case $p = 2$, Evans functions.
The traveling wave φ_c of the Boussinesq equation is linearly unstable, if $p \geq 5$. If $2 \leq p < 5$, then it is linearly unstable if $0 \leq |c| < \frac{\sqrt{p-1}}{2}$ and linearly stable, when $\frac{\sqrt{p-1}}{2} \leq |c| < 1$.

- Bona-Sachs’88 - orbital stability for $1 > |c| > \frac{\sqrt{p-1}}{2}$, $p < 5$
- Liu’93 - orbital instability for $p \geq 5$, or $|c| \leq \frac{\sqrt{p-1}}{2}$, $p < 5$
- Alexander-Pego-Sachs (’05)- the case $p = 2$, Evans functions.
The traveling wave φ_c of the Boussinesq equation is linearly unstable, if $p \geq 5$. If $2 \leq p < 5$, then it is linearly unstable if $0 \leq |c| < \frac{\sqrt{p-1}}{2}$ and linearly stable, when $\frac{\sqrt{p-1}}{2} \leq |c| < 1$.

- Bona-Sachs’88 - orbital stability for $1 > |c| > \frac{\sqrt{p-1}}{2}$, $p < 5$
- Liu’93 - orbital instability for $p \geq 5$, or $|c| \leq \frac{\sqrt{p-1}}{2}$, $p < 5$
- Alexander-Pego-Sachs (’05) - the case $p = 2$, Evans functions.
The traveling wave φ_c of the Boussinesq equation is linearly unstable, if $p \geq 5$. If $2 \leq p < 5$, then it is linearly unstable if $0 \leq |c| < \sqrt{\frac{p-1}{2}}$ and linearly stable, when $\sqrt{\frac{p-1}{2}} \leq |c| < 1$.

- Bona-Sachs’88 - orbital stability for $1 > |c| > \sqrt{\frac{p-1}{2}}, p < 5$
- Liu’93 - orbital instability for $p \geq 5$, or $|c| \leq \sqrt{\frac{p-1}{2}}, p < 5$
- Alexander-Pego-Sachs (’05)- the case $p = 2$, Evans functions.
Recall $H = -\partial_x \mathcal{L} \partial_x$. In our notations, we need to compute
\[
\langle H^{-1} \psi_0', \psi_0' \rangle = \frac{1}{\|\varphi_c\|^2} \langle H^{-1} \varphi_c', \varphi_c' \rangle = -\frac{1}{4c} \frac{\partial_c [\|\varphi_c\|^2]}{\|\varphi_c\|^2} = \frac{5-p}{4(p-1)(1-c^2)}.
\]
We set up the inequality to find the intervals, in which the speeds yield stable traveling waves.

\[
1 > |c| \geq \omega^*(H) = \frac{\sqrt{(p-1)(1-c^2)}}{\sqrt{5-p}}.
\]

The solution to this inequality is $1 > |c| \geq \frac{\sqrt{p-1}}{2}$ and we have stability here.

In the complementary set, $0 \leq |c| < \frac{\sqrt{p-1}}{2}$, we have instability.
Recall $H = -\partial_x L \partial_x$. In our notations, we need to compute
\[
\langle H^{-1} \psi'_0, \psi'_0 \rangle = \frac{1}{\|\varphi_c\|^2} \langle H^{-1} \varphi'_c, \varphi'_c \rangle = -\frac{1}{4c} \frac{\partial_c \|\varphi_c\|^2}{\|\varphi_c\|^2} = \frac{5-p}{4(p-1)(1-c^2)}.
\]
We set up the inequality to find the intervals, in which the speeds yield stable traveling waves.

\[
1 > |c| \geq \omega^*(H) = \frac{\sqrt{(p-1)(1-c^2)}}{\sqrt{5-p}}.
\]

The solution to this inequality is $1 > |c| \geq \frac{\sqrt{p-1}}{2}$ and we have stability here.

In the complementary set, $0 \leq |c| < \frac{\sqrt{p-1}}{2}$, we have instability.
KGZ system

Linearized system with
\[(\varphi, \psi) = (2\sqrt{1 - c^2} \text{sech}(y / \sqrt{1 - c^2}), -2\text{sech}^2(y / \sqrt{1 - c^2})\]

\[
\ddot{\Phi}_{tt} - 2c\dot{\Phi}_{tx} + H\dot{\Phi} = 0, \quad H := \begin{pmatrix} H_1 & A \\ A^* & H_2 \end{pmatrix},
\]

\[
H_1 = -(1 - c^2)\partial_{xx} + 1 + \psi = -\mu^2\partial_{xx} + 1 - \frac{\varphi^2}{2\mu^2}
\]

\[
H_2 = -(1 - c^2)\partial_{xx} = -\mu^2\partial_{xx}
\]

\[
Az = \varphi z_x, \quad A^* v = -(\varphi v)_x
\]
KGZ system

Linearized system with
\[(\varphi, \psi) = (2\sqrt{1 - c^2} \text{sech}(y/\sqrt{1 - c^2}), -2\text{sech}^2(y/\sqrt{1 - c^2})\]

\[
\ddot{\Phi}_{tt} - 2c\dot{\Phi}_{tx} + \mathcal{H}\Phi = 0, \quad \mathcal{H} := \begin{pmatrix} H_1 & A \\ A^* & H_2 \end{pmatrix},
\]

\[
H_1 = -(1 - c^2)\partial_{xx} + 1 + \psi = -\mu^2\partial_{xx} + 1 - \frac{\varphi^2}{2\mu^2}
\]

\[
H_2 = -(1 - c^2)\partial_{xx} = -\mu^2\partial_{xx}
\]

\[
Az = \varphi z_x, A^* v = -(\varphi v)_x
\]
The operator \mathcal{H} is self-adjoint and it satisfies the requirements of Theorem 2.

Theorem

Let $c \in (-1, 1)$. Then, the traveling wave solution $(\varphi(x - ct), \psi(x - ct))$ described in (4) is linearly stable for $|c| \in [\sqrt{\frac{2}{3}}, 1)$ and linearly unstable for $|c| \in [0, \sqrt{\frac{2}{3}})$.

The linear stability results match precisely the orbital stability results by Chen, except at the endpoints $|c| = \sqrt{\frac{2}{3}}$. At this point, we have linear stability, according to the Theorem, but it is unclear whether the wave is orbitally stable or not.

Coming up:
- whole line waves for KGZ- any p
- periodic waves for Boussinesq and KGZ, $p = 2, 3$
- Klein-Gordon models

Milena Stanislavova, Atanas Stefanov
Stability of traveling waves of second order in time PDE's
The operator \mathcal{H} is self-adjoint and it satisfies the requirements of Theorem 2.

Theorem

Let $c \in (-1, 1)$. Then, the traveling wave solution $(\varphi(x - ct), \psi(x - ct))$ described in (4) is linearly stable for $|c| \in [\sqrt{\frac{2}{3}}, 1)$ and linearly unstable for $|c| \in [0, \sqrt{\frac{2}{3}})$.

The linear stability results match precisely the orbital stability results by Chen, except at the endpoints $|c| = \sqrt{\frac{2}{3}}$. At this point, we have linear stability, according to the Theorem, but it is unclear whether the wave is orbitally stable or not.

Coming up:

- whole line waves for KGZ; any p
- periodic waves for Boussinesq and KGZ, $p = 2, 3$
- Klein-Gordon models
The operator \mathcal{H} is self-adjoint and it satisfies the requirements of Theorem 2.

Theorem

Let $c \in (-1, 1)$. Then, the traveling wave solution $(\varphi(x - ct), \psi(x - ct))$ described in (4) is linearly stable for $|c| \in \left[\frac{\sqrt{2}}{2}, 1\right)$ and linearly unstable for $|c| \in \left[0, \frac{\sqrt{2}}{2}\right)$.

The linear stability results match precisely the orbital stability results by Chen, except at the endpoints $|c| = \frac{\sqrt{2}}{2}$. At this point, we have linear stability, according to the Theorem, but it is unclear whether the wave is orbitally stable or not.

Coming up:

- whole line waves for KGZ- any p
- periodic waves for Boussinesq and KGZ, $p = 2, 3$
- Klein-Gordon models
The operator \mathcal{H} is self-adjoint and it satisfies the requirements of Theorem 2.

Theorem

Let $c \in (-1, 1)$. Then, the traveling wave solution $(\varphi(x - ct), \psi(x - ct))$ described in (4) is linearly stable for $|c| \in \left[\frac{\sqrt{2}}{2}, 1\right)$ and linearly unstable for $|c| \in \left[0, \frac{\sqrt{2}}{2}\right)$.

The linear stability results match precisely the orbital stability results by Chen, except at the endpoints $|c| = \frac{\sqrt{2}}{2}$. At this point, we have linear stability, according to the Theorem, but it is unclear whether the wave is orbitally stable or not.

Coming up:
- whole line waves for KGZ
- any p
- periodic waves for Boussinesq and KGZ, $p = 2, 3$
- Klein-Gordon models
The operator \mathcal{H} is self-adjoint and it satisfies the requirements of Theorem 2.

Theorem

Let $c \in (-1, 1)$. Then, the traveling wave solution $(\varphi(x - ct), \psi(x - ct))$ described in (4) is linearly stable for $|c| \in [\frac{\sqrt{2}}{2}, 1)$ and linearly unstable for $|c| \in [0, \frac{\sqrt{2}}{2})$.

The linear stability results match precisely the orbital stability results by Chent, except at the endpoints $|c| = \frac{\sqrt{2}}{2}$. At this point, we have linear stability, according to the Theorem, but it is unclear whether the wave is orbitally stable or not.

Coming up:

- whole line waves for KGZ- any p
- periodic waves for Boussinesq and KGZ, $p = 2, 3$
- Klein-Gordon models
The operator \mathcal{H} is self-adjoint and it satisfies the requirements of Theorem 2.

Theorem

Let $c \in (-1, 1)$. Then, the traveling wave solution $(\varphi(x - ct), \psi(x - ct))$ described in (4) is linearly stable for $|c| \in [\frac{\sqrt{2}}{2}, 1)$ and linearly unstable for $|c| \in [0, \frac{\sqrt{2}}{2})$.

The linear stability results match precisely the orbital stability results by Chen, except at the endpoints $|c| = \frac{\sqrt{2}}{2}$. At this point, we have linear stability, according to the Theorem, but it is unclear whether the wave is orbitally stable or not.

Coming up:

- whole line waves for KGZ- any p
- periodic waves for Boussinesq and KGZ, $p = 2, 3$
- Klein-Gordon models
The operator \mathcal{H} is self-adjoint and it satisfies the requirements of Theorem 2.

Theorem

Let $c \in (-1, 1)$. Then, the traveling wave solution
$(\varphi(x-ct), \psi(x-ct))$ described in (4) is linearly stable for $|c| \in \left[\frac{\sqrt{2}}{2}, 1\right)$ and linearly unstable for $|c| \in \left[0, \frac{\sqrt{2}}{2}\right]$.

The linear stability results match precisely the orbital stability results by Chen, except at the endpoints $|c| = \frac{\sqrt{2}}{2}$. At this point, we have linear stability, according to the Theorem, but it is unclear whether the wave is orbitally stable or not.

Coming up:

- whole line waves for KGZ- any p
- periodic waves for Boussinesq and KGZ, $p = 2, 3$
- Klein-Gordon models
Thank you for your attention.