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Abstract. We present a new meshless method for scalar diffusion equations, which is motivated
by their compatible discretizations on primal-dial grids. Unlike the latter though, our approach is
truly meshless because it only requires the graph of nearby neighbor connectivity of the discretization
points xi. This graph defines a local primal-dual grid complex with a virtual dual grid, in the
sense that specification of the dual metric attributes is implicit in the method’s construction. Our
method combines a topological gradient operator on the local primal grid with a Generalized Moving
Least Squares approximation of the divergence on the local dual grid. We show that the resulting
approximation of the div-grad operator maintains polynomial reproduction to arbitrary orders and
yields a meshless method, which attains O(hm) convergence in both L2 and H1 norms, similar
to mixed finite element methods. We demonstrate this convergence on curvilinear domains using
manufactured solutions. Application of the new method to problems with discontinuous coefficients
reveals solutions that are qualitatively similar to those of compatible mesh-based discretizations.

Key words. Generalized moving least squares, primal-dual grid methods, compatible discretiza-
tions, mixed methods, div-grad system.
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1. Introduction. Consider a bounded region in Rd, d = 2, 3 with a Lipschitz
continuous boundary Γ = ∂Ω. This paper presents a new staggered meshless dis-
cretization approach for the model elliptic boundary value problem

(1.1)

−∇ · µ∇φ = f in Ω

φ = u on ΓD

n · µ∇φ = g on ΓN

where ΓD and ΓN denote Dirichlet and Neumann parts of the boundary Γ, respec-
tively, µ is a symmetric positive definite tensor describing a material property and f ,
u and g are given data.

In important applications such as porous media flow [1], heat transfer [2] and
semiconductor devices [3], the flux u = −µ∇φ is the variable of primary interest.
Predictive simulations of such problems require carefully constructed approximations
of the divergence and gradient operators, which ensure stable, accurate and locally
conservative flux approximations.

Generally speaking, such compatible discretizations of (1.1) fall into one of the
following two categories. Single grid methods such as: mixed finite elements [4];
virtual elements [5]; or mimetic finite differences [6], [7], construct an approximation
of one of the two operators (typically the divergence) on the given grid and then
use its adjoint1 as a proxy for the other operator (the gradient). In so doing these
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methods satisfy a discrete version of Green’s theorem.
In contrast, primal-dual grid approaches, such as box integration [8], covolume

[9, 10], or finite volume [11] schemes use the two grids in the primal-dual complex to
approximate the divergence and the gradient independently. When the two grids are
topologically dual, such as in the case of Voronoi-Delauney triangulations or rectilin-
ear2 primal grids, these methods assume a particularly simple and elegant form.

The abundance of compatible mesh-based methods that provide accurate and
locally conservative flux approximations stands in stark contrast with the almost
complete absence of meshless methods that would provide comparable results but
without the need for a global mesh structure. Few notable exceptions are the uncertain
grid method [12] and the conceptually similar meshless volume schemes [13, 14] for
conservation laws.

Motivated by compatible discretizations of (1.1) on primal-dual grids, we present
a new meshless scheme for this problem that exhibits similar computational proper-
ties, most notably an ability to produce accurate, non-oscillatory approximations for
problems with material discontinuities. Our approach is truly meshless because it
only requires the graph of nearby neighbor connectivity of every discretization point
xi. The vertices and the edges of this graph define a local primal grid for every mesh
point, which induces a virtual local dual grid comprising a virtual cell dual to xi and
a set of virtual faces dual to the edges of the connectivity graph.

Following primal-dual grid methods we discretize the div-grad operator using
independent approximations of the divergence and the gradient on the local grid
complex. Specifically, we combine a topological gradient on the local primal grid with
a Generalized Moving Least Squares (GMLS) approximation of the divergence on the
local virtual dual grid. The latter is virtual in the sense that our approach does
not require its physical construction, instead, specification of dual cell volumes and
dual face areas is implicit in the method’s construction. We show that the resulting
meshless approximation of the div-grad operator retains polynomial reproduction of
arbitrary orders. Because of its conceptual similarity with primal-dual schemes we
call the resulting method a staggered GMLS discretization of (1.1).

Our new method also differs in important and significant ways from the conser-
vative meshless schemes in [12, 13, 14]. While these approaches similarly use different
sets of degrees-of-freedom to discretize the gradient and divergence, they rely on a
global Quadratic Program (QP) to determine the meshless analogues of cell volumes
and face areas that ensure the compatibility of the scheme. As a result, application
of these methods to large-scale problems would require the formulation of a scalable,
QP-specific optimization solver [14]. In contrast, our approach requires the solution
of many independent and inexpensive local optimization problems, allowing an O(N)
implementation in the number of degrees of freedom.

A second important difference is the order of accuracy achieved by these schemes
and our new method. The accuracy of the former is similar to that of comparable
finite volume schemes, i.e., they are roughly second-order accurate. In contrast, our
method attains O(hm) convergence in both L2 and H1 norms, similar to mixed finite
element methods.

It is worth mentioning that some variations of smooth particle hydrodynamics
(SPH), which use discretely skew-adjoint divergence and gradient operators [15, 16],

2In this case the dual grid is a translation of the primal grid by a half cell size. This creates the
appearance of all variables living on the same grid but at different locations, thus the term “staggered
grid methods”.
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pursue a somewhat different type of compatibility. However, it is well-known [17]
that this compatibility in SPH comes at the expense of the gradient operators lacking
even zeroth-order polynomial consistency, and many applications require techniques
to numerically stabilize the method in the presence of large differences in material
properties such as density or viscosity (e.g. [18]). In contrast to this, we will show that
our method maintains high-order polynomial reproduction and remains numerically
stable across jumps in material properties of several orders of magnitude.

We have organized the paper as follows. Section 2 introduces notation and re-
views basic concepts of Generalized Moving Least Squares, while Section 3 specializes
these concepts to approximation of vector fields and their derivatives from directional
components. Section 4 presents the development of the new staggered GMLS, and
Section 5 studies its accuracy. We discuss implementation details in Section 6 and
present numerical results in Section 7. Section 8 summarizes our findings.

2. Notation and quotation of results. Throughout this paper bold face fonts
denote various vector quantities, e.g., x is a point in the Euclidean space Rd, u is
a vector field in Rd, eij is an edge connecting points xi and xj , and so on. Lower
case fonts stand for various scalar quantities, upper case Roman fonts are primarily
used to denote function spaces, operators and sets of geometric entities, while the first
few lower case Greek symbols will stand for multi-indices, e.g., α = (α1, . . . , αd) and
|α| =

∑
αi. We use the standard Euler notation Dα for a partial derivative of order

|α|, i.e., Dα := ∂|α|/∂xα1
i
. . . ∂xαii

and denote the standard Euclidean norm by ‖ · ‖.
As usual, Cm(Ω) is the space of all continuous functions whose derivatives up to

order m are also continuous and Pm(Rd), or simply Pm is the space of all multivariate
polynomials of degree less than or equal to m.

2.1. Local geometric structures. In this paper we consider discretization of
Ω by a set of points Ωh = {xi}i=1,...,N . We denote all boundary points by Γh and set

Ω̆h = Ωh \ Γh. The ε-neighborhood of xi ∈ Ωh is the set

Nε
i := {xj ∈ Ωh | ‖xj − xi‖ < ε},

where ε > 0 is given and may depend on the point location. We use the local
connectivity graph of the points in Nε

i to construct an approximation of the div-grad
operator that mimics the one in primal-dual grid methods. Specifically, with every
ε-neighborhood we associate a local primal grid comprising a local vertex set

Vi = {vj = xj |xj ∈ Nε
i },

which is simply the set of all points in Nε
i , and a local edge set

Ei = {eij = xj − xi |xj ∈ Nε
i }.

The edges in Ei have midpoints, half-edges, and unit tangents given by

xij =
xi + xj

2
, mij = xij − xi, and tij =

xj − xi
‖xj − xi‖

=
xj − xi
‖eij‖

,

respectively; see Fig. 1. We denote the set of all midpoints by Mi. Note that Ei does
not contain edges that do not have xi as a vertex.

The local primal grid induces a local virtual dual grid comprising a single virtual
cell Ci dual to vertex vi and a set of virtual faces Fi = {fij} dual to Ei, intersecting
eij at xij and having face normals equivalent to edge tangents, i.e.,

(2.1) ∀fij ∈ Fi, fij ∩ eij = xij and nij = tij .
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Fig. 1. A local primal-dual grid complex induced by a point xi and its ε-neighborhood Nε
i . The

primal edges eij , midpoints xij and mid-edges mij are physical mesh entities. The dual cell Ci and
the dual faces fij are virtual mesh entities.

Remark 1. Although the local primal mesh contains “real” mesh entities in the
sense that the elements of Vi and Ei have geometric attributes such as coordinates
and lengths, they are not used directly in the formulation of our method. Instead, all
necessary metric quantities are determined implicitly by the method’s construction.

2.2. Local approximation spaces and operators. On the local primal grid
we define the local vertex space

V i = {uj ∈ R | ∀vj ∈ Vi}

and the local edge space

Ei = {uij ∈ R | ∀eij ∈ Ei} .

The elements of V i and Ei are sets of real values associated with the local vertices
and edges, respectively. In particular, we assume that edge values uij are localized at
the edge midpoints xij and represent the tangent components of some vector field u
along the edges, i.e., uij = uij · tij .

Likewise, on the local virtual dual grid we define the cell space

Ci = {ui ∈ R}

comprising a single scalar value on the virtual dual cell Ci, and the face space

F i = {uij ∈ R | ∀fij ∈ Fi}

containing real values associated with the virtual dual faces. We assume that the face
values uij are localized at edge-face intersection points xij and represent the normal
components of some vector field u, i.e., uij = uij · nij .

Thanks to the topological duality (2.1) between Ei and Fi, the corresponding
edge and face spaces Ei and F i are isomorphic. Thus, any tangent vector component
uij = uij · tij on a primal edge eij can be viewed as a normal vector component
uij · nij on the dual face fij and vice versa. Thus, our local approximation spaces
reproduce the key property of primal-dual grid complexes without requiring a global
mesh data structure.
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To complete the specification of the discrete structures necessary for our new
scheme it remains to endow the above discrete spaces with suitable notions of a
gradient and divergence operators. Taking clue from primal-dual grid methods we
seek the discrete gradient as a mapping GRADi : V i → Ei on the local primal mesh,
and the discrete divergence as a mapping DIVi : F i → Ci on the local virtual dual
mesh. As in a primal-dual methods, the isomorphism between Ei and F i then allows
us to “chain” these operators into an approximation of the div-grad operator.

Avoiding an explicit dependence on any metric entities such as areas, volumes
and lengths is a key requirement for the construction of GRADi and DIVi. This
enables us to bypass a global optimization problem as required in [14]. To this end,
we choose to define GRADi as the topological gradient [19, 20], i.e., we set

(2.2) GRADi(u
h) = uh ∈ Ei ⇔ uij = uj − ui ∀uh ∈ V i.

The operator (2.2) is topological because it depends on the connectivity of the local
vertices and edges in Nε

i , but not on their physical locations. The node-to-edge
incidence matrix of the local primal grid is the algebraic representation of GRADi.

We will subsume all necessary metric attributes of our scheme in the definition
of DIVi by using a Generalized Moving Least Squares approach [21] to define this
operator. We now review key aspects of the GMLS theory necessary for this task.
Then in Section 3 we extend the approach in [21] to approximate vector fields and
their derivatives from scattered directional components

2.3. Generalized Moving Least Squares (GMLS) framework. Following
[22, Section 4.3] we consider an abstract setting given by

• a function space V with a dual V ∗;
• a finite dimensional space P = span{p1, . . . , pQ} ⊂ V ;
• a finite set of linear functionals Λ = {λ1, . . . , λN} ⊂ V ∗; and
• a correlation (weight) function ω : V ∗ × V ∗ 7→ R+ ∪ {0}.

We assume that Λ is P -unisolvent, that is

(2.3) {p ∈ P |λi(p) = 0, i = 1, . . . , N} = {0}.

In other words, the zero is the only element of P for which all functionals in Λ vanish.
Given a target functional τ ∈ V ∗ GMLS seeks to approximate its action on any

function u ∈ V by a linear combination

(2.4) τ(u) ≈ τ̃(u) :=

N∑
i=1

ai(τ)λi(u)

of its samples {λ1(u), . . . , λN (u)} such that
P.1 The approximation (2.4) is exact for P , i.e.,

(2.5) τ(u) = τ̃(u) :=

N∑
i=1

ai(τ)λi(u) ∀u ∈ P.

P.2 The coeffcients ai(τ) have local supports relative to ω, i.e.,

(2.6) ω(τ ;λi) = 0 ⇒ ai(τ) = 0.

P.3 The coefficients ai(τ) are uniformly bounded in τ , i.e.,

(2.7) ∃C > 0 s.t.

N∑
i=1

|ai(τ)| ≤ C ∀τ ∈ V ∗.
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In what follows, we refer to P.1 as P-reproduction property, Λ as the sampling
set, P - as the reproduction property space, and ai(τ) - the basis functions. Following
[22] we define the basis functions as the optimal solution of the following Quadratic
Program (QP):

(2.8) minimize
1

2

N∑
i=1

ai(τ)2

ω(τ ;λi)
subject to

N∑
i=1

ai(τ)λi(pk) = τ(pk) k = 1, 2 . . . , Q.

The objective in (2.8) enforces the local support of the basis, while the constraint
enforces P -reproduction. The P -unisolvency condition (2.3) is sufficient for (2.8) to
have a unique minimizer that satisfies P.1–P.3; see [22, Theorem 4.9, p.44]. With the
notation

(2.9)
a(τ) = (ai(τ))Ni=1 ∈ RN ; r(τ) = (τ(pk))Qk=1 ∈ RQ;

W (τ) = diag(ω(τ ;λi)) ∈ RN×N ; P (Λ) = (λi(pj)) ∈ RQ×N

the QP (2.8) assumes an equivalent algebraic form

(2.10) minimize
1

2
a(τ)TW (τ)a(τ) subject to P (Λ)a(τ) = r(τ).

It is easy to see that the optimal solution of (2.10), resp (2.8) is given by

(2.11) a(τ) = W (τ)PT (Λ)
(
P (Λ)W (τ)PT (Λ)

)−1
r(τ)

and so, the GMLS approximation (2.4) assumes the form

τ̃(u) = `T (u)a(τ) = `T (u)W (τ)PT (Λ)
(
P (Λ)W (τ)PT (Λ)

)−1
r(τ),

with `T (u) = (λi(u))Ni=1 ∈ RN . Setting

(2.12) b(τ)T = `T (u)W (τ)PT (Λ)
(
P (Λ)W (τ)PT (Λ)

)−1

allows us to write the approximation of the target functional as

(2.13) τ̃(u) = `T (u)a(τ) = b(τ)Tr(τ).

In other words, we can switch from a representation of τ̃(u) in terms of a linear
combination of samples λi(u) to a representation in terms of a linear combination of
the values τ(pk) of the target functional at the basis of P . It is straightforward to
show that b(τ) admits the following variational characterization

(2.14) b(τ) = argmin
c∈RQ

1

2

(
`(u)− PT (Λ)c

)T
W (τ)

(
`(u)− PT (Λ)c

)
.

The algebraic least-squares problem (2.14) is equivalent to finding the best weighted
least-squares fit to the data {λi(u)} out of the space P in the sense that the function

(2.15) p∗ := b(τ)Tp =

Q∑
k=1

bk(τ)pk,
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where p = (p1, . . . , pQ), satisfies

(2.16) p∗ = argmin
p∈P

1

2

N∑
i=1

(λi(u)− λi(p))2
ω(τ ;λi).

This motivates the notation

(2.17) τ̃(p∗) := b(τ)Tr(τ) =

Q∑
k=1

bk(τ)τ(pk).

for the GMLS approximation of the target functional τ .
In some important settings, such as the approximation of functions and their

derivatives from scattered point values, the characterization (2.16), resp., (2.14) and
the alternative representation τ̃(u) = τ̃(p∗) = b(τ)Tr(τ) offer some computational
advantages. We consider such settings and their specialization to our needs in the
next section.

3. GMLS approximation of vector fields and their divergence from di-
rectional components. In this section we apply the abstract GMLS framework to
define a discrete divergence operator DIVi : F i 7→ Ci. Our approach draws upon
ideas of Mirzaei et al [21, 23] on GMLS approximations of scalar functions and their
derivatives from point function values. Accordingly, we start with a brief summary
of the relevant aspects of their work.

3.1. GMLS approximation of scalar functions and their derivatives. Let
m > 0 be some fixed integer. We consider the GMLS framework in Section 2.3 with

V = Cm+1(Ω), P = Pm ⊂ V, Λ = {δx1
, . . . , δxN }, and τ(u) = δx ◦Dα,

where X = {xi, . . . ,xN} is a finite set of points in Ω, x ∈ Ω is a given point assumed
to be distinct from the points in X and α is a multi index. If |α| = 0 then τ(u) = δx,
i.e., the target functional reduces to point evaluation at x.

We assume that X is such that the associated sampling set Λ is Pm-unisolvent.
The following conditions are sufficient to ensure this property; see [22, Theorem 4.7,
p.41],[22, Theorem 3.14, p.33], [21, Definition 4.4]:

C.1 The region Ω ∈ Rd is compact and satisfies an interior cone condition with radius
r > 0 and angle θ ∈ (0, π/2).

C.2 The point set X = {xi} is quasi-uniform with fill distance (see [22, Definition
4.6, p.41] hX,Ω ≤ h0, where h0 = r/C(θ) and C(θ) = 16(1 + sin θ)2m2/(3 sin2 θ).

Because both the target functional τ and the sampling set functionals λi depend
on the spatial location we can choose a weight function according to

(3.1) ω(τ ;λi) = ω(δx ◦Dα; δxi) := Φ(||x− xi||)

where Φ(x) is a compactly supported, positive, radially symmetric function. In par-
ticular, we assume that the weight function satisfies the following condition:

C.3 The support of the weight function Φ is contained in B(0, δ) and Φ > 0 in
B(0, δ/2), where δ = 2C(θ)hX,Ω; see [22, p.36].

Conditions C.1–C.3 are sufficient to ensure that properties P.1-P.3 hold in the
present context. Thus, in what follows we restrict attention to GMLS settings satis-
fying these conditions.
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Recall the equivalent GMLS approximations of the target functional in (2.13). We
now explain why in the present setting the representation τ̃(u) = b(τ)Tr(τ) could be
more computationally efficient than the equivalent representation τ̃(u) = `T (u)a(τ)
in terms of the basis functions.

Indeed, according to (2.12) the coefficient vector b(τ) depends on τ through the
matrix W (τ). However, the choice of weight function (3.1) makes W (τ) dependent
on the point location x but not on the derivative component Dα. It follows that b
will likewise depend on x but not on Dα. In other words,

(3.2) τ̃(u) = ˜δx ◦Dα(u) = b(x)Tr(δx ◦Dα).

In contrast, (2.11) reveals that the basis functions a(τ) depend both on x through
W (x) and the derivative component Dα through r(τ) = r(δx ◦Dα), i.e.,

(3.3) τ̃(u) = ˜δx ◦Dα(u) = `T (u)a(δx ◦Dα).

Thus, if δx ◦Dα is required for multiple values of α, the coefficient vector b(x) must
be computed only once, whereas the basis functions a(δx ◦Dα) must be recomputed
for every new value of α. Inversion of P (Λ)W (τ)PT (Λ) comprises the bulk of the
computational cost in both cases. Using (3.2) requires a single inversion of this matrix,
whereas (3.3) formally requires a separate inversion for every new target functional.

Remark 2. In practice the actual computational advantage of (3.2) over (3.3)
depends on multiple factors such as the number of target functionals, the size of X,
and the polynomial degree m of the reconstruction space Pm. If m is small one could

in principle store
(
P (Λ)W (τ)PT (Λ)

)−1
in factored form at every point xi and apply

it to multiple right hand sides given by r(δx ◦ Dα). In this case the cost of (3.3)
is comparable to that of (3.2). However, for larger polynomial degrees and/or large
number of points the storage requirements may be prohibitively large, making (3.2) a
better computational option.

In light of Remark 2 in what follows we use exclusively the representation (3.2).
Its computation decouples into a solution of a weighted least-squares problem

(3.4) b(x) = argmin
c∈RQ

1

2

(
`(u)− PT (Λ)c

)T
W (x)

(
`(u)− PT (Λ)c

)
for the coefficients b(x), which is independent of the derivative part Dα, followed by
an application of the target functional to the basis functions of P = Pm.

Remark 3. Analogous to the relationship between (2.14) and (2.16), the alge-
braic least-squares problem (3.4) is equivalent to finding the best weighted least-squares
polynomial fit to a set of function values

(3.5) p∗(x) = argmin
p∈Pm

1

2

N∑
i=1

(u(xi)− p(xi))2
Φ(||x− xi||)

in the sense that, given a basis {p1, . . . , pQ} of Pm, there holds

(3.6) p∗(x) = b(x)Tr(δx) =

Q∑
i=1

bi(x)pi(x).

Likewise, for τ = δx ◦Dαu the abstract formula (2.17) specializes to

(3.7) ˜δx ◦Dα(u) = ˜δx ◦Dα(p∗) := b(x)Tr(δx ◦Dα) =

Q∑
i=1

bi(x)Dαpi(x).
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The latter has the appearance of an approximation to Dαp∗(x) computed by neglecting
the dependence of the coefficients bi on the spatial location. This is why (3.7) has
been often referred to as a “diffuse derivative” [24] and deemed inferior to the true
derivative Dαp∗(x). This misconception had been first pointed out by [21], which also
provided a correct interpretation of (3.7) using the GMLS framework. Following their

suggestion we refer to ˜δx ◦Dα(u) as the “GMLS derivative approximation”, or simply
the “GMLS derivative”, instead of “diffuse derivative”.

To simplify notation we adopt the more compact symbol

D̃αu(x) := ˜δx ◦Dα(u)

for the GMLS derivative. Assuming that conditions C.1–C.3 hold Mirzaei et al [21,
Corollary 4.13] prove that this derivative satisfies the following error bound:

(3.8) |D̃αu(x)−Dαu(x)| ≤ Chm+1−|α|
X,Ω ‖u‖Cm+1 .

3.2. A GMLS divergence operator. We now focus on the application of the
GMLS approach in Section 3.1 to define a discrete divergence operator DIVi : F i 7→
Ci. This operator should map the normal vector field components defined on the local
virtual cell faces fij to a single value on the local virtual cell Ci. Thus, to discuss
the construction of DIVi it suffices to consider an arbitrary point xi ∈ Ωh and its
associated local primal-dual grid on Nε

i .
Owing to the duality relationship between Fi and Ei, the normal components of

u across the virtual faces fij coincide with the tangent components uij = uij · tij of
this field along the local edges eij . Thus, the task of defining DIVi essentially boils
down to the task of approximating ∇ ·u(xi) from this data. We also note that using
a set of non-normalized tangent vectors to the edges results in an equivalent set of
degrees of freedom. In particular, the choice

(3.9) uij = u(xij) · 2mij = u(xij) · 2(xij − xi)

brings about some simplifications in the subsequent formulas and so, from now on we
assume that the elements of Ei are defined by (3.9).

Given a vector field u ∈ (Cm+1(Ω))d we call the scalar function

(3.10) ui→(x) = u(x) · 2(x− xi)

the radial component of u in the direction of xi. Clearly, ui→ ∈ Cm+1(Ω),

(3.11) ui→(xij) = u(xij) · 2mij = uij and ui→(xi) = 0.

The following result shows that the vector field u and its divergence at xi can be
both expressed in terms of the derivatives of its radial component function.

Lemma 3.1. Let u ∈ (Cm+1(Ω))d and ui→ ∈ Cm+1(Ω) be its radial component
function (3.10). There holds

(3.12) u(xi) =
1

2
∇ui→(xi) and ∇ · u(xi) =

1

4
∆ui→(xi).

Proof.
Taking the gradient of the radial component function gives

∇ui→(x) = 2∇u(x)T (x− xi) + 2u(x).



10 N. TRASK et al.

Taking the divergence of this identity gives

∇ · ∇ui→(x) = 2
(
∇ · ∇u(x)

)
· (x− xi) + 2∇u(x) : ∇x + 2∇ · u(x)

= 2
(
∇ · ∇u(x)

)
· (x− xi) + 4∇ · u(x)

Setting x = xi completes the proof.

Remark 4.
The line integral of u along the line l(t) = xi + 2t(x− xi), t ∈ [0, 1] provides an

alternative definition of the radial component function

(3.13) ui→(x) =

∫ 2x−xi

xi

u · dl =

∫ 1

0

u (l(t)) · 2(x− xi)dt.

Inserting the Taylor expansion

u(l(t)) = u(xi) + 2t∇u(xi)(x− xi) + o(‖x− xi‖)

of u(l(t)) about t = 0 into (3.13) and integrating the result gives

ui→(x) =
(
u(xi) +∇u(xi)(x− xi))

)
· 2(x− xi) + o(‖x− xi‖2,

while the expansion u(x) = u(xi) +∇u(xi)(x− xi) + o(‖x− xi‖2) implies that

ui→(x) = u(x) · 2(x− xi) + o(‖x− xi‖2)

Therefore, Lemma 3.1 continues to hold with the alternative definition (3.13).

Lemma 3.1 provides the foundation for a GMLS approximation of a vector field
and its divergence from scattered directional components. Specifically, the lemma
asserts that we can define a GMLS approximation of u(xi) and ∇ · u(xi) as

(3.14) ũ(xi) = δ̃xi(u) :=
1

2
∇̃ui→(xi) and ∇̃·u(xi) :=

1

4
∆̃u(xi),

respectively, where ∇̃ui→(xi) and ∆̃ui→(xi) are the GMLS gradient and Laplacian
of the radial component function, respectively.

Our main idea now is to specialize the GMLS approach in Section 3.1 to the radial
component function in such a way that the GMLS divergence becomes a mapping
F i 7→ Ci. Such a specialization enables us to use ∇̃·u(xi) to define the discrete
divergence operator DIVi in our staggered scheme.

In light of (3.11), i.e., ui→(xi) = 0, the appropriate setting for this specialization
is given by the spaces

V = Cm+1
i := {v ∈ Cm+1(Ω) | v(xi) = 0} and P = P im := {p ∈ Pm | p(xi) = 0}

while

(3.15) Λi = {δxij |xij ∈Mi} and τi(u) = δxi ◦Dα

define the set of the sampling functionals and the target functionals, respectively. As
in section 3.1, this allows us to use the weight function (3.1).

We proceed to establish a local P im-reproduction property.
Lemma 3.2. Assume that C.1–C.3 hold for X = Mi, i.e., the set of midpoints

in the neighborhood Nε
i . Let Λi and τi be the functionals in (3.15). Then, there exist
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coefficients aij,α(xi) = aij(δxi ◦Dα) such that properties P.1–P.3 hold with P = P im.
In particular, there exist a constant C1,α > 0 such that aij,α(xi) satisfy

(3.16)

N∑
j=1

|aij,α(xi)| ≤ C1,α

and aij,α(xi) = 0, if ‖xi−xij‖ > 2C(θ)hX,Ω, where hX,Ω and C(θ) are as in Condition
C.2. The equivalent problem (2.16) has a unique solution b(x), which defines a GMLS
derivative according to (3.7).

Proof. Conditions C.1–C.3 ensure that the midpoints Mi are Pm-unisolvent and
so, the sampling set Λi is also Pm-unisolvent. Since P im ⊂ Pm it follows that Λi is
also unisolvent for P im. The rest of the proof follows the arguments in [22] and [21].

The next Lemma estimates the errors of the specialized GMLS approximation.

Lemma 3.3. Assume that the hypotheses of Lemma 3.2 and let Ω∗ = B(xi, δ).
For any u ∈ Cm+1(Ω∗) ∩ Cm+1

i (Ω) there holds∥∥∥D̃αu(xi)−Dαu(xi)
∥∥∥ ≤ Chm+1−|α|

X,Ω ‖u‖Cm+1(Ω∗).

Proof. We adapt the proof of Theorem 4.3 in [21]. Adding and subtracting an
arbitrary p ∈ P im and using the P im reproduction property yields the bound

(3.17)

∥∥∥Dαu(xi)− D̃αu(xi)
∥∥∥ ≤ ‖Dαu(xi)−Dαp(xi)‖+

∥∥∥Dαp(xi)− D̃αu(xi)
∥∥∥

= ‖Dαu(xi)−Dαp(xi)‖+
∥∥∥∑

ij

aij,α(xi)p(xij)−
∑
ij

aij,α(xi)u(xij)
∥∥∥

≤ ‖Dαu(xi)−Dαp(xi)‖+ ‖p− u‖L∞(Ω∗)

∑
ij |aij,α(xi)|

Because u(xi) = 0, its Taylor polynomial pim of order m about xi belongs to P im.
Setting p = pim in (3.17) and using that

(3.18)
∥∥Dαu−Dαpim

∥∥
L∞(Ω∗)

≤ Chm+1−|α|
X,Ω ‖u‖Cm+1(Ω∗).

completes the proof.

Corollary 3.4. Assume the hypotheses and notation of Lemmas 3.2–3.3. Let
ũ(xi) and ∇̃·u(xi) be the GMLS approximations of u ∈ (Cm+1(Ω))d and its diver-
gence defined in (3.14). Then,∥∥u(xi)− ũ(xi)

∥∥ ≤ ChmX,Ω‖u‖Cm+1(Ω∗).

and ∥∥∇ · u(xi)− ∇̃·u(xi)
∥∥ ≤ Chm−1

X,Ω ‖u‖Cm+1(Ω∗).

Remark 5. Although Lemma 3.2 holds for a generic point x, the error estimate
in Lemma 3.3 is valid only at xi. The proof of the latter requires the Taylor polynomial
of u about the point where the error is being estimated to belong in P im, i.e., to vanish
at xi. In general, if pm is the Taylor polynomial of u about some other point x̄ there
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is no guarantee that pm ∈ P im. Nonetheless, this does not present a problem, since we
are only interested in estimates of the derivatives of u at xi.

In summary, given a vector field u ∈ (Cm+1(Ω))d and a point xi with neighbor-
hood Nε

i , our GMLS approach for the approximation of u and its divergence at xi
comprises the following two steps:

1. Solve the weighted least-squares problem

(3.19) p∗(xi) = argmin
p∈P im

{ N∑
j=1

[u(xij) · 2mij − p(xij)]
2

Φ(‖xi − xij‖)
}
.

2. Let b(xi) denote the coefficient vector of p∗ relative to a basis {pik} of P im. Set

(3.20)

ũ(xi) =
1

2
∇̃p∗(xi) :=

1

2

Q∑
k=1

bk(xi)∇pik(xi),

∇̃·u(xi) =
1

4
∆̃p∗(xi) :=

1

4

Q∑
k=1

bk(xi)∆p
i
k(xi).

4. Formulation of the staggered GMLS discretization method. The du-
ality of the local geometric structures and the ensuing isomorphism of Ei and V i allow
us to discretize the second-order operator in (1.1) by “chaining” the discrete diver-
gence and gradient operators at every point of Ωh. This observation is at the heart of
our staggered GMLS method. For clarity we present the method for µ = I and Dirich-
let boundary conditions, i.e., ΓD = Γ. Section 6 briefly discusses implementation of
the method for a general µ and Neumann boundary conditions.

Let Ωh be a meshless discretization of the computational domain Ω such that the
points in Ωh satisfy conditions C.1–C.2. The global meshless approximation space

V h =

N⋃
i=1

V i

is the union of the local vertex spaces associated with the points in Ωh. The gradient
of a discrete function φh ∈ V h is simply the application of GRADi to the restriction
of φh to V i.

As in many other discretization methods we choose to impose the Dirichlet bound-
ary condition on the approximating space by setting φ(xi) = u(xi) for all boundary
particles. Thus, our new staggered GMLS discretization of (1.1) reads: seek φh ∈ V h
such that

(4.1)
DIVi ◦GRADi(φ

h) = f(xi) ∀i ∈ Ω̆h

φi = u(xi) ∀i ∈ Γh.

To assemble the discrete problem (4.1) at every interior point xi we first compute the
topological gradient of the local discrete field and then apply the GMLS divergence
operator. The second step follows the procedure outlined in the gray box in Section
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3.2, i.e., we solve the weighted least-squares problem

(4.2) p∗(xi) = argmin
p∈P im

{ N∑
j=1

[
GRADi(φ

h)− p(xij)
]2

Φ(‖xi − xij‖)
}

where Φ(·) satisfies condition C.3 and then set

DIVi ◦GRADi(φ
h) =

1

4
∆̃p∗(xi).

In the next section we show that the GMLS gradient of p∗ is an accurate approx-
imation of the flux at the virtual cell center, i.e.,

u(xi) = −∇φ(xi) ≈
1

2
∇̃p∗(xi).

This result is useful in settings that also require the flux values.

Remark 6. The scheme (4.1) is equivalent3 to the following “mixed” system of
equations: seek uh ∈ Fh and φh ∈ V h such that φi = u(xi) for all i ∈ Γh and

(4.3)

{
DIVi(u

h) = f(xi)

uh +GRADi(φ
h) = 0

∀i ∈ Ω̆h,

where Fh = ∪Ni=1F
i. Note that all metric attributes of the staggered GMLS scheme

are subsumed in the first equation, whereas the second equation is purely topological,
i.e., it depends only on the local connectivity graph of Nε

i and not on the physical
locations of its points. This structure mirrors the structure of many compatible dis-
cretization methods for (1.1), which also combine a metric-dependent equation with a
topological relation [19]. A more rigorous qualification of the compatibility properties
of the new scheme is beyond the scope of this work and will be pursued in a forth-
coming article. However, it is worth pointing out that numerical results in Section
7 confirm that solutions of (4.1) for problems with discontinuous material properties
are indeed qualitatively very similar to solutions of compatible discretization methods
for (1.1).

5. Accuracy of the staggered GMLS method. In this section we study the
polynomial consistency of the staggered GMLS method (4.1).

Theorem 5.1. Assume that conditions C.1–C.3 hold. Let φh ∈ V h be the
interpolant of a function φ ∈ Cm+1(Ω) and let p∗(xi) be the corresponding solution
of (4.2). Then, the following error bounds hold:

‖∆φ(xi)−DIVi ◦GRADi(φ
h)‖ ≤ Chm−1

X,Ω ‖φ‖Cm+1(Ω)(5.1)

‖∇φ(xi)−
1

2
∇̃p∗i (xi)‖ ≤ ChmX,Ω‖φ‖Cm+1(Ω).(5.2)

Proof. Consider the auxiliary vector field

u(x) = g(x)
x− xi

2‖x− xi‖2
, where g(x) = φ(2x− xi)− φ(xi).

3The two forms of the staggered GMLS are equivalent in the sense that both produce the exact
same discrete approximation φh ∈ V h.
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The radial component of u(x) equals4 g(x), i.e.,

ui→(x) = u(x) · 2(x− xi) = g(x),

Furthermore, g(xi) = 0, that is g(x) ∈ Cm+1
i , and

g(xij) = φ(xj)− φ(xi) = GRADi(φ
h).

It follows that the weighted least-squares problem (4.2) in the formulation of our
method is equivalent to the GMLS problem (3.19) for the auxiliary velocity field
u(x). Accordingly, the identities in (3.20) specialize to

ũ(xi) =
1

2
∇̃p∗(xi) and ∇̃·u(xi) =

1

4
∆̃p∗(xi) = DIVi ◦GRADi(φ

h),

respectively. Using the identities

∇g(x) = 2∇φ(x) and ∆g(x) = 4∆φ(x) ,

and the fact that g(x) is the radial component of u(x) implies that

u(xi) =
1

2
∇g(xi) = ∇φ(xi) and ∇ · u(xi) =

1

4
∆g(xi) = ∆φ(xi),

respectively. Therefore,

∇φ(xi)−
1

2
∇̃p∗i (xi) = u(xi)− ũ(xi),

and

∆φ(xi)−DIVi ◦GRADi(φ
h) = ∇ · u(xi)− ∇̃·u(xi),

respectively. Application of the error bounds in Corollary 3.4 grants the proof.

6. Extensions and implementation details. This section briefly reviews the
treatment of a variable material property tensor µ as well as the imposition of the
Neumann boundary condition in the staggered GMLS. We also comment on some
practical aspects of the implementation used in our numerical studies, including choice
of polynomial basis and solution of the local optimization problems.

Extension of (4.1) to a variable µ is straightforward. Assuming that µ is available
at all points in Ωh we solve a modified version of (4.2) given by

(6.1) p∗(xi) = argmin
p∈P im

{ N∑
j=1

[
µijGRADi(φ

h)− p(xij)
]2

Φ(‖xi − xij‖)
}

where GRADi is the topological gradient defined in (2.2) and µij = (µ(xi)+µ(xj))/2.
Then we approximate the second-order operator in (1.1) according to

∇ · µ∇φ(xi) ≈ DIVi ◦ µGRADi(φ
h) :=

1

4
∆̃p∗(xi).

Implementation of the Neumann condition ∂nφ = g in the staggered GMLS
scheme is somewhat more involved. Recall that in the case of Dirichlet conditions

4The alternative definition (3.13) with u = ∇φ yields the same result, i.e. ui→(x) = g(x).
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we approximate the second-order operator ∇ · µ∇φ(xi) only at the interior points
and impose the boundary condition simply by setting φi = u(xi) at all xi ∈ ΓD. To
impose the Neumann condition, in addition to interior points, we also approximate
∇ · µ∇φ(xi) at all Neumann points xi ∈ ΓN and incorporate the boundary condition
in the definition of the discrete second-order operator. The latter is accomplished by
constraining (6.1) with a GMLS approximation of the equation ∂nφ = g. Taking into

account that ∇φ(xi) ≈ 1/2∇̃p∗(xi), this approximation is given by

∂̃np(xi) = 2g(xi)

and results in the following constrained version of (6.1):

(6.2) p∗∂n(xi) = argmin
p∈P im;∂̃np(xi)=2g(xi)

{ N∑
j=1

[
µijGRADi(φ

h)− p(xij)
]2

Φ(‖xi−xij‖)
}
.

Solving (6.2) instead of (6.1) effectively replaces the operator DIVi with a modified
version DIV∂n,i which naturally incorporates the Neumann boundary condition. We
then impose this condition by approximating the second-order operator at all points
on the Neumann boundary according to

∇ · µ∇φ(xi) ≈ DIV∂n,i ◦ µGRADi(φ
h) :=

1

4
∆̃p∗∂n(xi).

where p∗∂n solves (6.2).

6.1. Practical aspects of the implementation. In the general case of a vari-
able µ and mixed boundary conditions the staggered GMLS scheme comprises the
following system of algebraic equations:

(6.3)

DIVi ◦ µGRADi(φ
h) = fi ∀xi ∈ Ω̆h

DIV∂n,i ◦ µGRADi(φ
h) = fi ∀xi ∈ ΓN

φi = ui ∀xi ∈ ΓD

.

Assembly of this system requires solution of (6.1) for the discretization at all interior
points and solution of the constrained problem (6.2) to compute the second-order
discrete operator at all Neumann points. The actual form of these problems depends
on the choice of a basis for the polynomial reconstruction. In our implementation we
choose the scaled and shifted Taylor monomials, i.e.,

(6.4) P im = span
{
piα
}
|α|≤m , piα =

1

α!

(
x− xi
ε

)α
.

In the present context the matrices P , W and the vector ` in Section 2.3 specialize to

Wi = diag(Φ(||xij − xi||))xij∈Mi
, Pi =

(
piα(xij)

)|α|≤m
xij∈Mi

, `i = (µij(φj − φi))xij∈Mi
.

The optimal coefficient vector bi for the solution of (6.1) is given by (2.14), which
specializes to

(6.5) bTi = `Ti W PTi
(
PiWiP

T
i

)−1
.
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As a result, the approximation of the second-order operator at all interior points
assumes the form

DIVi ◦ µGRADi(φ
h) =

1

4
bTi r(δxi ◦∆)

where r(δxi ◦∆) :=
(
∆piα(xi)

)
.

To solve the constrained problem (6.2) we introduce a Lagrange multiplier λ and
seek the stationary point {p∗∂n, λ∗} of the Lagrangian functional

L(p, λ) =

N∑
j=1

[
µijGRADi(φ

h)− p(xij)
]2

Φ(‖xi − xij‖)− λ
(
∂̃np(xi)− 2g(xi

)
.

Let c∗i = (b∂n,i, λ) be the coefficient vector of {p∗∂n, λ∗} and r(δxi ◦∂n) =
(
∂np

i
α(xi)

)
.

It is not hard to see that the necessary optimality condition for the stationary point
is equivalent to a linear algebraic system Kici = di for the optimal coefficient vector
c∗i , where

(6.6) Ki =

[
PiWiP

T
i r(δxi ◦ ∂n)

r(δxi ◦ ∂n)T 0

]
and di =

[
PiWi`i

2gi

]
.

After solving (6.6) and extracting b∂n,i we obtain the approximation

DIV∂n,i ◦ µGRADi(φ
h) =

1

4
bT∂n,ir(δxi ◦∆).

of the differential operator at all Neumann points.
Computation of the optimal coefficient vectors for both (6.1) and (6.2) requires

inversion of the matrix Mi = PiWiP
T
i , which resembles the poorly conditioned Hilbert

matrix. Because in this work we used polynomial degrees m ≤ 6, the relatively small
size of the resulting local problems enabled us to stably invert Mi by using a standard
LU decomposition. Larger polynomial degrees may require more advanced solvers
and/or a different choice of basis polynomials.

Due to the strong form discretization of the PDE and the lack of symmetry in
particle arrangement, the global matrix corresponding to (6.3) is in general not sym-
metric. Furthermore, a special care must be taken to ensure solvability for problems
with a non-trivial null-space as in the case of pure Neumann boundary conditions.
Possible options for handling the nullspace include pinning a degree of freedom, adding
a global Lagrange multiplier to remove the singularity, or projecting out the kernel if
a Krylov subspace method is used to solve the resulting equations. For more infor-
mation about this subject we refer to [17, 25, 26] and the references cited therein.

Remark 7. Consider an interior point xi ∈ Ω̆. By collecting the terms multiply-
ing the elements of `i = (µij(φj − φi)) we can write the discrete operator as

DIVi ◦ µGRADi(φ
h) =

∑
j∈Nεi ∩Ω̆

βij(φj − φi) +
∑

j∈Nεi ∩ΓD

βij(uj − φi)

for a suitable set of coefficients βij. Likewise, at all Neumann points the discrete
operator can be written as

DIV∂n,i ◦ µGRADi(φ
h) =

∑
j∈Nεi

βij(φj − φi) + γigi
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for some suitable coefficient γi. Consequently, the system (6.3) has the following
equivalent form:

(6.7)

∑
j∈Nεi ∩Ω̆

βij(φj − φi)−
∑

j∈Nεi ∩ΓD

βijφi = fi −
∑

j∈Nεi ∩ΓD

βijuj ∀xi ∈ Ω̆h∑
j∈Nεi

βij(φj − φi) = fi − γigi ∀xi ∈ ΓN

φi = ui ∀xi ∈ ΓD

.

Thus, the staggered GMLS method can be interpreted as a finite-difference-like formula
for the Laplacian defined on an irregular stencil comprising the points in Nε

i .

7. Numerical examples.

7.1. Case setup. To discretize the domain for all problems in this work, we first
discretize the boundary of the domain with a length scale dx and then discretize the
interior of the domain with a Cartesian lattice with spacing dx. We then perturb each
interior particle by a uniformly distributed random variable of magnitude η, and delete
all particles that lie outside of the domain. The variable η is used to demonstrate
insensitivity of the results to particle anisotropy, and for all results presented is set to
η = 0.1dx. We characterize levels of discretization by the number of particles in each
direction of the lattice N = 1

dx .
Algebraic multigrid is used to efficiently solve the discretized asymmetric system

of equations. While an in-depth discussion of the performance of this preconditioner is
left for a future work, we briefly comment that a combination of GMRes and auxilliary
space preconditioning [27] provides an efficient means of solution with computational
effort scaling nearly linearly with the degrees of freedom in the system.

7.2. Elliptic problems with smooth coefficients. We first demonstrate the
convergence rate of the method by using smooth manufactured solutions and consid-
ering both an annular 2D domain with outer radius Ro = π

2 and inner radius Ri = π
4 ,

and a 3D domain formed by extruding the 2D geometry in the z-direction to form a
cylinder with height π; see Figure 2. We set the exact solutions to

φ2D
ex = sinx sin y and φ3D

ex = sinx sin y sin z

in two and three-dimensions, respectively. Substitution of the exact solutions in the
model problem (1.1) defines the source term and the boundary data. We then solve
the discrete problem (6.3) with either Dirichlet or Neumann boundary conditions. As
no mesh is available to quantify the error, we measure convergence in a root mean
square sense by defining the following norm

(7.1) ‖φh‖l2 =

(
1

N

∑
i∈Ωh

φ2
i

)1/2

and semi-norm

(7.2) |φh|h1 =

(
1

N

∑
i∈Ωh

(GRADiφ
h)2

)1/2

We first compare the convergence rates of the staggered GMLS scheme with those
of a collocated one obtained by using the standard GMLS derivative approximation of
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Fig. 2. Typical particle distribution with N = 32 for 2D annular disk geometry (left) and 3D
extrusion (right).

10 100

N

1e-08

0.0001

rm
s
 e

rr
o

r

m = 2

m = 4

m = 6

Fig. 3. Convergence in discrete l2-norm for the smooth manufactured solution in two-
dimensions with Dirichlet boundary conditions using second, fourth and sixth order for collocated
GMLS (dashed lines) and staggered GMLS (solid lines).

∇ · µ∇φ [21]. In both cases we use the same Taylor basis (6.4) and kernel functions.
Figure 3 demonstrates the convergence in the l2-norm of the two approaches for
increasing refinement and increasing polynomial order. Both schemes provide mth-
order convergence, with the staggered scheme being slightly more accurate.

Next, we examine the convergence rates of the staggered GMSL for both Dirichlet
and Neumann boundary conditions. The data in Table 1 and the plots in Figure 4
reveal equal convergence rates in both the `2 norm and the h1 seminorm, i.e., the
scalar variable and its flux in the staggered GMLS converge at identical rates. This
kind of behavior is typical of mixed methods for (1.1) and lends further credence to the
observations in Remark 6 about the similarities between our scheme and compatible
discretization methods. Table 2 confirms that similar results hold in three dimensions.

7.3. Elliptic problems with rough coefficients. A hallmark of compatible
discretization methods for (1.1), such as mixed finite elements, is their ability to cor-
rectly represent the flux variable for problems with discontinuous coefficients µ. In
such cases the normal component of the flux remains continuous across the mate-
rial interface, while its tangential component is allowed to develop a discontinuity.
Collocated methods, including Galerkin, stabilized Galerkin and least-squares finite
elements cannot capture this behavior and tend to develop oscillations across the
interface; see [28] and [29] for further details and examples.



Staggered moving least squares 19

Table 1
Convergence rate for the smooth manufactured solution problem in two-dimensions.

m=2 m=4 m=6
`2 - Dirichlet 2.085 4.470 6.486
`2 - Neumann 2.169 4.187 6.021
h1 - Dirichlet 1.979 3.940 5.839
h1 - Neumann 2.350 4.293 6.272

Table 2
Convergence rate for the smooth manufactured solution problem in three-dimensions and

Dirichlet boundary conditions.

m=2 m=4 m=6
`2 2.001 4.548 6.339
h1 2.008 3.813 5.742
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Fig. 4. Convergence in discrete l2-norm (left) and h1-seminorm (right) for manufactured
solution with Dirichlet (solid lines) and Neumann (dashed lines) boundary conditions, suggesting a
convergence result of ||u− uex||l2 ≤ Chm and ||u− uex||h1 ≤ Chm for the staggered scheme.

Remark 6 points out structural similarities between the staggered GMLS and
other compatible discretizations. The examples in this section aim to demonstrate
that these similarities are not just formal and that the new scheme is in fact ca-
pable of delivering physically correct approximations of the flux for problems with
discontinuous coefficients.

Our first example involves the so called five strip problem [28], which is a standard
manufactured solution test case for examining the ability of a scheme to maintain
normal flux continuity. In this problem φex = 1 − x, ΓN = Γ, the computational
domain Ω = [0, 1]2 is divided into five equal strips

(7.3) Ωi = {(x, y) | 0.2(i− 1) ≤ y ≤ 0.2i; 0 ≤ x ≤ 1} , i = 1, . . . , 5

and µ is assigned a different constant value µi on each Ωi. Here we use µ1 = 16,
µ2 = 6, µ3 = 1, µ4 = 10, and µ5 = 2. Substitution of φex into (1.1) defines the source
term and the Neumann data g. In particular, since φex is globally linear, f = 0,
g = ±µi on the vertical parts of Γ, and

u
∣∣
Ωi

= −µi∇φex =

(
µi
0

)
.

Thus, the normal flux is continuous across the interface between two strips while the
tangential component of u is a piecewise constant equal to µi on strop Ωi.
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The plots in Figure 5 demonstrate that the staggered GMLS solution provides
an accurate approximation of the tangential flux. Furthermore, comparison with the
standard, collocated GMLS solution in Figure 6 reveals that the latter exhibits the
same type of oscillations across the interfaces as found in nodal mesh-based methods
[28]. It is worth pointing out that the staggered GMLS results in Figures 5–6 were
obtained without requiring that particles conform to the material interfaces between
the strips. In contrast, mesh-based compatible methods typically require interface-
fitted grids for accuracy.

Fig. 5. Fluxes for the Darcy flow strips case for non-conforming particle arrangement: exact
longitudinal flux (left), staggered longitudinal flux (center), and staggered transverse flux (right).
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Fig. 6. Transverse fluxes along the line x = 0.5 for the collocated (left) and staggered (right)
schemes with increasing resolution.

The model problem (1.1) can also be used to study electrostatics problems in the
absence of charge by taking f = 0 and identifying µ as the electric permitivity (usually
denoted ε). In multiphysics applications, electromagnetic effects are often solved
concurrently with a model for the mechanics governing domain deformation (e.g.
electrophoresis of colloidal suspensions). When non-trivial geometry is considered for
these applications, typically the only available tools to handle deforming domains with
discontinuous material properties involve either costly arbitrary Lagrangian-Eulerian
methods or some diffuse interfacial treatment [30]. The current approach, on the
other hand, allows a natural treatment of jumps in material properties without the
need to develop a mesh conforming to discontinuities.
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Particles can be identified as belonging to either material with µ assigned ap-
propriately. As an example, we simulate a circular cylinder of radius R = 1/2 in a
medium with permitivity µ/µ∞ = 2 exposed to a uniform electric field ∇φ = 〈1, 0〉
for which an analytic solution can easily be calculated in an infinite domain. To solve
numerically, we impose the analytic solution as a Dirichlet boundary condition on a
unit square and demonstrate convergence in Figures 7 and 8. This discretization is
stable for a ratio of permitivities ranging from 1− 1000 (Figure 8).

Fig. 7. Plot of electric flux ∇φ for coarsest (N = 16) and finest (N = 256) resolution.
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Fig. 8. Electric flux along center line for increasing resolution (left) and for a range of permi-
tivities (right).

As an example of the flexibility of the method for complex geometries, we now
solve (1.1) where µ is taken by processing an image of one of the authors’ cat (Figure
9) and assigning permitivities to regions of similar color. Particles are assigned values
for µi by sampling pixels from the picture, and an approximately uniform electric
field is imposed by setting Dirichlet boundary conditions.

(7.4) φi|∂Ω = 1− xi

The robustness of the method in the presence of fluctuations in the permitivity
below the resolution lengthscale is shown in the refinement study presented in Figure
10. Examining the y-component of the resulting “electric field” for resolution ranging
from 322 to 10242, the results remain consistent and non-oscillatory. We note that,
using AMG, the resulting matrix solve took only a few seconds on a desktop computer.
While this is a slightly whimsical demonstration of the flexibility of the method, we
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hope to motivate that this approach could easily be adopted to any problem in which
voxel data is available of the underlying diffusivity (e.g. applications in MRI imaging,
geological imaging, etc).

Fig. 9. Conductivity for the underresolved stability test case.

Fig. 10. ∂yφ for underresolved stability test case. Underresolved cases provided similar results
despite highly oscillatory conductivity below resolution lengthscale.

8. Conclusions and future work. Motivated by mimetic methods on primal-
dual grids we have developed a meshfree discretization for a model diffusion equation,
which exhibits many of the attractive computational properties of compatible dis-
cretization. Our scheme generalizes staggered finite difference methods to arbitrary
point clouds and particle arrangements by using separate discretizations of the diver-
gence and gradient operators defined locally at the neighborhood of each discretization
point. While traditional staggered methods are of either finite difference type and are
restricted to Cartesian grids, or are of finite volume type and require a primal-dual
grid complex, this approach is truly meshfree since it uses only the ε-neighborhood
graph of particle connectivity.

Due to the lack of a mesh, there is no obvious inner-product space in which to
analyze this method and we have opted instead to demonstrate the compatible nature
of the scheme by comparison to a series of problems in which discretizations lacking
compatibility are prone to failure.
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For the sake of brevity, we have restricted the focus of this work to the model
problem (1.1). We note here that the stability and high-order accuracy achieved for
this problem carries over to the Stokes problem, which we will discuss in a later work.
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