
AM119: HW4 and more OpenFOAM tutorials

Prof. Trask

April 25, 2016

1 Final assignment: the k − ε model in Open-
Foam

In the last two lectures we’ve learned a little bit about the ideas behind tur-
bulence modeling. For the final assignment, we’ll use the pisoFoam solver that
comes with OpenFoam to do some turbulence modeling of flow past a sphere.
In order to do this, we’ll be taking a tour through some of the standard features
of OpenFoam that we haven’t touched on yet - now that we have a sense of
what makes a solver work.

2 The pisoFoam solver

First let’s take a look at the solver itself. This solver is essentially identical to
our projection method, but has some extra bells and whistles to better handle
instability for high Reynolds number flows. To take a look at it, type sol to get
to the OpenFoam solvers directory. You can then go to incompressible/pisoFoam
to find a solver directory very similar to the ones that we’ve been working on.

We can see the main solver file pisoFoam.C, a createField.H file like the ones
we usually use, and a couple new files. Let’s open up the main file to get a feel
for how the solver works

1



You can see that the code follows a very similar flow to your nsFoam solver.
First a provisional velocity is solved (to make the code easily readable, they’ve
stuck this in UEqn.H ). Then a pressure equation is solver to make this velocity
divergence free. This solver applies the so-called PISO algorithm in order to
more tightly couple the velocity and pressure together. It turns out that for
high Reynolds number flows on 3D meshes it is much more challenging to get
a stable simulation. If we take a look at UEqn.H we can look for how the
introduction of a turbulence model alters their code.

2



There’s some extra stuff here to handle some features of OpenFoam that you
can ignore (the MRF part and the fvOptions part). The rest of the momen-
tum equation consists of the standard stuff, plus a turbulence term turbulence-
¿divDevReff(U). This is the divergence of the Reynolds stress tensor that we’ve
discussed in lecture. If we look back into createFields.H we can see where the
turbulence object is initialized.

It turns out the turbulence is a pointer to an object of type incompress-
ible::turbulenceModel. What we’re going to do now is give a crash course in how
to chase objects down in the OpenFoam source code so we can see what they
actually do - for many of your final projects you will need to do similar things.
To do this, write src to switch to the OpenFoam source code directory.

Inside here you can see a number of subdirectories pertaining to the different
parts of the OpenFoam library. So far, everything that we’ve used can be found
in the subdirectory OpenFOAM (which pertains to stuff like defining dime-
sionedScalars, matrices, vectors, etc) and the subdirectory finiteVolume (which
is where all the stuff related to the FV method like boundary conditions, meshes,
etc live). For this tutorial, you can see a subdirectory called TurbulenceMod-
els. Inside this directory you will find a series of subdirectories related to all
the different turbulence models. If you enter the turbulenceModels subdirectory

3



you will find a pair of files describing the turbulence model base class. Opening
the header, you can see the interface to any turbulence model object will have
to have the set of functions necessary (e.g. construct the Reynolds stresses,
compute the turbulent kinetic energy, compute the eddy viscosity, etc).

Now if we back up a directory into src/TurbulenceModels/incompressible
you will find a file called incompressibleTurbulenceModel. If you open up the
header for this object you will see from the class description that this object
inherits from turbulenceModel and requires some extra functions - specifically
the function divDevReff that pisoFoam uses that we are looking for. What
this interface tells us is that any incompressible turbulence model in OpenFoam
will have to have a function that returns the divergence of the Reynolds stress
tensor.

OK - so the last thing we want to do is figure out what the k− ε model looks
like in OpenFoam. There must be a k − ε object somewhere that inherits from
these base classes. Let’s go back to the turbulenceModel directory. In there you

4



will find a folder called lnInclude. This folder contains symbolic links to all of
the headers and C-files in the directory. A symbolic link is a bit like a pointer
- if you try to open any of these symbolic link files the operating system will
re-route you to the file it’s pointing to. We’re not quite sure what we’re looking
for, but there should be something related to the k− ε model somewhere. If we
search for the phrase kepsilon then maybe we’ll find something.

Sure enough, there’s a file called kEpsilon.H in the directory. If you enter
ls -lt kEpsilon.H you will see where that file lives. If we go to that directory,
we’ll see a header and C-file there describing the object. In the header you’ll
see declarations of everything that object does, along with some references to
journal papers describing the details of the model, the default model coefficients
used in this implementation, and we can see that it has a function called correct
that solves the k − ε equations. If we open up the C-file, we can take a look at
the implementation of the interface and we will finally see how the method is
implemented.

Depending upon your final project, the details of turbulence modelling may
or may not be relevant. What is important though is that you get a feel for how
to dig through the source code. Since OpenFoam has limited documentation (as
do most real-life code), this is often the only way to figure out how something
works.

Assignment: In the foamCases directory of the course website you will find
a case called sphereCase. This is a fully 3D case of a sphere in a channel set
up to do some turbulence modeling and compute lift/drag coefficients of the
flow. Your final HW assignment will be to replicate a plot of drag coefficient
vs Reynolds number similar to the one on the course website. You’ll need to
specify the inlet conditions on the turbulence model quantities, and adjust the
final runTime and transport properties to ensure a converged simulation for a
given Reynolds number. You can find a reference for how to set reasonable
inflow boundary conditions for turbulence models on the course website.

For this assignment I expect a more detailed presentation - 3 pages de-
scribing your process and how you decided that your results were converged,

5



some figures showing qualitatively the difference in the turbulent quantities at
different Reynolds numbers, and finally the drag coefficient vs Reynolds number
plot.

6


	Final assignment: the k- model in OpenFoam
	The pisoFoam solver

