
AM119: Yet another OpenFoam tutorial

Prof. Trask

April 4, 2016

1 From advectionDiffusionFoam to implicitAd-
vectionDiffusionFoam

We’re going to take advectionDiffusionFoam and make a new solver that will
treat diffusion implicitly to remove the stiff ν∆t

∆x2 timestep restriction.

First, we will copy our advection-diffusion code into a new directory to make
a custom solver.

$ source data / c l a s s M a t e r i a l / loadFoamModules . sh
$ run
$ cd . . / s o l v e r s
$ cp advect ionDif fus ionFoam impl i c i tAdvect ionDi f fus ionFoam −r

We’ll now go through and change everything to make a new solver

$ cd impl i c i tAdvect ionDi f fus ionFoam
$ mv advect ionDif fus ionFoam .C impl i c i tAdvect ionDi f fus ionFoam .C
$ cd Make
$ g e d i t f i l e s

We’ll change the makefile to point to implicitAdvectionDiffusionFoam.C instead

Figure 1: Change Make/files from the left to the right

The only change is completely trivial - alter the namespace for the Laplacian
operator in the advection-diffusion equation from fvc to fvm.

1



Figure 2: Change implicitAdvectionDiffusionFoam.C from the left to the right

and we’re done! Run wclean and wmake and you should have a new implicit
solver that you can run in the usual way.

You should be able to rerun the advectionDiffusionTest case with no modi-
fications - try this.

Let’s also make the advection term implicit - alter the div term from fvc to
fvm and recompile. If you attempt to rerun the case you will get the following
error:

Figure 3: Error due to asymmetric global matrix, and attempting to use the
symmetric PCG solver

2



We’ll need to go into system/fvSolution to alter the solver that we’d like
to use. Foam was complaining because we’re using preconditioned conjugate
gradients (PCG), which is a more sophisticated linear solver that relies on the
fact that the matrix is symmetric. By treating the advection term implicitly,
we’ve altered the global matrix to obtain something that is no longer symmetric.
To obtain a list of available solvers, change the solver from PCG to something
nonsensical (in the figure below I’ve changed it to asdf ) and rerun the solver to
obtain the following error message.

Figure 4: How to get Foam to give you a list of available options

We can see that Foam will accept solvers of type BICCG, GAMG, PBiCG,
or smoothSolver. Let’s change it to PBiCG - after that the code should be good
to go.

The choice of linear solver for a given discretization is pretty sophisticated,
and is one of the most fundamental issues of how to obtain a fast discretization.
If you’re interested, I’d suggest taking APMA117 for a starting point. For now,
I’ll point out that geometric/algebraic multigrid (GAMG) is the fastest solver
available in OpenFoam. For a carefully constructed problem, the method will
converge in O(N) iterations. The method itself is pretty sophisticated and well
beyond anything we’ll discuss in the course - if you’d like to try it out you can
swap the following settings in.

3



Figure 5: Sample settings for GAMG solver

If you compare this to PBiCG, you should see that for this problem GAMG
always converges in a single iteration, while PBiCG took 1-15, depending on
how close the solution is to steady-state.

4


	From advectionDiffusionFoam to implicitAdvectionDiffusionFoam

