AM119: One last tutorial

Prof. Trask
May 2, 2016

1 Generating a custom boundary condition

OpenFoam comes with a selection of general purpose boundary conditions that
are good enough for most applications. In this tutorial we’ll address the situation
of what to do when you can’t find something in the source code that covers your
specific application. For some of you, this will be necessary for your final project.
For others, this will be a useful exercise in understanding how to navigate the
source code.

2 Objective

So far we’ve seen how to apply a uniform velocity inlet boundary condition.
A more physical boundary condition for channel flow is to impose a parabolic
velocity profile. For this exercise, we’ll modify the flow past a square homework
to handle the inlet velocity profile:

u(y) =y(y — H)

where H is the height of the channel. The figure below demonstrates the differ-
ence in the resulting velocity field for the two cases.

3 Idea

Rather than attempt to understand the code and write a boundary condition
from scratch, we will find a boundary condition similar to what we need that’s
already in the code and alter it to suit our needs. When starting to work with
a big library, this paradigm is a good first way to get oriented. Eventually of

course, you will want to read through the library, but this is an effective way to
get a feel for the idioms of how the library is designed.

4 Copying a standard BC into a custom BC

To start with, lets take a look at the part of the source code related to boundary
conditions. By entering c¢d $FOAM_SRC/finiteVolume/fields/foPatchFields/
you will see the directory containing everything related to boundary condi-
tions. You can find some details about boundary conditions in the Open-
Foam users guide (See section 5.1-5.2 of http://foam. sourceforge.net/docs/
Guides-a4/UserGuide.pdf). Similar to the turbulence models from last week,
you can find some base class boundary conditions in the fuPatchFields/ba-
sic subdirectory. These specify how to apply Dirichlet boundary conditions
(fizedValue), Neumann boundary conditions (fizedGradient), Robin conditions
(mized), and some others. Since what we’ll want to do is apply a Dirichlet
boundary condition, take a minute to look through the source code for fixed-
Value. Youll find a bunch of constructors/destructors and a function called
updateCoeffs - this is the function where the boundary condition is applied.
We'll now go into the fuPatchFields/derived. This is a collection of classes that
inherit from the basic boundary conditions. What we’d like to do is find some-
thing that inherits from the fized Value type and does something similar to our
objective. The pressurelnletVelocity boundary condition meets those criteria -
it’s a boundary condition meant to be applied at a velocity inlet where the pres-
sure is specified. So far we’ve only considered flows driven by a fixed velocity
profile, but many applications require a given pressure drop across a channel,
and this boundary conditions applies a uniform velocity consistent with the
pressure drop.

First off, we're going to copy this into one of our solver directories so
we can start altering it. Entering pwd will print the current directory of
where this boundary condition is in the code. Next, go into our solvers di-
rectory, enter the subdirectory of your Navier-Stokes solver, and create a folder
called newBC. Copy the header and C-file from the pressurelnletVelocity di-
rectory into this case, and change their names to whatever you’d like to call
your new condition (for example, I changed pressurelnlet VelocityFvPatch Vector-
Field.C' and pressurelnlet VelocityFvPatch VectorField. H to newBCFuvPatchVec-
torField.C and newBCFvPatchVectorField. H). We’ll now go into each of these
files and replace everywhere that says pressurelnlet Velocity to newBC. (You’ll
want to find the find and replace command in whatever text editor you're using
or this will get tedious). At this point, you should have a brand new boundary
condition that behaves exactly like the pressurelnletVelocity condition, but has
a new name. This is pretty much the identical process to when we copied old
solvers as a framework to hang our new solvers on.

To compile this, you’ll need to add a line pointing to BC/newBCFvPatchVec-
torField.C in your Make/files file. After running wclean and wmake, you should
have a fully functional boundary condition. If you rerun your previous home-
work, you should see your new boundary condition pop up in the list of available

http://foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf
http://foam.sourceforge.net/docs/Guides-a4/UserGuide.pdf

options.

inletOutlet
interstitialInletVelocity

kgRWallFunction
--> FOAM FATAL I0 ERROR:

Unknown patchField type asdf for patch type patch

Valid patchField types are : mappedFixedInternalValue

78 mappedFixedPushedInternalValue
(mappedFlowRate

SRFFreestreamVelocity i

SRFVelocity me;ppedVel.omtyFl.ux
activeBaffleVelocity o mixed
activePressureForceBaffleVelocity movingWallVelocity
advective newBC
atmBoundaryLayerInletVelocity . .
calculated nonuniformTransformCyclic

Now we have everything implemented and run-time selectable- the only thing
left to do is make it apply the BC that we actually want. Go back into your
solver directory and pop open BC/newBCFvPatchVectorField.C. We're going to
want to alter the updateCoeffs function. Again, we don’t really know OpenFoam
well enough to go through and write this from scratch. Instead we can refer
back to the source code and try to find another boundary condition that does
something similar. What we want is something that applies some Dirichlet
condition that is a function of some spatial variables. The prghTotalPressure
BC does exactly this - it sets the pressure according to a hydrostatic pressure
formula p = po — (pgz — pgzrer). We want to find a way to extract the face
coordinates, so that we can use it in our new BC.

void He r:updateCoeffs()
{
if (updated())
{
return;
}
const scalarField& = patch().lookupPatchField<volScalarField, =
!
rhoName
)i g
):
db() .lookupObject<uniformDimensionedScalarFields(IH
dimensionedScalar
!
mag(g.value()) = SMALL
? g & (cmptMag(g.value())/mag(g.value()))*hRef
: dimensionedScalar(. g.dimensions()*dimLength, @)
)i
operator==(p_ - rhop*({{g.value() & patch().Cf()) - ghRef.value()));
::updateCoeffs();
}

From their updateCoeffs function we can see that the function patch().Cf()
returns the face coordinate. In what follows, you can see how I similarly copied
this over to generate our custom BC.

J/ ¥ ® % £ % % % % £ % % % % % % Member Functions * % % % % % % % % % % % % //

void Foam:: orfField: :updateCoeffs()
{
if (updated())
{
return;
}

//Get patch face center location
const vectorField& Xc = patch().Cf();

//Location of bottom of patch and height of channel
vector Xmin(0.0,0.0,0.08);
scalar H(3.0);

//Compute distance from bottom of patch
vectorField dy = Xc - Xmin;

//Get component of vectorField along patch
scalarfField dyz = dy & vector(0.0,1.0,0.0);

//Compute velocity profile according to formula
vectorField Uprofile = vector(1.0,0.0,0.0)*dyz*(H - dyz);

//Compute boundary condition using formula for wvelocity profile
operator=={ Uprofile);

fixedValueFvPatch

torfield: :updateCoeffs();

In this case I hard-coded our case details into the source code - this is a bit
of a hack but good enough for the purposes of our final projects. If we were de-
veloping this code so that it could be used by the general public, we would alter
the constructor so that Xmin and H could be read in from the initial condition
directory. You can see the difficulty - if the geometry of the case changes, you
will need to go back to the source code, change the parameters, and recompile
the code.

At this point, after another wclean and wmake you should be done - with a
fancy new boundary condition that does just what we set out to do.

	Generating a custom boundary condition
	Objective
	Idea
	Copying a standard BC into a custom BC

