
AM119: HW4 and more OpenFOAM tutorials

Prof. Trask

March 21, 2016

1 Assignment 4: Compressible Euler equations

In class this week we learned a bit about the Euler equations and how they
give rise to shock waves in super-sonic flows. For this weeks assignment, we
will implement both a 1D solver for the Euler equations and a full 3D solver
in OpenFOAM. We learned that for compressible flows, information propogates
at different speeds along the characteristics of the flow. In this assignment, we
will make a crude approximation when constructing the limiters in our finite
volume scheme using a linear reconstruction of velocity at faces, rather than
constructing the eigensystem that would be necessary to solve this problem.

2 The Sod shock tube

For this assignment we will be simulating the Sod shock tube problem discussed
in class. For this we will solve the compressible Euler equations

yt + (F (y))x = 0

where

y =

 ρ
ρu
ρE


and

F (y) =

 ρu
ρuu+ p
ρuE + up


and we will adopt the ideal gas equation of state

p = ρ(E − 1

2
u2)(γ − 1)

where γ = 1.4 is the ratio of specific heats for air. This EOS is equivalent to
the ideal gas equation p = ρRT that we might be more familiar with.

We will initialize the problem with the values, ρl = 1.0, ρr = 0.125, pl = 1.0,
pr = 0.1, and ul = ur = 0. From these values we can recover the energy from
the equation of state, and knowledge of ρ,u, and E are enough to initialize Y.

1



3 Part 1: 1D code

I’ve done you a favor and wrote most of the code for this assignment (see this
week’s postings on the website). Your job will be to implement the following
limiter:

When constructing the flux F (y)i+ 1
2
, we will first reconstruct the velocity

at the face fi+ 1
2

with the linear extrapolation ui+ 1
2

= ui+ui+1

2 . We will then
calculate the flux as follows

F (y)i+ 1
2

=



 ρiui+ 1
2

ρuiui+ 1
2

+ pi

ρui+ 1
2
Ei + ui+ 1

2
pi

 if ui+ 1
2
≥ 0

 ρjui+ 1
2

ρujui+ 1
2

+ pj

ρui+ 1
2
Ej + ui+ 1

2
pj

 if ui+ 1
2
< 0

This flux handles advection terms with the reconstructed velocity at faces,
while using upwind values for the advected quantities and forcing terms. You
will only need to modify the following bit of code

Assignment: Implement the above limiter, and reproduce the following
plot of the shock profile at time t = 0.1.

2



Figure 1: Initial condition

Figure 2: Solution at t = 0.1.

You will see that the code is nearly identical to your code for Burgers equa-

3



tion. If you’re feeling ambitious you should take a shot at writing the whole
code yourself.

4 Part 2: OpenFOAM

The second part of the homework will be to write an identical solver in Foam.
This will be more of a tutorial - there is very little work to do here but this
will give you a code base that we will use after Spring break to develop a full
Navier-Stokes solver.

First, we will copy our advection-diffusion code into a new directory to make
a custom solver.

$ source data / c l a s s M a t e r i a l / loadFoamModules . sh
$ run
$ cd . . / s o l v e r s
$ cp advect ionDif fus ionFoam eulerEquationFoam −r

We’ll now go through and change everything to make a new solver

$ cd eulerEquationFoam
$ mv advect ionDif fus ionFoam .C eulerEquationFoam .C
$ cd Make
$ g e d i t f i l e s

We’ll change the makefile to point to eulerEquationFoam.C instead

Figure 3: Change Make/files from the left to the right

We need a bunch more fields for this problem than the advection-diffusion
equation, so next we’ll tweak the createFields.H file.

First off, we’ll need the user to input the ratio of specific heats. We’ll get
rid of the previous code where we input the diffusion and advection coefficients
and replace it as follows:

4



Next we need to evolve density, velocity, pressure, and internal energy. We’ll
handle the first three in the same way as we did with the single field in the
advection-diffusion problem. The energy field will be slightly different, as it is
specified by an equation of state. Finally, we call a header file that will initialize
φ = ρU evaluated at faces.

5



At this point we’ve successfully initialized all of the fields - all that’s left is
to alter the timestepping. Again - this will be similar to the advection diffusion
case but now we’ve got a bunch more fields to handle. This can be handled as
follows:

6



And we’re done! If we save all of our changes, and compile in the terminal:

$ run
$ cd . . / s o l v e r s / advect ionDif fus ionFoam
$ wclean
$ wmake

We should have a new solver called advectionDiffusionFoam. You can find a
new case in /data/foamCases/shockTube. This case is set up to run the Sod
shock tube problem. Copy that over to your run directory. There’s one new
thing we’ll need to check out to set up the initial condition for the problem

7



$ run
$ cp ˜/ data / foamCases/shockTube . −r
$ cd shockTube
$ g e d i t system/

This is where we can set the non-uniform initial condition. What this does
is set a uniform default value everywhere in the domain. It then identifies a
region (in this case the box with bottom left corner (0.5−1−1) and upper right
corner (111)), and applies a uniform field to every cell falling in that region.
The workflow for this case looks like:

$ run
$ cd shockTube
$ cp o r i g i n a l .0/∗ 0/
$ blockMesh
$ s e t F i e l d s
$ eulerEquationFoam
$ paraFoam
$

And you can post-process your results in the usual way.

8



Assignment: Plot the fields at t = 0.1 and demonstrate that you’ve ob-
tained the same results with OpenFOAM as you have with your 1D code.

9


	Assignment 4: Compressible Euler equations
	The Sod shock tube
	Part 1: 1D code
	Part 2: OpenFOAM

