AM119: HW4 and more OpenFOAM tutorials

Prof. Trask
March 21, 2016

1 Assignment 4: Compressible Euler equations

In class this week we learned a bit about the Euler equations and how they
give rise to shock waves in super-sonic flows. For this weeks assignment, we
will implement both a 1D solver for the Euler equations and a full 3D solver
in OpenFOAM. We learned that for compressible flows, information propogates
at different speeds along the characteristics of the flow. In this assignment, we
will make a crude approximation when constructing the limiters in our finite
volume scheme using a linear reconstruction of velocity at faces, rather than
constructing the eigensystem that would be necessary to solve this problem.

2 The Sod shock tube

For this assignment we will be simulating the Sod shock tube problem discussed
in class. For this we will solve the compressible Euler equations

where
P
y=1pu
pE
and
U
F(y)=| puu+p
puE + up

and we will adopt the ideal gas equation of state

p=p(B = 300 - 1)

where v = 1.4 is the ratio of specific heats for air. This EOS is equivalent to
the ideal gas equation p = pRT that we might be more familiar with.

We will initialize the problem with the values, p; = 1.0, p, = 0.125, p; = 1.0,
pr = 0.1, and u; = v, = 0. From these values we can recover the energy from
the equation of state, and knowledge of p,u, and E are enough to initialize Y.

3 Part 1: 1D code

I’'ve done you a favor and wrote most of the code for this assignment (see this
week’s postings on the website). Your job will be to implement the following
limiter:

When constructing the flux F(y), 41, we will first reconstruct the velocity
at the face f,,1 with the linear extrapolation u;, 1 = “F2+. We will then

1
calculate the flux as follows ’

Pitliq L
PUitiy 1 + Di ifuiJr%ZO
P L B + iy 1pi
Pititl
PUjUiy L+ Pj ifugy <0
PUi 3 By + iy 1p;

This flux handles advection terms with the reconstructed velocity at faces,
while using upwind values for the advected quantities and forcing terms. You
will only need to modify the following bit of code

fi/Write a function to pick the upwind flux vector based off of u
vector<double> (int 1 , int j){

vector=double> F _uv(3);

F uv[o]
F uv[1]
F uv[2] =

Assignment: Implement the above limiter, and reproduce the following
plot of the shock profile at time ¢ = 0.1.

3 T T | T
i — density]
25 — pressure |
- — velocity
L — energy]
'2 —
L5 —
1 _
05— —
0 | . \ | . | .
0 0.2 0.4 0.6 0.8 1
Figure 1: Initial condition
4 T T T T
L — density |
— pressure
— velocity
3 — energy |
’2 —
1 _
0 | I | 1 I 1
0 0.2 0.4 0.6 0.8 1

Figure 2: Solution at ¢t = 0.1.

You will see that the code is nearly identical to your code for Burgers equa-

tion. If you’re feeling ambitious you should take a shot at writing the whole
code yourself.

4 Part 2: OpenFOAM

The second part of the homework will be to write an identical solver in Foam.
This will be more of a tutorial - there is very little work to do here but this

will give you a code base that we will use after Spring break to develop a full
Navier-Stokes solver.

First, we will copy our advection-diffusion code into a new directory to make
a custom solver.

source data/classMaterial /loadFoamModules.sh
run

cd ../solvers
cp advectionDiffusionFoam eulerEquationFoam —r

&6 H P P

We'll now go through and change everything to make a new solver

cd eulerEquationFoam

mv advectionDiffusionFoam .C eulerEquationFoam .C
cd Make

gedit files

& H L P

We’ll change the makefile to point to eulerEquationFoam.C instead

emacs@node006.oscar.ccv.brown.edu

File Edit Options Buffers Tools Help

I EERX2E®s DB RBS=H

advectionDiffusionFoam.C “| eulerEquationFoam.C

EXE = $(FOAM USER APPBIN)/advectionDiffusionFoam EXE = $(FOAM USER APPBIN)/eulerEquationFoam

Figure 3: Change Make/files from the left to the right

We need a bunch more fields for this problem than the advection-diffusion
equation, so next we’ll tweak the createFields. H file.

First off, we’ll need the user to input the ratio of specific heats. We'll get
rid of the previous code where we input the diffusion and advection coefficients
and replace it as follows:

Info<< “Reading transportPropertiesh << endl;

I0dictionary transportProperties

(
I0object

(

ansportProperties

runTime.constant(),

mesh,
[0object::MUST READ IF MODIFIED,
[0object::NO WRITE
)
|H
Info<< “Reading material properties’ << endl;

dimensionedScalar gamma

(

transportProperties. lookup(" gamnma")

1:

Next we need to evolve density, velocity, pressure, and internal energy. We’ll
handle the first three in the same way as we did with the single field in the
advection-diffusion problem. The energy field will be slightly different, as it is
specified by an equation of state. Finally, we call a header file that will initialize
¢ = pU evaluated at faces.

Info<< "Reading fields << endl;
volScalarField rho
l

I0object

l

runTime.timeName(),
mesh
IC

2Ct1:MUST_READ,
(tAUTO WRITE

volVectorField U

l
I0object k
l

runTime.timeName(),
mesh,

T::MUST_READ,
t::AUTO WRITE

volScalarField p
l
I0object

(

runTime.timeName(),

T::MUST_READ,
t::AUTO WRITE

(¥%. createFields.H 31% L36

By |
volScalarField e
[
I0object
(

runTime.timeName (),
mesh,

t::READ_IF_PRESENT,
2ctirAUTO_WRITE

e = p/{rho*(gamma-1.0)) + 8.5*magSqril);

=

(C++/1 Abbre--:**- createFields.H

Bot L66 (C++/1 Abbre

At this point we’ve successfully initialized all of the fields - all that’s left is
to alter the timestepping. Again - this will be similar to the advection diffusion
case but now we’ve got a bunch more fields to handle. This can be handled as

follows:

Info==< Starting timestepping << endl;

while (runTime.loop())

{

Info<< ne << runTime.timeName() =< nl << endl;
Lude "Ci antNo.l

//S50lve momentum equation

solve

(

fum::ddt({rho,U)
+ fuvciidiv(phi,U)
- fvcr:grad(p)
|

//Solve energy equation

solve
(
fvm::ddt(rho,e) k
+ fvc:iidiv(phi,e)
- fwciidiviphi,p/rho)
|
//Solve continuity equation
solve
(
fum::ddt(rho)
+ fvciidiv(phi)
)i

//Update variables

phi = fvc::interpolate(rho*U) & mesh.Sf();

p = rho*(e - 0.5*mag(U)*mag(U))*(gamma-1.0);

runTime.write();

Info<< "Executis ne << runTime.elapsedCpuTime() =<
<< ClockTime << runTime.elapsedClockTime() <<
<= nl << endl;

}
Info<< "Eni << endl;

And we’re done! If we save all of our changes, and compile in the terminal:

run
cd ../solvers/advectionDiffusionFoam
wclean
wmake

& H L P

We should have a new solver called advectionDiffusionFoam. You can find a
new case in /data/foamCases/shockTube. This case is set up to run the Sod
shock tube problem. Copy that over to your run directory. There’s one new
thing we’ll need to check out to set up the initial condition for the problem

$ run

$ cp “/data/foamCases/shockTube . —r
$ cd shockTube

$ gedit system/

FoamFile
{
version 2.0;
format ascii;
class dictionary;
location H
object setFieldsDict;
}
J/ FEOEE R % % % 0 £ % £ E f E £ E EE E E E E E E E £ E £ E E E % £ % 7.
defaultFieldValues (L3
volVectorFieldValue U (0 @ @)
volScalarFieldValue e 1.0 //this will be reset in createFields
volScalarFieldValue p 1.0
volScalarFieldValue rho 1.08);
regions { boxToCell { box (6.5 -1 -1) (1 11) ;
fieldValues |
volScalarFieldValue e 1.0 //this will be reset in createFields
volScalarFieldvValue p 0.1
volScalarFieldValue rho 8.125) ; });
T T = 4y

This is where we can set the non-uniform initial condition. What this does
is set a uniform default value everywhere in the domain. It then identifies a
region (in this case the box with bottom left corner (0.5—1—1) and upper right
corner (111)), and applies a uniform field to every cell falling in that region.
The workflow for this case looks like:

run
cd shockTube

cp original.0/% 0/
blockMesh
setFields
eulerEquationFoam
paraFoam

L L H H P P H D

And you can post-process your results in the usual way.

ParaView 4.4.0 64-bit 4+ _ox
Fle Edit View Sources Fiters Tools Catalyst Macros Help

pEBREOQ?F &N KA D> DD E tme 0000000100 Eor 101
& 2 el [l [2) [Bepresentztion o) () BR 6 b g3 4 d oA L3

90RO ELE 0o o Qi

Pipeline Browser Olayout #1% | +
B builtin: BB oDE N DR E sRenderviewl (D]B]O)8][x]m momE Linecl BEIREE
1 shockTube.OpenF OAM s
L@ Transform1. - —me
) Transform2 s _:
© Transform3 U Magritude
PlotOverLinel
45
a
Properties
Properties 38
3
Search ... (use Esc to clear text)
= Properties (Plot([,H 25
| ,
[%] Show Line
S | o -
(Ll 05
[¥ Axis =
I e) S A :
€7 E— —C O 02 o4 0b 0B i

]]‘4

Assignment: Plot the fields at ¢ = 0.1 and demonstrate that you’ve ob-
tained the same results with OpenFOAM as you have with your 1D code.

	Assignment 4: Compressible Euler equations
	The Sod shock tube
	Part 1: 1D code
	Part 2: OpenFOAM

