plot
2-D line

GUI Alternatives

Use the Plot Selector to graph selected variables in the Workspace Browser and the Plot Catalog, accessed from the Figure Palette. Directly manipulate graphs in plot edit mode, and modify them using the Property Editor. For details, see Using Plot Edit Mode, and The Figure Palette in the MATLAB Graphics documentation, and also Creating Graphics from the Workspace Browser in the MATLAB Desktop documentation.

Syntax

```matlab
plot(Y)
plot(X1,Y1,...)
plot(X1,Y1,LineSpec,...)
plot(...,'PropertyName',PropertyValue,...)
plot(axes_handle,...)
```

```matlab
h = plot(...)  
hlines = plot('v6',...)
```

Description

`plot(Y)` plots the columns of `Y` versus their index if `Y` is a real number. If `Y` is complex, `plot(Y)` is equivalent to `plot(real(Y),imag(Y))`. In all other uses of `plot`, the imaginary component is ignored.

`plot(X1,Y1,...)` plots all lines defined by `Xn` versus `Yn` pairs. If only `Xn` or `Yn` is a matrix, the vector is plotted versus the rows or columns of the matrix, depending on whether the vector's row or column dimension matches the matrix. If `Xn` is a scalar and `Yn` is a vector, disconnected line objects are created and plotted as discrete points vertically at `Xn`.

`plot(X1,Y1,LineSpec,...)` plots all lines defined by the `Xn,Yn,LineSpec` triples, where `LineSpec` is a line specification that determines line type, marker
symbol, and color of the plotted lines. You can mix \(X_n, Y_n, \text{LineSpec} \) triples with \(X_n, Y_n \) pairs: \texttt{plot}(X1,Y1,X2,Y2,LineSpec,X3,Y3).

\begin{quote}
\textbf{Note} See \texttt{LineSpec} for a list of line style, marker, and color specifiers.
\end{quote}

\texttt{plot}(...,\text{'PropertyName'},PropertyValue,...) sets properties to the specified property values for all \texttt{lineseries} graphics objects created by \texttt{plot}. (See the "Examples" section for examples.)

\texttt{plot}(axes_handle,...) plots into the axes with handle axes_handle instead of the current axes (\texttt{gca}).

\(h = \texttt{plot}(...) \) returns a column vector of handles to \texttt{lineseries} graphics objects, one handle per line.

\textbf{Backward-Compatible Version}

\(hlines = \texttt{plot}('v6',...) \) returns the handles to line objects instead of \texttt{lineseries} objects.

\textbf{Remarks}

If you do not specify a color when plotting more than one line, \texttt{plot} automatically cycles through the colors in the order specified by the current axes \texttt{ColorOrder} property. After cycling through all the colors defined by \texttt{ColorOrder}, \texttt{plot} then cycles through the line styles defined in the axes \texttt{LineStyleOrder} property.

The default \texttt{LineStyleOrder} property has a single entry (a solid line with no marker).

\textbf{Cycling Through Line Colors and Styles}

By default, MATLAB resets the \texttt{ColorOrder} and \texttt{LineStyleOrder} properties each time you call \texttt{plot}. If you want changes you make to these properties to persist, then you must define these changes as default values. For example,

\begin{verbatim}
set(0,'DefaultAxesColorOrder',[0 0 0],...
 'DefaultAxesLineStyleOrder','-|-.|--|:');
\end{verbatim}

sets the default \texttt{ColorOrder} to use only the color black and sets the \texttt{LineStyleOrder} to use solid, dash–dot, dash–dash, and dotted line styles.

\textbf{Prevent Resetting of Color and Styles with hold all}
The `all` option to the `hold` command prevents the `ColorOrder` and `LineStyleOrder` from being reset in subsequent `plot` commands. In the following sequence of commands, MATLAB continues to cycle through the colors defined by the axes `ColorOrder` property (see above).

```matlab
plot(rand(12,2))
hold all
plot(randn(12,2))
```

Additional Information

- See [Creating Line Plots](#) and [Annotating Graphs](#) for more information on plotting.
- See [LineSpec](#) for more information on specifying line styles and colors.

Examples

Specifying the Color and Size of Markers

You can also specify other line characteristics using graphics properties (see [line](#) for a description of these properties):

- **LineWidth** — Specifies the width (in points) of the line.
- **MarkerEdgeColor** — Specifies the color of the marker or the edge color for filled markers (circle, square, diamond, pentagram, hexagram, and the four triangles).
- **MarkerFaceColor** — Specifies the color of the face of filled markers.
- **MarkerSize** — Specifies the size of the marker in units of points.

For example, these statements,

```matlab
x = -pi:pi/10:pi;
y = tan(sin(x)) - sin(tan(x));
plot(x,y,'--rs','LineWidth',2,...
     'MarkerEdgeColor','k',...
     'MarkerFaceColor','g',...
     'MarkerSize',10)
```

produce this graph.
Specifying Tick–Mark Location and Labeling

You can adjust the axis tick–mark locations and the labels appearing at each tick. For example, this plot of the sine function relabels the x–axis with more meaningful values:

```
x = -pi:.1:pi;
y = sin(x);
plot(x,y)
set(gca,'XTick',-pi:pi/2:pi)
set(gca,'XTickLabel',{'-pi','-pi/2','0','pi/2','pi'})
```

Now add axis labels and annotate the point –pi/4, sin(-pi/4).
Adding Titles, Axis Labels, and Annotations

MATLAB enables you to add axis labels and titles. For example, using the graph from the previous example, add an x- and y-axis label:

```matlab
xlabel('-\pi \leq \Theta \leq \pi')
ylabel('sin(\Theta)')
title('Plot of sin(\Theta)')
text(-pi/4,sin(-pi/4),'
\leftarrow sin(-\pi\div4)',...'HorizontalAlignment','left')
```

Now change the line color to red by first finding the handle of the line object created by `plot` and then setting its `Color` property. In the same statement, set the `LineWidth` property to 2 points.

```matlab
set(findobj(gca,'Type','line','Color',[0 0 1]),...
    'Color','red',...
    'LineWidth',2)
```
See Also

axis, bar, grid, hold, legend, line, LineSpec, loglog, plot3, plotyy, semilogx, semilogy, subplot, title, xlabel, xlim, ylabel, ylim, zlabel, zlim, stem

See the text String property for a list of symbols and how to display them.

See the Plot Editor for information on plot annotation tools in the figure window toolbar.

See Basic Plots and Graphs for related functions.