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Abstract

British Aerospace has segmented a large database

of images into 11 sets of regions representing distinct

categories of visible objects and surfaces. We examine

the nearest neighbor pixel statistics for each category

and �nd major di�erences between their scaling prop-

erties and the shape of the full histogram.

1 Introduction
There has been enormous interest in the statistics

of natural images recently. One remarkable property
of natural images is that their statistics are nearly
scale-invariant under block averaging. In terms of sec-
ond order statistics, this means the power spectrum
of natural images is proportional to 1

frequency2
. But

there is considerable variability in this scaling and in
some investigations, the spectrum is better �tted by
exponents other than 2. Going beyond second order
statistics, one can study the full marginal distribution
on the log of the ratio of intensities at adjacent pixels
(assuming the images are calibrated, i.e. equal to the
energy incident on each sensor). In various studies,
these marginals have been computed and again they
have shown both similarities and di�erences. British
Aerospace has compiled a database of 214 calibrated
RGB images, with 512x768 pixels each, which they
have laboriously segmented into pixels representing 11
di�erent parts of the scene (listed below). This allows
us to make a precise comparison of scaling properties
and of the nearest neighbor marginals for each cate-
gory. We con�rm the existence of systematic di�er-
ences and make initial steps at quantifying the di�er-
ences.

2 Observations with the unsegmented
database

As mentioned, the database consists of calibrated
RGB images. We work only with grey levels, hence
we took the weighted average of the three components,
with widely used weights: 0.299,0.587,0.114. Since the
pixel values are positive and have the dimension of

Figure 1: Two images from the image data set, and
their segmentations.

energy, we take logarithms, giving us images I which
are dimension-free up to a single additive constant1.
For each image I, we de�ne the scaled down image
I(k) by taking disjoint k�k blocks and computing the
average intensity value of each block. The statistic we
investigated here is the horizontal derivative, which
for scale k, is simply: D(k) = I(k)(i; j + 1)� I(k)(i; j),
for any possible i; j pairs. If natural images are scale
invariant, D(k) should have the same distribution for
all k.

In this section, we compare the histogram of D at
di�erent scales for the full dataset. First, we claim
that D is a very stable statistic, consistent through
di�erent data sets. Figure 2 shows the histogram
of D from the BA Image Database and from an-
other larger image database acquired by Van Hateren
[1]. Although these two statistics came from di�er-

1In fact, the images had a gamma correction by a square

root, so we also multiply by 2.
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comparation of the two image data set

Figure 2: Comparison of ln(Histogram) for the deriva-
tive statistic from the British Aerospace Database
(solid line) and van Hateren's database (dotted line),
both at scale 2

ent groups, they match very closely. Figure 3 shows
the log(histogram) of D(k), for k = 1; 2; 4; 8. We can
see that, except for the tails, the histograms of D(k)

match reasonably well over di�erent scales. This is
con�rmed by the fact that their standard deviations
are nearly equal, see table 2 category `all';

3 Observations with the segmented
database

Using the segmentations of the images, we can look
closely at the scale invariance property on each cate-
gory. Here are the categories and their frequencies:

Category Frequency Description
1 10.87 sky, cloud, mist
2 37.62 trees, grass, bush, soil, etc.
3 0.20 road surface marking
4 36.98 road surface
5 6.59 road border
6 3.91 building
7 2.27 bounding object
8 0.11 road sign
9 0.28 telegraph pole
10 0.53 shadow
11 0.64 car

Table 1: Categories and Their Weights
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Figure 3: ln(Histogram) of D at di�erent scales: red
= scale 1, green = scale 2, blue = scale 4, yellow =
scale 8

We found that the `manmade' categories 6,8,9 and
11 have similar histograms and scaling behavior, so
we put such categories together. Likewise, the `vege-
tation' categories 2 and 7 behave similarly (note that
category 7 contains vegetation like hedges, as well as
fences, etc.). Figure 4 shows the histogram for these
and the other large categories 1 and 4.

Some of these categories scale fairly well, e.g. the
manmade one and the vegetation categories, while the
sky and road categories do not scale at all well. To
make this more precise, we calculate the standard de-
viation sd` of D at scale level ` = log2(k) for each
category. These are given in the table 2 and shown

Category ` = 0 ` = 1 ` = 2 ` = 3
1 0.07 0.04 0.03 0.03
2,7 0.35 0.34 0.31 0.28
4 0.14 0.12 0.09 0.08

6,8,9,11 0.30 0.35 0.39 0.41
all 0.26 0.26 0.26 0.27

Table 2: Standard Deviation of Di�erent Categories
at Several Scale Levels

graphically in �gure 5. In �gure 5, log2 of the standard
deviation is plotted against `, so the negative of the
slope gives us an approximation to what the physicists
call the `anomalous dimension' �. In other words we
are �tting sd` � 2��`sd0. Equivalently, this is �tting
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Figure 5: Plot of log2(standard deviation) vs. scale
level and its linear �t in �ve cases: + = sky, * = veg-
etation categories, o = road, x = manmade categories
and 4 = all pixels. The slopes are 0.15 for manmade,
0.02 for all, -0.11 for vegetation, -0.30 for road and
-0.50 for sky.

a model for the second order statistics in which the
power spectrum scales as 1=freq(2�2�).

4 Discussion

Figure 3 shows that natural images as a single en-
semble are very nearly scale invariant. When we look
at di�erent categories, however, we �nd major di�er-
ences:

1. The vegetation category looks linear in the log
plot of the histogram. It scales well although the
power spectrum is modeled by 1=freq1:8 which is
very close to what Ruderman and Bialek found
[3]. The log(histogram) can be modeled by C1 �
C2jxj, the 'double exponential' distribution.

2. The manmade category has a histogram with big
`shoulders' in the log plot. The center parts of the
histograms match well for di�erent scales, but the
tails go up with increasing scale. We believe this
phenomena is caused by large objects and their
edges. Along an edge the total number of pixel
pairs goes down by the factor of 2 when scaling,
while the overall number of pairs goes down by
the factor of 4. As a result, the frequency of edge
pixels increases.
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η = 0.26

Figure 6: ln(Histogram) of D for category 4 with
� = 0:26.

3. In category 1, the density of the distribution
mainly concentrated around 0, and shifts further
to the center with increasing scale. The scaling
�t gives an power spectrum like 1=freq1:0.

4. In category 4, the log histogram is slightly con-
cave, and scales badly. However, if we correct for
the changing variance, using the assumption that
its power spectrum is 1=freq(1:4), we get a much
improved �t as shown in �gure 6.

To summarize, it appears that the multi-scale fam-
ilies of histograms for each category can be modeled
with three parameters: a) their standard deviation, b)
the anomolous dimension � and c) a `shape' parameter
for the histogram which we have elsewhere [2] identi-
�ed as the parameter in an in�nitely divisible family of
probability distributions. These �ts will be developed
further later.
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Category 1
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Category 2,7
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Category 4
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Category 6,8,9,11

Figure 4: ln(Histogram) of D at di�erent scales and categories: red = scale 1, green = scale 2, blue = scale 4,
yellow = scale 8


